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Well-known techniques exist for proving the soundness of subtyping relations with respect to type safety.
However, completeness has not been treated with widely applicable techniques, as far as we’re aware.

This paper develops techniques for stating and proving that a subtyping relation is complete with respect
to type safety and applies the techniques to the study of iso-recursive subtyping. A new proof technique,
induction on failing derivations, is provided that may be useful in other domains as well.

The common subtyping rules for iso-recursive types—the “Amber rules”—are shown to be incomplete with
respect to type safety. That is, there exist iso-recursive types τ1 and τ2 such that τ1 can safely be considered
a subtype of τ2, but τ1≤τ2 is not derivable with the Amber rules.

New, algorithmic rules are defined for subtyping iso-recursive types, and the rules are proved sound and
complete with respect to type safety. The fully implemented subtyping algorithm is optimized to run in
O(mn) time, where m is the number of µ-terms in the types being considered and n is the size of the types
being considered.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory—
Semantics; D.3.3 [Programming Languages]: Language Constructs and Features—Data types and struc-
tures; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs—Type structure

General Terms: Languages, Algorithms

Additional Key Words and Phrases: Subtyping, Completeness, Preciseness, Recursive types

1. INTRODUCTION
When defining a subtyping relation for a type-safe language, one takes into account
both the soundness and the completeness of the subtyping relation with respect to
type safety. Soundness alone can be satisfied by making the subtyping relation the
least reflexive and transitive relation over types (i.e., τ1 is a subtype of τ2 if and only
if τ1=τ2); completeness alone can be satisfied by making the subtyping relation the
greatest reflexive and transitive relation over types (i.e., all types are subtypes of all
other types). These extremes rather defeat the purpose of subtyping, which may be
thought of as allowing terms of one type to stand in for terms of another type when it
would be safe to do so. A standard strategy for defining a subtyping relation would be
to aim for the most complete definition possible without sacrificing soundness.

Despite the importance of both soundness and completeness, completeness has not
been treated as widely as soundness. Well-known techniques exist for proving the
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soundness of subtyping relations with respect to type safety. Standard type-safety
proofs in languages with subtyping prove the soundness of the languages’ subtyping
relations; an unsound subtyping relation would break type safety by statically allow-
ing (via a subsumption rule in the type system) terms of some type τ1 to stand in for
terms of another type τ2, when operations could be performed on τ2-type terms that
aren’t defined for τ1-type terms, potentially leading to dynamically “stuck” states.

This paper develops techniques for stating and proving that a subtyping relation
is complete with respect to type safety and applies the techniques to the problem of
subtyping recursive types, in particular, iso-recursive types.

Recursive types combine with product and sum types to form algebraic data types,
which are fundamental for typing aggregate data structures. A standard example of
a recursive type would be a natural-number-list type L ≡ µt.(unit+(nat × t)). The
type variable t refers to the nat-list type (L) being defined. Lists of natural numbers
according to this definition could be empty (i.e., have type unit) or could be a natural
number (the list head) paired with another list (the tail).

Iso-recursive (also called weakly recursive) types require programmers to manu-
ally roll and unroll (also called fold and unfold) recursive types. Unrolling converts
a term of type µt.τ to a term of type [µt.τ/t]τ , while rolling performs the inverse
conversion (where [τ/t]τ ′ is the capture-avoiding substitution of τ for t in τ ′). For
example, a programmer could create a value of type L defined above by writing
rollL(inlunit+(nat×L)()); the inl value has type unit+(nat×L), so rolling it produces a
value of type L. Although type checkers in languages with equi-recursive (also called
strongly recursive) types automatically roll and unroll terms as needed, so program-
mers don’t have to, practical programming languages that support iso-recursive types,
such as ML and Haskell, ease the burden of rolling and unrolling by merging this syn-
tax with other syntax. For example, a programmer might define an iso-recursive type
for natural-number lists with

rectype t = nil of unit + cons of nat ∗ t
and then just write the constructor nil() to mean rollL(inlunit+(nat×L)()). Hence,
in practice programmers don’t explicitly roll and unroll iso-recursive types; these op-
erations occur implicitly and automatically during constructors (rolling) and pattern
matching (unrolling).

1.1. Related Work
Research into subtyping completeness has focused on proving subtyping algorithms
complete with respect to definitions of subtyping relations (e.g., [Colazzo and Ghelli
2005; Pierce 1991; Hosoya et al. 1998; Tate et al. 2011]). Sekiguchi and Yonezawa also
proved a type-inference algorithm sound and complete in the presence of subtyped
recursive types [Sekiguchi and Yonezawa 1994].

This paper approaches subtyping from a type-safety perspective, investigating the
greatest subtyping relation possible without violating type safety; however, other no-
tions of when one type can or should be a subtype of another may be preferred in other
contexts. For example, subtyping may be based on particular behaviors of objects in
object-oriented programming languages (OOPLs) [Liskov and Wing 1994; Pierik and
Boer 2005]. Another common approach considers the denotation of a type τ to be the
set of terms of type τ ; then a subtyping relation ≤ is sound when τ1≤τ2 ⇒ [[τ1]]⊆[[τ2]]
and complete when [[τ1]]⊆[[τ2]] ⇒ τ1≤τ2 [Barendregt et al. 1983; van Bakel et al. 2000;
Vouillon 2004; Vouillon 2006; Hosoya et al. 2005; Frisch et al. 2008; Dezani-Ciancaglini
and Ghilezan 2014]. Using these definitions, it has been shown that the standard sub-
typing rules for function, union, and intersection types are sound and complete (under
some assumptions but overall for a broad class of languages) [Barendregt et al. 1983;
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van Bakel et al. 2000; Vouillon 2004]. In contrast with these other approaches to sub-
typing, soundness and completeness in this paper are structural properties that, like
normal type safety, specify relationships between languages’ static and (here, SOS-
style [Plotkin 2004]) dynamic semantics.

The research on subtyping recursive types seems to have focused more on equi-
recursive than iso-recursive systems. For example, Amadio and Cardelli presented
rules and an algorithm for subtyping equi-recursive types [Amadio and Cardelli 1993].
The rules and algorithm are proved sound and complete with respect to type trees that
result from “infinitely unrolling” equi-recursive types (i.e., the rules and algorithm de-
termine τ1≤τ2 precisely when the type obtained by infinitely unrolling τ1 is a subtype
of the type obtained by infinitely unrolling τ2). Other papers have since refined equi-
recursive subtyping analyses and algorithms (e.g., [Kozen et al. 1995; Brandt and Hen-
glein 1998; Gapeyev et al. 2002; Gauthier and Pottier 2004; Stone and Schoonmaker
2005; Colazzo and Ghelli 2005]).

For subtyping iso-recursive types, the most commonly used rules are the Amber
rules:

S ∪ {t≤t′} ` τ≤τ ′

S ` µt.τ ≤ µt′.τ ′
AMBER1

S ∪ {t ≤ t′} ` t ≤ t′
AMBER2

A “recursive type rec(t)T is included in a recursive type rec(u)U , if assuming t included
in u implies T included in U” [Cardelli 1986]. Note that the Amber rules assume type
variables are uniquely named, through alpha-conversion if necessary.

The Amber rules (or less-complete versions of the Amber rules tailored to specific
domains, e.g., [Backes et al. 2011]) are the standard approach to defining iso-recursive
subtyping (e.g., [Pierce 2002; Harper 2013; Cook et al. 1989; Simons 1994; Hosoya et al.
1998; Simons 2002; Bengtson et al. 2011]).

1.2. Overview and List of Contributions
Interpreting types as sets of terms, subtyping could be considered as natural in type
theory as subsetting is in set theory. Besides this theoretical interest in subtyping,
many practical programming languages allow terms of one type to stand in for terms
of another type; this paper provides a basic framework for deciding when to make such
allowances.

Section 2 formalizes what it means for a subtyping relation to be sound, complete,
and precise with respect to type safety. Intuitively, a precise (i.e., sound and complete)
subtyping relation specifies that τ1 is a subtype of τ2 if and only if terms of type τ1 can
always stand in for terms of type τ2 without compromising type safety. Section 2 uses
evaluation contexts to formalize this intuition.

Section 3 proves that the standard subtyping system for a simply typed lambda
calculus is precise with respect to type safety. The proof ’s layout and techniques are
rather general, so we expect them to be helpful for proving the preciseness of other
inductively defined subtyping relations. Moreover, the proof of completeness uses a
new (as far as we’re aware) technique, induction on failing derivations [Ligatti 2016a],
which may be of independent interest and useful in other domains.

With the paper’s primary contributions completed in Sections 2 and 3, Sections 4
and 5 move to the secondary contributions, which involve applying the new definitions
and techniques to the study of iso-recursive types.

Section 4 shows that the Amber rules are incomplete for subtyping iso-recursive
types. First, the rules violate reflexivity in some ways; they can’t derive that µt.(t→nat)
is a subtype of itself, due to complications with subtyping in contravariant positions.
Second, due to complications with type unrolling, they can’t derive that types like
µa.(((µb.((b+ nat) +a)) + nat) +a) are subtypes of types like µc.((c+ real) + c), though
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it’s always safe for expressions of the former type to stand in for expressions of the
latter type.

Given the incompleteness of the Amber rules, Section 5 presents new subtyping rules
for iso-recursive types and proves them precise with respect to type safety. As far as
we’re aware, this is the first proof that iso-recursive subtyping rules are in some way
complete. The main finding here is that, for the sake of completeness (and reflexivity),
the following rules can be used:

S ∪ {µt.τ ≤ µt′.τ ′} ` [µt.τ/t]τ ≤ [µt′.τ ′/t′]τ ′

S ` µt.τ≤µt′.τ ′
S-REC1

S ∪ {µt.τ ≤ µt′.τ ′} ` µt.τ ≤ µt′.τ ′
S-REC2

These new rules simultaneously unroll the iso-recursive types under consideration,
matching the types obtained when recursive-type values are eliminated (using unroll
expressions).

Section 5 also presents a deterministic algorithm for subtyping iso-recursive types
and shows that the algorithm runs in O(mn) time, where m is the number of µ-terms
in the types being considered and n is the size of the types being considered. Because
the m variable is independent from, and guaranteed to be smaller than, the n variable,
the O(mn) bound is an improvement over the best-known bound of O(n2) for subtyping
equi-recursive types.

Section 6 contains further discussion of the paper’s definitions and results.

2. BASIC DEFINITIONS
This section formalizes the soundness, completeness, and preciseness of subtyping re-
lations, with respect to type safety.

Intuitively, we wish for a language’s subtyping relation to define τ1≤τ2 precisely
when such a definition could not compromise type safety. By the principle of subsump-
tion, which states that a term of type τ1 also has type τ2 when τ1≤τ2, then, we wish to
define τ1≤τ2 precisely when any term of type τ2 could be replaced by any term of type
τ1 without breaking type safety.

The following definition formalizes this requirement that τ1≤τ2 if and only if τ2-type
expressions can—in any context—be replaced by τ1-type expressions without causing
well-typed programs to “get stuck.” The definition assumes typing judgments of the
form e:τ and SOS-style single- and multi-step judgments e 7→ e′ and e 7→∗ e′, with the
usual meanings. The definition also uses evaluation contexts in the standard way; an
evaluation context is an expression with a “hole” that can be filled by a subexpression.
The judgment form E[τ ′]:τ means that filling evaluation context E’s hole with a τ ′-type
expression produces a τ -type expression (formally, E[τ ′]:τ ⇐⇒ {x:τ ′}`E[x]:τ , where x
is a “fresh” variable, not appearing in E).

Definition 1 (Preciseness, Soundness, and Completeness). Let metavariables E, e,
and τ respectively range over evaluation contexts, expressions, and types. Then a sub-
typing relation ≤ (i.e., a reflexive, transitive, binary relation on types) is precise with
respect to type safety when, for all types τ1 and τ2:

τ1≤τ2 ⇐⇒
(
¬∃E, τ, e, e′ :

)
E[τ2]:τ ∧ e:τ1 ∧ E[e]7→∗e′ ∧ stuck(e′)

When the only-if direction (⇒) of this formula holds, we say that the subtyping relation
is sound with respect to type safety; when the if direction (⇐) holds, we say that the
subtyping relation is complete with respect to type safety.
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Definition 1 stipulates that precise subtyping relations allow τ1≤τ2 exactly when it’s
impossible to reach a “stuck” state by replacing an evaluable τ2-type expression in a
well-typed program with a τ1-type expression and evaluating the result. That is, τ1≤τ2
means that replacing τ2-type expressions with τ1-type expressions can’t break type
safety.

