IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 1

Automated Interface Refinement for Compositional
Verification

Haigiong Yao,Student Member, IEEEBnd Hao ZhengMember, IEEE

Abstract—Compositional verification is essential for verifying M v
large systems. However, approximate environments are need !
when verifying the constituent modules in a system. Effecte

compositional verification requires finding a simple but acarate Wy Wy
over-approximate environment for each module. Otherwisemany M, M, M,
verification failures may be produced, therefore incuring tigh wa w2
computational penalty for distinguishing the false failures from (@) (b)

the real ones. This paper presents an automated method to reg

the state space of each module within an over-approximate gir Fig. 1. Interface refinement for compositional verificati@lock 1’ and2’,
ronment. This method is sound as long as an over-approximate abstractions ofl and2, are the environments f& and 1, respectively.
environment is found for each module at the beginning of

the verification process, and it has less restrictions on stem

partitioning. It is also coupled with several state space réuction

techniques for better results. Experiments of this method o of producing false counter-examples, which may incur a high

several large asynchronous designs show promising results computation penalty to distinguish them from the real ones.
Index Terms—formal method, model checking, compositional ~ To address these problems, this paper presents a novel
verification, logic verification, circuit verification, abstraction framework for compositional verification of concurrent sys
refinement. tems. This framework combines an automated interface refine
ment method and several state space reduction techniques, a
. INTRODUCTION enables large systems to be verified. The automated ingerfac

Model checking has become a very important alternative ggfinement makes the_state space of a module obtained fr_om an
simulation for verifying complex concurrent systems. HowRVer-approximate environment more accurate, thus atiega
ever, the state explosion problem limits it to small desjgn§® burden of finding an exact environment for a module at
a serious barrier which prevents its widespread acceptari® Peginning. Itis based on the observation that modutes ar
Although a number of techniques, such as symbolic mod@enotonic in that restricting the input behavior of a modl_JIe
checking [7], [33], SAT based bounded model checking [5‘%;)95 not increase its output behawolr. A module can be_ refined
[6], [4], and abstraction [14], [13], have been developed the behavior of |t_s ngghbqr. And its restricted behacam
alleviate the state space explosion problem, model chgckffien be used to refine its neighbors. _
still does not scale well as the system complexity increases 10 introduce the idea, refer to Fig.1. The inputs and outputs
Compositional verification is viewed as one of the mo&f Mi, w2 and wy, are the outputs and inputs afl,
promising approaches to attack state explosion by divite-a re;pectlvely. Durlng_verlﬂcatlon, the m_puts ofy andM2 are
conquer. It decomposes a large complex verification proble#ffven by some environment abstractiofy and M, instead
into simpler subtasks of lower complexity, each of whicRf M2 and M, themselves. After finding the state space of
verifies a module in a system. The conclusion for the entifd1 and M3, constraints on their outputsy; and ws, are
problem is drawn by combining the results from verifyinglerived. Sincew, and w, are the inputs toM, and M;,
the subtasks following certain compositional reasoniriggru féspectively, these derived constraints are used to cetfue
without actually verifying the entire system. behavior onw, andw, defined byM; and M, respectively.

In general, properties of a module are satisfied only in Since these modules are monotonic, more restricted camistra

specific environment, which allows a module to be verifie@n the outputs may be derived from these modules after
effectively in isolation. However, finding such an enviroem their input behavior is constrained. If so, the newly restd

in traditional methods requires user guidance, which ssiff?utput constraints are used in the next iteration to reste
from two severe weaknesses. First, it impairs the “pusHLPUt behav_lor of the nelghborlng modules again. This psece
button” characteristic of model checking. Second, assigngt "epeats until the output constraints from both modules @n n
provided by users are often error-prone and insufficient {nger be strengthened. Although the idea is illustratadgus
model the concrete environment. Furthermore, if an envirof" €xample with two modules, it naturally applies to systems

ment is too coarse, the extra behaviors increase the cha®#® an arbitrary number of modules. In a later section, this
method is proved to be sound by showing that the refined state
Haigiong Yao and Hao Zheng are with the CSE dept. of the Urv. gspace of each module is still an abstraction of the exact one.
South Florida, Tampa, FL 33620. This research is supporteiedbCAREER This f K al includ | ducti
Award contract# CCF-0546492 and an award CNS-0551621 fnerNational Is framework also Includes several state space reduction

Science Foundation. techniques that may help to extract stronger interface con-

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 2

=ML is performed. On the other hand, compositional verification
v based onassume-guarantestyle reasoning [16], [27], [3],
‘ Model generation/reduction [29], [34] does not construct the global model. Insteadij-ver
i fication of a system is broken into separate analyses for each

module of the system. The result for the entire system is
derived from the results of the verified individual modules.

‘ Interface refinement ‘

i When verifying each module, abstractions or assumptions
‘ Verification %M, Done about the environments with which the modules interact are
needed for sound verification, and must be discharged later.

Fail The success of compositional reasoning relies on discafery

b ! appropriate environment assumptions for every modules iBhi
rocess counter-examples K i
typically done by hand. If the modules have complex interac-
Fig. 2. The flow of Model checking with interface refinement. tions with their environments, generating accurate emvirent
assumptions can be challenging. Therefore, the requireafien
manually finding assumptions has been a factor limiting the

straints, thus enabling the refinement to be more effecti\Per."’ICtlcal use of composmonal reasoning. .
In recent years, various approaches to automated assumptio

They may also reduce the intermediate state space sigtifican : - .
y may P g eneration for compositional reasoning have been proposed

to allow more flexible system partitioning by lowering th . :
. . n the learning-basedapproaches, assumptions represented
peak space requirement of the largest module in a system. NI .
Y deterministic finite automata are generated with fite

In addition, they do not produce extra behavior compared learning algorithm and analysis of local counter-examples
traditional abstraction approaches. Therefore, the oolyce [37], 21, [19], [25], [10]. The learned assumptions canuies

of false failures is the over-approximate environment used . N e i
orders of magnitude reduction in verification complexity

ie . L . . |
verifying each module. This is highly desirable because Iﬁowever, these approaches may generate assumptions with to

requires less computation to confirm the found failures. many states and fail verification in some cases [37], [2]
This method is not complete in that false counter-examples P

. o . : . Comparatively, this method has several significant differ-

may still exist if the over-approximate environment is not . X . .
' o ences from the learning based ones. First, interface bahavi

completely refined. However, the chances of finding fals

counter-examples are significantly reduced when intesfa¢e .OE% a module is encoded implicitly in Boolean formulas for

the modules are refined to be more accurate. Even tho mherface signals instead of finite automata. Second, ttes-in

. , gce behavior of a module is refined by iteratively examining
false counter-examples may still show up after refinemént, [~ . : .
. , . . the interactions between the module and its neighborserath
would be much easier for users to refine the derived interface A relvina on local counter-examole analvsis. Howevered
constraints further by hand because a substantial amount i ying P ySIS. '

. . - .. _.IS nothing to prevent counter-examples from being used to
unnecessary information has been removed. Efficientlyndist ' . :
_— . . . further refine module interfaces. Not using counter-exas\pl
guishing the false counter-examples itself is very impurta

. . R Eor refinement allows more freedom in system partitioning,
and deserves extensive discussion in a separate presentati

. hile existing learning based methods seem more suitalbye on

It is not covered in this paper. Fig. 2 shows an overview " . : .
e . or two-module partitions as discussed in [37], [18]. Tharmd

the verification flow in our method.

This paper is organized as follows: Section Il gives a%robably more importantly, the interface constraints gateel

overview of the previous work on compositional reasoning an y this me_zthod are not_ assumptions. Therefore, there is no
eed to discharge the interface constraints later on. Bespi

assumptlog learning methoqls. Sectlon_llll gives a briet bac&le differences, this method and the learning-based method
ground review of the modeling and verification of concurren

: . o . __can be combined to achieve better results.
systems. Section IV describes our compositional verificati o : o o
. : In addition, this method facilitates verification reuse.alf
method. Section V addresses the automated interface con- . . o D
.) ' . module in a system is modified and its interface becomes
straint extraction and refinement method. Section VI prissen . ' : .
) . . more restricted, then refinement can be applied again on top
the state space reduction techniques to make the interéace I, . . .
) . : of the results from the previous iteration. On the other hand
finement more effective. Section VII demonstrates our methg . ; . . o
finement is not needed if the interface of the modified

on several large examples. The last section concludes the ; N
. Lo modules become more liberal. In both cases, verification can
paper, and points out some future research directions.

be limited to the modified modules.
In the interface constraint-basedpproaches, restrictions
from environment are imposed on the modules of a system to
Compositional verificationis essential to verifying large remove the behavior that should not take place. Generafion o
systems. It can be roughly classified @@mpositional min- interface constraints based on the analysis of synchrtioiza
imization and compositional reasoningCompositional mini- between modules is proposed by Cheung and Kramer [11].
mization [8], [26], [30] in general constructs the local nebd However, it cannot capture effective interface constrmathie
for each module in a system, minimizes it, and composestdt deficiencies in analysis of synchronization betweenradist
with the minimized models of other modules to form a reducedodules. Alfaro and Henzinger provide interface automata
global model for the entire system, on which verificatioto represent a module and its environment [20], [21], [22].

