
IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 1

Automated Interface Refinement for Compositional
Verification

Haiqiong Yao,Student Member, IEEE,and Hao Zheng,Member, IEEE

Abstract—Compositional verification is essential for verifying
large systems. However, approximate environments are needed
when verifying the constituent modules in a system. Effective
compositional verification requires finding a simple but accurate
over-approximate environment for each module. Otherwise,many
verification failures may be produced, therefore incuring high
computational penalty for distinguishing the false failures from
the real ones. This paper presents an automated method to refine
the state space of each module within an over-approximate envi-
ronment. This method is sound as long as an over-approximate
environment is found for each module at the beginning of
the verification process, and it has less restrictions on system
partitioning. It is also coupled with several state space reduction
techniques for better results. Experiments of this method on
several large asynchronous designs show promising results.

Index Terms—formal method, model checking, compositional
verification, logic verification, circuit verification, abstraction
refinement.

I. I NTRODUCTION

Model checking has become a very important alternative to
simulation for verifying complex concurrent systems. How-
ever, the state explosion problem limits it to small designs,
a serious barrier which prevents its widespread acceptance.
Although a number of techniques, such as symbolic model
checking [7], [33], SAT based bounded model checking [5],
[6], [4], and abstraction [14], [13], have been developed to
alleviate the state space explosion problem, model checking
still does not scale well as the system complexity increases.
Compositional verification is viewed as one of the most
promising approaches to attack state explosion by divide-and-
conquer. It decomposes a large complex verification problem
into simpler subtasks of lower complexity, each of which
verifies a module in a system. The conclusion for the entire
problem is drawn by combining the results from verifying
the subtasks following certain compositional reasoning rules
without actually verifying the entire system.

In general, properties of a module are satisfied only in a
specific environment, which allows a module to be verified
effectively in isolation. However, finding such an environment
in traditional methods requires user guidance, which suffers
from two severe weaknesses. First, it impairs the “push-
button” characteristic of model checking. Second, assumptions
provided by users are often error-prone and insufficient to
model the concrete environment. Furthermore, if an environ-
ment is too coarse, the extra behaviors increase the chance

Haiqiong Yao and Hao Zheng are with the CSE dept. of the Univ. of
South Florida, Tampa, FL 33620. This research is supported by the CAREER
Award contract# CCF-0546492 and an award CNS-0551621 from the National
Science Foundation.

(a) (b)

Fig. 1. Interface refinement for compositional verification. Block 1′ and2′,
abstractions of1 and2, are the environments for2 and1, respectively.

of producing false counter-examples, which may incur a high
computation penalty to distinguish them from the real ones.

To address these problems, this paper presents a novel
framework for compositional verification of concurrent sys-
tems. This framework combines an automated interface refine-
ment method and several state space reduction techniques, and
enables large systems to be verified. The automated interface
refinement makes the state space of a module obtained from an
over-approximate environment more accurate, thus alleviating
the burden of finding an exact environment for a module at
the beginning. It is based on the observation that modules are
monotonic in that restricting the input behavior of a module
does not increase its output behavior. A module can be refined
by the behavior of its neighbor. And its restricted behaviorcan
then be used to refine its neighbors.

To introduce the idea, refer to Fig.1. The inputs and outputs
of M1, w2 and w1, are the outputs and inputs ofM2,
respectively. During verification, the inputs ofM1 andM2 are
driven by some environment abstractionM ′

2 andM ′
1, instead

of M2 and M1 themselves. After finding the state space of
M1 and M2, constraints on their outputs,w1 and w2, are
derived. Sincew1 and w2 are the inputs toM2 and M1,
respectively, these derived constraints are used to restrict the
behavior onw1 andw2 defined byM ′

1 andM ′
2, respectively.

Since these modules are monotonic, more restricted constraints
on the outputs may be derived from these modules after
their input behavior is constrained. If so, the newly restricted
output constraints are used in the next iteration to restrict the
input behavior of the neighboring modules again. This process
repeats until the output constraints from both modules can no
longer be strengthened. Although the idea is illustrated using
an example with two modules, it naturally applies to systems
with an arbitrary number of modules. In a later section, this
method is proved to be sound by showing that the refined state
space of each module is still an abstraction of the exact one.

This framework also includes several state space reduction
techniques that may help to extract stronger interface con-

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 2

Fig. 2. The flow of Model checking with interface refinement.

straints, thus enabling the refinement to be more effective.
They may also reduce the intermediate state space significantly
to allow more flexible system partitioning by lowering the
peak space requirement of the largest module in a system.
In addition, they do not produce extra behavior compared to
traditional abstraction approaches. Therefore, the only source
of false failures is the over-approximate environment usedfor
verifying each module. This is highly desirable because it
requires less computation to confirm the found failures.

This method is not complete in that false counter-examples
may still exist if the over-approximate environment is not
completely refined. However, the chances of finding false
counter-examples are significantly reduced when interfaces of
the modules are refined to be more accurate. Even though
false counter-examples may still show up after refinement, it
would be much easier for users to refine the derived interface
constraints further by hand because a substantial amount of
unnecessary information has been removed. Efficiently distin-
guishing the false counter-examples itself is very important,
and deserves extensive discussion in a separate presentation.
It is not covered in this paper. Fig. 2 shows an overview of
the verification flow in our method.

This paper is organized as follows: Section II gives an
overview of the previous work on compositional reasoning and
assumption learning methods. Section III gives a brief back-
ground review of the modeling and verification of concurrent
systems. Section IV describes our compositional verification
method. Section V addresses the automated interface con-
straint extraction and refinement method. Section VI presents
the state space reduction techniques to make the interface re-
finement more effective. Section VII demonstrates our method
on several large examples. The last section concludes the
paper, and points out some future research directions.

II. RELATED WORK

Compositional verificationis essential to verifying large
systems. It can be roughly classified ascompositional min-
imization and compositional reasoning. Compositional mini-
mization [8], [26], [30] in general constructs the local model
for each module in a system, minimizes it, and composes it
with the minimized models of other modules to form a reduced
global model for the entire system, on which verification

is performed. On the other hand, compositional verification
based onassume-guaranteestyle reasoning [16], [27], [3],
[29], [34] does not construct the global model. Instead, veri-
fication of a system is broken into separate analyses for each
module of the system. The result for the entire system is
derived from the results of the verified individual modules.
When verifying each module, abstractions or assumptions
about the environments with which the modules interact are
needed for sound verification, and must be discharged later.
The success of compositional reasoning relies on discoveryof
appropriate environment assumptions for every module. This is
typically done by hand. If the modules have complex interac-
tions with their environments, generating accurate environment
assumptions can be challenging. Therefore, the requirement of
manually finding assumptions has been a factor limiting the
practical use of compositional reasoning.

In recent years, various approaches to automated assumption
generation for compositional reasoning have been proposed.
In the learning-basedapproaches, assumptions represented
by deterministic finite automata are generated with theL∗

learning algorithm and analysis of local counter-examples
[37], [2], [19], [25], [10]. The learned assumptions can result
in orders of magnitude reduction in verification complexity.
However, these approaches may generate assumptions with too
many states and fail verification in some cases [37], [2].

Comparatively, this method has several significant differ-
ences from the learning based ones. First, interface behavior
of a module is encoded implicitly in Boolean formulas for
interface signals instead of finite automata. Second, the inter-
face behavior of a module is refined by iteratively examining
the interactions between the module and its neighbors, rather
than relying on local counter-example analysis. However, there
is nothing to prevent counter-examples from being used to
further refine module interfaces. Not using counter-examples
for refinement allows more freedom in system partitioning,
while existing learning based methods seem more suitable only
for two-module partitions as discussed in [37], [18]. Thirdand
probably more importantly, the interface constraints generated
by this method are not assumptions. Therefore, there is no
need to discharge the interface constraints later on. Despite
the differences, this method and the learning-based methods
can be combined to achieve better results.

In addition, this method facilitates verification reuse. Ifa
module in a system is modified and its interface becomes
more restricted, then refinement can be applied again on top
of the results from the previous iteration. On the other hand,
refinement is not needed if the interface of the modified
modules become more liberal. In both cases, verification can
be limited to the modified modules.

In the interface constraint-basedapproaches, restrictions
from environment are imposed on the modules of a system to
remove the behavior that should not take place. Generation of
interface constraints based on the analysis of synchronization
between modules is proposed by Cheung and Kramer [11].
However, it cannot capture effective interface constraints due
to deficiencies in analysis of synchronization between distant
modules. Alfaro and Henzinger provide interface automata
to represent a module and its environment [20], [21], [22].

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 3

(a) (b)

Fig. 3. (a) A simple asynchronous circuit. (b) The SG for module M2 where
both inputs are set to be completely free.

The module and the environment are refined in an alternating
fashion so that the module accepts only input actions generated
by the environment, and issues output actions corresponding
to these input actions. Refinement of interface automata in the
component-based design is similar to refinement of environ-
ment assumptions in compositional verification [1] [24], [31].
A similar approach,thread-modular reasoning, is proposed in
[28] for multithreaded program verification.