3. AN INTRODUCTORY PROOF OF PRECISENESS
To more concretely understand and apply these definitions, let’s consider a simple lan-
guage λ, a simply typed lambda calculus with base types nat (natural numbers, e.g. 3)
and real (real numbers, e.g. 3.0), the idea being that nat≤real. Figure 1 presents the
syntax and static and dynamic semantics. All the notation in Figure 1 is intended
to have the usual meanings, with the usual assumptions being made. For example,
variables are consistently renamed, through alpha-conversion, whenever necessary to
avoid reintroducing variables into contexts, and empty contexts are normally omitted
from judgment forms (e.g., e:τ means ∅ ` e : τ ).

The expressions in λ are natural and real numbers, successor and negation oper-
ations, anonymous functions, applications, and variables. The negation operation is
defined on natural and real numbers, while the successor operation is defined on nat-
ural, but not real, numbers.

The typing and operational rules for λ are standard. Figure 1 uses evaluation
contexts to define the operational semantics. Evaluation contexts mark where beta-
reductions may occur; contexts here specify a left-to-right evaluation order and a call-
by-value evaluation strategy. Section 6.2 discusses subtyping with other evaluation
strategies.

3.1. Proof that λ’s Subtyping Relation is Sound
We wish to prove that the subtyping relation in λ is precise with respect to type safety.
We’ll prove soundness and then completeness, but let’s begin with a few standard lem-
mas (Lemmas 2–5). Because these lemmas, and their proofs, are standard, we don’t
supply proof details. Our focus is on proving the preciseness of the subtyping relation.

LEMMA 2. Weakening.

∀Γ, e, τ,Γ′ ⊇ Γ : (Γ ` e : τ ⇒ Γ′ ` e : τ)

PROOF. By induction on the derivation of Γ ` e : τ .

LEMMA 3. Universal Value-Inhabitation.

∀ τ ∃ v : (v : τ)

PROOF. By induction on the structure of τ .

LEMMA 4. Variable Substitution.

∀Γ, x, τ ′, e, τ, e′ : ((Γ ∪ {x : τ ′} ` e : τ ∧ Γ ` e′ : τ ′) ⇒ Γ ` [e′/x]e : τ)

PROOF. By induction on the derivation of Γ ∪ {x:τ ′} ` e : τ .

LEMMA 5. Type Safety.

∀ e, τ, e′ : ((e:τ ∧ e 7→∗ e′) ⇒ ¬stuck(e′))

PROOF. By induction on the derivation of e 7→∗ e′, using Progress and Preservation
in the usual way.

The soundness of the subtyping relation now follows from the fact that the language
is indeed type safe.
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Types τ ::= nat | real | τ1→τ2
Expressions e ::= n | r | succ(e) | neg(e) | λx:τ.e | e1(e2) | x

Evaluation contexts E ::= [ ] | succ(E) | neg(E) | E (e) | v (E)
Values v ::= n | r | λx:τ.e

e 7→ e′ stuck(e)
e 7→β e

′

E[e] 7→ E[e′]

¬∃v : (e = v) ¬∃e′ : (e 7→ e′)

stuck(e)

e 7→β e
′

n′ = n + 1

succ(n) 7→β n′
r′ = −r

neg(r) 7→β r′
r = −n

neg(n) 7→β r (λx:τ.e)(v) 7→β [v/x]e

e 7→∗ e′

e 7→∗ e
e 7→ e′ e′ 7→∗ e′′

e 7→∗ e′′

Γ ` e : τ

Γ ` n : nat
T-NAT

Γ ` r : real
T-REAL

Γ ` e : nat

Γ ` succ(e) : nat
T-SUCC

Γ ` e : real

Γ ` neg(e) : real
T-NEG

Γ ∪ {x:τ} ` e : τ ′

Γ ` (λx:τ.e) : τ→τ ′
T-LAM

Γ ` e1 : τ→τ ′ Γ ` e2 : τ

Γ ` e1(e2) : τ ′
T-APP

Γ ∪ {x:τ} ` x : τ
T-VAR

Γ ` e : τ ′ τ ′ ≤ τ
Γ ` e : τ

T-SUBSUME

Γ ` E[τ ′] : τ
Γ ∪ {x:τ ′} ` E[x] : τ (x 6∈ E)

Γ ` E[τ ′] : τ
T-CTXT

τ≤τ ′

nat≤real nat≤nat real≤real
τ ′1≤τ1 τ2≤τ ′2
τ1→τ2≤τ ′1→τ ′2

Fig. 1. Definition of λ.

LEMMA 6. Soundness.

∀τ1, τ2 : (τ1≤τ2 ⇒ ¬∃E, τ, e, e′ : (E[τ2]:τ ∧ e:τ1 ∧ E[e]7→∗e′ ∧ stuck(e′)))

PROOF. Assume for the sake of obtaining a contradiction that τ1≤τ2 and there exist
E, τ , e, and e′ such that E[τ2]:τ , e:τ1, E[e] 7→∗ e′, and stuck(e′). Because τ1≤τ2 and e:τ1,
we have e:τ2 by rule T-SUBSUME. Then because E[τ2]:τ , we have {x:τ2}`E[x]:τ , which
combines with e:τ2 and Lemma 4 to imply that E[e]:τ . Given that E[e]:τ and E[e] 7→∗ e′,
Lemma 5 ensures that ¬stuck(e′), which contradicts the assumption that stuck(e′).
Our original assumption was therefore false, so the lemma holds.
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3.2. Induction on Failing Derivations
This paper’s completeness proofs use a technique that we call induction on failing
derivations [Ligatti 2016a].

Standard induction on derivations (as was used in the proofs of Lemmas 2, 4, and 5)
is a form of tree induction, where the trees are proofs (derivations). Induction on fail-
ing derivations is also a form of tree induction, but where the trees are refutations
(failing derivations). Whereas standard induction on derivations establishes that some
property holds on all derivable (provable) judgments, induction on failing derivations
establishes that some property holds on all underivable (refutable) judgments.

3.2.1. Navigable Systems. Let’s call a deductive system navigable when its inference
rules satisfy two properties:

(1) Every rule’s conclusion completely determines its premises. Formally, there exists a
total, computable function f—which we call a rule function—from any judgment J
to a disjunctive normal form (DNF) of judgments, such that

f(J) = (J1
1 ∧ .. ∧ J1

n1
) ∨ .. ∨ (Jm1 ∧ .. ∧ Jmnm

) (m,n1, .., nm ∈ N)

means J is derivable iff

— J1
1 ..J

1
n1

are all derivable (using a rule
J1
1 .. J

1
n1

J
), or

— J2
1 ..J

2
n2

are all derivable (using a different rule
J2
1 .. J

2
n2

J
), or

— etc.
Empty conjunctive clauses in f(J) (i.e., when ni=0) are written as () and specify
that J may be concluded using a premiseless rule. An empty disjunctive clause for
f(J) (i.e., when m=0) is written as ε and specifies that no rule concludes J .

(2) Infinite descent into premises is impossible; attempts to derive judgments always
terminate. Formally, the relation {(Jp, Jc) | Jp ∈ f(Jc)}, which relates premise judg-
ments to conclusion judgments, is well-founded.

The set of derivable judgments in a navigable system is plainly decidable.
For example, the subtyping system for λ is navigable:

(1) On inputs nat≤real, nat≤nat, and real≤real, rule function f returns (), a trivially
satisfiable DNF; on inputs of the form τ1→τ2≤τ ′1→τ ′2, f returns (τ ′1≤τ1 ∧ τ2≤τ ′2); on
all other inputs (i.e., on real≤nat and all inputs τ≤τ ′ such that exactly one of τ and
τ ′ is a function type), f returns ε, the trivially unsatisfiable DNF.

(2) The relation of premise judgments to conclusion judgments, that is,⋃
τ1,τ2,τ ′

1,τ
′
2

{(τ ′1≤τ1, τ1→τ2≤τ ′1→τ ′2), (τ2≤τ ′2, τ1→τ2≤τ ′1→τ ′2)},

is well-founded. Attempts to derive τ≤τ ′ always terminate because premises de-
crease the sizes of types being considered.

However, the typing system for λ is nonnavigable:

(1) No rule function f exists. Even ignoring T-SUBSUME, the unbounded nondetermin-
ism in T-APP’s premises would require f , on any input of the form Γ`e1(e2):τ ′, to
return the infinite DNF ∨

τ

(Γ`e1:τ→τ ′ ∧ Γ`e2:τ).

(2) Due to rule T-SUBSUME, the relation of premises to conclusions would contain ele-
ments of the form (Γ`e:τ ′,Γ`e:τ) and therefore not be well-founded.
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3.2.2. Failing Derivations. Given a navigable system with rule function f , a derivation of
J is a tree of judgments having root J , internal judgments Ji such that Ji’s children are
all the members of a conjunctive clause in f(Ji), and leaves Jl such that f(Jl) contains
the empty conjunctive clause () (i.e., f(Jl) is trivially satisfiable).

Complementarily, a failing derivation of J is a tree of judgments having root J , inter-
nal judgments Ji such that Ji’s children contain exactly one member of each conjunc-
tive clause in f(Ji), and leaves Jl such that f(Jl)=ε (i.e., f(Jl) is trivially unsatisfiable).

For navigable systems, J is underivable iff there exists a failing derivation of J . All
the leaves Jl of failing derivations are underivable (because f(Jl)=ε), so inductively all
the internal Ji must be underivable as well (because every conjunctive clause in f(Ji)
contains an underivable judgment). Hence, the existence of a failing derivation of J
implies that J is underivable. Conversely, if J is underivable then by the definition of
f , f(J) must either be ε (in which case the failing derivation of J is just the leaf J) or
have an underivable judgment Ju in each conjunctive clause (in which case the failing
derivation of J gets built inductively by making J an internal judgment having those
Ju as children).

For example, the judgment
J0 = (real→real)→(nat→real) ≤ (real→nat)→(real→real)

is underivable using λ’s subtyping system, so there exists a failing derivation rooted
at J0. This failing derivation is a linear tree, with J0’s only child being

J1 = nat→real≤real→real,

and J1’s only child being the leaf
J2 = real≤nat.

As required:

— Every internal judgment Ji has one child from each conjunctive clause in f(Ji).
— f(J0) = (real→nat≤real→real ∧ J1)
— f(J1) = (J2 ∧ real≤real)

— f returns ε on the leaf judgment J2 = real≤nat.

The underivability of J0 can thus be traced from underivable J2 to underivable J1 to
underivable J0.

Although derivations and failing derivations exist in some nonnavigable systems
(derivations exist when the set of derivable judgments is recursively enumerable, and
failing derivations exist when the set of derivable judgments is co-recursively enumer-
able), this paper limits consideration of failing derivations to navigable systems.

3.2.3. Induction on Failing Derivations. Because judgments in navigable systems are un-
derivable iff they root failing derivation trees, one may establish that some property P
holds on all underivable J by induction on the failing derivation of J .

As an example, let’s consider proving a property P on underivable τ≤τ ′ judgments
in λ, by induction on the failing derivation of τ≤τ ′. Leaf judgments in such trees can
only be of the form real≤nat or τ≤τ ′ such that exactly one of τ and τ ′ is a function
type; the base cases of the proof must show that P holds on all such judgments. The
inductive case occurs when subtyping function types—all internal judgments in failing
derivations must be of the form Ji = τ1→τ2≤τ ′1→τ ′2, such that Ji has one child, which
can be either an underivable τ ′1≤τ1 or an underivable τ2≤τ ′2. Hence, the proof must
show both cases, i.e., when inductively assuming that P holds on τ ′1≤τ1, that P holds
on Ji, and when inductively assuming that P holds on τ2≤τ ′2, that P holds on Ji.

Induction on failing derivations is useful for establishing the completeness of a sub-
typing relation. Recall from Definition 1 that completeness requires: for all types τ1
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and τ2, if there don’t exist E, τ , and e such that E[τ2]:τ , e:τ1, and E[e] gets stuck, then
τ1≤τ2. Although it may not be obvious how to prove this property directly, we can ap-
proach its contrapositive neatly by induction on the failing derivation of τ1≤τ2.