II. RELATED WORK

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 3

executions or firings cause the movement from one state to
another. The definition of state graphs is given as follows.

Definition 3.1 (State Graphs)A state graph (SG)Y- is a
6-tuple (P, A, S,init, R, L) where

1) P is a finite set of atomic state propositions,

2) Ais a finite set of actions,

3) S is a finite set of states,

4) init € S is the initial state,

5) RC S x Ax S is the set of state transitions, and

6) L:S — 2F is a state-labeling function.

In the above definitionS includes a special state which
denotes thdailure stateof a SGG, and represents violations
of some prescribed properties. How a system behaves does
not matter after it enters the failure state. Thereforegimry
a € A, there is a(m,a,7) € R. Each non-failure state is
labeled with a non-empty set of propositions. Fod.(w) = (.

(b) Actions are used to model visible or invisible behavior of
systems. For a SGA = A’ U A U {¢}. Al is the set of
Fig. 3. (a) A simple asynchronous circuit. (b) The SG for mledu> where actions generated by an environment of a system such that
both inputs are set to be completely free. .
the system can only observe and readf’ is the set of
actions generated by a system responding to its environment
¢ represents the internal behavior of a system invisible en th
The module and the environment are refined in an alternatimgerface. Consequently, for a state transitien, ¢, s2) € R,
fashion so that the module accepts only input actions gegetrathe environment cannot distinguish betweenand s, due
by the environment, and issues output actions correspgndio L(s;) = L(s2). In other words, execution of invisible
to these input actions. Refinement of interface automathdn tactions does not affect the state labellings. This papes use
component-based design is similar to refinement of envirofky, a, s2) € R and R(s1,a, s2) to denote thafs, a, s2) is a
ment assumptions in compositional verification [1] [24]1]3 state transition of a SG. We assume that the state transition
A similar approachthread-modular reasonings proposed in set R is total such that every state has some successor. A
[28] for multithreaded program verification. SG G is deterministic if for all states, s’,s” € S and all

Counterexample guided abstraction refinem@@EGAR) actionsa € A, R(s,a,s’) and R(s,a, s”) hold, thens’ = s".
[17], [15], [13] uses a set of abstraction predicates toduiDtherwise,G is non-deterministic. Our method allows non-
a reduced finite state model for a system. If such a modigterministic SGs.
passes verification, the concrete system is concluded to bé&ig.3(a) shows a simple asynchronous circuit. The com-
correct. Otherwise, the abstract model is iteratively egfiby ponent labeled with “C” is a C-element whose output is
adding more relevant variables based on the analysis of thigh when both inputs are high, low when both inputs are
spurious counterexamples until the model passes verditatilow, or remains unchanged otherwise. This circuit is parti-
or a counterexample is confirmed to be genuine. Therefotioned into two modules); and M. Fig.3(b) shows the
the concept of CEGAR is similar to that of learning-basetbrresponding SG fol/, where both of its inputs are set
compositional verification approaches. However, the liegen to be totally free, meaning they can change to high or low
based approaches are a step forward such that verificatiofnisany state. In asynchronous circuits, each wiréhas two
applied to an abstract model of each module in a systeagtions,w+ andw—. For My, P = {z,y, z, ~x, —y, -z}, its
instead of a global model of the entire system. CEGAR isput actionsA! = {x+,z—, y+,y—}, and its output actions
first coupled with compositional verification in [9]. A9 = {z+,2—}, and its invisible actions ardu-+,u—}.

To make this and following figures of SGs readable, state
labellings are not shown. As an example, the labelingpof
of My is {—x, ~y, -z}

State graphsre used to model the behavior of concurrent A path of GG is an infinite sequence of alternating states
systems. This section introduces basic notations and tlefiai and actionsp = (sg, ag, $1, a1, S2,- -) such thatsy = init,
for state graphs and their relative operators. It preseots hs; € S, a; € A, and(s;, a;,s;+1) € R for all ¢ > 0. A path
the correctness of safety properties is formulated andkeitec is autonomousf all actions on that path are il® U {¢}.
in this framework. An autonomous path executes irrespective of input actians.

path isvisible if it does not contain any action. Given a SG
G, the set of all paths starting from the initial statet is the
A. State Graphs language ofGG, denoted asC(G). A subpath is defined as a

A state graph is a vertex-labeled and edge-labeled digrafilagment of a path such that= (s;, ai, Sit1, @Git1,- -, Sitj)
Vertices represent states, labeled with propositionshbéd. for 7,5 > 0. A states’ € S is reachable froma states € S
Edges represent state transitions, labeled with actioresevhif there exists a subpath = (s, ag, s1,a1, s2,- -+, $n) such

M,

Ill. PRELIMINARIES

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 4

that sp = s ands,, = s’. A states is reachable inG if s is In the above definition, the composite state is the failure

reachable from the initial stat@t. state if either module state is the failure state. When séver
Given a path, itprojectiononto a set of visible actions is modules execute concurrently, they synchronize on theeghar

defined as follows. actions, and proceed independently on their invisibleoasti

Definition 3.2 (Path Projection)Let p = (s¢,a0,51,a1,--+) If either individual SG makes a state transition to the failu
be a path. Its projection over a set of visible actiof’sC state, there is a corresponding state transition to theréail
Al U A, denoted byp[A’], is an sequence of alternatingstate in the composite SG. The behavior of the composite SG

states and actions captures the interaction between the two individual SGsast
, C been shown that parallel composition of SGs is commutative
PIAT = (50,00, 51,02,) and associative in [12].
such that
w o if ag & A’ orag =, B. Correctness and Conformance Relation
AT = { (80, a0) o p'[A'] otherwise Failure stater can be used to represent various undesirable

behavior that a system is not expected to produce. A system
is regarded as being correctsifis not reachable in its SG. A
path is referred to asfailure traceif a SG contains the failure
statew reachable via such path. The set of all failure traces
of a SGG is denoted asF(G). Obviously,F(G) C L(G). A
plA'] = (s0,a0,51,a1,---) and p'[A'] = (sg, ag, 81,a1,--+). system is correct ifF (G) = 0.

wherep’ = (s1,a1, 59, ...), and (sg,ag) o p'[A’] is the con-
catenation of(sg, ag) and p'[A’].

Definition 3.3 (Observable Equivalence)et p and p’ be
two paths, A’ C A’ U A9, and their projections be

p andp’ are observably equivalent, denotedmas o/, iff Given a failure trace = (so, ao, -+, 8, @i, 7, -+), the/non-
failure prefix ofp is (s, ao, - - -, si, a;). If another trace’ has
Vi > 0. L(s;) = L(s}) AN a; = al,. the same non-failure prefix @f o’ is also regarded as a failure

| . .
The observable equivalence is used in Section IlI-B to defirtlré}lce'.".1 .SUCh case. andp are calledfal!ure equivalent
Definition 3.5 (Failure Equivalence)Given two pathp =

a relation between SGs.) , P ,

Given a system with multiple modules, its SG can L e (SO""’fi.’ai"")’ p andp
constructed by composing the module SGs in parallel. Wi failure equivalent, denoted as-r o' iff
SGs can be composed if their output action sets are disjoint. V(0 < h <i). L(sp) = L(sy) Aap, = aj,

Definition 3.4 (Parallel Composition of SG-et The definition of conformance relation between two SGs is

Gy = (P1, A1, 51, inity, Ry, Lq) given as follows.