Counterexample guided abstraction refinement(CEGAR)
[17], [15], [13] uses a set of abstraction predicates to build
a reduced finite state model for a system. If such a model
passes verification, the concrete system is concluded to be
correct. Otherwise, the abstract model is iteratively refined by
adding more relevant variables based on the analysis of the
spurious counterexamples until the model passes verification,
or a counterexample is confirmed to be genuine. Therefore,
the concept of CEGAR is similar to that of learning-based
compositional verification approaches. However, the learning-
based approaches are a step forward such that verification is
applied to an abstract model of each module in a system,
instead of a global model of the entire system. CEGAR is
first coupled with compositional verification in [9].

III. PRELIMINARIES

State graphsare used to model the behavior of concurrent
systems. This section introduces basic notations and definitions
for state graphs and their relative operators. It presents how
the correctness of safety properties is formulated and checked
in this framework.

A. State Graphs

A state graph is a vertex-labeled and edge-labeled digraph.
Vertices represent states, labeled with propositions thathold.
Edges represent state transitions, labeled with actions whose

executions or firings cause the movement from one state to
another. The definition of state graphs is given as follows.

Definition 3.1 (State Graphs):A state graph (SG)G is a
6-tuple(P,A, S, init, R, L) where

1) P is a finite set of atomic state propositions,
2) A is a finite set of actions,
3) S is a finite set of states,
4) init ∈ S is the initial state,
5) R ⊆ S ×A× S is the set of state transitions, and
6) L : S → 2P is a state-labeling function.
In the above definition,S includes a special stateπ which

denotes thefailure stateof a SGG, and represents violations
of some prescribed properties. How a system behaves does
not matter after it enters the failure state. Therefore, forevery
a ∈ A, there is a(π, a, π) ∈ R. Each non-failure state is
labeled with a non-empty set of propositions. Forπ, L(π) = ∅.
Actions are used to model visible or invisible behavior of
systems. For a SG,A = AI ∪ AO ∪ {ζ}. AI is the set of
actions generated by an environment of a system such that
the system can only observe and react.AO is the set of
actions generated by a system responding to its environment.
ζ represents the internal behavior of a system invisible on the
interface. Consequently, for a state transition(s1, ζ, s2) ∈ R,
the environment cannot distinguish betweens1 and s2 due
to L(s1) = L(s2). In other words, execution of invisible
actions does not affect the state labellings. This paper uses
(s1, a, s2) ∈ R andR(s1, a, s2) to denote that(s1, a, s2) is a
state transition of a SGG. We assume that the state transition
set R is total such that every state has some successor. A
SG G is deterministic if for all statess, s′, s′′ ∈ S and all
actionsa ∈ A, R(s, a, s′) andR(s, a, s′′) hold, thens′ = s′′.
Otherwise,G is non-deterministic. Our method allows non-
deterministic SGs.

Fig.3(a) shows a simple asynchronous circuit. The com-
ponent labeled with “C” is a C-element whose output is
high when both inputs are high, low when both inputs are
low, or remains unchanged otherwise. This circuit is parti-
tioned into two modules,M1 and M2. Fig.3(b) shows the
corresponding SG forM2 where both of its inputs are set
to be totally free, meaning they can change to high or low
in any state. In asynchronous circuits, each wirew has two
actions,w+ andw−. For M2, P = {x, y, z,¬x,¬y,¬z}, its
input actionsAI = {x+, x−, y+, y−}, and its output actions
AO = {z+, z−}, and its invisible actions are{u+, u−}.
To make this and following figures of SGs readable, state
labellings are not shown. As an example, the labeling ofs0

of M2 is {¬x,¬y,¬z}.
A path of G is an infinite sequence of alternating states

and actionsρ = (s0, a0, s1, a1, s2, · · ·) such thats0 = init,
si ∈ S, ai ∈ A, and(si, ai, si+1) ∈ R for all i ≥ 0. A path
is autonomousif all actions on that path are inAO ∪ {ζ}.
An autonomous path executes irrespective of input actions.A
path isvisible if it does not contain anyζ action. Given a SG
G, the set of all paths starting from the initial stateinit is the
language ofG, denoted asL(G). A subpath is defined as a
fragment of a path such that̂ρ = (si, ai, si+1, ai+1, · · · , si+j)
for i, j ≥ 0. A states′ ∈ S is reachable froma states ∈ S
if there exists a subpatĥρ = (s0, a0, s1, a1, s2, · · · , sn) such

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 4

that s0 = s and sn = s′. A states is reachable inG if s is
reachable from the initial stateinit.

Given a path, itsprojection onto a set of visible actions is
defined as follows.

Definition 3.2 (Path Projection):Let ρ = (s0,a0,s1,a1, · · ·)
be a path. Its projection over a set of visible actionsA′ ⊆
AI ∪ AO, denoted byρ[A′], is an sequence of alternating
states and actions

ρ[A′] = (s′0, a
′
0, s

′
1, a

′
1, · · ·)

such that

ρ[A′] =

{

ρ′ if a0 6∈ A′ or a0 = ζ,
(s0, a0) ◦ ρ′[A′] otherwise.

whereρ′ = (s1, a1, s2, ...), and (s0, a0) ◦ ρ′[A′] is the con-
catenation of(s0, a0) andρ′[A′].

Definition 3.3 (Observable Equivalence):Let ρ and ρ′ be
two paths,A′ ⊆ AI ∪ AO, and their projections be

ρ[A′] = (s0, a0, s1, a1, · · ·) andρ′[A′] = (s′0, a
′
0, s

′
1, a

′
1, · · ·).

ρ andρ′ are observably equivalent, denoted asρ ∼ ρ′, iff

∀i ≥ 0. L(si) = L(s′i) ∧ ai = a′
i.

The observable equivalence is used in Section III-B to define
a relation between SGs.

Given a system with multiple modules, its SG can be
constructed by composing the module SGs in parallel. Two
SGs can be composed if their output action sets are disjoint.

Definition 3.4 (Parallel Composition of SG):Let

G1 = (P1,A1, S1, init1, R1, L1)

G2 = (P2,A2, S2, init2, R2, L2)

be two SGs. IfAO
1 ∩AO

2 = ∅, the parallel composition ofG1

andG2 is defined as

G1‖G2 = (P1 ∪ P2,A1 ∪ A2, S, (init1, init2), R, L)

where
1) S = {(s1, s2) | s1 ∈ S1 ∧ s2 ∈ S2}, and

a) (s1 = π ⇒ s2 = π) ∧ (s2 = π ⇒ s1 = π),
b) L(s1) ∩ P2 = L(s2) ∩ P1.

2) ∀(s1, s2) ∈ S. L(s1, s2) = L1(s1) ∪ L2(s2).
3) R ⊆ S×A×S such that∀s1 ∈ S1.∀s2 ∈ S2. (s1, s2) ∈

S, s1 6= π, s2 6= π, and
a) ∀a ∈ A1 −A2. R1(s1, a, s′1) and

{

s′1 6= π ⇒ R((s1, s2), a, (s′1, s2))
s′1 = π ⇒ R((s1, s2), a, (π, π))

b) ∀a ∈ A2 −A1. R2(s2, a, s′2) and
{

s′2 6= π ⇒ R((s1, s2), a, (s1, s
′
2))

s′2 = π ⇒ R((s1, s2), a, (π, π))

c) ∀a ∈ A1 ∩A2. R1(s1, a, s′1) ∧ R2(s2, a, s′2) and
{

s′1 6= π ∧ s′2 6= π ⇒ R((s1, s2), a, (s′1, s
′
2))

s′1 = π ∨ s′2 = π ⇒ R((s1, s2), a, (π, π))

Similarly, R also includes((π, π), a, (π, π)) for all a ∈
A1 ∪ A2.

In the above definition, the composite state is the failure
state if either module state is the failure state. When several
modules execute concurrently, they synchronize on the shared
actions, and proceed independently on their invisible actions.
If either individual SG makes a state transition to the failure
state, there is a corresponding state transition to the failure
state in the composite SG. The behavior of the composite SG
captures the interaction between the two individual SGs. Ithas
been shown that parallel composition of SGs is commutative
and associative in [12].

B. Correctness and Conformance Relation

Failure stateπ can be used to represent various undesirable
behavior that a system is not expected to produce. A system
is regarded as being correct ifπ is not reachable in its SG. A
path is referred to as afailure traceif a SG contains the failure
stateπ reachable via such path. The set of all failure traces
of a SGG is denoted asF(G). Obviously,F(G) ⊆ L(G). A
system is correct ifF(G) = ∅.

Given a failure traceρ = (s0, a0, · · · , si, ai, π, · · ·), the non-
failure prefix ofρ is (s0, a0, · · · , si, ai). If another traceρ′ has
the same non-failure prefix ofρ, ρ′ is also regarded as a failure
trace. In such case,ρ andρ′ are calledfailure equivalent.

Definition 3.5 (Failure Equivalence):Given two pathρ =
(s0, · · · , si, ai, π, · · ·) and ρ′ = (s′0, · · · , s

′
i, a

′
i, · · ·), ρ and ρ′

are failure equivalent, denoted asρ ∼F ρ′ iff

∀(0 ≤ h ≤ i). L(sh) = L(s′h) ∧ ah = a′
h

The definition of conformance relation between two SGs is
given as follows.

