Compiler Design (Techniques) [Fall 2007]

Test II
NAME: __
Instructions:

1) This test is 10 pages in length.
2) You have 75 minutes to complete and turn in this test.
3) Short answer questions include a guideline for how many sentences to write. Respond in complete English sentences.
4) This test is closed books, notes, papers, friends, neighbors, etc.

5) Use the backs of pages in this test packet for scratch work. If you write more than a final answer in the area next to a question, circle your final answer.
6) Write and sign the following: “I pledge my Honor that I have not cheated on this test.”

Signed: __

1. [6 points]
What is one advantage of bottom-up parsing over top-down parsing? [1 sentence]
What is one advantage of top-down parsing over bottom-up parsing? [1 sentence]
2. [8 points]

Write a regular expression that exactly matches the elements of the following set:

{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...}. In other words, your regular expression must match exactly the decimal (i.e., base ten) integers written without leading zeroes and with only one representation of zero.

3. [14 points]

Consider the following lexically and syntactically valid DJ program:

class A extends Object {}

class B extends Object {}

class C extends B {}
class D extends B {}
class E extends D {}
class F extends A {}
class G extends B {}
class H extends G {}
class I extends A {}
class J extends E {}
main {
 var H x;
 var J y;
 if(0) then {x;} else {y;};
}
a) Is I ≤ C?

b) Is C ≤ I?
c) What is I  C ?
d) What is J  D?
e) Is D ≤ D?
f) What is D  D?

g) Is the main block well typed?

h) If the main block is badly typed, what is its type error? If the main block is well typed, what is the type of its if-then-else expression?
4. Consider the following context-free grammar G.
0
S -> T$

1
T -> V+E
2
T -> x

3
V -> x
4
E -> EV

5
E -> 0
a) [7 points]

Draw an LL(1) parse table for G. (Hint: G is not in LL(1).)
G is:

0
S -> T$

1
T -> V+E

2
T -> x

3
V -> x

4
E -> EV

5
E -> 0
b) [13 points]

Define a CFG G’ equivalent to G such that G’ is in LL(1), and draw an LL(1) parse table for your G’.
G is:

0
S -> T$

1
T -> V+E

2
T -> x

3
V -> x

4
E -> EV

5
E -> 0
c) [7 points]

Draw an LR(0) DFA for G.
G is:

0
S -> T$

1
T -> V+E

2
T -> x

3
V -> x

4
E -> EV

5
E -> 0
d) [5 points]

Based on your LR(0) DFA from part (c), draw an LR(0) parse table for G.

e) [2 points]

Is G in LR(0)?

f) [5 points]

In the table you have drawn for part (d), circle all the reduction actions that would not appear in an SLR parse table for G.
g) [2 points]

Is G in SLR?
G is:

0
S -> T$

1
T -> V+E

2
T -> x

3
V -> x

4
E -> EV

5
E -> 0
h) [10 points]

Draw an LR(1) DFA for G.

G is:

0
S -> T$

1
T -> V+E

2
T -> x

3
V -> x

4
E -> EV

5
E -> 0
i) [5 points]

Based on your LR(1) DFA from part (h), draw an LR(1) parse table for G.

j) [4 points]

Which, if any, of your LR(1) states would you merge to build an LALR(1) parser for G?

k) [2 points]

Is G in LALR(1)?

l) [10 points]

Complete the following parse trace using your LR(1) parse table from part (i).
Stack

 Input

Action

 x+0$
Undergraduates stop here. The remaining questions are for graduate students only.
m) [10 points]

Draw a diagram showing the relationships between the sets of CFGs parseable with LR(0), SLR, LALR(1), LR(1), and LL(1) parsers. Also put a large dot in your diagram to represent the placement of G.
5. [15 points]
Draw the initial state of an LR(1) DFA for the following CFG.

S -> A$

A -> ABC

A -> x

B ->

B -> y

C ->

C -> x

PAGE
2