- . Definition 3.6 (Conformance)Given SGsG and G/, G
Go = (Pp, Az, Sy inity, By, L) conforms to G/, denoted asG =< @', iff the following
be two SGs. IfA? N AS = 0, the parallel composition of'; conditions hold:

and G, is defined as 1) PP=P.
_ o 2) A=A
GIHG2 = (Pl UP, A1 U A, S, (“”tla”%tQ)aRa L) 3) Vs S, 3s' € § such thatL(S) _ LI(S/)
where 4) For every pathy € L(G), there exists a path € L(G’)
1) S = {(81, 82) | $1 € S1Nsy € SQ}, and such thatp ~ pl orp~p p/-
a) (sy=m=s=m)A(sg =7 =5 =), Intuitively, the conformance relation states that anyhblesi
b) L(s1) NPy = L(s3)NP;. path ofG is also a visible path of’. Also, for any failure trace
2) V(s1,82) € S. L(s1, 82) = L1(s1) U La(s2). in G, there exists an equivalent failure traceGH. In other
3) R C Sx.Ax S such that's; € S;.Vss € So. (51, 52) € words, the language accepted GYyis also accepted by.
S, s1 #m, s2 £ and Therefore, givertz andG’, they satisfy the following property:
a) VYa € Ay — As. Ry(s1,a,s)) and GG ANFGY=0 = F@G) =0.
sh#m = R((s1,52),a,(s},52)) This property states that is correct if G’ is correct.
si=m = R((s1,82),a,(m,))
b) VYa € Ay — Ay. Ro(so,a,s,) and IV. COMPOSITIONAL VERIFICATION
12 =~ R((), a,() This section describes our compositional verification
: method. This method assumes that a system is described in
2Tz R((Sl’”)’a’(sl’sf) hod. Thi hod h is described i
S27T 51, 52), & \T, T some high level modeling language, and it is constructed by
C) Ya € A1 NAs. Ri(s1,a,s]) A Ra(s2,a,s5) and parallel composition of simpler moduledf = M| - - - | M,

without giving the definition of|| for such a language. By
virtue of the complexity of the entire systeid, our goal is
to check the correctness af by verifying eachM; without
Similarly, R also includeg (7, 7),a, (7, 7)) for all a € actually composing them. If each individuadl; is verified
A1 U As. correctly, then the entire system is correct.

8/1 #W/\S/Q 7éﬂ- = R((ShSQ)aav (5/175/2))
si=nVsh=m = R((s1,82),a,(r))

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 5

When a modulel/; is considered, the rest of the system isAlgorithm 1: verify(M = M| ---||M,)
regarded as the environment 8f;, denoted a<;. The task 1 foreachi. 1 <i<n do
of verifying M can be decomposed into sub-problems of , 44 S’G G for M€l
verifying M;||&; for 1 < i < n where only failures in a module aut of ai |1 ur e(C;-)' v
are checked in each sub-problem. However, simply composigg abst r act (Gy); he
the modules other thaf/; in the system int&; would make r mRed(G.); e
the complexity of verifying)/;||€; be very close to that of ¢ ne({Gll . L {Cr e Cob):
verifying the entire systemd/. To reduce the complexity, it PSS
needs to find an approximation 6&f, £/, such that

7 foreachi, 1 <i<ndo

8 if F(G;) # 0 then

1) &/ is much simpler thar€; in terms of the number of 9 return “ M has a failure”,
states in the resultant SG, and 10 return “ M is failure free”;

2) the same conclusion for verifyindy/;||£; can be drawn
from verifying M; | &!.

In practice, finding such an ideal approximate environment f V. INTERFACE REFINEMENT

a module to satisfy both requirements is extremely difficult This section describes an interface refinement algorithm
if not impossible. Therefore, our method loosens the reguithat makes the SGs obtained from the system modules with
ments of an approximate environment to be much simpler tagproximate environment more accurate. This algorithm is
preserve all the interface behavior &f This ensures that/; fully automated, and iteratively generates more accurate y
is failure free in the entire system if it is failure free di. If ~conservative interface constraints to refine the SGs as long
this is true for every module, the entire system is guarahteas the initially selected environments for the modules are
to be failure free. The above discussion is formalized in thabstractions of the exact ones.

the following compositional verification rule.

1. F@) =0 fori<i<n A. Definition and Properties of Constraints

2: G; <G, for1<i<n An action a is enabled in a state if there is a states’
_}-(ZGl” ,,,||§n) —0 sqch thatR(s,a, s') h_qlds. Recall t.hat.each state is labeled
with a set of propositions. An action is also regarded to be

where G; and G are the SGs generated froi;||€; and enabled in a state only when all the labeled propositiond.hol
M;||E;, respectively, using some state space exploration @kt conj : S — 2% be a function that maps a non-failure state
gorithm. This rule is sound but incomplete. The proof fofo a Boolean conjunction o, and it is defined as follows.
soundness is straightforward, and is not be given. On theroth
hand, the approximate environment may result in behavior conj(s) = /\L(S) for s # .

|mpo§S|bI9 in the e_nt|re system that causes a module to f@becifically, functionconj(s) returns a Boolean conjunction
resulting in false failures. over the propositions labeled in statef it is not the failure

Algorithm 1 shows our verification framework based oBtate. An action is enabled inif conj(s) evaluates to true.
the above compositional rule. In this algorithm, a $& This definition relates each enabled action with a Boolean
containing all reachable states and the corresponding st@frmula. Therefore, we can characterize the enabling eondi
transitions is generated first for eadf||£]. This step can be tions of actions with Boolean formulas, denotectasstraints
accomplished using some existing depth first search atgorit\which are defined as follows.
such as the one in [35]. Thereafter, a series of reductions iDefinition 5.1 (Constraints)Let G = (P, A, S, init, R, L)
applied toG; to control the size of these SGs in terms ofe a SG. Letf : 2 — {FALSE TRUE} be a Boolean
the number of states and state transitions. These redsctiqinction defined ove. A constraintC = {(a, f)|a € A} of
performed by procedureaut of ai | ure, abstract and (s a set of pairs of actions @ and their assigned Boolean
r mRed, are described in detail in Section VI. functions.

The challenges to the efficiency of algorithweri fy The rest of the paper usé$a) to denote the reference to
include finding a much simpler yet accurate environment fgr corresponding ta such that(a, f) € C. Additionally, if C;
each module, therefore reducing the extra behavior&/in andC, are defined on the same set4f C; = C5 is used to
introduced by an over-approximate environment. To mest thdenoteVa € A.C1(a) = Ca(a).
challenge, an interface refinement approach, implemenged b This section assumes that constraints are defined for all
procedurer ef i ne on line 6 in the algorithm, is developedactions of SGs to simplify presentation. A constraint for
and described in detail in the next section. It takes the S@stions may be provided by users, or derived automatically a
G, and their respective initial constrainfs for 1 < ¢ < n, shown in the following sections. When a constraint is impglose
and reduces iteratively state transitions fr@my invalidated on actions, it may restrict how actions are enabled, thesefo
by the constraints. After all SGs cannot be refined furthes, tcausing some state transitions to become invalid.
algorithm checks eacty; and reports failures found in any of Definition 5.2 (Valid State Transitions)A state transition
them. Concepts of constraints and how constraints are foufsda,s’) € R such thats # = is valid with respect to a
and used to reduce SGs are introduced in the next sectionconstraintC iff conj(s) = C(a) holds.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 6

By the above definition, a constraiftof a SGG on an Proof: SinceG; < Go, for every pathp; = (sg,ag, 1, ")
actiona corresponds to a set of valid state transitions definad £(G1), there exists a pathe € £(G2) such thatp; ~ ps.
as follows. If all state transitiongs;, a;, s;+1) for 0 < ¢ on p; are valid
, , with respect taC, they are also valid irtz; with respect taC.
Re() ={(s,0,5) € R | conj(s) = Cla) A s # 7} In other words, a path that is valid)G, is also valid in
It can be seen thafi; becomes smaller if a stronger(C)Gb. |
constraintC on a is imposed. Intuitively, a stronger constraint As seen above, a constraint corresponds to a set of state
implies that the enabling conditions for actions becomeemoiransitions of a SG. Therefore, the constraint of a given SG
restricted, and more state transitions may not be valid amgm can also be extracted. This is defined as follows.
This observation is reflected in the following property. Definition 5.4 (Extraction of Constraint)lLet G' be a SG
such thalG = (P, A, S,init, R, L). The constrainf extracted
Va € A ((Ci(a) = C2(a)) & (Bey(a) € Bes(@)) (D) from @, denoted byG(C), satisfies
whereC;, andC, are two different constraints. This property
states that the behavior in a SG_reg_arqung an actiois Vac A |Cla) = \/ conj(s)
reduced when a stronger constraint is imposedaorand
vice versa. For exampleyc, . includes all state transitions _ - _
(s,a,8') € RinaSG ifCa(a) = TRUE, andRe, o) € Reyay WhereV g a.synszx coni(s) is the disjunction ofcon;j(s)
for all otherC, (a). This example illustrates that TRUE is thefor all state transitiongs, a,s’) € R such thats is not the
weakest constraint for any action of a SG, and the SG remafaure state.

R(s,a,s')\s#m

the same with such a constraint. Let G; andG2 be two SGs such that; < G2. According
According to the above discussion, a reduced SG resufgsthe definition of the conformance relation, the behavior o
from applying a stronger constraint. (7 is more restricted than that @¥,. This implies that the

Definition 5.3 (Applying Constraint)Let G be a SG such enabling condition of an action is more restrictedGn than
that G = (P,A,S, init, R,L), andC be a constraint onA. in G>. This indicates that a stronger constraint may be derived

Applying C to G, denoted agC)G, results in a new S@&’ = from the refined SG.

