Advanced Programming Languages (COP 4930/CIS 6930) [Spring 2015]

Assignment V

Due Date: Monday 3/23/15 at 5pm

Assignment Description

Do the following by yourself (please don't discuss solutions until after the due date).

Consider a language L with the following types.

 $\tau ::= \bot \mid \top \mid \{l_1:\tau_1 \dots l_n:\tau_n\} \mid \tau_1 - > \tau_2 \mid \mu t.\tau \mid t$

Assume that all types under consideration start out with no free (type) variables, alphaconversion for type variables has already been defined, and all types under consideration start out containing "uniquified" type variables.

a) Define the subtyping relation for L using deterministic (algorithmic) rules.

b) Define a join relation (least upper bound) for types in L, again deterministically.

For a concrete example of joins, let τ_1 be $\bot - > \bot$ and τ_2 be $\top - > \top$. Neither τ_1 nor τ_2 is a subtype of the other. Nonetheless, we can compute the join of τ_1 and τ_2 as $\bot - > \top$. If the "then" branch of an if-then-else expression has type τ_1 , and the "else" branch has type τ_2 , then $\bot - > \top$ could be used as the type of the whole conditional expression because both τ_1 and τ_2 are subtypes of $\bot - > \top$, and no other type more precisely characterizes the types of both branches.