3.3. Proof that λ’s Subtyping Relation is Complete
Lemma 7 uses induction on failing derivations to prove a slightly stronger version of
completeness. The proof is constructive; given any τ1 and τ2 such that τ1≤τ2 is not
derivable, the proof shows how to (inductively) construct a well-typed program that
gets stuck when its τ2-type subexpression is replaced by a τ1-type value.

LEMMA 7. Strong Completeness.

∀τ1, τ2 : (τ1≤τ2 not derivable⇒ ∃E, τ, v, e : (E[τ2]:τ ∧ v:τ1 ∧ E[v] 7→∗ e ∧ stuck(e)))

PROOF. By induction on the failing derivation of τ1≤τ2. Leaf judgments occur when
τ1 is real and τ2 is nat, or when exactly one of τ1 and τ2 is a function type. The lemma
is first proved for these base cases.

— Case τ1 = real and τ2 = nat:
Define:
—E = succ([ ])
— τ = nat
— v = 2.718
— e = succ(2.718)
Then:
—E[τ2] : τ (by rules T-CTXT, T-SUCC, and T-VAR)
— v : τ1 (by T-REAL)
—E[v] 7→∗ e (by the reflexive multistep rule)
— stuck(e) (by the definitions of stuck and e)

— Case τ1 = τ ′1→τ ′′1 and τ2 6= τ ′2→τ ′′2 :
Because τ2 isn’t a function type, it must be nat or real. Also, by Lemma 3 there
exists a v′′1 such that v′′1 : τ ′′1 . Note that it is straightforward to prove Lemma 3 con-
structively, so we can construct this v′′1 . Now define:
—E = neg([ ])
— τ = real
— v = λx : τ ′1.v

′′
1

— e = neg(λx : τ ′1.v
′′
1 )

Then:
—E[τ2] : τ (by T-CTXT, T-NEG, T-VAR, and T-SUBSUME when τ2=nat)
— v : τ1 (by T-LAM)
—E[v] 7→∗ e (by the reflexive multistep rule)
— stuck(e) (by the definitions of stuck and e)

— Case τ1 6= τ ′1→τ ′′1 and τ2 = τ ′2→τ ′′2 :
Because τ1 isn’t a function type, it must be nat or real. Also, by Lemma 3 there exists
a v′2 such that v′2 : τ ′2. Now define:
—E = [ ](v′2)
— τ = τ ′′2
— v = 0
— e = 0(v′2)
Then:
—E[τ2] : τ (by T-CTXT, T-APP, and T-VAR)
— v : τ1 (by the fact that τ1 is nat or real)
—E[v] 7→∗ e (by the reflexive multistep rule)
— stuck(e) (by the definitions of stuck and e)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 Jay Ligatti et al.

Internal judgments in a failing derivation of τ1≤τ2 have the form τ ′1→τ ′′1≤τ ′2→τ ′′2 .
There are two possible children of such internal judgments, either τ ′2≤τ ′1 or τ ′′1≤τ ′′2
(underivability of τ ′1→τ ′′1≤τ ′2→τ ′′2 must be due to τ ′2≤τ ′1 or τ ′′1≤τ ′′2 being underivable).
Let’s consider each of these two subcases in turn.

— Case τ1=τ ′1→τ ′′1 , τ2=τ ′2→τ ′′2 , and τ ′2≤τ ′1 is underivable:
By Lemma 3 there exists a v′′1 such that v′′1 :τ ′′1 . Also, by the inductive hypothesis
(applied to τ ′2≤τ ′1), there exist E′, τ ′, v′, and e′ such that:
—E′[τ ′1] : τ ′

— v′ : τ ′2
—E′[v′] 7→∗ e′
— stuck(e′)
Now define:
—E = [ ](v′)
— τ = τ ′′2
— v = λx:τ ′1.((λy:τ ′.v′′1 )(E′[x]))
— e = (λy:τ ′.v′′1 )(e′)
Then:
—E[τ2] : τ (by T-CTXT, T-APP, T-VAR, and Lemma 2, where τ2=τ ′2→τ ′′2 and v′:τ ′2)
— v : τ1 (by T-LAM, T-APP, and Lemma 2, where τ1=τ ′1→τ ′′1 , v′′1 :τ ′′1 , and E′[τ ′1] : τ ′)
—E[v] 7→∗ e (because E[v] 7→ (λy:τ ′.v′′1 )(E′[v′]) and E′[v′] 7→∗ e′)
— stuck(e) (because stuck(e′))

— Case τ1=τ ′1→τ ′′1 , τ2=τ ′2→τ ′′2 , and τ ′′1≤τ ′′2 is underivable:
By Lemma 3 there exists a v′2 such that v′2:τ ′2. Also, by the inductive hypothesis (ap-
plied to τ ′′1≤τ ′′2 ), there exist E′, τ ′, v′, and e′ such that:
—E′[τ ′′2 ] : τ ′

— v′ : τ ′′1
—E′[v′] 7→∗ e′
— stuck(e′)
Now define:
—E = E′[ [ ](v′2) ] (i.e., build E by filling the hole of E′ with [ ](v′2))
— τ = τ ′

— v = λx:τ ′1.v
′

— e = e′

Then:
—E[τ2]:τ (because E′[τ ′′2 ]:τ ′ means that {y:τ ′′2 }`E′[y]:τ ′, which implies by Lemma 2

that {z:τ2, y:τ ′′2 }`E′[y]:τ ′; then because {z:τ2}`z(v′2):τ ′′2 , Lemma 4 ensures that
{z:τ2}`E′[z(v′2)]:τ ′, which means that E′[[τ2](v′2)]:τ ′)

— v : τ1 (by T-LAM and Lemma 2, where τ1=τ ′1→τ ′′1 and v′:τ ′′1 )
—E[v] 7→∗ e (because E[v] 7→ E′[v′] and E′[v′] 7→∗ e′)
— stuck(e) (because stuck(e′))

Hence, in all cases, the requisite E, τ , v, and e can be constructed to satisfy the
lemma.

The completeness of λ’s subtyping relation follows immediately from Lemma 7. By
combining this completeness result with the soundness established in Lemma 6, pre-
ciseness follows as a corollary.

4. INCOMPLETENESS WITH THE AMBER RULES, FOR SUBTYPING ISO-RECURSIVE TYPES
Let’s focus now on subtyping iso-recursive types.
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The Amber rules have at least two sources of incompleteness, one stemming from
contravariant subtyping and another from incomparability between type variables and
recursive types.

4.1. A First Source of Incompleteness: Complications with Contravariance
Suppose that λ contains recursive types and the Amber subtyping rules (as stated
in Section 1.1). Also suppose that all the premises and conclusions of the existing
subtyping rules, shown in Figure 1, have S` prepended to them, so that subtyping-
assumption sets S get carried through derivations. Then we can derive some reflexive
relationships, like µt.(nat→t) ≤ µt′.(nat→t′):

{t≤t′} ` nat≤nat {t≤t′} ` t≤t′

{t≤t′} ` nat→t ≤ nat→t′

µt.(nat→t) ≤ µt′.(nat→t′)

But we can’t derive other reflexive relationships, like µt.(t→nat) ≤ µt′.(t′→nat):

⇓ Derivation fails here ⇓
{t≤t′} ` t′≤t {t≤t′} ` nat≤nat

{t≤t′} ` t→nat ≤ t′→nat

µt.(t→nat) ≤ µt′.(t′→nat)

This lack of reflexivity stems from a key underlying problem: the rules can’t subtype
variables defined in covariant positions but used in contravariant positions (and vice
versa).

We could try to fix this problem by reversing the order of subtyping assumptions
when subtyping in contravariant positions, resulting in the following rule.

{t′≤t | t≤t′ ∈ S} ` τ ′1≤τ1 S ` τ2≤τ ′2
S ` τ1→τ2 ≤ τ ′1→τ ′2

However, such a rule would unsoundly allow µt.(t→nat) ≤ µt′.(t′→real). To see why
τ = µt.(t→nat) should not be a subtype of τ ′ = µt′.(t′→real), suppose τ≤τ ′ and define
f and g as follows.

— f = λx:τ.succ(unroll(x) x)
— g = λy:τ ′.(2.718)

Then rollτ (f) would have type τ and (by subsumption) τ ′, which means that
(unroll(rollτ (f)))(rollτ ′(g)) would have type real but evaluates to the stuck expres-
sion succ(2.718).

Another way to try to fix the problem would be to allow the same type variables to
appear on both sides of the ≤ symbol. Then we could derive µt.(t→nat) ≤ µt.(t→nat),
as desired, but we could also derive that µt.(t→nat) ≤ µt.(t→real), which we just
showed is unsound.

The only other approach we can think of to make the Amber rules reflexive, so we
can derive that types like µt.(t→nat) are subtypes of themselves, is to add a rule ex-
plicitly saying so. To create such a rule, let’s focus on the core problem here: when
the Amber rules reach a judgment µt.τ≤µt′.τ ′, they attempt to derive τ≤τ ′ while as-
suming t≤t′ but are unable to derive that t′≤t. Hence, the problem arises with non-
antisymmetric recursive types, where we have µt.τ≤µt′.τ ′ and µt′.τ ′≤µt.τ (in which
case we’re also guaranteed that µt.τ 6=µt′.τ ′ because t 6=t′ is required, as the previous
paragraph showed).
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Given that the core problem relates to non-antisymmetric recursive types, we can’t
fix the problem just by adding a rule to say that if τ is alpha-equivalent to τ ′ then
τ≤τ ′. Such a rule addresses one source of non-antisymmetry in subtyping relations
(i.e., alpha-equivalence) but doesn’t address others, such as permutations of record
or variant fields. For example, such a rule still wouldn’t allow us to derive that
µt.({a:t, b:nat}→nat) ≤ µt′.({b:nat, a:t′}→nat).

To fix the general problem, then, the new rule would have to allow τ≤τ ′ exactly when
τ and τ ′ exhibit non-antisymmetry, that is, when τ and τ ′ are subtypes of each other
(but not equal). Let’s define τ and τ ′ to be equivalent iff they subtype each other. Then
our final rule to fix the contravariance problem would say that if τ is equivalent to τ ′
then τ≤τ ′. But because equivalence of τ and τ ′ requires τ≤τ ′, such a rule is circular
and not immediately helpful. Nonetheless, this rule could be helpful in cases where
type equivalence can be defined using some alternative rules (e.g., in terms of alpha-
equivalence and field permutations), at the cost of complicating the subtyping rules
and algorithm with these alternative rules.

4.2. A Second Source of Incompleteness: Complications with Unrolling
Besides the contravariance problem, the Amber rules are incomplete in other ways.
For example, consider the recursive types τ ′ and τ defined as follows.

— τ ′ = µi.{sub:i→unit}
— τ = µn.{sub:(µi′.{sub:i′→unit})→unit, min:unit→int}
These types may arise naturally when encoding the following OOPL classes into a
language like λ (extended to have record, unit, int, and recursive types).

class Int {
//subtract an Int from this Int
public void sub(Int i) {...}
...

}
class Nat extends Int {
//override Int.sub to avoid negatives
public void sub(Int i) {...}
public int min() {0}
...

}

The Int type may be encoded as τ ′ (with additional fields for members not
shown above), and the Nat type as τ (also with additional fields). One would
expect τ≤τ ′ in an iso-recursive system because the only way a τ ′-type expres-
sion can be eliminated is by unrolling it, to produce an expression of type
{sub:τ ′→unit}, while unrolling a τ -type expression produces an expression of type
{sub:(µi′.{sub:i′→unit})→unit, min:unit→int}, which is a subtype of {sub:τ ′→unit}.
Thus, it’s always safe for a τ -type expression to stand in for a τ ′-type expression.

However, the Amber rules (in conjunction with standard subtyping rules for records
and functions) can’t derive τ≤τ ′, as Figure 2 illustrates.

For another example, let’s redefine τ and τ ′ as follows.