(P, A", S init', R', L') such that Lemma 5.3:Let G; and G5 be two SGs, and’; andCs
1) PP=P, A=A S =S8, init' = init, L' = L, and two constraints derived by, (C;) and G2(Cz), respectively.
2) R =Uyuen (RC(yU{(ma 77)}) Then the following property holds.

a€E a P adl .
By the definition of constraints and conformance, a con- (G1 = Gy) = (C1=Cy)

straint C; is stronger than another constrairy iff one SG)

imposed withC; accepts a subset of language of a SG impos&doof: Since G1 < Gy, for every pathp, € L(Gy), there

with C». This is formulated in the following lemma. exists a pathpz € L(Gz) such thatp; ~ p. By the definition
Lemma 5.1:Let G = (P, A, S,init, R, L) be a SGC; and Of observable equivalence and constraints, for every A,

C, two constraints ond. Then, the following property holds. if it is enabled on pattp,, it is also enabled on path,. It
is possible thatz, may have some path that does not exist

(61 = C2) = (<Cl>G = <C2>G) in G1. This implies that an action may be enabled on some
path in Gz but not enabled irz;. To summarize, any action,
Proof: Let Gy = (C1)G, Go = (C2)G. Therefore, if enabled ipGl,_ is alsq e_nableq ilt’2, but this is not true in
the other direction. This is equivalent ¢ = Cs. |

Ry = U (Rcl(a) U {(ﬂ-v a, ﬂ-)})

vacA B. Interface Refinement for Compositional Verification
Ry = U (Rcz(a) U {(an,ﬂ)}) The previous section shows that accurate constraints help
VaeA refine SGs by removing invalid state transitions. However,
First, according to (1)Ya € A. Re,(a) C Re,(a) holds on manually generating such constraints may be too expensive.
account ofC; = C,. Hence,G; < G5 holds. This section proposes an algorithm to automatically derive

Next, for every pattp; € £(G)), there exists a path, € constraints from and subsequently apply them to the altstrac
L(Gs) such thatp; ~ ps. p1 consists of the state transitionsSGS. This algorithm iterates until the constraints for alsS
from R, and p, from R,. This impliesR; C R,. Thus, for cannot be strengthened, and all SGs cannot be reduced.

Va € A.Re,(a) € Re,(a), Which leads tova € A.Ci(a) = To simplify the discussion, consider a system of two mod-
C2(a) by (1). Henceg; = Cs holds. g ules,G = G1||Go, such thatd! = A9 and AY = A%. In the

The following lemma states that the conformance relatigi®duel, the input and output constraints refer to those joutin

between two SGs is preserved when the same constrainff$l output actions of a module, respectively. A shared @actio

applied to both of them. betweenG; and G, is in A1 N A,. If a shared actiom is in
Lemma 5.2:Let G; andG- be two SGs with the samd, AY N AL, then the output constraints anderived fromG,
andC a constraint ond. The following property holds can be used as input constraints to redGgeby pruning the

invalid state transitions on. The case where is in AS N A!
(Gi 2 Ga) = ((€)G1=(C)Ga) is handled similarly.

~

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008

The essence of interface refinement lies in the alternatihgt C; be the constraints obtained Wy, (C;) for i = 1,
refinement onG; andG» with the interface constraints. WhenAccording to Lemma 5.3Ya € A?. C; = Cl fori =1,
refining a SG, the output constraints derived from other S@gain, according to Lemma 5.1,

are applied to the considered SG where the invalid state tran , ,

sitions on input actions are removed. The output consgaint (C2)G1 = (C5)Gr and (C1) G2 < (€1) G

are extracted from the reduced SGs, and then serve as in(EHFnbining the results in the above steps, we have
constraints for other SGs in the next iteration. CétandCs

be the output constraints extracted fra# and G at the (C2)G1 = (C5)G and (C1)Ga < (C1) G,

ith iteration, respectively. The iterative process of inteefa
refinement is illustrated as follows.

2.
2.

According to (2),(C2)G1 = G1 and (C1)Ga = G2. Therefore,
G1 = (C4)GY and G2 < (C1)GY. This completes the proofl

iteration0 : (C3)GR(CH), (C1)G5(Cs) Functionr ef i ne shown in Algorithm 2 implements the

iteration1 : (CJ)GL(C?), (C1)GL(C3) interface refinement process presented above. It takes-as ar
o guments a set of SGG,, each of which is generated from a

iteration! : (CL)G! <Ci+l>’ <C{>G§<Cé+1> module in a system with an over-approximate environment,

and a set of initial constraint§; on the outputs of each

where (C3)G%(Cit") specifies that input constrainti is module. The algorithm first merges these constraints into a
applied on G4, and output constrainiC;™' is derived single set, and then iteratively applies the constrainethice
from (CH)GY. Let GY*' = (C)GY and CTRUE = each SG and extracts new output constraints from the reduced
{(a,TRUE) | Ya. a € A;}. SinceG} = (CTRUF)GY and SGs until the constraint does not change anymore. At this
Cy = CTRUF we haveGi™ =< G! by Lemma 5.1. The point, all state transitions in every SG are valid with respe
enabling condition of the output actions @™ may become to the constraints extracted from their neighbors, theeefm
more restricted after applyings, thereforeCi™! = Ci by further reduction is possible. The initial constraints sy
Lemma 5.3. The stronger constra'(i‘(frH extracted from the provided by users or obtained from high level represemntatio
reducedGi™ is used as the input constraint f6¥,"*. The These constraints may be very abstract at the beginning, and
same reasoning applies &@,. The above process terminatesnay possibly be set to TRUE for all actions by default if
in the Ith iteration when the extracted output constraints agfothing is known about the input interface of a module.
all modules are stable, e.gi = Ci™ andC} = CL™'. This However, more restricted initial constraints help reduce t
implies thatG! and G} cannot be reduced anymore. number of iterations. Functioreppl y andext r act follow

Theorem 5.1 below proves the soundness of the interfdie Definitions 5.3 and 5.4, and are described in more detail
refinement process. It shows that our compositional verifice the next section.
tion method combined with the described refinement process
is still sound in that the refined SGs are still abstractiohs oAlgorithm 2: refi ne({Gy,---,G,},{C1,--+,Cn})
the exact SGs after refinement. 10 —ClU.. . UCy

To prove Theorem 5.1, exact SGs need to be defineZd.C:@. "
Intuitively, the SG of a module is exact if its behavior is etha . /

- . 3 while C #C’ do

the same when it is embedded in a larger system. The fornlaYv C—c
definition of exact SGs is shown as follows. C— 0);'

Def|n|t|on 5:5 _(Exact SGs)Lgt G, and C_JQ be two SGs. foreach G;, 0 <i < n do
G is exact withinG = G1||G> if the following hold.

© 0O N o O

appl y(Gi,C);
V(s1,a,s}) € Ry, there exists d(s1,52),a, (s}, s5)) € R. Ci = extract (Gy);
C'=C"UC;
From the definition, the following property holds for the
exactGy
G = (C)Gy 2) Next, the complexity of the above algorithm in terms of the
number of iterations needed to find the stable constraints is
whereC, is obtained byG(Cz). considered. Assume that the size of aGG |G|, is measured
Theorem 5.1:Let Gy and G be exact withinG1[|Gz. If py the number of state transitions ®; of G;. Suppose the
G', andG; are SGs such that number of modules in a system isand |G;| < m for all
, , 1 < i < n. In theory, the number of iterations needed to
G =G andGs = Gy find the stable constraints i©(mn). This complexity can
the following property holds. be understood as follows. Consider the extreme case where
. . exactly one state transition of exactly one SG is removed in
G1 2 (C5)Gh and Gy 2 (Cr) Gy each iteration. And suppose that all state transitiongzjn
whereC! is obtained byG’(C!) for i = 1,2. can be removed. Obviously, the process stops when the state

transition setR; of everyG, is reduced to be empty. Therefore,
the maximal number of iterations necessary for terminaion
(C5YG1 = (C5) G, and (C])G2 =< (C1)GY, O(mn). Although this complexity seems very high, in practice

Proof: According to Lemma 5.2,

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 8

the total number of iterations is not that large because manXigorithm 4: extract (Gy)

state transitions can be eliminated from multiple modutes ! foreach a c A9 do

a single iteration as shown by the experimental results. 5 Add (a, FALSE) into C;;

o . _ 3 foreach (s,a,s’) € R; ands # m anda € AP do

C. Application and Extraction of Constraints 4 Replace(a, f) € C; with (a, f V conj(s));

In the above discussion, the application of a constraint toreturn C;;
and extraction of a constraint from a SG are represented as
(CYG(C"). This section shows how to reduce SGs by applying
a constraint on a SG, i.€C)G, and extract a constraint from
a SG, i.e.G({C").