Definition 3.6 (Conformance):Given SGsG and G′, G
conforms to G′, denoted asG � G′, iff the following
conditions hold:

1) P ′ = P .
2) A′ = A.
3) ∀s ∈ S, ∃s′ ∈ S′ such thatL(s) = L′(s′)
4) For every pathρ ∈ L(G), there exists a pathρ′ ∈ L(G′)

such thatρ ∼ ρ′ or ρ ∼F ρ′.
Intuitively, the conformance relation states that any visible

path ofG is also a visible path ofG′. Also, for any failure trace
in G, there exists an equivalent failure trace inG′. In other
words, the language accepted byG is also accepted byG′.
Therefore, givenG andG′, they satisfy the following property:

G � G′ ∧ F(G′) = ∅ ⇒ F(G) = ∅.

This property states thatG is correct ifG′ is correct.

IV. COMPOSITIONAL VERIFICATION

This section describes our compositional verification
method. This method assumes that a system is described in
some high level modeling language, and it is constructed by
parallel composition of simpler modules,M = M1‖ · · · ‖Mn,
without giving the definition of‖ for such a language. By
virtue of the complexity of the entire systemM , our goal is
to check the correctness ofM by verifying eachMi without
actually composing them. If each individualMi is verified
correctly, then the entire system is correct.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 5

When a moduleMi is considered, the rest of the system is
regarded as the environment ofMi, denoted asEi. The task
of verifying M can be decomposed inton sub-problems of
verifying Mi‖Ei for 1 ≤ i ≤ n where only failures in a module
are checked in each sub-problem. However, simply composing
the modules other thanMi in the system intoEi would make
the complexity of verifyingMi‖Ei be very close to that of
verifying the entire systemM . To reduce the complexity, it
needs to find an approximation ofEi, E ′

i , such that

1) E ′
i is much simpler thanEi in terms of the number of

states in the resultant SG, and
2) the same conclusion for verifyingMi‖Ei can be drawn

from verifying Mi‖E ′
i.

In practice, finding such an ideal approximate environment for
a module to satisfy both requirements is extremely difficult,
if not impossible. Therefore, our method loosens the require-
ments of an approximate environment to be much simpler but
preserve all the interface behavior ofEi. This ensures thatMi

is failure free in the entire system if it is failure free inE ′
i . If

this is true for every module, the entire system is guaranteed
to be failure free. The above discussion is formalized in the
the following compositional verification rule.

1: F(G′
i) = ∅ for 1 ≤ i ≤ n

2: Gi � G′
i for 1 ≤ i ≤ n

F(G1‖ · · · ‖Gn) = ∅

where Gi and G′
i are the SGs generated fromMi‖Ei and

Mi‖E ′
i, respectively, using some state space exploration al-

gorithm. This rule is sound but incomplete. The proof for
soundness is straightforward, and is not be given. On the other
hand, the approximate environment may result in behavior
impossible in the entire system that causes a module to fail,
resulting in false failures.

Algorithm 1 shows our verification framework based on
the above compositional rule. In this algorithm, a SGGi

containing all reachable states and the corresponding state
transitions is generated first for eachMi‖E

′
i. This step can be

accomplished using some existing depth first search algorithm
such as the one in [35]. Thereafter, a series of reductions is
applied toGi to control the size of these SGs in terms of
the number of states and state transitions. These reductions,
performed by proceduresautofailure, abstract and
rmRed, are described in detail in Section VI.

The challenges to the efficiency of algorithmverify
include finding a much simpler yet accurate environment for
each module, therefore reducing the extra behaviors inGi

introduced by an over-approximate environment. To meet this
challenge, an interface refinement approach, implemented by
procedurerefine on line 6 in the algorithm, is developed
and described in detail in the next section. It takes the SGs
Gi and their respective initial constraintsCi for 1 ≤ i ≤ n,
and reduces iteratively state transitions fromGi invalidated
by the constraints. After all SGs cannot be refined further, the
algorithm checks eachGi and reports failures found in any of
them. Concepts of constraints and how constraints are found
and used to reduce SGs are introduced in the next section.

Algorithm 1 : verify(M = M1‖ · · · ‖Mn)

foreach i, 1 ≤ i ≤ n do1

find SGGi for Mi‖E ′
i;2

autofailure(Gi);3

abstract(Gi);4

rmRed(Gi);5

refine({G1, · · · , Gn}, {C1, · · · , Cn});6

foreach i, 1 ≤ i ≤ n do7

if F(Gi) 6= ∅ then8

return “ M has a failure”;9

return “ M is failure free”;10

V. I NTERFACE REFINEMENT

This section describes an interface refinement algorithm
that makes the SGs obtained from the system modules with
approximate environment more accurate. This algorithm is
fully automated, and iteratively generates more accurate yet
conservative interface constraints to refine the SGs as long
as the initially selected environments for the modules are
abstractions of the exact ones.

A. Definition and Properties of Constraints

An action a is enabled in a states if there is a states′

such thatR(s, a, s′) holds. Recall that each state is labeled
with a set of propositions. An action is also regarded to be
enabled in a state only when all the labeled propositions hold.
Let conj : S → 2P be a function that maps a non-failure state
to a Boolean conjunction onP , and it is defined as follows.

conj(s) =
∧

L(s) for s 6= π.

Specifically, functionconj(s) returns a Boolean conjunction
over the propositions labeled in states if it is not the failure
state. An action is enabled ins if conj(s) evaluates to true.
This definition relates each enabled action with a Boolean
formula. Therefore, we can characterize the enabling condi-
tions of actions with Boolean formulas, denoted asconstraints,
which are defined as follows.

Definition 5.1 (Constraints):Let G = (P,A, S, init, R, L)
be a SG. Letf : 2P → {FALSE, TRUE} be a Boolean
function defined overP . A constraintC = {(a, f)|a ∈ A} of
G is a set of pairs of actions ofG and their assigned Boolean
functions.

The rest of the paper usesC(a) to denote the reference to
f corresponding toa such that(a, f) ∈ C. Additionally, if C1

andC2 are defined on the same set ofA, C1 ⇒ C2 is used to
denote∀a ∈ A.C1(a) ⇒ C2(a).

This section assumes that constraints are defined for all
actions of SGs to simplify presentation. A constraint for
actions may be provided by users, or derived automatically as
shown in the following sections. When a constraint is imposed
on actions, it may restrict how actions are enabled, therefore
causing some state transitions to become invalid.

Definition 5.2 (Valid State Transitions):A state transition
(s, a, s′) ∈ R such thats 6= π is valid with respect to a
constraintC iff conj(s) ⇒ C(a) holds.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 6

By the above definition, a constraintC of a SG G on an
actiona corresponds to a set of valid state transitions defined
as follows.

RC(a) = {(s, a, s′) ∈ R | conj(s) ⇒ C(a) ∧ s 6= π}

It can be seen thatRC(a) becomes smaller if a stronger
constraintC on a is imposed. Intuitively, a stronger constraint
implies that the enabling conditions for actions become more
restricted, and more state transitions may not be valid anymore.
This observation is reflected in the following property.

∀a ∈ A.
(

(C1(a) ⇒ C2(a)) ⇔ (RC1(a) ⊆ RC2(a))
)

(1)

whereC1 andC2 are two different constraints. This property
states that the behavior in a SG regarding an actiona is
reduced when a stronger constraint is imposed ona, and
vice versa. For example,RC2(a) includes all state transitions
(s, a, s′) ∈ R in a SG ifC2(a) = TRUE, andRC1(a) ⊆ RC2(a)

for all otherC1(a). This example illustrates that TRUE is the
weakest constraint for any action of a SG, and the SG remains
the same with such a constraint.

According to the above discussion, a reduced SG results
from applying a stronger constraint.

Definition 5.3 (Applying Constraint):Let G be a SG such
that G = (P,A,S, init, R, L), and C be a constraint onA.
Applying C to G, denoted as〈C〉G, results in a new SGG′ =
(P ′,A′, S′, init′, R′, L′) such that

1) P ′ = P , A′ = A, S′ = S, init′ = init, L′ = L, and
2) R′ =

⋃

∀a∈A

(

RC(a) ∪ {(π, a, π)}
)

.

By the definition of constraints and conformance, a con-
straint C1 is stronger than another constraintC2 iff one SG
imposed withC1 accepts a subset of language of a SG imposed
with C2. This is formulated in the following lemma.

Lemma 5.1:Let G = (P,A, S, init, R, L) be a SG,C1 and
C2 two constraints onA. Then, the following property holds.

(

C1 ⇒ C2

)

⇔
(

〈C1〉G � 〈C2〉G
)

Proof: Let G1 = 〈C1〉G, G2 = 〈C2〉G. Therefore,

R1 =
⋃

∀a∈A

(

RC1(a) ∪ {(π, a, π)}
)

R2 =
⋃

∀a∈A

(

RC2(a) ∪ {(π, a, π)}
)

First, according to (1),∀a ∈ A. RC1
(a) ⊆ RC2

(a) holds on
account ofC1 ⇒ C2. Hence,G1 � G2 holds.