— τ ′ = µc.((c+ real) + c)
— τ = µa.(((µb.((b+ nat) + a)) + nat) + a)

This may be a more interesting example because all the declared type variables
get used (unlike the type variable n in the previous example’s τ ). Again, the Amber
rules (in conjunction with the standard subtyping rule for binary sums) can’t be used

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



On Subtyping-Relation Completeness, with an Application to Iso-Recursive Types A:13

⇓ Derivation fails here ⇓
{n≤i} ` i ≤ µi′.{sub:i′→unit} {n≤i} ` unit≤unit

{n≤i} ` (µi′.{sub:i′→unit})→unit ≤ i→unit

{n≤i} ` {sub:(µi′.{sub:i′→unit})→unit, min:unit→int} ≤ {sub:i→unit}
µn.{sub:(µi′.{sub:i′→unit})→unit, min:unit→int} ≤ µi.{sub:i→unit}

Fig. 2. Attempted derivation of µn.{sub:(µi′.{sub:i′→unit})→unit, min:unit→int} ≤ µi.{sub:i→unit},
using the Amber rules.

⇓ Derivation fails here ⇓
{a≤c} ` µb.((b+ nat) + a) ≤ c {a≤c} ` nat≤real
{a≤c} ` (µb.((b+ nat) + a)) + nat ≤ c+ real {a≤c} ` a≤c
{a≤c} ` ((µb.((b+ nat) + a)) + nat) + a ≤ (c+ real) + c

µa.(((µb.((b+ nat) + a)) + nat) + a) ≤ µc.((c+ real) + c)

Fig. 3. Attempted derivation of µa.(((µb.((b+ nat)+ a))+ nat)+ a) ≤ µc.((c+ real)+ c), using the Amber
rules.

Types τ ::= nat | real | τ1→τ2 | τ1 + τ2 | τ1 × τ2 | µt.τ | t
Expressions e ::= n | r | succ(e) | neg(e) | λx:τ.e | e1(e2) | x |

inlτ1+τ2(e) | inrτ1+τ2(e) | caseτ e of inlx⇒ e1 else inr y ⇒ e2 |
(e1, e2) | e.fst | e.snd | unroll(e) | rollµt.τ (e)

Fig. 4. Syntax of λADT .

to derive τ≤τ ′, as shown in Figure 3. We prove that it’s safe to consider τ≤τ ′ in two
steps: first, Section 5 shows that τ≤τ ′ is derivable using new subtyping rules; second,
Appendix A shows that the new subtyping rules are indeed sound with respect to type
safety.

Notice that, in both Figures 2 and 3, the inability to derive a valid subtyping judg-
ment stems from the rules’ inability to distinguish type variables from the recursive
types they represent. Additional or alternative rules are again needed.

5. A PRECISE SYSTEM FOR SUBTYPING ISO-RECURSIVE TYPES
This section defines new rules, and an algorithm, for subtyping iso-recursive types.
Appendix A contains a proof that the new subtyping relation is precise with respect to
type safety.

5.1. A Language with Algebraic Data Types, λADT
Let’s define a new language, λADT , by adding binary (disjoint) sum, binary product,
and iso-recursive types to λ. Figures 4–6 present the syntax and static and dynamic
semantics. Again, all the notation is intended to have the usual meanings, with the
usual assumptions being made.

Types τ in λADT may be open (i.e., have free type variables), but it’ll often be useful
to refer specifically to closed types. Let metavariable τ range over closed types (i.e.,
the subset of τ that have no free variables). Note that unrolling a closed recursive type
τ = µt.τ produces another closed type, τu = [µt.τ/t]τ .
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Γ ` e : τ

Γ ` n : nat
T-NAT

Γ ` r : real
T-REAL

Γ ` e : nat

Γ ` succ(e) : nat
T-SUCC

Γ ` e : real

Γ ` neg(e) : real
T-NEG

Γ ∪ {x:τ} ` e : τ ′

Γ ` λx : τ.e : τ→τ ′
T-LAM

Γ ` e1 : τ1→τ2 Γ ` e2 : τ1

Γ ` e1(e2) : τ2
T-APP

Γ ∪ {x:τ} ` x : τ
T-VAR

Γ ` e : τ1

Γ ` inlτ1+τ2(e) : τ1 + τ2
T-LEFT

Γ ` e : τ2

Γ ` inrτ1+τ2(e) : τ1 + τ2
T-RIGHT

Γ ` e : τ1 + τ2 Γ ∪ {x:τ1} ` e1 : τ Γ ∪ {y:τ2} ` e2 : τ

Γ ` caseτ e of inlx⇒ e1 else inr y ⇒ e2 : τ
T-CASE

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2
T-PROD

Γ ` e : τ1 × τ2
Γ ` e.fst : τ1

T-FST
Γ ` e : τ1 × τ2
Γ ` e.snd : τ2

T-SND

Γ ` e : µt.τ

Γ ` unroll(e) : [µt.τ/t]τ
T-UNROLL

Γ ` e : [µt.τ/t]τ

Γ ` rollµt.τ (e) : µt.τ
T-ROLL

Γ ` e : τ ′ τ ′ ≤ τ
Γ ` e : τ

T-SUBSUME

Γ ` E[τ ′] : τ

Γ ∪ {x:τ ′} ` E[x] : τ (x 6∈ E)
Γ ` E[τ ′] : τ

T-CTXT

Fig. 5. Static semantics of λADT .

5.2. The Subtyping Rules for λADT
Incompleteness in the Amber rules (for subtyping iso-recursive types) ultimately stems
from their lack of considering unrolled types. Iso-recursive types get eliminated by un-
rolling, so type µt.τ should be a subtype of µt′.τ ′ if the unrolled version of µt.τ is a
subtype of the unrolled version of µt′.τ ′. When considering whether these unrolled
versions are in a subtype relationship (i.e., whether [µt.τ/t]τ≤[µt′.τ ′/t′]τ ′), one can as-
sume that µt.τ≤µt′.τ ′ because any expressions of types µt.τ and µt′.τ ′ encountered by
unrolling expressions of types µt.τ and µt′.τ ′ can be unrolled and manipulated in the
same ways again.

This discussion leads to the following subtyping rule for iso-recursive types:

(µt.τ ≤ µt′.τ ′) ∈ S or S ∪ {µt.τ ≤ µt′.τ ′} ` [µt.τ/t]τ ≤ [µt′.τ ′/t′]τ ′

S ` µt.τ≤µt′.τ ′
S-REC

A few notes:
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Evaluation contexts E ::= [ ] | succ(E) | neg(E) | E (e) | v (E) | (E, e) | (v,E) | E.fst |
E.snd | inlτ1+τ2(E) | inrτ1+τ2(E) | unroll(E) | rollµt.τ (E) |
caseτ E of inlx⇒ e1 else inr y ⇒ e2

Values v ::= n | r | λx : τ.e | (v1, v2) | inlτ1+τ2(v) | inrτ1+τ2(v) | rollµt.τ (v)

e 7→ e′ stuck(e)
e 7→β e

′

E[e] 7→ E[e′]

¬∃v : (e = v) ¬∃e′ : (e 7→ e′)

stuck(e)

e 7→β e
′

n′ = n + 1

succ(n) 7→β n′
β-SUCC

r′ = −r
neg(r) 7→β r′

β-RNEG
r = −n

neg(n) 7→β r
β-NNEG

(λx : τ.e)(v) 7→β [v/x]e
β-APP

(v1, v2).fst 7→β v1
β-FST

(v1, v2).snd 7→β v2
β-SND

caseτ inlτ1+τ2(v) of inlx⇒ e2 else inr y ⇒ e3 7→β [v/x]e2
β-LEFT

caseτ inrτ1+τ2(v) of inlx⇒ e2 else inr y ⇒ e3 7→β [v/y]e3
β-RIGHT

unroll(rollµt.τ (v)) 7→β v
β-UNROLL

e 7→∗ e′

e 7→∗ e
e 7→ e′ e′ 7→∗ e′′

e 7→∗ e′′

Fig. 6. Dynamic semantics of λADT .

— As with other judgment forms that use contexts, this paper abbreviates judgments of
the form ∅ ` τ1≤τ2 as τ1≤τ2.

— S-REC maintains the invariant that only closed types are being considered; unrolling
a closed type produces another closed type.

— Other systems have used rules similar to S-REC to define equivalence, rather than
subtyping, relations on iso-recursive types [League and Shao 1998; Vanderwaart
et al. 2003].

Rule S-REC enables derivations of all the subtyping judgments that Section 4
showed were sources of Amber-rule incompleteness. For example, µt.(t→nat) ≤
µt.(t→nat) and µt.(t→nat) ≤ µt′.(t′→nat) are now derivable, while µt.(t→nat) ≤
µt.(t→real) and µt.(t→nat) ≤ µt′.(t′→real) are underivable (as is required for sound-
ness). Recall that Figures 2–3 showed that two other subtyping judgments are un-
derivable with the Amber rules; now Figures 7–8 show that the same judgments are
derivable with S-REC.

Interestingly, S-REC is insufficient for making the subtyping relation complete (as
we learned by attempting an early proof of completeness). Because λADT has recur-
sive types, every type is inhabited—for all τ let d be λx:µt.(t→τ).(unroll(x) x); then
the nonterminating expression d(rollµt.(t→τ)(d)) has type τ . However, some types are
value-uninhabited (i.e., inhabited only by nonterminating expressions). For example,
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F ` I≤I ′ F ` unit≤unit
F ` I ′→unit≤I→unit

F ` {sub:I ′→unit}≤{sub:I→unit}
{N≤I, I≤I ′} ` I ′≤I {N≤I, I≤I ′} ` unit≤unit

{N≤I, I≤I ′} ` I→unit≤I ′→unit

{N≤I, I≤I ′} ` {sub:I→unit}≤{sub:I ′→unit}
{N≤I} ` I≤I ′ {N≤I} ` unit≤unit

{N≤I} ` I ′→unit≤I→unit

{N≤I} ` {sub:I ′→unit, min:unit→int}≤{sub:I→unit}
N≤I

Fig. 7. Derivation ofN≤I using the new subtyping rule, where I=µi.{sub:i→unit}, I′=µi′.{sub:i′→unit},
N=µn.{sub:I′→unit, min:unit→int}, and F = {N≤I, I≤I′, I′≤I}.

S`B≤C S`nat≤real
S`B + nat≤C + real S`A≤C
S`(B + nat) +A ≤ (C + real) + C

{A≤C}`B≤C {A≤C}`nat≤real
{A≤C}`B + nat ≤ C + real {A≤C}`A≤C
{A≤C}`(B + nat) +A ≤ (C + real) + C

A≤C

Fig. 8. Derivation of A≤C using the new subtyping rule, where A=µa.(((µb.((b + nat) + a)) + nat) + a),
B=µb.((b+ nat) +A), C=µc.((c+ real) + c), and S = {A≤C,B≤C}.

the type µt.t is uninhabited by (normal-form) values; writing a value of type µt.t would
require already having a value of type µt.t to roll. Hence, every expression of type µt.t
must diverge.

We can treat any type inhabited only by diverging expressions, such as µt.t, as being
equivalent to a⊥ type. If all expressions of a type τ diverge, then any τ -type expression
can substitute for any expression of any type; such a substitution won’t compromise
type safety because the τ -type expression would have to be evaluated to a value before
it could be used in an unsafe way.

Moreover, any expression can substitute for a function whose argument type is un-
inhabited by values (e.g., µt.t), without compromising type safety. Intuitively, such a
function can never be applied because the call-by-value semantics requires the argu-
ment to be evaluated to a value, something guaranteed to never happen. Because such
a function, when part of a well-typed program, can never be applied, we can safely
substitute any expression—of any type—for the function.