Given a SGG and a constraint, the objective is to apply
C on G to remove the invalid state transitions (h A state
transition (s,a,s’) € R of G such thats # = is invalid if
conj(s) # C(a). The removal of the state transitions may $4:ZA7YAz S5 AyAz S¢: T AYA-z
render some states unreachabl&iwhen all of their incoming S7rx Ay A-z Sgrx Ay Az
state transitions are eliminated. In the last step, allacirable
states and their outgoing state transitions are also resnov&ince the outputs ofi/; are z andy, which are the inputs
Algorithm 3 shows the procedure to reduGewith C. of M,, the constraint for actions om and y is found by
disjoining conj(s) for all (s,a,s’) € R such thatu is onz or
y ands # 7. z+ is enabled in state; andss. After disjoining
conj(ss) andconj(ss), the constraint forr+ is —x A z. For

First,conj(s) for each non-failure state of the SG in Fig.6(a)
on wiresz, y, andz are listed as follows.

So: T Ay Nz Sot T ANYNz S3:w ANYNz

Algorithm 3: appl y(G;,C)

1 : . . :
1 foreach (s,a,s') € Ri \s #mAhac A do this example, the constrair@®) for all actions is shown as
2 if conj(s) = C(a) does not holdhen follows.
3 Delete (s, a, s’) from R;;
4 Remove unreachable states and transitions fégm T+ Az, T—:ix Az

y+ YAz, Yy— 1y Nz

Notice that constraint is applied only on the input actions
in Algorithm 3. In general, the constraint provided to fuoot ~ The following showsconj(s) for each state of the SG in
appl y can be on either input or output actions. For examplEig.6(b) also on wires:, y, andz.
when one describes a system, a constraint may be used to
elaborate the system description additionally. This qaist S0 : "ZA~Yy A=z, Sz AYyA=z, SaiTAYAz
can be created for any actions. However, when function sg:zA-yAz, sr:xzA-yA-z, Sg:zA-YyA-z
apply is used for a SG in the above interface refinementy, . ., Ay A -z, spp:-zAyAz, sz —r Ay A -z
framework, only the part of the constraint extracted frofmeot)
SGs for the input actions of the SG under consideration e
necessary. The part of the c_onstraint for the putput ackixﬁns-rhe output ofM,
this SG would not reduce this SG because it is extracted fr
itself. Therefore, only the state transitions labeled vifithut
actions of a SG may be removed with respect to constra (=) = conj(sd) =z Ay Az
C whenappl y is invoked. As a side effect, some other state” '

. o . . .
transitions, when become unreachable due to the removed StaAccor.dlng 100y, 2+ Is enabled when e!thezr ory 1s IOV\é’

.) . andz— is enabled when both andy are high. ApplyingC5
transitions on input actions, may also be removed.

Each module updates its behavior on its output actiontg, the SG in Fig.6(a) removes the following state transition

while its input actions are defined by the environment. There
fore, given a SG of a module, only the constraint for non-tnpu
actions are extracted. However, the behavior on interrtaraC According to C?, z+ and y+ are enabled only in states

¢ of a SG is invisible to other SGs, and the constraint for thgnere » is high. Applying CY to the SG in Fig.6(b) makes

internal actions is meaningless to other modules. Thezefoghe following transitions among others in the SG in Fig.6(b)
the constraint is extracted only for the output actions asveh yalid:

in Algorithm 4.

T AN YNz, S T ANYANz,

is z which is the input ofA/; . Similarly, the
WBnstraintCY for z+ and z— can be derived, e.g9(z+) =
conj(so)Veonj(sg)Veonj(siz)Veonj(sia) = (mxV-y)A-z,

(86,Z+,7T) (8312_777-) (8472_17T) (8572_17T)

(so,z+,59) (S0,y+,513)

D. Example Removing these transitions makes statgsnd s;3 unreach-

For the moduled/,; and M in the circuit shown in Fig.3(a), able. After removing the unreachable states and their @uggo
their SGs after all reductions, which are described in trstate transitions, the SG in Fig.6(b) is reduced, and a gé&won
next section, are shown in Fig.6(a) and (b), respectivebywH constraint can be derived in the next iteration. After refieat
the presented refinement method removes the invalid stselone, the SGs in Fig.6(a) and (b) are reduced to the ones
transitions is illustrated as follows. in Fig.4(a) and (b), respectively, which are failure free.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 9

output actions. Therefore, autofailure reduction mayngjtieen
the output constraints for a SG.

Let autof ai l ure(G) be a procedure for autofailure
reduction as shown in Algorithm 5. Lemma 6.1 shows that
autofailure reduction preserves all possible traces of a SG

Algorithm 5: aut of ai | ure(G)

1 So =,
2 foreach (s1,a1,s2) € RA sy # mdo
3 if s, =initAa; ¢ Al then

4 return “G has a failuré;
5 if a; ¢ A! then
Fig. 4. (a) The SG in Fig.3(b) after refinement. (b) The SG k) after 6 delete(sl » 1 82) ;
refinement. 7 S = 81,
8 else
9 replace(sy, a1, s2) with (s1,a1,7);
10 So = T,

VI. STATE SPACE REDUCTION .
11 Remove unreachable states and transitions ft&gm

This section introduces several techniques to reduce SGs
without affecting verification results. Reducing the imber , ,
diate SGs during compositional verification controls theesi -€mma 6.1:Given a SGG, G < aut of ai | ur e(G).
of these SGs, thus allowing larger systems to be verified aRgPof: If no failure trace exists inG, the procedure
more freedom in partitioning. They may also allow strongdll autofailure reduction does nothing. Therefor@, =
interface constraints to be derived, which is desirableifier @t of ai I ure(G). , ,
terface refinement and verification. Finally, all the tecfuas, Next, we conside(: that contams fallurg paths. Let =
unlike other conservative approaches, do no introduceaexilso’to’81’61’82’""”) be a failure path inG:. Supposep
behavior including extra failures. This is also highly dable PeCOMesy’ = (so,ao,- -, si,a;,) after autofailure redl/Jc—
in reducing computation cost needed to confirm the uncc@n- According to Definition 3.5 in section 1ll-By ~r p'.

ered failures. These techniques are used in the compasitioh!'€ aPove discussion indicates that every failure trad is
verification framework shown in Algorithm 1. reduced to an equivalent failure Bt of ai | ur e(G). For

each non-failure trace iy, it either has a corresponding
equivalent failure trace imaut of ai | ure(G), or simply

A. Autofailure Reduction exists inaut of ai | ur e(G) if it does not have the prefix

One technique, autofailure reduction, is based on thevielloof any failure trace iraut of ai | ur e(G). |
ing observation. The failure state of a design may be enteredRefer to the SG in Fig.3(b). The state transition =
by an action on an output or an internal action. However, theis, u—,7) is on an invisible actionu—. Both incoming
real cause of the failure can be traced back to an input actigtate transtiong, = (ss,z—,s15) andtz = (s11,y—, 515)
This is because if an environment produces an input actiamn ti&re on input actionse— and y—, respectively. Autofailure
a system cannot handle, then the failure happens immegiat&duction removes;, and changes, andt; to (ss,z—,7)
or through a sequence of internal or output actions, and tAed (s11,y—,), respectively. The operation is also applied
environment cannot prevent it from eventually happenigs T 10 (s5, u+,). After these operationsss and si5 become
is referred to asautofailure manifestatiorin [23]. However, unreachable, thus are removed. The reduced SG is shown in
autofailure manifestation in [23] is only used to canorimal Fig.5(a).
trace structures for hierarchical verification. We adojt ibur
method as a technique to reduce SGs. B. Interface Abstraction

Let p = (so,to0,81,t1,82,---,7) be a failure path in Given a module, some of its outputs may bcome invisible
G. Recall that an autonomous path is independent of inptits neighbors when it is plugged into a larger system. is th
actions. If a failure path of a system is autonomous, tloase, the corresponding state transitions on these olilpitss
failure is inherent in the system, and occurs no matter hdG can be converted to invisible transitions. The trad#ion
the environment behaves. Autofailure reduction reduce&a &bstraction techniques collapse the invisible state itians
containing an autonomous failure path starting from thgaihi into single states [11]. This may cause extra behaviors and
stateinit to the one consisting of only a single failure statehus may introduce false failures. This section provides a
If p is not autonomous, autofailure reduction searches for tb#ferent abstraction technique that compresses a sequanc
largest indexi such that actiorn; is an input action, and invisible state transitions into a single visible statensition.

(Sit+1,ait1, Sit2, -+, 7) IS an autonomous subpath pf All This technique has certain desirable features over thequev
state transitions on that autonomous subpath are remondd, approaches.
si+1 Is converted to the failure state Notice that the removed Let (s;, ¢, si+1,¢,---,5;-1,¢, Sj, a5, sj+1) be a subpath of

state transitions on the autonomous subpath may be on #éh@ath in a SGG. After abstraction, the whole subpath is

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 10

replaced with state transitiof3;, a;, s;+1). This abstraction is
different from the previous approaches in the following aay

1) Since the sequence of invisible state transitions on a
path is replaced by a visible state transition, the number
of reachable states @fbst r act (G) may be reduced
if some states have all their incoming state transitions
on the invisible action. However, this may not always
be the case, and the number of state transitions may be
increased significantly.]