Next, for every pathρ1 ∈ L(G1), there exists a pathρ2 ∈
L(G2) such thatρ1 ∼ ρ2. ρ1 consists of the state transitions
from R1 and ρ2 from R2. This impliesR1 ⊆ R2. Thus, for
∀a ∈ A.RC1(a) ⊆ RC2(a), which leads to∀a ∈ A.C1(a) ⇒
C2(a) by (1). Hence,C1 ⇒ C2 holds.

The following lemma states that the conformance relation
between two SGs is preserved when the same constraint is
applied to both of them.

Lemma 5.2:Let G1 andG2 be two SGs with the sameA,
andC a constraint onA. The following property holds

(

G1 � G2

)

⇒
(

〈C〉G1 � 〈C〉G2

)

Proof: SinceG1 � G2, for every pathρ1 = (s0, a0, s1, · · ·)
in L(G1), there exists a pathρ2 ∈ L(G2) such thatρ1 ∼ ρ2.
If all state transitions(si, ai, si+1) for 0 ≤ i on ρ1 are valid
with respect toC, they are also valid inG2 with respect toC.
In other words, a path that is valid in〈C〉G1 is also valid in
〈C〉G2.

As seen above, a constraint corresponds to a set of state
transitions of a SG. Therefore, the constraint of a given SG
can also be extracted. This is defined as follows.

Definition 5.4 (Extraction of Constraint):Let G be a SG
such thatG = (P,A, S, init, R, L). The constraintC extracted
from G, denoted byG〈C〉, satisfies

∀a ∈ A.



C(a) =
∨

R(s,a,s′)∧s6=π

conj(s)





where
∨

R(s,a,s′)∧s6=π conj(s) is the disjunction ofconj(s)
for all state transitions(s, a, s′) ∈ R such thats is not the
failure state.

Let G1 andG2 be two SGs such thatG1 � G2. According
to the definition of the conformance relation, the behavior of
G1 is more restricted than that ofG2. This implies that the
enabling condition of an action is more restricted inG1 than
in G2. This indicates that a stronger constraint may be derived
from the refined SG.

Lemma 5.3:Let G1 and G2 be two SGs, andC1 and C2

two constraints derived byG1〈C1〉 and G2〈C2〉, respectively.
Then the following property holds.

(G1 � G2) ⇒ (C1 ⇒ C2)

Proof: Since G1 � G2, for every pathρ1 ∈ L(G1), there
exists a pathρ2 ∈ L(G2) such thatρ1 ∼ ρ2. By the definition
of observable equivalence and constraints, for everya ∈ A,
if it is enabled on pathρ1, it is also enabled on pathρ2. It
is possible thatG2 may have some path that does not exist
in G1. This implies that an action may be enabled on some
path inG2 but not enabled inG1. To summarize, any action,
if enabled inG1, is also enabled inG2, but this is not true in
the other direction. This is equivalent toC1 ⇒ C2.

B. Interface Refinement for Compositional Verification

The previous section shows that accurate constraints help
refine SGs by removing invalid state transitions. However,
manually generating such constraints may be too expensive.
This section proposes an algorithm to automatically derive
constraints from and subsequently apply them to the abstract
SGs. This algorithm iterates until the constraints for all SGs
cannot be strengthened, and all SGs cannot be reduced.

To simplify the discussion, consider a system of two mod-
ules,G = G1‖G2, such thatAI

1 = AO
2 andAO

1 = AI
2. In the

sequel, the input and output constraints refer to those on input
and output actions of a module, respectively. A shared action
betweenG1 andG2 is in A1 ∩ A2. If a shared actiona is in
AO

1 ∩ AI
2, then the output constraints ona derived fromG1

can be used as input constraints to reduceG2 by pruning the
invalid state transitions ona. The case wherea is in AO

2 ∩AI
1

is handled similarly.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 7

The essence of interface refinement lies in the alternating
refinement onG1 andG2 with the interface constraints. When
refining a SG, the output constraints derived from other SGs
are applied to the considered SG where the invalid state tran-
sitions on input actions are removed. The output constraints
are extracted from the reduced SGs, and then serve as input
constraints for other SGs in the next iteration. LetCi

1 andCi
2

be the output constraints extracted fromGi
1 and Gi

2 at the
ith iteration, respectively. The iterative process of interface
refinement is illustrated as follows.

iteration0 : 〈C0
2〉G

0
1〈C

1
1〉, 〈C0

1〉G
0
2〈C

1
2〉

iteration1 : 〈C1
2〉G

1
1〈C

2
1〉, 〈C1

1〉G
1
2〈C

2
2〉

. . .

iteration l : 〈Cl
2〉G

l
1〈C

l+1
1 〉, 〈Cl

1〉G
l
2〈C

l+1
2 〉

where 〈Ci
2〉G

i
1〈C

i+1
1 〉 specifies that input constraintCi

2 is
applied on Gi

1, and output constraintCi+1
1 is derived

from 〈Ci
2〉G

i
1. Let Gi+1

1 = 〈Ci
2〉G

i
1 and CTRUE

1 =
{(a, TRUE) | ∀a. a ∈ A1}. SinceGi

1 = 〈CTRUE
1 〉Gi

1 and
Ci
2 ⇒ CTRUE

1 , we haveGi+1
1 � Gi

i by Lemma 5.1. The
enabling condition of the output actions ofGi+1

1 may become
more restricted after applyingCi

2, thereforeCi+1
1 ⇒ Ci

1 by
Lemma 5.3. The stronger constraintCi+1

1 extracted from the
reducedGi+1

1 is used as the input constraint forGi+1
2 . The

same reasoning applies toGi
2. The above process terminates

in the lth iteration when the extracted output constraints of
all modules are stable, e.g.Cl

1 = Cl+1
1 and Cl

2 = Cl+1
2 . This

implies thatGl
1 andGl

2 cannot be reduced anymore.
Theorem 5.1 below proves the soundness of the interface

refinement process. It shows that our compositional verifica-
tion method combined with the described refinement process
is still sound in that the refined SGs are still abstractions of
the exact SGs after refinement.

To prove Theorem 5.1, exact SGs need to be defined.
Intuitively, the SG of a module is exact if its behavior is exactly
the same when it is embedded in a larger system. The formal
definition of exact SGs is shown as follows.

Definition 5.5 (Exact SGs):Let G1 and G2 be two SGs.
G1 is exact withinG = G1‖G2 if the following hold.

∀(s1, a, s′1) ∈ R1, there exists a((s1, s2), a, (s′1, s
′
2)) ∈ R.

From the definition, the following property holds for the
exactG1

G1 = 〈C2〉G1 (2)

whereC2 is obtained byG2〈C2〉.
Theorem 5.1:Let G1 and G2 be exact withinG1‖G2. If

G′
1, andG′

2 are SGs such that

G1 � G′
1 andG2 � G′

2

the following property holds.

G1 � 〈C′
2〉G

′
1 andG2 � 〈C′

1〉G
′
2

whereC′
i is obtained byG′

i〈C
′
i〉 for i = 1, 2.

Proof: According to Lemma 5.2,

〈C′
2〉G1 � 〈C′

2〉G
′
1 and 〈C′

1〉G2 � 〈C′
1〉G

′
2

Let Ci be the constraints obtained byGi〈Ci〉 for i = 1, 2.
According to Lemma 5.3,∀a ∈ AO

i . Ci ⇒ C′
i for i = 1, 2.

Again, according to Lemma 5.1,

〈C2〉G1 � 〈C′
2〉G1 and 〈C1〉G2 � 〈C′

1〉G2

Combining the results in the above steps, we have

〈C2〉G1 � 〈C′
2〉G

′
1 and 〈C1〉G2 � 〈C′

1〉G
′
2

According to (2),〈C2〉G1 = G1 and 〈C1〉G2 = G2. Therefore,
G1 � 〈C′

2〉G
′
1 andG2 � 〈C′

1〉G
′
2. This completes the proof.

Functionrefine shown in Algorithm 2 implements the
interface refinement process presented above. It takes as ar-
guments a set of SGsGi, each of which is generated from a
module in a system with an over-approximate environment,
and a set of initial constraintsCi on the outputs of each
module. The algorithm first merges these constraints into a
single set, and then iteratively applies the constraint to reduce
each SG and extracts new output constraints from the reduced
SGs until the constraint does not change anymore. At this
point, all state transitions in every SG are valid with respect
to the constraints extracted from their neighbors, therefore no
further reduction is possible. The initial constraints maybe
provided by users or obtained from high level representations.
These constraints may be very abstract at the beginning, and
may possibly be set to TRUE for all actions by default if
nothing is known about the input interface of a module.
However, more restricted initial constraints help reduce the
number of iterations. Functionsapply andextract follow
the Definitions 5.3 and 5.4, and are described in more detail
in the next section.