Based on the preceding discussion, we add the following rules to the definition of
subtyping in λADT .

val(τ) = ∅
S ` τ≤τ ′

S-⊥
val(τ ′1) = ∅

S ` τ ≤ τ ′1→τ ′2
S->

These rules use an auxiliary judgment of the form val(τ) = ∅ to indicate that τ is
value-uninhabited. Vouillon describes rules similar to S-⊥ and S-> [Vouillon 2004].
As part of an algorithm to decide subtyping using the denotational approach (where
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S ` τ≤τ ′

S ` nat≤real
S-BASE

S ` nat≤nat
S-NAT

S ` real≤real
S-REAL

val(τ) = ∅
S ` τ≤τ ′

S-⊥
val(τ ′1) = ∅
S ` τ≤τ ′1→τ ′2

S->
S ` τ ′1≤τ1 S ` τ2≤τ ′2

S ` τ1→τ2≤τ ′1→τ ′2
S-FUN

S ` τ1≤τ ′1 S ` τ2≤τ ′2
S ` τ1+τ2≤τ ′1+τ ′2

S-SUM
S ` τ1≤τ ′1 S ` τ2≤τ ′2

S ` τ1×τ2≤τ ′1×τ ′2
S-PROD

(µt.τ ≤ µt′.τ ′) ∈ S or S ∪ {µt.τ ≤ µt′.τ ′} ` [µt.τ/t]τ ≤ [µt′.τ ′/t′]τ ′

S ` µt.τ≤µt′.τ ′
S-REC

U ` val(τ) = ∅

U ` val(τ1) = ∅ U ` val(τ2) = ∅
U ` val(τ1 + τ2) = ∅

U-SUM

U ` val(τ1) = ∅ or U ` val(τ2) = ∅
U ` val(τ1 × τ2) = ∅

U-PROD

(µt.τ) ∈ U or U ∪ {µt.τ} ` val([µt.τ/t]τ) = ∅
U ` val(µt.τ) = ∅

U-REC

Fig. 9. Subtyping and value-uninhabitation rules for λADT .

τ≤τ ′ iff [[τ ]]⊆[[τ ′]], and [[τ ]] is the set of values of type τ ), Frisch, Castagna, and Benza-
ken provide an algorithm for deciding value-uninhabitation in an equi-recursive sys-
tem [Frisch 2004; Frisch et al. 2008].

Combining rules S-REC, S-⊥, and S-> with the standard rules for subtyping nat,
real, function, sum, and product types produces the subtyping system shown in Fig-
ure 9. This is the full definition of the subtyping relation for λADT .

Figure 9 contains rules for deciding value-uninhabitation. The nat, real, and func-
tion types are always value-inhabited. Sum type τ1 + τ2 is value-uninhabited when
both τ1 and τ2 are value-uninhabited, and product type τ1 × τ2 is value-uninhabited
when τ1 or τ2 is value-uninhabited. Finally, recursive type τ is value-uninhabited when
the unrolled version of τ is value-uninhabited under the assumption that τ is value-
uninhabited (because we can’t make a value of type τ by relying on already having
one).

Appendix A contains a preciseness proof for this subtyping relation. Along the
way, the proof shows that the subtyping system is navigable (Lemma 13), value-
uninhabitation is defined correctly (val(τ)=∅ iff no value of type τ exists), and the
subtyping relation is indeed reflexive and transitive (without explicit rules stating so).

5.3. A Subtyping Algorithm
Because the subtyping system in Figure 9 is navigable, an algorithm exists for decid-
ing whether subtyping judgments are derivable: simply search for a (possibly failing)
derivation.
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This simple subtyping algorithm can be optimized to prevent redundant computa-
tions. Figures 10–12 present one such implementation in Standard ML. This imple-
mentation is a complete but lightly edited version of the actual implementation posted
online [Ligatti 2016b]. The actual implementation is 72 lines of code, not counting
whitespace and comments. The comments in Figures 10–12 explain the optimized al-
gorithm’s operation and correctness.

Analysis of Running Time. The optimized algorithm decides whether τ1≤τ2 inO(mn)
time, where:

—m is the number of µ-terms (i.e., variable declarations) in τ1 or τ2, whichever is
greater (or 1 if neither contain µ-terms)

— n is the total size of τ1 or τ2, whichever is greater.

The main subtyping function, sub in Figure 12, first counts the number of variable
declarations in its argument types t1 and t2, and then allocates tables (UT1, UT2, U1,
and U2) of these sizes, all in O(n) time. The sub function next calls init (Figure 11) on
each of t1 and t2, in order to (1) build CEtyp-versions of t1 and t2, and (2) properly
initialize the previously allocated tables.

The init function implements the val(τ)=∅ judgment on all n component types of
τ and runs in O(mn) time. This function traverses a given type tree and commits to
the value-uninhabitation of each of its m recursive types in turn, from outer recursive
types to inner recursive types. This outer-to-inner ordering is important because the
value-inhabitation of inner recursive types may depend on the value-inhabitation of
outer recursive types. For example, with types of the form X ≡ µx.((µy.x) + τ ′), the
value-inhabitation of the inner Y ≡ µy.X depends on the value-inhabitation of the
outer X (if τ ′ is nat then X is value-inhabited, causing Y to be value-inhabited, but if
τ ′ is x then X is value-uninhabited, causing Y to be value-uninhabited). Each of the
m commits in init requires traversing the recursive type’s subtree in O(n) time (all
the other cases of init, which don’t involve committing to the value-uninhabitation of
a recursive type, run in time that’s a constant plus the time required to init subtrees,
for a total time that’s proportional to the size of the subtree being considered). Note
that init runs in O(mn) time because it initializes tables for all the component types
of its type argument; in applications where we only care to test whether one overall
type is value-inhabited, we could simply call init with the final b argument set to
true, in which case init decides value-inhabitation in O(n) time.

After init has completed, all value-uninhabitation checks and recursive-type un-
rolling can be performed in constant time. At this point, sub allocates and initializes
two tables (S1 and S2) for storing recursive-type subtyping assumptions, inO(m2) time.

Finally, sub invokes its helper function subh, which implements the τ1≤τ2 judgment.
All cases of subh run in time that’s a constant plus the time required to do other sub-
typing comparisons (i.e., recursive calls to subh, if any). Hence, subh runs in time that’s
proportional to the number of subtyping comparisons made. Every type outside of µ-
terms (of which there are O(n)) may be involved in at most one subtyping comparison,
and every type τ within a µ-term (of which there are O(n)) may be involved in O(m)
comparisons: τ may be compared at most once covariantly and at most once contravari-
antly to a corresponding τ ′ in each of the other side’s µ-terms (of which there areO(m)),
as pairs of recursive types are compared. The total number of subtyping comparisons
is therefore O(mn), so subh runs in O(mn) time.

Thus, the total running time of sub is O(n) (to allocate UT1, UT2, U1, and U2) plus
O(mn) (to run init) plus O(m2) (to allocate S1 and S2) plus O(mn) (to run subh). Be-
cause 0 < m < n, the total running time of the subtyping algorithm is O(mn).
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(∗ Constructors for types . Type variables are represented as
∗ integers , which are assumed to be named 0 , 1 , e t c . , so for a l l
∗ types T passed as arguments to the subtype−t e s t i n g function
∗ sub , the s e t o f type variables in T i s {0 . . n} f o r some n .
∗ We also assume that T never uses undeclared variables and has
∗ been alpha−converted to ensure the uniqueness o f every
∗ declared variable .
∗ As an example , the type A from Figure 8 could be encoded as :
∗ Rec (0 ,Sum(Sum( Rec (1 ,Sum(Sum( Var ( 1 ) , Nat ) , Var ( 0 ) ) ) , Nat ) , Var ( 0 ) ) )
∗ )

datatype typ = Nat | Real | Prod of typ ∗ typ | Sum of typ ∗ typ
| Fun of typ ∗ typ | Rec of int ∗ typ | Var of int ;

(∗ A CEtyp i s a ‘ compressed ’ and ‘ extended ’ type .
∗ ‘ compressed ’ means that a l l recurs ive types \mu n . t have been
∗ replaced by jus t the type variable n . We’ l l s t i l l be able
∗ to look up the type to which n r e f e r s in an ‘ unroll table ’ ,
∗ an array that maps n to ( the CEtyp−version of ) t .
∗ Hence , CEtyp has no case for recurs ive types .
∗ ‘ extended ’ means that the s truc ture carr i e s extra boolean
∗ f lags to memoize whether types are value−uninhabited .
∗ Nat , real , and function types in th i s language are always
∗ value−inhabited , so the i r cases o f CEtyp don ’ t need the
∗ extra f lag . Variable types also don ’ t need the f lag ; we ’ l l
∗ instead use a separate array U to map type variables to
∗ bools indicat ing value−uninhabitation .
∗ )

datatype CEtyp = CENat | CEReal | CEFun of CEtyp ∗ CEtyp
| CEVar of int | CEProd of CEtyp ∗ CEtyp ∗ bool
| CESum of CEtyp ∗ CEtyp ∗ bool ;

(∗ Returns the number of variables defined in a type . ∗ )
fun numVars (Sum( t1 , t2 ) ) = numVars( t1 ) + numVars( t2 )
| numVars ( Prod ( t1 , t2 ) ) = numVars( t1 ) + numVars( t2 )
| numVars (Fun( t1 , t2 ) ) = numVars( t1 ) + numVars( t2 )
| numVars ( Rec ( , t1 ) ) = numVars( t1 ) + 1
| numVars = 0;

(∗ Returns a bool indicat ing whether a given CEtyp i s
∗ value−uninhabited . The second parameter i s an array
∗ mapping type variables to value−uninhabitation f lags .
∗ That is , U[n] i f f the recurs ive type to which
∗ type−variable n r e f e r s i s value−uninhabited .
∗ )

fun isUninhabited (CEProd( , , b ) ) = b
| isUninhabited (CESum( , , b ) ) = b
| isUninhabited (CEVar(n ) ) U = Array . sub (U, n)
(∗ nat , real , and function types are value−inhabited ∗ )
| isUninhabited = fa l se ;

Fig. 10. Auxiliary definitions for the optimized subtyping algorithm.
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(∗ This i n i t i a l i z a t i o n function has 4 parameters :
∗ ( 1 ) a typ t
∗ ( 2 ) an unroll table UT ( having s i z e numVars( t ) )
∗ ( 3 ) an array U ( also having s i z e numVars( t ) ) mapping type
∗ variables to value−uninhabitation f lags
∗ ( 4 ) a boolean b indicat ing whether we ’ re trying to commit
∗ to the value−(un) inhabitation of some previously seen
∗ recurs ive type .
∗ This function returns the CEtyp−version of t and properly
∗ i n i t i a l i z e s the UT and U arrays ( as side e f f e c t s ) .
∗ )

fun i n i t Nat = CENat
| i n i t Real = CEReal
| i n i t (Fun( t1 , t2 ) ) UT U b =

CEFun( i n i t t1 UT U b , i n i t t2 UT U b )
| i n i t (Sum( t1 , t2 ) ) UT U b =

let val CEt1 = i n i t t1 UT U b
val CEt2 = i n i t t2 UT U b

in (∗ s e t the value−uninhabited f lag based on rule U−Sum ∗ )
CESum(CEt1 , CEt2 ,

isUninhabited CEt1 U andalso isUninhabited CEt2 U)
end

| i n i t ( Prod ( t1 , t2 ) ) UT U b =
let val CEt1 = i n i t t1 UT U b

val CEt2 = i n i t t2 UT U b
in (∗ s e t the value−uninhabited f lag based on rule U−Prod ∗ )

CEProd(CEt1 , CEt2 ,
isUninhabited CEt1 U orelse isUninhabited CEt2 U)

end
| i n i t ( Rec (n , t ) ) UT U b =

(∗ Recursive type n i s value−uninhabited i f f t i s
∗ value−uninhabited under the assumption that n i s
∗ value−uninhabited (U−Rec ) . Once we know whether t
∗ i s value−inhabited , we can properly s e t U[n ] .
∗ Finally , i f b= f a l s e then we ’ re now committed to U[n] and
∗ can move on to processing t , a f t e r which we can properly
∗ s e t UT[n] and return the compressed version of \mu n . t ,
∗ which i s jus t the variable n .
∗ )

( Array . update (U, n , true ) ;
Array . update (U, n , isUninhabited ( i n i t t UT U true ) U) ;
i f b then ( ) else Array . update (UT, n , i n i t t UT U fa l se ) ;
CEVar(n ) )

(∗ We commit to the value−uninhabitation of recurs ive types
∗ in th i s outer−to−inner fashion to properly handle types
∗ l i k e \mu 0 . ( ( \mu 1.0 ) + tau ) , in which the value−
∗ uninhabitation of an outer type ( here , 0) determines the
∗ value−uninhabitation of an inner type ( here , 1 ) .
∗ )

| i n i t ( Var (n ) ) = CEVar(n ) ;

Fig. 11. Computation of value-uninhabitation in the optimized subtyping algorithm.
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fun sub t1 t2 =
let (∗ Allocate and i n i t i a l i z e the unroll tab les UT1 and UT2,