2) This abstraction shortens the existing paths, but no ne
paths are created. Therefore, no new failure traces are
introduced.

3) Nondeterminism may be introduced into a SG af-
ter abstraction. Consider two subpaths;,(,:--,

. s oo , (@) (b)
$j-1,(,85,a5,8;41) and (s;,C, - -+ ,8k=1,C, Sk, j, Skt1)-
They are reduced t(@si, aj, Sj+1) and (5i7 aj, Sk+1), Fig. 5. (a) The SG f_rom Fig.3(a) afte_r the autofailure redurct (b) The
respectively. This causes nondeterminism even thouaﬁ from (a) after the interface abstraction.

the original SG is deterministic. However, the non-

deterministic transitions do not affect the constraint

extraction, and they may be eliminatedsif, ; or s Refer to Fig. 5(a). State transitiofs,, u+,s3) is invis-

is redundant as described in the next section. ible while (s3,z—,s2), (s3,2—,511), and (s3,y—,ss) are

Letabst ract (G) be a procedure for the interface abstrac/isible. The _algpr_ithm checks that a trans_it.ion endingsat
tion on a SGG as shown in Algorithm 6. The following Iemma(SG’ y+,s4),is visible, and three new tran5|t|q|(ls4, 2 52),
asserts thadbst r act (G) is an abstraction ofs. (s4,y—,88), and (s4,2—,511) are added. Since the other

Lemma 6.2:Given a SGG, G < abst r act (G) incoming transition tosy, (s12,2+,s4), is visible too, the
Proof: It is straightforward 'to see that for every pathin backward search stops, and the invisible transifiapu+, s3)

G, there exists a path’ in abst ract (G) such thatp ~ is removed. Now, nondetermination takes placesat The

p'. This satisfies the conditions of conformance relations, aname operatlon IS S|m|llarly. applied 0,4, u—, s0). The
completes the proof. 1 abstracted SG is shown in Fig.5(b).

The SG produced bgbst r act (G) in Algorithm 6 inher-
its every element ofy except the update® and S. In the C. Redundancy Removal
algorithm,T" and V' store all visible state transitions and their Recall that the procedure for the interface abstractioampot
states, respectively. The algorithm searches backwaas frtially introduces nondeterminism. A nondeterministic S&hc
each visible state transition, and bypasses all the ireisitate be determinized with some well-known but very expensive
transitions along a path until another visible state ttamsi algorithms [11]. However, nondeterminism does not affect
is found or the initial state is reached. From these two staiée soundness of the verification results in our framework.
transitions, a new transition is created to replace theesetps Therefore, we propose a light-weight algorithm instead tha
of invisible state transitions and it is added irifo During targets on removing redundant state transitions and states
the backward search, the invisible state transitions aa@st Let incoming(s) be the set of state transitions’, a, s)
with both incoming and outgoing state transitions invisiblsuch thatR(s’, a, s) holds, ancutgoing(s) be the set of state
are not added intd” and V. After all state transitions have transitions(s, a, s’) such thatR(s, a, s') holds.
been handledR® and S of G are replaced withl" and V/, Definition 6.1 (Redundant Stated)et G be a SG, and

respectively. s, 81,87 € S suchthats; # 7 ands; # init. We say thas, is
redundant tas], denoted as//s1, if there exists ds, a, s}) €
Algorithm 6: abstract (G) incoming(s) for each(s, a, s1) € incoming(sy).

Redundant state; and its incoming and outgoing transi-
tions can be removed as follows.

« Remove all state transitions irincoming(s;) and

1T=0,V =0
2 foreach (sq2,a2,81) € RA (az # () Asa # 7 do
3 foreach (ss, as, s2) € R A s3 # m do

. R outgoing(s1).
: if 52T :zgza\/{?zfaighl??; o For each(si,a1,52) € outgoing(s1), add (sy, a1, s2)
6 V:VU{SQ,Sl}; into R. . .
- if a3 = ¢ then Therefore, removing redundant states always results in a
8 S9 = 83 smaller number of states and state transitions.
o replaceR with T"; If the faily_re state is_ invqued in nondeterminism, r_edunmla
10 replacesS with V; state transitions are identified based on the following unde

11 Remove unreachable states and state transitions ¢fpm ~ Standing: if an action in a state may or may not cause a failure
nondeterministically, it is always regarded as causinglaria

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 11

Algorithm 7: r nRed (G)

1 foreach (s,a,7) € R do
if (s,a,s1) € R then
R=R—-{(s,a,81)};
S =0;
foreach s; € S do
foreach s; € S do
if s}/s1 then
R = R — {incoming(s1) U outgoing(s1)};
S=5-— {81};
10 foreach (s1, a1, s2) € outgoing(si) do
11 R=RU{(s},a1,s2)};
(b) 12 Remove unreachable states and state transitions &fpm

© O N o g~ W N

Fig. 6. (a) The SG of\/; from in Fig.5(a) after and redundancy removal.
(b) The SG from Fig.5(b) after the the redundancy removal.

show the scalability of verification using our compositibna
method.

It is formalized as failure equivalent state transitionstie ~ FLARE is an explicit model checker for asynchronous

following definition. The failure equivalent transitions aiot Circuit and system verification. It can perform flat and com-

have any impact on the behavior represented by a SG, and Bgfjitional verification. Its closest relative &TACS [36].
simply be removed. Although ATACS also supports compositional verification and

Definition 6.2 (Failure Equivalent Transitions)Given two failure-directed abstraction, the abstraction is maimtyited

state transitiongs, a, s1) and (s, a,7) of a SG, (s,a,51) is to a certain type of high-level modeling formalism. More
failure equivalent tq(s, a,) significantly, the automated interface refinement supplarie

In general, removal of redundant states and state transiti(f LARE IS not aval!e_\ble mA‘I_'ACS: There are other tool_s
does not help to generate stronger constraints for befiaere supporting compositional verification, but we could .n_o.t f.md
ment. However, if the failure state is involved in redun@t‘;lncanc’ther_On_e that supports asynchronous system verification
removal, it is possible that the removal of the failure eglént a way similar to our tool.
transitions results in stronger constraints.

Let r rRed(G) be a procedure to generate a new SG by, Examples and Environment Setup
removing the redundancies i@ as shown in Algorithm 7.

. The first three designs used in our experiments are a
;Ze(;‘;)igti)r\]/\glngclsemma states that the resultant SG conformséglf_ﬂmed FIFO [32], a tree arbiter oV cells [23], and a

Lemma 6.3:Given a SGG, G < r mRed(G). ([j)i:/flrzibuted mutual exclusion element copsisting of a rifig o
) . cells [23]. Although all these designs have a regular
Proof: We consider two cases. structure to be scaled easily, the regularity is not exptbit
« Case 1:s'/s wheres’ ands are not the failure state. Forin our method, and all the modules are treated as black
any pathp = (-, si,a;,8,a;41,"--) in G, there exists poxes. The fourth example is a tag unit circuit from Intel's
a pathp’ = (---,si,ai,5",ai+1,--+) in rnRed(G) such RAPPID asynchronous instruction length decoder [38]. This
thatp ~ p'. example is an unoptimized version of the actual circuit used

« Case 2: For any path = (---,si,a;,8,---) in G and jn RAPPID with higher complexity, which is more interesting

(si;ai,m) € R, there existy’ = (-, s;,a4, 7,) sSUCh for experimenting with our methods. The last example is a

thatp ~p p/. This indicates thap' is in r mRed while o pipeline controller for an asynchronous processor TITAC2

IS not. [39]. All five examples are failure free. Note that all the
From case 1 and 2, it is concluded ti@at< r nRed(G). m examples are too large to apply flat approaches.