Algorithm 2 : refine({G1, · · · , Gn}, {C1, · · · , Cn})

C′ = C1 ∪ . . . ∪ Cn;1

C = ∅;2

while C 6= C′ do3

C = C′;4

C′ = ∅;5

foreach Gi, 0 ≤ i ≤ n do6

apply(Gi, C);7

Ci = extract(Gi);8

C′ = C′ ∪ Ci;9

Next, the complexity of the above algorithm in terms of the
number of iterations needed to find the stable constraints is
considered. Assume that the size of a SGGi, |Gi|, is measured
by the number of state transitions inRi of Gi. Suppose the
number of modules in a system isn and |Gi| ≤ m for all
1 ≤ i ≤ n. In theory, the number of iterations needed to
find the stable constraints isO(mn). This complexity can
be understood as follows. Consider the extreme case where
exactly one state transition of exactly one SG is removed in
each iteration. And suppose that all state transitions inGi

can be removed. Obviously, the process stops when the state
transition setRi of everyGi is reduced to be empty. Therefore,
the maximal number of iterations necessary for terminationis
O(mn). Although this complexity seems very high, in practice

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 8

the total number of iterations is not that large because many
state transitions can be eliminated from multiple modules in
a single iteration as shown by the experimental results.

C. Application and Extraction of Constraints

In the above discussion, the application of a constraint to
and extraction of a constraint from a SG are represented as
〈C〉G〈C′〉. This section shows how to reduce SGs by applying
a constraint on a SG, i.e.〈C〉G, and extract a constraint from
a SG, i.e.G〈C′〉.

Given a SGG and a constraintC, the objective is to apply
C on G to remove the invalid state transitions inG. A state
transition (s, a, s′) ∈ R of G such thats 6= π is invalid if
conj(s) 6⇒ C(a). The removal of the state transitions may
render some states unreachable inG when all of their incoming
state transitions are eliminated. In the last step, all unreachable
states and their outgoing state transitions are also removed.
Algorithm 3 shows the procedure to reduceG with C.

Algorithm 3 : apply(Gi, C)

foreach (s, a, s′) ∈ Ri ∧ s 6= π ∧ a ∈ AI
i do1

if conj(s) ⇒ C(a) does not holdthen2

Delete(s, a, s′) from Ri;3

Remove unreachable states and transitions fromGi;4

Notice that constraintC is applied only on the input actions
in Algorithm 3. In general, the constraint provided to function
apply can be on either input or output actions. For example,
when one describes a system, a constraint may be used to
elaborate the system description additionally. This constraint
can be created for any actions. However, when function
apply is used for a SG in the above interface refinement
framework, only the part of the constraint extracted from other
SGs for the input actions of the SG under consideration is
necessary. The part of the constraint for the output actionsof
this SG would not reduce this SG because it is extracted from
itself. Therefore, only the state transitions labeled withinput
actions of a SG may be removed with respect to constraint
C whenapply is invoked. As a side effect, some other state
transitions, when become unreachable due to the removed state
transitions on input actions, may also be removed.

Each module updates its behavior on its output actions,
while its input actions are defined by the environment. There-
fore, given a SG of a module, only the constraint for non-input
actions are extracted. However, the behavior on internal action
ζ of a SG is invisible to other SGs, and the constraint for the
internal actions is meaningless to other modules. Therefore,
the constraint is extracted only for the output actions as shown
in Algorithm 4.

D. Example

For the modulesM1 andM2 in the circuit shown in Fig.3(a),
their SGs after all reductions, which are described in the
next section, are shown in Fig.6(a) and (b), respectively. How
the presented refinement method removes the invalid state
transitions is illustrated as follows.

Algorithm 4 : extract(Gi)

foreach a ∈ AO
i do1

Add (a, FALSE) into Ci;2

foreach (s, a, s′) ∈ Ri and s 6= π and a ∈ AO
i do3

Replace(a, f) ∈ Ci with (a, f ∨ conj(s));4

return Ci;5

First,conj(s) for each non-failure state of the SG in Fig.6(a)
on wiresx, y, andz are listed as follows.

s0 : ¬x ∧ ¬y ∧ ¬z s2 : x ∧ y ∧ z s3 : ¬x ∧ y ∧ z

s4 : x ∧ ¬y ∧ z s5 : ¬x ∧ ¬y ∧ z s6 : x ∧ y ∧ ¬z

s7 : x ∧ ¬y ∧ ¬z s8 : ¬x ∧ y ∧ ¬z

Since the outputs ofM1 are x and y, which are the inputs
of M2, the constraint for actions onx and y is found by
disjoiningconj(s) for all (s, a, s′) ∈ R such thata is onx or
y ands 6= π. x+ is enabled in states3 ands5. After disjoining
conj(s3) and conj(s5), the constraint forx+ is ¬x ∧ z. For
this example, the constraintC0

1 for all actions is shown as
follows.

x+ : ¬x ∧ z, x− : x ∧ ¬z

y+ : ¬y ∧ z, y− : y ∧ ¬z

The following showsconj(s) for each state of the SG in
Fig.6(b) also on wiresx, y, andz.

s0 : ¬x ∧ ¬y ∧ ¬z, s2 : x ∧ y ∧ ¬z, s4 : x ∧ y ∧ z

s6 : x ∧ ¬y ∧ z, s7 : x ∧ ¬y ∧ ¬z, s9 : x ∧ ¬y ∧ ¬z

s10 : ¬x ∧ y ∧ ¬z, s12 : ¬x ∧ y ∧ z, s13 : ¬x ∧ y ∧ ¬z

s14 : ¬x ∧ ¬y ∧ ¬z, s16 : ¬x ∧ ¬y ∧ z,

The output ofM2 is z which is the input ofM1. Similarly, the
constraintC0

2 for z+ and z− can be derived, e.g.C0
2(z+) =

conj(s0)∨conj(s9)∨conj(s13)∨conj(s14) = (¬x∨¬y)∧¬z,
C0
2(z−) = conj(s4) = x ∧ y ∧ z.
According toC0

2 , z+ is enabled when eitherx or y is low,
andz− is enabled when bothx andy are high. ApplyingC0

2

to the SG in Fig.6(a) removes the following state transitions.

(s6, z+, π) (s3, z−, π) (s4, z−, π) (s5, z−, π)

According to C0
1 , x+ and y+ are enabled only in states

wherez is high. ApplyingC0
1 to the SG in Fig.6(b) makes

the following transitions among others in the SG in Fig.6(b)
invalid:

(s0, x+, s9) (s0, y+, s13)

Removing these transitions makes statess9 ands13 unreach-
able. After removing the unreachable states and their outgoing
state transitions, the SG in Fig.6(b) is reduced, and a stronger
constraint can be derived in the next iteration. After refinement
is done, the SGs in Fig.6(a) and (b) are reduced to the ones
in Fig.4(a) and (b), respectively, which are failure free.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 9

(a) (b)

Fig. 4. (a) The SG in Fig.3(b) after refinement. (b) The SG in Fig.3(c) after
refinement.

VI. STATE SPACE REDUCTION

This section introduces several techniques to reduce SGs
without affecting verification results. Reducing the interme-
diate SGs during compositional verification controls the size
of these SGs, thus allowing larger systems to be verified and
more freedom in partitioning. They may also allow stronger
interface constraints to be derived, which is desirable forin-
terface refinement and verification. Finally, all the techniques,
unlike other conservative approaches, do no introduce extra
behavior including extra failures. This is also highly desirable
in reducing computation cost needed to confirm the uncov-
ered failures. These techniques are used in the compositional
verification framework shown in Algorithm 1.

A. Autofailure Reduction

One technique, autofailure reduction, is based on the follow-
ing observation. The failure state of a design may be entered
by an action on an output or an internal action. However, the
real cause of the failure can be traced back to an input action.
This is because if an environment produces an input action that
a system cannot handle, then the failure happens immediately
or through a sequence of internal or output actions, and the
environment cannot prevent it from eventually happening. This
is referred to asautofailure manifestationin [23]. However,
autofailure manifestation in [23] is only used to canonicalize
trace structures for hierarchical verification. We adopt itin our
method as a technique to reduce SGs.

Let ρ = (s0, t0, s1, t1, s2, · · · , π) be a failure path in
G. Recall that an autonomous path is independent of input
actions. If a failure path of a system is autonomous, the
failure is inherent in the system, and occurs no matter how
the environment behaves. Autofailure reduction reduces a SG
containing an autonomous failure path starting from the initial
stateinit to the one consisting of only a single failure state.
If ρ is not autonomous, autofailure reduction searches for the
largest indexi such that actionai is an input action, and
(si+1, ai+1, si+2, · · · , π) is an autonomous subpath ofρ. All
state transitions on that autonomous subpath are removed, and
si+1 is converted to the failure stateπ. Notice that the removed
state transitions on the autonomous subpath may be on the

output actions. Therefore, autofailure reduction may strengthen
the output constraints for a SG.

Let autofailure(G) be a procedure for autofailure
reduction as shown in Algorithm 5. Lemma 6.1 shows that
autofailure reduction preserves all possible traces of a SG.

Algorithm 5 : autofailure(G)

s2 = π;1

foreach (s1, a1, s2) ∈ R ∧ s1 6= π do2

if s1 = init ∧ a1 /∈ AI then3

return “G has a failure”;4

if a1 /∈ AI then5

delete(s1, a1, s2) ;6

s2 = s1;7

else8

replace(s1, a1, s2) with (s1, a1, π);9

s2 = π;10

Remove unreachable states and transitions fromG;11

Lemma 6.1:Given a SGG, G � autofailure(G).
Proof: If no failure trace exists inG, the procedure
of autofailure reduction does nothing. Therefore,G �
autofailure(G).