∗ the uninhabitation arrays U1 and U2, and the compressed
∗ and extended types CEt1 and CEt2 . ∗ )

val m = numVars t1
val n = numVars t2
val UT1 = Array . array (m,CENat)
val UT2 = Array . array (n ,CENat)
val U1 = Array . array (m, fa l se )
val U2 = Array . array (n , f a l se )
val CEt1 = i n i t t1 UT1 U1 fa l se
val CEt2 = i n i t t2 UT2 U2 fa l se
(∗ Now create arrays for s tor ing subtyping assumptions .
∗ S1[m] [ n ] i f f r ecurs ive type m in t1 i s assumed to subtype
∗ recurs ive type n in t2 ; similarly , S2[n ] [m] i f f r ecurs ive
∗ type n in t2 i s assumed to subtype recurs ive type m in t1 . ∗ )

val S1 = Array2 . array (m, n , fa l s e )
val S2 = Array2 . array (n ,m, fa l se )
(∗ The fol lowing helper subtyping function operates on CEtyp ’ s
∗ grouped with UT and U tables , and the S1 and S2 arrays . ∗ )

fun subh (CEt1 ,UT1,U1) (CEt2 ,UT2,U2) (S1 , S2 ) =
isUninhabited CEt1 U1 (∗ S−Bottom ∗ )

orelse (∗ S−Top ∗ )
( case CEt2 of CEFun(CEt2 ’ , ) => isUninhabited CEt2 ’ U2
| => f a l se )

orelse
case (CEt1 , CEt2 ) of

(CENat, CEReal ) => true (∗ S−Base ∗ )
| (CENat, CENat) => true (∗ S−Nat ∗ )
| ( CEReal , CEReal ) => true (∗ S−Real ∗ )
| (CEFun( t1 , t2 ) , CEFun( t1 ’ , t2 ’ ) ) => (∗ S−Fun ∗ )

subh ( t1 ’ ,UT2,U2) ( t1 ,UT1,U1) (S2 , S1 ) andalso
subh ( t2 ,UT1,U1) ( t2 ’ ,UT2,U2) (S1 , S2 )

| (CESum( t1 , t2 , ) , CESum( t1 ’ , t2 ’ , ) ) => (∗ S−Sum ∗ )
subh ( t1 ,UT1,U1) ( t1 ’ ,UT2,U2) (S1 , S2 ) andalso
subh ( t2 ,UT1,U1) ( t2 ’ ,UT2,U2) (S1 , S2 )

| (CEProd( t1 , t2 , ) , CEProd( t1 ’ , t2 ’ , ) ) => (∗ S−Prod ∗ )
subh ( t1 ,UT1,U1) ( t1 ’ ,UT2,U2) (S1 , S2 ) andalso
subh ( t2 ,UT1,U1) ( t2 ’ ,UT2,U2) (S1 , S2 )

| (CEVar(m) , CEVar(n ) ) => (∗ S−Rec ∗ )
(∗ Return true i f m i s assumed to subtype n ; otherwise ,
∗ assume m subtypes n and return whether m−unrolled
∗ subtypes n−unrolled ∗ )

Array2 . sub (S1 ,m, n) orelse
( Array2 . update (S1 ,m, n , true ) ;
subh ( Array . sub (UT1,m) ,UT1,U1)

( Array . sub (UT2, n ) ,UT2,U2) (S1 , S2 ) )
| => f a l se

in subh (CEt1 ,UT1,U1) (CEt2 ,UT2,U2) (S1 , S2 ) end ;

Fig. 12. The main function of the optimized subtyping algorithm.
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6. DISCUSSION
A few remaining points are worth discussing.

6.1. Evaluation Contexts vs. General Contexts in the Definition of Preciseness
Definition 1 is based on evaluation contexts E rather than general (arbitrary-
subexpression) contexts G. General contexts are the evaluation contexts used with
the full-β evaluation strategy. For example, G is defined for λ as follows.

G ::= [ ] | succ(G) | neg(G) | λx:τ.G | G(e) | e(G)

One may wish to consider an alternative definition of subtyping-relation preciseness,
based on G rather than E. The following proposition shows that preciseness according
to Definition 1 implies preciseness according to this alternative version of Definition 1.

PROPOSITION 8. Evaluation Preciseness Implies General Preciseness.
Let L be a language that:

— is type safe,
— has a subtyping relation ≤ that’s precise according to Definition 1,
— allows the standard subsumption typing rule (T-SUBSUME in Figures 1 and 5), and
— obeys the standard variable-substitution lemma (Lemma 4).

Then ≤ is also precise according to the alternative version of Definition 1, in which
evaluation context E is replaced with general context G.

PROOF. Using general contexts instead of evaluation contexts does not affect the
proof of soundness (Lemma 6), which relies only on the existence of rule T-SUBSUME
and the variable-substitution and type-safety lemmas. Hence, ≤ is sound according
to the alternative version of Definition 1. Moreover, because ≤ is complete according
to Definition 1, we have that if τ1≤τ2 isn’t derivable then there exist E, τ , e, and e′

such that E[τ2]:τ , e:τ1, E[e] 7→∗ e′, and stuck(e′). Because every E is also a G, if τ1≤τ2
isn’t derivable then there exist G, τ , e, and e′ such that G[τ2]:τ , e:τ1, G[e] 7→∗ e′, and
stuck(e′). Hence, ≤ is complete according to the alternative version of Definition 1.

Languages λ and λADT satisfy the requirements of Proposition 8 and are therefore
precise according to the general-context version of Definition 1.

6.2. Subtyping with Strict vs. Nonstrict Evaluation Strategies
The evaluation strategy remains fixed in Proposition 8; the proposition does not imply
that a subtyping relation that’s precise with one evaluation strategy will be precise
with another. On the contrary, the choice of evaluation strategy may affect subtyping.

This paper has proved two subtyping relations precise, both in call-by-value lan-
guages (i.e., languages with strict evaluation). The completeness proofs have relied on
the ability to “force” some unsafe computation to occur before performing unrelated,
safe operations. This ability has been needed in exactly one subcase of each complete-
ness proof: when the contravariant subtyping judgment for function arguments is un-
derivable.

Complications arise in nonstrict languages. As just eluded to, the complications re-
late to function-argument subtyping. For an example, let’s consider the call-by-name
version of λ from Section 3, called λCBN . In this call-by-name calculus, we could safely
allow real→nat to be a subtype of τ→nat, for all types τ . Although such a rule would
break type safety in the call-by-value version of λ, allowing real→nat to subtype
τ→nat cannot cause well-typed λCBN programs to get stuck. It’s always safe to sub-
stitute a function f of type real→nat in place of any function that returns a nat (or
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real) in λCBN because it’s impossible for f to force evaluation of its real-type argu-
ment expression. No primitive operations exist to convert a real into a nat, so there’s
no way for f to use its argument to compute its result, and the call-by-name semantics
prevents f from computing its argument expression just to “throw away” the result.

Subtyping in nonstrict languages thus depends on which primitives are present in
the language, sometimes in non-orthogonal ways. For example, the subtyping rule for
function types in λCBN depends not only on how functions operate, but also on the
types used and returned by the succ and neg operations. Suppose we added a new
kind of expression to λCBN , called floorAbs(e). Statically floorAbs(e) requires e to
have type real; when it does, floorAbs(e) has type nat. Dynamically, if e evaluates
to r then floorAbs(e) evaluates to the n such that n = |brc|. With this new floorAbs
operation, which on the surface has nothing to do with functions, we have to change the
subtyping rule for function types, because it’s now unsound to allow real→nat to be
a subtype of τ→nat (otherwise, the expression (λx:real.floorAbs(x))(λz:nat.0) would
be well typed but gets stuck). Again, without floorAbs, there’s no way for a function of
type real→nat to get stuck, regardless of its actual argument, so precisely subtyping
function types in λCBN depends on the other operations available in the language.

Although it’s sound with respect to type safety to allow real→nat to subtype
every type τ→nat in λCBN , such a subtyping violates the preservation property
of λCBN . For example, if real→nat is a subtype of (nat→nat)→nat then the ex-
pression (λx:real.((λy:real.0)(neg(x))))(λz:nat.0) has type nat but takes a step to
(λy:real.0)(neg(λz:nat.0)), which is ill typed (but does not get stuck; getting stuck
would be impossible per the discussion above). Hence, establishing type safety for the
version of λCBN that allows real→nat to subtype every type τ→nat—and such an al-
lowance must be made for the subtyping relation to be complete—would require using
some non-preservation-based technique.

Similar analysis would show the same complications with other nonstrict evaluation
strategies, such as the full-β strategy.

In practice, languages that are nonstrict by default may have constructs for switch-
ing to strict evaluation. For example, Haskell provides the special functions seq and
deepSeq for forcing expressions to be evaluated. By enabling strict evaluation, such
languages avoid the complications just described.

6.3. Iso-recursive vs. Equi-recursive Subtyping
This paper’s rules for subtyping iso-recursive types are similar, at a high level, to the
rules typically used for subtyping equi-recursive types [Amadio and Cardelli 1993;
Brandt and Henglein 1998]. Specifically, S-REC follows the standard equi-recursive
approaches of (1) considering as subtypes any pair of types previously considered, and
(2) unrolling recursive types as they’re encountered.

However, some substantial differences exist between this paper’s treatment of iso-
recursive subtyping and typical treatments of equi-recursive subtyping. One difference
is that this paper considers arbitrary recursive types, without syntactic restrictions;
concretely, the rules here can derive relationships like µt.(t + t) ≤ real ≤ (µt.t)→nat,
which have generally been beyond the scope of equi-recursive systems. The most
common syntactic restriction on equi-recursive types has pertained to contractive-
ness [MacQueen et al. 1984], which requires recursive types to have specific shapes like
µt.(τ→τ ′) rather than the more general µt.τ (e.g., [Amadio and Cardelli 1993; Brandt
and Henglein 1998; Gapeyev et al. 2002; Frisch et al. 2008; Im et al. 2013]). Contrac-
tive types can provide a useful constraint on the shapes of the type trees obtained by
unrolling equi-recursive types. Iso-recursive types, on the other hand, do not represent
such unrollings (e.g., µt.nat is nat in an equi-recursive, but not iso-recursive, system),
so contractiveness does not seem useful in an iso-recursive setting (indeed, languages
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like ML support non-contractive recursive types). A different syntactic restriction on
recursive types, specific to the domain of regular-expression types, is used in [Hosoya
et al. 2005].

Another difference between iso- and equi-recursive subtyping relates to the “syn-
chronous” unrolling used in this paper’s rules (i.e., unrolling both types under con-
sideration), versus the “asynchronous” unrolling commonly used for subtyping equi-
recursive types (i.e., unrolling only one of the two types under consideration) [Amadio
and Cardelli 1993; Brandt and Henglein 1998; Gapeyev et al. 2002]. Again, this dif-
ference stems from the implicit equality of an equi-recursive type with its unrolling
(e.g., µt.nat≤real in an equi-recursive, but not iso-recursive, system). Intuitively, iso-
recursive types are eliminated through explicit unroll operations, so matching µ’s are
required for subtyping iso-recursive types. Although beyond the scope of the present
paper, it seems that equi-recursive subtypes could automatically be translated into
iso-recursive subtypes by inserting any “missing µ’s”.

This difference between synchronous (iso-recursive) and asynchronous (equi-
recursive) unrollings underlies the difference in the efficiency of subtyping algorithms.
Although the subtyping-helper function subh in Figure 12 is similar to Brandt and
Henglein’s algorithm for subtyping equi-recursive types [Brandt and Henglein 1998],
the most efficient known equi-recursive subtyping algorithms have O(n2) running
time [Kozen et al. 1995; Brandt and Henglein 1998], while this paper’s iso-recursive
subtyping algorithm has O(mn) running time. The O(mn) bound improves on O(n2)
because m is independent from, and smaller than, n; for example, the recursive type
typ defined in Figure 10 has n≥17 (its precise size depends on how variant types are
represented) but m=1. The O(mn) bound derives from synchronous unrolling (every
type in a µ-term on one side of the ≤ may be compared at most once covariantly and
at most once contravariantly to a corresponding type in each of the other side’s µ-
terms), while the O(n2) bound derives from asynchronous unrolling (every type in a
µ-term on one side of the ≤ may be compared at most once covariantly and at most
once contravariantly to a type τ on the other side, where τ is not limited to being a
corresponding type within a µ-term). Because none of this paper’s techniques address
asynchronous type unrolling, we believe that none of this paper’s techniques could be
used to improve the O(n2) bound for subtyping equi-recursive types.
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A. PROOF OF PRECISENESS FOR THE SUBTYPING RELATION IN λADT

The following proof shows that the subtyping relation ≤ defined in Figure 9 is precise
with respect to type safety.