Refer to the SG in Fig. 5(b)(s4,y—,ss) is failure In the experiments, DME, arbiter, and FIFO examples
equivalent to (s4,y—,m) and it is removed. Similarly, are partitioned according to their natural structures. ttmeo
(84,7—,811), (514, 2+, 59) and (s14,y+,s13) are removed words, each cell is a module. For the tag unit circuit, it is-pa
as failure equivalent transitions. After removing unreszl titioned into three modules, where the middle five blocksrfor
statesss, sg, andsi, the reduced SG is shown in Fig.6(b). a module, and gates on the sides of the middle module form
the other two modules. The pipeline controller is partiéidn
into 10 modules, each of which contains five gates. All rasult
are obtained on a Linux workstation with an Intel Pentium-D

A prototype has been implemented for the method amitial-core CPU and GB memory. In the results tables, time
algorithms presented in this paper in an asynchronousmystis in seconds, and memory is in MBs.
verification toolFLARE, and experiments have been performed According to the compositional verification shown in sec-
on several asynchronous circuits. These experiments aimtitlmm IV, it is necessary to generate an over-approximate

VIl. EXPERIMENTAL RESULTS

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 12

TABLE |
EXPERIMENTAL RESULTS(REFINEMENT+ REDUCTION+ COMPOSITION).
[System [#Cells | [W| | Mem(MB) | Time(Sec.) | [S[Pe* [|R[P®* | [S| [[R| [#Ilter | #r |
100 402 30 18 57 153 15 21 3 0
200 802 80 41 57 153 15 21 3 0
FIFO 400 1602 237 102 57 153 15 21 3 0
600 2402 a71 184 57 153 15 21 3 0
300 3202 781 290 57 153 15 21 3 0
20 220 35 43 361 9497 33 61 4 0
50 550 388 113 361 9497 33 61 4 0
DME 100 1100 191 249 361 9497 33 61 1 0
200 2200 446 600 361 9497 33 61 4 0
300 3300 771 1044 361 9497 33 61 4 0
7 66 3 2 290 758 38 68 3 0
ARB 15 122 7 6 385 1407 104 340 5 0
31 250 33 a7 1737 9636 689 3833 7 0
63 506 262 088 15684 | 134438 | 5018 | 48342 8 0
[TAGUNIT | 3 [48 | 117 [103 [3697 | 280392 [2112 | 122648 [2 [0 |
[PIPECTRL] 10 [50 | 23 | 47 [1409 [12736 [679 | 4882 | 6 | 4 |

environment for each module in a system to simulate theln these experiments, selective composition is performed
actual environment. In the experimentsaximal environment if SGs of some modules are found to have failures. In
is used as the initial approximate environment. The conceqglective composition, some or all of the SGs with failures
of the maximal environment introduced in [27] is adaptedre composed as allowed by the available memory. This
for the modeling formalism used in our to6ILARE. The results in some state transitions becoming invisible aadde
maximal environment defines all possible behaviors on atl reductions on the composed SGs. Then, the refinement
inputs driving a system. The behaviors of each input is applied again. The reduced composite SGs in turn may
completely independent to those of other inputs, and upgatiresult in reductions on other SGs. The number of iterations
the values of inputs is interleaved in all possible ordesingin Table | is the total number of iterations for the refinement
The constraints extracted for the inputs of a module from thefore and after selective composition. In the experiments
maximal environment are all TRUE, since the behaviors gtlective composition is needed for ARB and PIPECTRL.
inputs are completely unconstrained. For PIPECTRL, the original0 modules all contain failures.
The maximal environment is used as the worst case scenaiective composition merges these modulesirtrger ones,
to demonstrate the effectiveness of the presented methodatal one of them is failure-free.
refine a very coarse approximation. If better knowledge ef th From Table I, we obtain the following observations. First,
internal details about a design is available, a more aceurédr scalable FIFO, ARB, and DME examples, memory and
initial environment approximation can be obtained and usedntime usages grow polynomially as the nhumber of modules
instead of the maximal environment, thus speeding up thre the systems increases. Second, although the refined SG
refinement process. for each module is still an abstraction of the exact one after
the interface refinement, all examples except PIPECTRL are
B. Results shown to be failure-free. Even though interface refinement
In the first experiment, all examples are verified with themay not eliminate failures for each module in PIPECTRL
compositional method combined with the interface refinemecompletely, the number of modules containing failures and
and all state space reduction techniques presented inghéesp the number of failure traces in those modules are reduced
The results are shown in Table 1. In the table, colughfiells significantly by the refinement and reductions, therefor&-ma
is the number of cells in a system, and colufi#i| is the ing distinguishing false counterexamples easier. In tideta
total number of wires in each system, which is a rougle only show the size of the largest SG encountered during
estimate of the system complexity. Columiem (M B) and verification. This is because it is the largest module of a
Time(Sec.) are the peak memory used and the total runtingystem that determines the success or failure of verifigatio
taken for verifying each system. The numbers of states awith respect to compositional verification, only one module
state transitions of the single largest SG for a module fouméeds to stay in memory at a time. However, our method keeps
during the procedure of performing compositional approac8Gs of all modules in memory for simplicity, and the memory
which serve as a critical metric for the effectiveness, amms numbers in Columi/em (M B) show the total peak memory
in columns|S|Pe?* and |R|Pee*, respectively. The next two usage for all modules during verification.
columns|S| and |R| show the numbers of states and state To fully appreciate the power of the introduced reduction
transitions in the largest SG after the refinement is dortechniques, the difference between the traditional attbra
Column #1ter shows the number of iterations required t@and the one proposed in this paper, and the impact of sedectiv
complete the interface refinement, and the last colu#ftn composition on the verification results, we run three more
shows the number of modules in a system that have the failesgeriments. All these experiments use the compositional
state after the refinement. verification approach presented in this paper without using

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 13

TABLE Il
COMPARISON OF THREE DIFFERENT EXPERIMENTS

System #Clells E1l E2 E3
Mem(MB) | Time(Sec.) | #n | Mem(MB) | Time(Sec.) | #n | Mem(MB) [Time(Sec.) | #n
100 30 11 0 29 11 96 30 18 0
200 80 28 0 78 26 196 80 41 0
FIFO 400 236 74 0 232 66 396 237 102 0
600 470 140 0 470 140 596 471 184 0
800 780 227 0 772 201 796 781 290 0
20 14 13 0 13 9 0 35 43 0
50 40 37 0 38 27 0 88 113 0
DME 100 97 90 0 94 69 0 191 249 0
200 264 249 0 258 202 0 446 600 0
300 502 474 0 492 402 0 771 1044 0
7 3 1 6 2 1 2 3 2 0
ARB 15 8 3 15 6 4 3 7 5 7
31 18 8 30 15 9 12 17 13 15
63 42 22 59 36 23 30 40 33 31

[TAGUNIT | 3 %6 | 928 0 11 [10 [0 117 103 [0]
[PIPECTRL] 5 3 | 10 5 8 [10 [4 19 5 [5 |

selective SG composition as in the previous experiment. Ttvere larger state space may be trimmed as long as the failure
results are shown in Table II. In the first experiment labelddaces are preserved. Trimming a larger state space, inglud
asE1, all examples are verified with only the interface refinethe valid portion, helps to produce stronger output coirgsa
ment. In the second experiment labeled& all examples which then cause the other modules to be more reduced. This
are verified with the interface refinement and all the reduncti is why the memory and runtime are also less unid2r Using
techniques, except that the traditional state space alisttas traditional abstraction always preserves failures in ast@ne
used instead of the interface abstraction presented ip#pier. module, but its aggressiveness in reducing state space may
In the third experiment labeled ds3, all reduction techniques cause some modules to lose their failure traces.

including the interface abstraction plus the interfacenegfient

are used for all examples. This experiment is similar to the VIIl. CONCLUSION

one used for Table | except that selective composition is notyyhjle compositional verification is an effective approagh t
applied. Comparing the results in these two tables, thement yiack state explosion in model checking, generating ateur
and memory usage for all examples as shown in Table Il agt simple environments for system modules poses a big chal-
generally less, much less in some cases, than those showpj{ye. This paper proposes an interface refinement algorith
Table 1. The main reason is the SG composition, which causgs compositional verification where the module interfages
the size blowup if used for some examples. However, withop{snotonically refined. This method is fully automated and
selective composition, the verification results becomes&an 5,1 as long as the initial environment for each module in a
terms of the number of modules with failures. For example, 3% stem is over-approximated. This allows very coarse envir
out of 63 modules in the ARB have failures undes without manis 1o be used when verification starts. In addition, séver
using the SG composition, while none has failures if selectigiate space reduction techniques are introduced, and they
composition is applied as shown in Table I. may help remove irrelevant behavior, thus making interface
Comparing the results in column&1 and E3, whether refinement more effective. The initial experimental resaite
applying reductions or not does not make much differenemcouraging. This refinement algorithm is general as long as
in these experiments except for the TAGUNIT. In this casthe designs can be modeled using the SG formalism presented
memory blows up because interface abstraction createsndhis paper, and it can be combined with other compositiona
much large number of state transitions to preserve all plessiverification approaches. In the future, it would be inténest
behaviors of the modules in TAGUNIT and avoid introducingp investigate other representations of constraints foremo
extra paths. The increased state transitions may be remoeffdctive refinement, and efficient partitioning stratsgfer
by performing redundancy removal or autofailure reductan better verification.
the examples exclusive of TAGUNIT. This example illustgate
the negative effect of the interface abstraction technique
the positive side, using the new abstraction causes |dasegii
introduced. Comparing results in columns und and E3,
no module has failures when interface abstraction is useg
while the number of modules with failures increases as thz‘]
number of cells increases for the FIFO. However, for ARB
and PIPECTRL, the number of modules with failures under
E2 is actually smaller than that undéi3. This is because of
the aggressive reduction feature of the traditional abstna

REFERENCES

[1] R. Alur, L. de Alfaro, T. Henzinger, and F. Mang. Autontadi modular
verification. In Proceedings of the 10th International Conference on
Concurrency TheoryLNCS, pages 82-97. Springer-Verlag, 1999.