Next, we considerG that contains failure paths. Letρ =
(s0, t0, s1, t1, s2, · · · , π) be a failure path inG. Supposeρ
becomesρ′ = (s0, a0, · · · , si, ai, π) after autofailure reduc-
tion. According to Definition 3.5 in section III-B,ρ ∼F ρ′.
The above discussion indicates that every failure trace inG is
reduced to an equivalent failure inautofailure(G). For
each non-failure trace inG, it either has a corresponding
equivalent failure trace inautofailure(G), or simply
exists in autofailure(G) if it does not have the prefix
of any failure trace inautofailure(G).

Refer to the SG in Fig.3(b). The state transitiont1 =
(s15, u−, π) is on an invisible actionu−. Both incoming
state transtionst2 = (s8, x−, s15) and t3 = (s11, y−, s15)
are on input actionsx− and y−, respectively. Autofailure
reduction removest1, and changest2 and t3 to (s8, x−, π)
and (s11, y−, π), respectively. The operation is also applied
to (s5, u+, π). After these operations,s5 and s15 become
unreachable, thus are removed. The reduced SG is shown in
Fig.5(a).

B. Interface Abstraction

Given a module, some of its outputs may bcome invisible
to its neighbors when it is plugged into a larger system. In this
case, the corresponding state transitions on these outputsin its
SG can be converted to invisible transitions. The traditional
abstraction techniques collapse the invisible state transitions
into single states [11]. This may cause extra behaviors and
thus may introduce false failures. This section provides a
different abstraction technique that compresses a sequence of
invisible state transitions into a single visible state transition.
This technique has certain desirable features over the previous
approaches.

Let (si, ζ, si+1, ζ, · · · , sj−1, ζ, sj , aj , sj+1) be a subpath of
a path in a SGG. After abstraction, the whole subpath is

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 10

replaced with state transition(si, aj , sj+1). This abstraction is
different from the previous approaches in the following ways.

1) Since the sequence of invisible state transitions on a
path is replaced by a visible state transition, the number
of reachable states ofabstract(G) may be reduced
if some states have all their incoming state transitions
on the invisible action. However, this may not always
be the case, and the number of state transitions may be
increased significantly.

2) This abstraction shortens the existing paths, but no new
paths are created. Therefore, no new failure traces are
introduced.

3) Nondeterminism may be introduced into a SG af-
ter abstraction. Consider two subpaths(si,ζ,· · · ,
sj−1,ζ,sj ,aj ,sj+1) and(si,ζ, · · · ,sk−1, ζ, sk, aj, sk+1).
They are reduced to(si, aj, sj+1) and (si, aj, sk+1),
respectively. This causes nondeterminism even though
the original SG is deterministic. However, the non-
deterministic transitions do not affect the constraint
extraction, and they may be eliminated ifsj+1 or sk+1

is redundant as described in the next section.

Let abstract(G) be a procedure for the interface abstrac-
tion on a SGG as shown in Algorithm 6. The following lemma
asserts thatabstract(G) is an abstraction ofG.

Lemma 6.2:Given a SGG, G � abstract(G).
Proof: It is straightforward to see that for every pathρ in
G, there exists a pathρ′ in abstract(G) such thatρ ∼
ρ′. This satisfies the conditions of conformance relations, and
completes the proof.

The SG produced byabstract(G) in Algorithm 6 inher-
its every element ofG except the updatedR and S. In the
algorithm,T andV store all visible state transitions and their
states, respectively. The algorithm searches backwards from
each visible state transition, and bypasses all the invisible state
transitions along a path until another visible state transition
is found or the initial state is reached. From these two state
transitions, a new transition is created to replace the sequences
of invisible state transitions and it is added intoT . During
the backward search, the invisible state transitions and states
with both incoming and outgoing state transitions invisible
are not added intoT and V . After all state transitions have
been handled,R and S of G are replaced withT and V ,
respectively.

Algorithm 6 : abstract (G)

T = ∅, V = ∅;1

foreach (s2, a2, s1) ∈ R ∧ (a2 6= ζ) ∧ s2 6= π do2

foreach (s3, a3, s2) ∈ R ∧ s3 6= π do3

if s2 = init ∨ a3 6= ζ then4

T = T ∪ { (s2, a2, s1)};5

V = V ∪ {s2, s1};6

if a3 = ζ then7

s2 = s3;8

replaceR with T ;9

replaceS with V ;10

Remove unreachable states and state transitions fromG;11

(a) (b)

Fig. 5. (a) The SG from Fig.3(a) after the autofailure reduction . (b) The
SG from (a) after the interface abstraction.

Refer to Fig. 5(a). State transition(s4, u+, s3) is invis-
ible while (s3, z−, s2), (s3, x−, s11), and (s3, y−, s8) are
visible. The algorithm checks that a transition ending ats4,
(s6, y+, s4), is visible, and three new transitions(s4, z−, s2),
(s4, y−, s8), and (s4, x−, s11) are added. Since the other
incoming transition tos4, (s12, x+, s4), is visible too, the
backward search stops, and the invisible transition(s4, u+, s3)
is removed. Now, nondetermination takes place ats4. The
same operation is similarly applied to(s14, u−, s0). The
abstracted SG is shown in Fig.5(b).

C. Redundancy Removal

Recall that the procedure for the interface abstraction poten-
tially introduces nondeterminism. A nondeterministic SG can
be determinized with some well-known but very expensive
algorithms [11]. However, nondeterminism does not affect
the soundness of the verification results in our framework.
Therefore, we propose a light-weight algorithm instead that
targets on removing redundant state transitions and states.

Let incoming(s) be the set of state transitions(s′, a, s)
such thatR(s′, a, s) holds, andoutgoing(s) be the set of state
transitions(s, a, s′) such thatR(s, a, s′) holds.

Definition 6.1 (Redundant States):Let G be a SG, and
s, s1, s

′
1 ∈ S such thats1 6= π ands1 6= init. We say thats1 is

redundant tos′1, denoted ass′1/s1, if there exists a(s, a, s′1) ∈
incoming(s′1) for each(s, a, s1) ∈ incoming(s1).

Redundant states1 and its incoming and outgoing transi-
tions can be removed as follows.

• Remove all state transitions inincoming(s1) and
outgoing(s1).

• For each(s1, a1, s2) ∈ outgoing(s1), add (s′1, a1, s2)
into R.

Therefore, removing redundant states always results in a
smaller number of states and state transitions.

If the failure state is involved in nondeterminism, redundant
state transitions are identified based on the following under-
standing: if an action in a state may or may not cause a failure
nondeterministically, it is always regarded as causing a failure.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 11

(a) (b)

Fig. 6. (a) The SG ofM1 from in Fig.5(a) after and redundancy removal.
(b) The SG from Fig.5(b) after the the redundancy removal.

It is formalized as failure equivalent state transitions inthe
following definition. The failure equivalent transitions do not
have any impact on the behavior represented by a SG, and can
simply be removed.

Definition 6.2 (Failure Equivalent Transitions):Given two
state transitions(s, a, s1) and (s, a, π) of a SG, (s, a, s1) is
failure equivalent to(s, a, π).

In general, removal of redundant states and state transitions
does not help to generate stronger constraints for better refine-
ment. However, if the failure state is involved in redundancy
removal, it is possible that the removal of the failure equivalent
transitions results in stronger constraints.

Let rmRed(G) be a procedure to generate a new SG by
removing the redundancies inG as shown in Algorithm 7.
The following lemma states that the resultant SG conforms to
the original SG.

Lemma 6.3:Given a SGG, G � rmRed(G).
Proof: We consider two cases.

• Case 1:s′/s wheres′ ands are not the failure state. For
any pathρ = (· · · , si, ai, s, ai+1, · · ·) in G, there exists
a pathρ′ = (· · · , si, ai, s

′, ai+1, · · ·) in rmRed(G) such
that ρ ∼ ρ′.

• Case 2: For any pathρ = (· · · , si, ai, s
′, · · ·) in G and

(si, ai, π) ∈ R, there existsρ′ = (· · · , si, ai, π, · · ·) such
that ρ ∼F ρ′. This indicates thatρ′ is in rmRed while ρ
is not.

From case 1 and 2, it is concluded thatG � rmRed(G).
Refer to the SG in Fig. 5(b).(s4, y−, s8) is failure

equivalent to (s4, y−, π) and it is removed. Similarly,
(s4, x−, s11), (s14, x+, s9) and (s14, y+, s13) are removed
as failure equivalent transitions. After removing unreachable
statess3, s8, ands11, the reduced SG is shown in Fig.6(b).

VII. E XPERIMENTAL RESULTS

A prototype has been implemented for the method and
algorithms presented in this paper in an asynchronous system
verification toolFLARE, and experiments have been performed
on several asynchronous circuits. These experiments aim to

Algorithm 7 : rmRed (G)

foreach (s, a, π) ∈ R do1

if (s, a, s1) ∈ R then2

R = R − {(s, a, s1)} ;3

S′ = ∅;4

foreach s′1 ∈ S do5

foreach s1 ∈ S do6

if s′1/s1 then7

R = R − {incoming(s1) ∪ outgoing(s1)};8

S = S − {s1};9

foreach (s1, a1, s2) ∈ outgoing(s1) do10

R = R ∪ {(s′1, a1, s2)};11

Remove unreachable states and state transitions fromG;12

show the scalability of verification using our compositional
method.
FLARE is an explicit model checker for asynchronous

circuit and system verification. It can perform flat and com-
positional verification. Its closest relative isATACS [36].
AlthoughATACS also supports compositional verification and
failure-directed abstraction, the abstraction is mainly limited
to a certain type of high-level modeling formalism. More
significantly, the automated interface refinement supported in
FLARE is not available inATACS. There are other tools
supporting compositional verification, but we could not find
another one that supports asynchronous system verificationin
a way similar to our tool.