A.1. Basic Properties of the Value-Uninhabitation and Subtyping Relations
The proof begins with many “sanity checks” on the val and ≤ relations (from Lemma 9
to Corollary 19). The first two lemmas are simple context-weakening results.

LEMMA 9. Value-Uninhabitation Weakening.

∀U, τ, U ′ ⊇ U : (U ` val(τ) = ∅ ⇒ U ′ ` val(τ) = ∅)

PROOF. By straightforward induction on the derivation of U ` val(τ) = ∅.

LEMMA 10. Subtype Weakening.

∀S, τ1, τ2, S′ ⊇ S : (S ` τ1≤τ2 ⇒ S′ ` τ1≤τ2)

PROOF. By straightforward induction on the derivation of S ` τ1≤τ2.

The next two lemmas show that properties of recursive types imply properties of
their unrolled versions.

LEMMA 11. Unrolled Value-Uninhabitation.

∀ t, τ : (val(µt.τ)=∅ ⇒ val([µt.τ/t]τ)=∅)

PROOF. The only rule deriving val(µt.τ)=∅ is U-REC, so by inversion of that rule,
{µt.τ} ` val([µt.τ/t]τ)=∅. Hence, by Lemma 9, for all U there exists a derivation forest

DU such that
DU

U ∪ {µt.τ} ` val([µt.τ/t]τ)=∅
is a valid derivation. Now construct a new

derivation forest D′ = D∅, except that D′ (1) removes all µt.τ value-uninhabitation
assumptions from D∅, and then (2) replaces all leaf-node judgments of the form

U ∪ {µt.τ} ` val(µt.τ)=∅ in D∅ with the derivation tree

DU

U ∪ {µt.τ} ` val([µt.τ/t]τ)=∅
U ` val(µt.τ)=∅

.

Then
D′

val([µt.τ/t]τ)=∅
is a valid derivation tree because D′ derives as does D∅, but

without requiring an initial µt.τ value-uninhabitation assumption.

LEMMA 12. Unrolled Subtyping.

∀t1, t2, τ1, τ2 : (µt1.τ1≤µt2.τ2 ⇒ [µt1.τ1/t1]τ1≤[µt2.τ2/t2]τ2)

PROOF. Let τ1 = µt1.τ1, τ2 = µt2.τ2, τ1u = [τ1/t1]τ1, and τ2u = [τ2/t2]τ2. The
only rules for deriving τ1≤τ2 are S-⊥ and S-REC. In the S-⊥ case, val(τ1)=∅, so by
Lemma 11, val(τ1u)=∅, implying by S-⊥ that τ1u≤τ2u, as required. In the S-REC case,
we assume {τ1≤τ2} ` τ1u≤τ2u, so by Lemma 10, for all S there exists a derivation-forest
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If J has the form... then f(J) is...
S`nat≤real () ∨ (val(nat)=∅)
S`nat≤nat () ∨ (val(nat)=∅)
S`real≤real () ∨ (val(real)=∅)
S`τ1→τ2≤τ ′1→τ ′2 (val(τ1→τ2)=∅) ∨ (val(τ ′1)=∅) ∨ (S`τ ′1≤τ1 ∧ S`τ2≤τ ′2)
S`τ≤τ ′1→τ ′2 (τ 6= τ1→τ2) (val(τ)=∅) ∨ (val(τ ′1)=∅)
S`τ1+τ2≤τ ′1+τ ′2 (val(τ1+τ2)=∅) ∨ (S`τ1≤τ ′1 ∧ S`τ2≤τ ′2)
S`τ≤τ ′1+τ ′2 (τ 6= τ1+τ2) (val(τ)=∅)
S`τ1×τ2≤τ ′1×τ ′2 (val(τ1×τ2)=∅) ∨ (S`τ1≤τ ′1 ∧ S`τ2≤τ ′2)
S`τ≤τ ′1 × τ ′2 (τ 6= τ1 × τ2) (val(τ)=∅)
S∪{τµ≤τ ′µ}`τµ≤τ ′µ (val(τµ)=∅) ∨ ()
S`τµ≤τ ′µ (τµ≤τ ′µ 6∈ S) (val(τµ)=∅) ∨ (S∪{τµ≤τ ′µ}`τµu≤τ ′µu)
S`τ≤τ ′µ (τ 6= τµ) (val(τ)=∅)
U`val(τ1+τ2)=∅ (U`val(τ1)=∅ ∧ U`val(τ2)=∅)
U`val(τ1×τ2)=∅ (U`val(τ1)=∅) ∨ (U`val(τ2)=∅)
U∪{τµ}`val(τµ)=∅ ()
U`val(τµ)=∅ (τµ 6∈ U) (U∪{τµ}`val(τµu)=∅)
anything else ε

Fig. 13. Rule function f for the subtyping system of λADT . Conjunctive clauses are always parenthesized.
Symbol τµ denotes a type µt.τ , and τµu denotes the unrolled form of τµ.

DS such that
DS

S ∪ {τ1≤τ2} ` τ1u≤τ2u
is a valid derivation. Now construct a new deriva-

tion forest D′ = D∅, except that D′ (1) removes all τ1≤τ2 subtyping assumptions from
D∅, and then (2) replaces all leaf-node judgments of the form S ∪ {τ1≤τ2} ` τ1≤τ2 in

D∅ with the derivation tree

DS

S ∪ {τ1≤τ2} ` τ1u≤τ2u
S ` τ1≤τ2

. Then
D′

τ1u≤τ2u
is a valid derivation

tree because D′ derives as does D∅, but without requiring an initial τ1≤τ2 subtyping
assumption.

The next lemma shows that the subtyping and value-uninhabitation systems are
navigable. Hence, for all value-uninhabitation and subtyping judgments J , J is under-
ivable iff there exists a failing derivation of J .

LEMMA 13. Navigability.
The subtyping system, including the value-uninhabitation subsystem, is navigable.

PROOF. The subtyping system is navigable because it has a rule function and a
well-founded relation of premise to conclusion judgments. Figure 13 presents the rule
function (from conclusion to premise judgments) that follows immediately from the
subtyping rules (Figure 9). The relation of premise to conclusion judgments is well-
founded: all the rules’ premises decrease the sizes of the types under consideration,
except that recursive types may be unrolled a limited number of times—the value-
uninhabitation rules may unroll every recursive type at most once (with rule U-REC),
and the subtyping rules may unroll every pair of recursive types at most once (with
rule S-REC), but no rules ever introduce new recursive types.
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A.2. Correctness of the Value-Uninhabitation Rules
Lemma 14 shows that subtypes of value-uninhabited types must be value-uninhabited.
In other words, the bottom type truly is bottom.

LEMMA 14. Value-Uninhabitation is Closed Under Subtyping.

∀τ1, τ2, U : ((U`val(τ1)=∅ not derivable ∧ τ1≤τ2) ⇒ (val(τ2)=∅ not derivable))

PROOF. By assumption, U`val(τ1)=∅ is underivable, so by Lemma 13 and the defini-
tion of failing derivations, there is a failing derivation rooted at U`val(τ1)=∅. Proceed
by induction on that failing derivation. In all cases, the contrapositive of Lemma 9
ensures that val(τ1)=∅ is underivable, so τ1≤τ2 can’t be derived with rule S-⊥.

As can be seen in Figure 13, the failing derivation’s leaf judgments (i.e., where f
returns ε) can only be of the form U`val(τ1)=∅ such that τ1 is nat, real, or function
type. In these cases the lemma holds because τ1≤τ2 can only be derived with rules
S-BASE, S-NAT, S-REAL, S->, or S-FUN, implying that τ2 must also be nat, real, or
function type, so val(τ2)=∅ is underivable.

Figure 13 shows three possible forms of inner judgments in a failing derivation of
U`val(τ1)=∅. We next consider each of these three inductive cases. Note that judgments
of the form U∪{τ1}`val(τ1)=∅ (third row from the bottom in Figure 13) can’t be inner
judgments in failing derivations because inner judgments must have exactly one child
judgment from each of the conjunctive clauses returned by f . In general, no J for which
f(J) contains () can be an inner (or leaf) judgment in a failing derivation.

— Case τ1 = τ ′1 + τ ′′1 :
In this case the current judgment’s child in the failing derivation is either an under-
ivable U`val(τ ′1)=∅ or an underivable U`val(τ ′′1 )=∅, so by the inductive hypothesis,
the lemma holds on one of these judgments.
Because τ1 = τ ′1 + τ ′′1 , τ1≤τ2 may be derived with rule S-> or S-SUM. In the S->
subcase, τ2 is a function type, so val(τ2)=∅ is not derivable. In the S-SUM subcase, τ2 =
τ ′2+τ ′′2 , τ ′1≤τ ′2, and τ ′′1≤τ ′′2 . Because τ ′1≤τ ′2 and τ ′′1≤τ ′′2 , the inductive hypothesis implies
that val(τ ′2)=∅ is not derivable or val(τ ′′2 )=∅ is not derivable, so by the definition of
value-uninhabitation (U-SUM), val(τ2)=∅ is not derivable.

— Case τ1 = τ ′1 × τ ′′1 :
In this case the current judgment’s children in the failing derivation are U`val(τ ′1)=∅
and U`val(τ ′′1 )=∅, so by the inductive hypothesis, the lemma holds on both of these
underivable judgments.
Because τ1 = τ ′1 × τ ′′1 , τ1≤τ2 may be derived with rule S-> or S-PROD. In the S->
subcase, τ2 is a function type, so val(τ2)=∅ is not derivable. In the S-PROD subcase,
τ2 = τ ′2 × τ ′′2 , τ ′1≤τ ′2, and τ ′′1≤τ ′′2 . Because τ ′1≤τ ′2 and τ ′′1≤τ ′′2 , the inductive hypothe-
sis implies that val(τ ′2)=∅ is not derivable and val(τ ′′2 )=∅ is not derivable, so by the
definition of value-uninhabitation (U-PROD), val(τ2)=∅ is not derivable.

— Case τ1 = µt1.τ1 (with τ1 6∈ U ):
In this case the current judgment’s only child in the failing derivation is
U∪{τ1}`val(τ1u)=∅, where τ1u is [µt1.τ1/t1]τ1, so by the inductive hypothesis, the
lemma holds on this underivable judgment.
Because τ1 = µt1.τ1, τ1≤τ2 may be derived with rule S-> or S-REC. In the S->
subcase, τ2 is a function type, so val(τ2)=∅ is not derivable. In the S-REC subcase,
τ2 = µt2.τ2, so let τ2u = [µt2.τ2/t2]τ2; then because τ1≤τ2, Lemma 12 provides that
τ1u≤τ2u. Given that τ1u≤τ2u, the inductive hypothesis implies that val(τ2u)=∅ is not
derivable, so by the contrapositive of Lemma 11, val(τ2)=∅ is not derivable.

In all cases, val(τ2)=∅ is not derivable, as required.
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Now we can prove that the val judgment means what we want it to mean: val(τ) = ∅
exactly when there exists no value of type τ .

LEMMA 15. Value-Uninhabitation.

∀τ : (val(τ)=∅ ⇔ ¬∃v : (v:τ))

PROOF. We first prove that, for all U and τ , if U`val(τ)=∅ is not derivable, then
∃v : (v:τ). The contrapositive of the lemma’s if-direction (⇐) follows as a result. The
proof is by induction on the failing derivation of U`val(τ)=∅, which can only have leaf
judgments when τ is nat, real, or τ1→τ2. In every one of these base cases, there ex-
ists a v such that v:τ (when τ is nat or real, let v be 0, and when τ = τ1→τ2, let v be
λx : τ1.(d(rollµt.(t→τ2)(d))), where d is λx:µt.(t→τ2).(unroll(x) x)). The inductive cases
occur when τ is a sum, product, or recursive type. In the case where τ=µt.τ , the induc-
tive hypothesis implies that there exists a v′ such that v′:[µt.τ/t]τ ; let v=rollτ (v′) to
ensure that v:τ . The cases where τ is a sum or product type are handled similarly (but
instead of v being a rolled subvalue, it’s either an injection of a subvalue or a pair of
subvalues).