R. Alur, P. Madhusudan, and W. Nam. Symbolic composéloverifi-
cation by learning assumptions. Rroc. Int. Conf. on Computer Aided
Verification volume 3576 ofLNCS pages 548 — 562. Springer-Verlag,
2005.

S. Berezin, S. Campos, and E. Clarke. Compositionalorgiag in model
checking. INCOMPOS volume 1536 oL NCS pages 81-102. Springer-
Verlag, Sept. 1998.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008

(4
(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. ZhBounded
model checking, 2003.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic mddsecking
without BDDs. Lecture Notes in Computer Sciencgs79:193-207,
1999. [31]
A. Biere, R. Raimi, and Y. Zhu. Bounded model checkingnasi
satisfiability solving. Formal Methods in System Desigh9(1):7-34,
2001.

J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dill. Sywolic
model checking for sequential circuit verificatiohEEE Transactions
on Computer-Aided Desigri3(4):401-424, 1994.

D. Bustan and O. Grumberg. Modular minimization of det@ristic
finite-state machines. IRroceedings the 6th International workshop on[34]
Formal Methods for Industrial Critical Systems (FMICS'QIuly 2001.
S. Chaki, E. Clarke, J. Ouaknine, and N. Sharygina. Auttzd,
compositional and iterative deadlock detection.MEMOCODE 2004
pages 201-210, 2004.

S. Chaki, E. Clarke, N. Sinha, and P. Thati. Automatesiage-guarantee
reasoning for simulation conformance. Pmoc. Int. Conf. on Computer
Aided Verification LNCS, pages 534 — 547. Springer-Verlag, 2005.
S. Cheung and J. Kramer. Context constraints for coitipoal
reachability analysisACM Trans. Softw. Eng. Methodob(4):334-377,
1996.

S. Cheung and J. Kramer. Checking safety propertiesgusomposi-
tional reachability analysisACM Trans. Softw. Eng. Methodo8(1):49—
78, 1999.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Ceuexample-
guided abstraction refinement for symbolic model checkirBpACM,
50(5):752—-794, 2003.

E. Clarke, O. Grumberg, and D. Long. Model checking abdtiac-
tion. ACM Transactions on Programming Languages and Systems
16(5):1512-1542, 1994.

E. Clarke, A. Gupta, J. Kukula, and O. Shrichman. Saebastraction-
refinement using ilp and machine learning techniquerbt. Interna-
tional Workshop on Computer Aided Verificatiggages 265-279, 2002.

E. Clarke, D. Long, and K. McMillan. Compositional mdd#ecking.

In Proceedings of the 4th Annual Symposium on Logic in computer
science pages 353-362, Piscataway, NJ, USA, 1989. |IEEE Press.
E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,

(30]

[32]

(33]

[35]
[36]

[37]

(38]

[39]

14

J. Krimm and L. Mounier. Compositional state space gatien from
lotos programs. InProc. Int. Conf. on Tools and Algorithms for
Construction and Analysis of Systems (TACASyes 239-258, London,
UK, 1997. Springer-Verlag.

F. Lang. Refined interface for compositional verifioati InFORTE’06:
Formal Techniques for Networked and Distributed Systemisme 4229
of LNCS Springer Verlag, 2006.

A. J. Martin. Self-timed fifo: An exercise in compilingrggrams into
visi circuits. Technical Report 1986.5211-tr-86, Califiar Institute of
Technology, 1986.

K. L. McMillan. Symbolic model checking: an approach to the state
explosion problemPhD thesis, Carnegie Mellon University, 1993.

K. L. Mcmillan. A methodology for hardware verificatiomsing
compositional model checking. Technical report, Cadeneekd&ey
Labs, 1999.

C. J. Myers.Asynchronous Circuit Desigriwiley Inter-Science, 2001.
C. J. Myers, W. Belluomini, K. Killpack, E. Mercer, E. 8dn, and
H. Zheng. Timed circuits: A new paradigm for high-speed giesiln
Proc. of Asia and South Pacific Design Automation Conferepages
335-340, 2001.

W. Nam and R. Alur. Learningcbased symbolic assumeaniae
reasoning with automatic decomposition. Fnoc. Int. Symposium on
Automated Technology for Verification and Analysis (AT\WAjume
4218 of LNCS 2006.

K. Stevens, R. Ginosar, and S. Rotem. Relative timing.Ptoc. In-
ternational Symposium on Advanced Research in Asynchso@imauits
and Systemsages 208-218, 1999.

T. Yoneda and T. Yoshikawa. Using partial orders foicéraheoretic
verification of asynchronous circuits. Proc. International Symposium
on Advanced Research in Asynchronous Circuits and SystéfEE
Computer Society Press, Mar. 1996.

Counterexample-guided abstraction refinementinth Conf. on Com-
puter Aided Verificationpages 154-169, 2000.

J. Cobleigh, G. Avrunin, and L. Clarke. Breaking up isrchdo do:
an investigation of decomposition for assume-guarantasoreng. In
Proceedings of the 2006 international symposium on Soéviesting
and analysis pages 97-108, New York, NY, USA, 2006. ACM Press.
J. Cobleigh, D. Giannakopoulou, and C. Pasareanu. nirgarassump-
tions for compositional verification. I®roc. Int. Conf. on Tools and
Algorithms for Construction and Analysis of Systems (TAC¥@ume
2619 of LNCS pages 331-346. Springer-Verlag, 2003.

Haigiong Yao Haigiong Yao received a B.S in com-
puter science from Yunnan University, Kunming,
China, in 1997, and a M.S degree in computer
science from PLA University of Science and Tech-
nology, Nanjing, China, in 2004. She is currently
pursuing a Ph.D. degree at the University of South
Florida.

Her main research interest is formal methods for
software and hardware verification, primarily in the
area of compositional reasoning, abstraction and

PLACE
PHOTO
HERE

L. de Alfaro and T. Henzinger. Interface automat&oundations of
Software Engineeringpages 109-120, 2001.

L. de Alfaro and T. henzinger. Interface theories fommmnent-based
design. InProceedings of the 1st International Workshop on Embedded
Software pages 148-165, Oct 2001.

L. de Alfaro and T. Henzinger. Interface-based desigingineering
Theories of Software-intensive Systett5:83-104, 2005.

D. Dill. Trace Theory for Automatic Hierarchical Verification of $pe

reduction techniques for model checking.

Independent CircuitsPhD thesis, Carnegie Mellon University, 1988.
M. Gheorghiu, D. Giannakopoulou, and C. S. PasareanwefiniRg
interface alphabets for compositional verification.Froc. Int. Conf. on
Tools and Algorithms for Construction and Analysis of Syst€TACAS)
LNCS. Springer-Verlag, 2007.

D. Giannakopoulou, C.S.Pasareanu, and H. Barringemg®nent veri-
fication with automatically generated assumptioAstomated Software
Engineering pages 297-320, 2005.

S. Graf, B. Steffen, and G. Luttgen. Compositional mmiziation of
finite state systems using interface specificatiom®@rmal Aspects of

Hao Zheng Hao Zheng received the M.S. and Ph.D
degrees in Electrical Engineering from the Univer-
sity of Utah, Salt Lake City, UT, in 1998 and 2001,
respectively. He worked as a research scientist for
IBM Microelectronics Division from 2001 to 2004 to
help make model checking a standard step in a ASIC
design flow. Currently, he is an assistant professor of
the Computer Science and Engineering department
of the University of South Florida. His research
interests include formal methods in computer sys-

PLACE
PHOTO
HERE

Computation 8(5):607-616, 1996.

0. Grumberg and D. Long. Model checking and modularfigaiion.
ACM Transactions on Programming Languages and Syst&6(3):843—
871, May 1994.

T. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. ahreodular

tem design and verification, parallel and distributed

computing and its applications in design automation, arzbrfigurable
computing. His recent research includes development ittigos and methods
that make model checking scalable to large systems. Zhamgveel an NSF
CAREER award in 2006, and an USF Outstanding Research Aeahient

abstraction refinement. IRroc. Int. Conf. on Computer Aided Verifica- avard in 2007.

tion, volume 2725 ofLNCS pages 262—-274. Springer-Verlag, 2003.
T. Henzinger, S. Qadeer, and S. Rajamani. You assumguamntee:
methodology and case studies. Pmoc. Int. Conf. on Computer Aided
Verification pages 440-451. Springer, 1998.