A. Examples and Environment Setup

The first three designs used in our experiments are a
self-timed FIFO [32], a tree arbiter ofN cells [23], and a
distributed mutual exclusion element consisting of a ring of
DME cells [23]. Although all these designs have a regular
structure to be scaled easily, the regularity is not exploited
in our method, and all the modules are treated as black
boxes. The fourth example is a tag unit circuit from Intel’s
RAPPID asynchronous instruction length decoder [38]. This
example is an unoptimized version of the actual circuit used
in RAPPID with higher complexity, which is more interesting
for experimenting with our methods. The last example is a
pipeline controller for an asynchronous processor TITAC2
[39]. All five examples are failure free. Note that all the
examples are too large to apply flat approaches.

In the experiments, DME, arbiter, and FIFO examples
are partitioned according to their natural structures. In other
words, each cell is a module. For the tag unit circuit, it is par-
titioned into three modules, where the middle five blocks form
a module, and gates on the sides of the middle module form
the other two modules. The pipeline controller is partitioned
into 10 modules, each of which contains five gates. All results
are obtained on a Linux workstation with an Intel Pentium-D
dual-core CPU and1 GB memory. In the results tables, time
is in seconds, and memory is in MBs.

According to the compositional verification shown in sec-
tion IV, it is necessary to generate an over-approximate

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 12

TABLE I
EXPERIMENTAL RESULTS(REFINEMENT + REDUCTION+ COMPOSITION).

System #Cells |W | Mem(MB) T ime(Sec.) |S|peak |R|peak |S| |R| #Iter #π

100 402 30 18 57 153 15 21 3 0
200 802 80 41 57 153 15 21 3 0

FIFO 400 1602 237 102 57 153 15 21 3 0
600 2402 471 184 57 153 15 21 3 0
800 3202 781 290 57 153 15 21 3 0

20 220 35 43 361 9497 33 61 4 0
50 550 88 113 361 9497 33 61 4 0

DME 100 1100 191 249 361 9497 33 61 4 0
200 2200 446 600 361 9497 33 61 4 0
300 3300 771 1044 361 9497 33 61 4 0

7 66 3 2 290 758 38 68 3 0
ARB 15 122 7 6 385 1407 104 340 5 0

31 250 33 47 1737 9636 689 3833 7 0
63 506 262 988 15684 134438 5018 48342 8 0

TAGUNIT 3 48 117 103 3697 280392 2112 122648 2 0

PIPECTRL 10 50 23 47 1409 12736 679 4882 6 4

environment for each module in a system to simulate the
actual environment. In the experiments,maximal environment
is used as the initial approximate environment. The concept
of the maximal environment introduced in [27] is adapted
for the modeling formalism used in our toolFLARE. The
maximal environment defines all possible behaviors on all
inputs driving a system. The behaviors of each input is
completely independent to those of other inputs, and updating
the values of inputs is interleaved in all possible orderings.
The constraints extracted for the inputs of a module from the
maximal environment are all TRUE, since the behaviors of
inputs are completely unconstrained.

The maximal environment is used as the worst case scenario
to demonstrate the effectiveness of the presented method to
refine a very coarse approximation. If better knowledge of the
internal details about a design is available, a more accurate
initial environment approximation can be obtained and used
instead of the maximal environment, thus speeding up the
refinement process.

B. Results

In the first experiment, all examples are verified with the
compositional method combined with the interface refinement
and all state space reduction techniques presented in this paper.
The results are shown in Table I. In the table, column#Cells
is the number of cells in a system, and column|W | is the
total number of wires in each system, which is a rough
estimate of the system complexity. ColumnMem(MB) and
T ime(Sec.) are the peak memory used and the total runtime
taken for verifying each system. The numbers of states and
state transitions of the single largest SG for a module found
during the procedure of performing compositional approach,
which serve as a critical metric for the effectiveness, are shown
in columns |S|peak and |R|peak, respectively. The next two
columns |S| and |R| show the numbers of states and state
transitions in the largest SG after the refinement is done.
Column #Iter shows the number of iterations required to
complete the interface refinement, and the last column#π
shows the number of modules in a system that have the failure
state after the refinement.

In these experiments, selective composition is performed
if SGs of some modules are found to have failures. In
selective composition, some or all of the SGs with failures
are composed as allowed by the available memory. This
results in some state transitions becoming invisible and leads
to reductions on the composed SGs. Then, the refinement
is applied again. The reduced composite SGs in turn may
result in reductions on other SGs. The number of iterations
in Table I is the total number of iterations for the refinement
before and after selective composition. In the experiments,
selective composition is needed for ARB and PIPECTRL.
For PIPECTRL, the original10 modules all contain failures.
Selective composition merges these modules into5 larger ones,
and one of them is failure-free.

From Table I, we obtain the following observations. First,
for scalable FIFO, ARB, and DME examples, memory and
runtime usages grow polynomially as the number of modules
in the systems increases. Second, although the refined SG
for each module is still an abstraction of the exact one after
the interface refinement, all examples except PIPECTRL are
shown to be failure-free. Even though interface refinement
may not eliminate failures for each module in PIPECTRL
completely, the number of modules containing failures and
the number of failure traces in those modules are reduced
significantly by the refinement and reductions, therefore mak-
ing distinguishing false counterexamples easier. In the table,
we only show the size of the largest SG encountered during
verification. This is because it is the largest module of a
system that determines the success or failure of verification.
With respect to compositional verification, only one module
needs to stay in memory at a time. However, our method keeps
SGs of all modules in memory for simplicity, and the memory
numbers in ColumnMem(MB) show the total peak memory
usage for all modules during verification.

To fully appreciate the power of the introduced reduction
techniques, the difference between the traditional abstraction
and the one proposed in this paper, and the impact of selective
composition on the verification results, we run three more
experiments. All these experiments use the compositional
verification approach presented in this paper without using

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 13

TABLE II
COMPARISON OF THREE DIFFERENT EXPERIMENTS.

System #Cells E1 E2 E3
Mem(MB) T ime(Sec.) #π Mem(MB) T ime(Sec.) #π Mem(MB) T ime(Sec.) #π

100 30 11 0 29 11 96 30 18 0
200 80 28 0 78 26 196 80 41 0

FIFO 400 236 74 0 232 66 396 237 102 0
600 470 140 0 470 140 596 471 184 0
800 780 227 0 772 201 796 781 290 0

20 14 13 0 13 9 0 35 43 0
50 40 37 0 38 27 0 88 113 0

DME 100 97 90 0 94 69 0 191 249 0
200 264 249 0 258 202 0 446 600 0
300 502 474 0 492 402 0 771 1044 0

7 3 1 6 2 1 2 3 2 0
ARB 15 8 3 15 6 4 3 7 5 7

31 18 8 30 15 9 12 17 13 15
63 42 22 59 36 23 30 40 33 31

TAGUNIT 3 26 28 0 11 10 0 117 103 0

PIPECTRL 5 13 10 5 8 10 4 19 50 5

selective SG composition as in the previous experiment. The
results are shown in Table II. In the first experiment labeled
asE1, all examples are verified with only the interface refine-
ment. In the second experiment labeled asE2, all examples
are verified with the interface refinement and all the reduction
techniques, except that the traditional state space abstraction is
used instead of the interface abstraction presented in thispaper.
In the third experiment labeled asE3, all reduction techniques
including the interface abstraction plus the interface refinement
are used for all examples. This experiment is similar to the
one used for Table I except that selective composition is not
applied. Comparing the results in these two tables, the runtime
and memory usage for all examples as shown in Table II are
generally less, much less in some cases, than those shown in
Table I. The main reason is the SG composition, which causes
the size blowup if used for some examples. However, without
selective composition, the verification results become worse in
terms of the number of modules with failures. For example, 31
out of 63 modules in the ARB have failures underE3 without
using the SG composition, while none has failures if selective
composition is applied as shown in Table I.

Comparing the results in columnsE1 and E3, whether
applying reductions or not does not make much difference
in these experiments except for the TAGUNIT. In this case,
memory blows up because interface abstraction creates a
much large number of state transitions to preserve all possible
behaviors of the modules in TAGUNIT and avoid introducing
extra paths. The increased state transitions may be removed
by performing redundancy removal or autofailure reductionfor
the examples exclusive of TAGUNIT. This example illustrates
the negative effect of the interface abstraction technique. On
the positive side, using the new abstraction causes less failures
introduced. Comparing results in columns underE2 andE3,
no module has failures when interface abstraction is used,
while the number of modules with failures increases as the
number of cells increases for the FIFO. However, for ARB
and PIPECTRL, the number of modules with failures under
E2 is actually smaller than that underE3. This is because of
the aggressive reduction feature of the traditional abstraction

where larger state space may be trimmed as long as the failure
traces are preserved. Trimming a larger state space, including
the valid portion, helps to produce stronger output constraints,
which then cause the other modules to be more reduced. This
is why the memory and runtime are also less underE2. Using
traditional abstraction always preserves failures in at least one
module, but its aggressiveness in reducing state space may
cause some modules to lose their failure traces.

VIII. C ONCLUSION

While compositional verification is an effective approach to
attack state explosion in model checking, generating accurate
yet simple environments for system modules poses a big chal-
lenge. This paper proposes an interface refinement algorithm
for compositional verification where the module interfacesare
monotonically refined. This method is fully automated and
sound as long as the initial environment for each module in a
system is over-approximated. This allows very coarse environ-
ments to be used when verification starts. In addition, several
state space reduction techniques are introduced, and they
may help remove irrelevant behavior, thus making interface
refinement more effective. The initial experimental results are
encouraging. This refinement algorithm is general as long as
the designs can be modeled using the SG formalism presented
in this paper, and it can be combined with other compositional
verification approaches. In the future, it would be interesting
to investigate other representations of constraints for more
effective refinement, and efficient partitioning strategies for
better verification.

REFERENCES

[1] R. Alur, L. de Alfaro, T. Henzinger, and F. Mang. Automating modular
verification. In Proceedings of the 10th International Conference on
Concurrency Theory, LNCS, pages 82–97. Springer-Verlag, 1999.

[2] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verifi-
cation by learning assumptions. InProc. Int. Conf. on Computer Aided
Verification, volume 3576 ofLNCS, pages 548 – 562. Springer-Verlag,
2005.

[3] S. Berezin, S. Campos, and E. Clarke. Compositional reasoning in model
checking. InCOMPOS, volume 1536 ofLNCS, pages 81–102. Springer-
Verlag, Sept. 1998.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 14

[4] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu.Bounded
model checking, 2003.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. Lecture Notes in Computer Science, 1579:193–207,
1999.

[6] A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34,
2001.

[7] J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dill. Symbolic
model checking for sequential circuit verification.IEEE Transactions
on Computer-Aided Design, 13(4):401–424, 1994.

[8] D. Bustan and O. Grumberg. Modular minimization of deterministic
finite-state machines. InProceedings the 6th International workshop on
Formal Methods for Industrial Critical Systems (FMICS’01), July 2001.

[9] S. Chaki, E. Clarke, J. Ouaknine, and N. Sharygina. Automated,
compositional and iterative deadlock detection. InMEMOCODE 2004,
pages 201–210, 2004.

[10] S. Chaki, E. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee
reasoning for simulation conformance. InProc. Int. Conf. on Computer
Aided Verification, LNCS, pages 534 – 547. Springer-Verlag, 2005.

[11] S. Cheung and J. Kramer. Context constraints for compositional
reachability analysis.ACM Trans. Softw. Eng. Methodol., 5(4):334–377,
1996.

[12] S. Cheung and J. Kramer. Checking safety properties using composi-
tional reachability analysis.ACM Trans. Softw. Eng. Methodol., 8(1):49–
78, 1999.

[13] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking.JACM,
50(5):752–794, 2003.

[14] E. Clarke, O. Grumberg, and D. Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, 1994.

[15] E. Clarke, A. Gupta, J. Kukula, and O. Shrichman. Sat based abstraction-
refinement using ilp and machine learning techniques. InProc. Interna-
tional Workshop on Computer Aided Verification, pages 265–279, 2002.

[16] E. Clarke, D. Long, and K. McMillan. Compositional model checking.
In Proceedings of the 4th Annual Symposium on Logic in computer
science, pages 353–362, Piscataway, NJ, USA, 1989. IEEE Press.

[17] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. InIntl. Conf. on Com-
puter Aided Verification, pages 154–169, 2000.

[18] J. Cobleigh, G. Avrunin, and L. Clarke. Breaking up is hard to do:
an investigation of decomposition for assume-guarantee reasoning. In
Proceedings of the 2006 international symposium on Software testing
and analysis, pages 97–108, New York, NY, USA, 2006. ACM Press.

[19] J. Cobleigh, D. Giannakopoulou, and C. Pasareanu. Learning assump-
tions for compositional verification. InProc. Int. Conf. on Tools and
Algorithms for Construction and Analysis of Systems (TACAS), volume
2619 ofLNCS, pages 331–346. Springer-Verlag, 2003.

[20] L. de Alfaro and T. Henzinger. Interface automata.Foundations of
Software Engineering, pages 109–120, 2001.

[21] L. de Alfaro and T. henzinger. Interface theories for component-based
design. InProceedings of the 1st International Workshop on Embedded
Software, pages 148–165, Oct 2001.

[22] L. de Alfaro and T. Henzinger. Interface-based design.Engineering
Theories of Software-intensive Systems, 195:83–104, 2005.

[23] D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed
Independent Circuits. PhD thesis, Carnegie Mellon University, 1988.

[24] M. Gheorghiu, D. Giannakopoulou, and C. S. Pasareanu. Refining
interface alphabets for compositional verification. InProc. Int. Conf. on
Tools and Algorithms for Construction and Analysis of Systems (TACAS),
LNCS. Springer-Verlag, 2007.

[25] D. Giannakopoulou, C.S.Pasareanu, and H. Barringer. Component veri-
fication with automatically generated assumptions.Automated Software
Engineering, pages 297–320, 2005.

[26] S. Graf, B. Steffen, and G. Luttgen. Compositional minimization of
finite state systems using interface specifications.Formal Aspects of
Computation, 8(5):607–616, 1996.

[27] O. Grumberg and D. Long. Model checking and modular verification.
ACM Transactions on Programming Languages and Systems, 16(3):843–
871, May 1994.

[28] T. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular
abstraction refinement. InProc. Int. Conf. on Computer Aided Verifica-
tion, volume 2725 ofLNCS, pages 262–274. Springer-Verlag, 2003.

[29] T. Henzinger, S. Qadeer, and S. Rajamani. You assume, weguarantee:
methodology and case studies. InProc. Int. Conf. on Computer Aided
Verification, pages 440–451. Springer, 1998.

[30] J. Krimm and L. Mounier. Compositional state space generation from
lotos programs. InProc. Int. Conf. on Tools and Algorithms for
Construction and Analysis of Systems (TACAS), pages 239–258, London,
UK, 1997. Springer-Verlag.

[31] F. Lang. Refined interface for compositional verification. In FORTE’06:
Formal Techniques for Networked and Distributed Systems, volume 4229
of LNCS. Springer Verlag, 2006.

[32] A. J. Martin. Self-timed fifo: An exercise in compiling programs into
vlsi circuits. Technical Report 1986.5211-tr-86, California Institute of
Technology, 1986.

[33] K. L. McMillan. Symbolic model checking: an approach to the state
explosion problem. PhD thesis, Carnegie Mellon University, 1993.

[34] K. L. Mcmillan. A methodology for hardware verificationusing
compositional model checking. Technical report, Cadence Berkeley
Labs, 1999.

[35] C. J. Myers.Asynchronous Circuit Design. Wiley Inter-Science, 2001.
[36] C. J. Myers, W. Belluomini, K. Killpack, E. Mercer, E. Peskin, and

H. Zheng. Timed circuits: A new paradigm for high-speed design. In
Proc. of Asia and South Pacific Design Automation Conference, pages
335–340, 2001.

[37] W. Nam and R. Alur. Learningcbased symbolic assume-guarantee
reasoning with automatic decomposition. InProc. Int. Symposium on
Automated Technology for Verification and Analysis (ATVA), volume
4218 ofLNCS, 2006.

[38] K. Stevens, R. Ginosar, and S. Rotem. Relative timing. In Proc. In-
ternational Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 208–218, 1999.

[39] T. Yoneda and T. Yoshikawa. Using partial orders for trace theoretic
verification of asynchronous circuits. InProc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems. IEEE
Computer Society Press, Mar. 1996.

PLACE
PHOTO
HERE

Haiqiong Yao Haiqiong Yao received a B.S in com-
puter science from Yunnan University, Kunming,
China, in 1997, and a M.S degree in computer
science from PLA University of Science and Tech-
nology, Nanjing, China, in 2004. She is currently
pursuing a Ph.D. degree at the University of South
Florida.

Her main research interest is formal methods for
software and hardware verification, primarily in the
area of compositional reasoning, abstraction and
reduction techniques for model checking.

PLACE
PHOTO
HERE

Hao Zheng Hao Zheng received the M.S. and Ph.D
degrees in Electrical Engineering from the Univer-
sity of Utah, Salt Lake City, UT, in 1998 and 2001,
respectively. He worked as a research scientist for
IBM Microelectronics Division from 2001 to 2004 to
help make model checking a standard step in a ASIC
design flow. Currently, he is an assistant professor of
the Computer Science and Engineering department
of the University of South Florida. His research
interests include formal methods in computer sys-
tem design and verification, parallel and distributed

computing and its applications in design automation, and reconfigurable
computing. His recent research includes development algorithms and methods
that make model checking scalable to large systems. Zheng received an NSF
CAREER award in 2006, and an USF Outstanding Research Achievement
award in 2007.