We next prove that, for all v and τ , if v:τ then val(τ)=∅ is not derivable. The contra-
positive of the lemma’s only-if-direction (⇒) follows as a result. The proof is by induc-
tion on the derivation of v:τ . The rules for deriving v:τ are T-NAT, T-REAL, T-LAM,
T-PROD, T-LEFT, T-RIGHT, T-ROLL, and T-SUBSUME.

— Cases T-NAT, T-REAL, T-LAM: Here τ is nat, real, or a function type, so val(τ)=∅ is
not derivable.

— Case T-PROD: Here τ = τ1 × τ2, v = (v1, v2), v1:τ1, and v2:τ2. By the inductive hypoth-
esis, val(τ1)=∅ is not derivable and val(τ2)=∅ is not derivable, so by rule U-PROD,
val(τ1 × τ2)=∅ is not derivable.

— Case T-LEFT: Here τ = τ1 + τ2, v = inlτ (v1), and v1:τ1. By the inductive hypothesis,
val(τ1)=∅ is not derivable, so by rule U-SUM, val(τ1 + τ2)=∅ is not derivable.

— Case T-RIGHT: This case is similar to the previous one.
— Case T-ROLL: Here τ = µt.τ , v = rollτ (v′), and v′:[µt.τ/t]τ . Let τu = [µt.τ/t]τ , so we

have v′:τu. By the inductive hypothesis, val(τu)=∅ is not derivable, so by the contra-
positive of Lemma 11, val(τ)=∅ is not derivable.

— Case T-SUBSUME: Here v:τ ′ and τ ′≤τ . By the inductive hypothesis, val(τ ′)=∅ is not
derivable, so by Lemma 14, val(τ)=∅ is not derivable.

In all cases, val(τ)=∅ is underivable, as required.

A.3. Subtyping Reflexivity and Transitivity
Although the subtyping relation in λADT lacks explicit reflexive and transitive rules,
this section’s lemmas show that the relation is nonetheless reflexive and transitive.

LEMMA 16. Strong Subtyping Reflexivity.

∀S, τ1, τ2 : (S`τ1≤τ2 not derivable ⇒ τ1 6=τ2)

PROOF. By induction on the failing derivation of S`τ1≤τ2, which exists by
Lemma 13. We first show that the lemma holds on any S`τ1≤τ2 judgment in a fail-
ing derivation such that this judgment doesn’t have a child of the form S′`τ ′1≤τ ′2.
These cases occur when τ1=real and τ2=nat, or when exactly one of τ1 and τ2 is a
function/product/sum/recursive type (recall, from the proof of Lemma 14, that no J for
which () ∈ f(J) can appear in a failing derivation). In all these base cases, τ1 6= τ2, as
required.

The remaining cases of S`τ1≤τ2 judgments in failing derivations occur when both
τ1 and τ2 are function/sum/product/recursive types. In all these inductive cases, there
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exists an underivable child judgment of the form S′ ` τ ′1 ≤ τ ′2, so the inductive hypoth-
esis implies that τ ′1 6= τ ′2, which guarantees that τ1 6= τ2. For example, the inductive
hypothesis in the case of recursive types implies that the unrolled types are unequal,
which guarantees that the rolled types must also be unequal.

Lemma 17 provides a standard subtyping-inversion result, though the result is com-
plicated by consideration of value-uninhabitation.

LEMMA 17. Subtyping Inversion.

∀S, τ1, τ2 : If S ` τ1≤τ2, then

A. val(τ1) = ∅, or
B. val(τ1) = ∅ is underivable, τ2 = τ ′2→τ ′′2 , and val(τ ′2) = ∅, or
C. Neither A nor B hold, and all of the following hold:

i. τ1=real⇒ (τ2=real)
ii. τ1=nat⇒ (τ2=real ∨ τ2=nat)

iii. τ1=τ ′1→τ ′′1 ⇒ (τ2=τ ′2→τ ′′2 ∧ S`τ ′2≤τ ′1 ∧ S`τ ′′1≤τ ′′2 )
iv. τ1=τ ′1+τ ′′1 ⇒ (τ2=τ ′2+τ ′′2 ∧ S`τ ′1≤τ ′2 ∧ S`τ ′′1≤τ ′′2 )
v. τ1=τ ′1×τ ′′1 ⇒ (τ2=τ ′2×τ ′′2 ∧ S`τ ′1≤τ ′2 ∧ S`τ ′′1≤τ ′′2 )

vi. τ1=µt.τ ⇒ (τ2=µt′.τ ′ and either τ1≤τ2 ∈ S or S∪{τ1≤τ2}`[µt.τ/t]τ≤[µt′.τ ′/t′]τ ′)
vii. τ2=real⇒ (τ1=nat ∨ τ1=real)

viii. τ2=nat⇒ (τ1=nat)
ix. τ2=τ ′2→τ ′′2 ⇒ (τ1=τ ′1→τ ′′1 ∧ S`τ ′2≤τ ′1 ∧ S`τ ′′1≤τ ′′2 )
x. τ2=τ ′2+τ ′′2 ⇒ (τ1=τ ′1+τ ′′1 ∧ S`τ ′1≤τ ′2 ∧ S`τ ′′1≤τ ′′2 )

xi. τ2=τ ′2 × τ ′′2 ⇒ (τ1=τ ′1×τ ′′1 ∧ S`τ ′1≤τ ′2 ∧ S`τ ′′1≤τ ′′2 )
xii. τ2=µt′.τ ′ ⇒ (τ1=µt.τ and either τ1≤τ2 ∈ S or S∪{τ1≤τ2}`[µt.τ/t]τ≤[µt′.τ ′/t′]τ ′)

PROOF. By straightforward case analysis of the rules deriving S ` τ1≤τ2.

LEMMA 18. Strong Subtyping Transitivity.

∀S, τ1, τ2, τ3 : ((S`τ1≤τ3 not derivable ∧ τ1≤τ2) ⇒ (τ2≤τ3 not derivable))

PROOF. By induction on the failing derivation of S`τ1≤τ3. Note that because
S`τ1≤τ3 is underivable, val(τ1)=∅ is underivable (by rule S-⊥), so by Lemma 14,
val(τ2)=∅ is underivable. Also because S`τ1≤τ3 is underivable, if τ3=τ ′3→τ ′′3 then
val(τ ′3)=∅ is underivable (by rule S->). Now suppose that τ2=τ ′2→τ ′′2 and val(τ ′2)=∅;
then the only rules for deriving τ2≤τ3 would be S-⊥, S->, and S-FUN; however, S-⊥
can’t apply because val(τ2)=∅ is underivable, S-> can’t apply because if τ3=τ ′3→τ ′′3 then
val(τ ′3)=∅ is underivable, and S-FUN can’t apply because it would violate Lemma 14
to have τ ′3≤τ ′2 and val(τ ′2)=∅ when val(τ ′3)=∅ is underivable. It’s therefore impossible to
derive τ2≤τ3 when τ2=τ ′2→τ ′′2 and val(τ ′2)=∅.

We now have that (1) val(τ1)=∅ is underivable, (2) val(τ2)=∅ is underivable, (3) if
τ2=τ ′2→τ ′′2 then val(τ ′2)=∅ is underivable, and (4) if τ3=τ ′3→τ ′′3 then val(τ ′3)=∅ is under-
ivable. In other words, neither τ1 nor τ2 is a ⊥, and neither τ2 nor τ3 is a >. The cases
below therefore ignore these possibilities.

We first show that the lemma holds on any S`τ1≤τ3 judgment in a failing deriva-
tion such that this judgment doesn’t have a child of the form S′`τ ′1≤τ ′3. These cases
occur when τ1=real and τ3=nat, or when exactly one of τ1 and τ3 is a function/pro-
duct/sum/recursive type. If τ1=real and τ3=nat, then τ2≤τ3 is underivable because
Lemma 17 (applied to τ1≤τ2) ensures that τ2=real. If exactly one of τ1 and τ3 is a func-
tion/product/sum/recursive type, then τ2≤τ3 is again underivable because otherwise,
with τ1≤τ2 and τ2≤τ3, Lemma 17 would ensure that both τ1 and τ3 are the same “kind”
of type (i.e., both numeric/function/product/sum/recursive types).
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The remaining cases of S`τ1≤τ3 judgments in failing derivations occur when both
τ1 and τ3 are function/sum/product/recursive types. In the function-types case, τ1 =
τ ′1→τ ′′1 , τ3 = τ ′3→τ ′′3 , and the underivable judgment S`τ1≤τ3 either has the underivable
S`τ ′3≤τ ′1 or the underivable S`τ ′′1≤τ ′′3 as one of its children in the failing derivation.
Because τ1≤τ2, Lemma 17 ensures that τ2 = τ ′2→τ ′′2 , τ ′2≤τ ′1, and τ ′′1≤τ ′′2 . Hence, the in-
ductive hypothesis, applied to S`τ ′3≤τ ′1 or S`τ ′′1≤τ ′′3 (whichever is the child of S`τ1≤τ3),
implies that at least one of τ ′3≤τ ′2 and τ ′′2≤τ ′′3 is underivable, so τ2≤τ3 is underivable (by
rule S-FUN). The proofs of the sum- and product-types cases are similar.

In the recursive-types case, τ1 = µt1.τ1, τ3 = µt3.τ3, and the underivable judg-
ment S`τ1≤τ3 has the underivable {τ1≤τ3}`τ1u≤τ3u as one of its children in the failing
derivation (where τ1u = [τ1/t1]τ1 and τ3u = [τ3/t3]τ3). Because τ1≤τ2, Lemma 17 en-
sures that τ2 = µt2.τ2, and Lemma 12 ensures that τ1u≤τ2u (where τ2u = [τ2/t2]τ2). The
inductive hypothesis then implies that τ2u≤τ3u is underivable, so by the contrapositive
of Lemma 12, τ2≤τ3 is underivable.

COROLLARY 19. ≤ is a Preorder.
The subtyping relation is reflexive and transitive.

PROOF. Immediate by the contrapositives of Lemmas 16 and 18.

A.4. Properties of the Static and Dynamic Semantics
Having completed the “sanity checks” on the val and ≤ relations, Lemmas 20–22
present standard weakening, variable-substitution, and canonical-forms lemmas,
which are used to prove subtyping completeness and soundness.

LEMMA 20. Weakening.

∀Γ, e, τ,Γ′ ⊇ Γ : (Γ ` e : τ ⇒ Γ′ ` e : τ)

PROOF. By induction on the derivation of Γ ` e : τ .

LEMMA 21. Variable Substitution.

∀Γ, x, τ ′, e, τ, e′ : ((Γ ∪ {x : τ ′} ` e : τ ∧ Γ ` e′ : τ ′) ⇒ Γ ` [e′/x]e : τ)

PROOF. By induction on the derivation of Γ ∪ {x:τ ′} ` e : τ .

LEMMA 22. Canonical Forms.

∀v, τ : If v:τ then

A. τ=nat⇒ v=n (for some n)
B. τ=real⇒ v=n or v=r (for some n or r)
C. (τ=τ1→τ2 ∧ val(τ1)=∅ not derivable)⇒ v=λx:τ3.e (for some x, τ3, and e)
D. τ=τ1+τ2 ⇒ v=inlτ ′

1+τ
′
2
(v′) or v=inrτ ′

1+τ
′
2
(v′) (for some τ ′1, τ ′2, and v′)

E. τ=τ1 × τ2 ⇒ v=(v1, v2) (for some v1 and v2)
F. τ=µt.τ ⇒ v=rollµt.τ (v′) (for some t, τ , and v′)

PROOF. By induction on the derivation of v:τ . The only nontrivial case is T-
SUBSUME, in which v:τ ′ and τ ′≤τ . Because v:τ ′, Lemma 15 ensures that val(τ ′) = ∅ is
underivable. If τ = nat then by Lemma 17, τ ′ = nat, so by the inductive hypothesis
(applied to v:τ ′), v = n. If τ = real then by Lemma 17, τ ′ = nat or τ ′ = real, so by the
inductive hypothesis, v = n or v = r. If τ = τ1→τ2 and val(τ1) = ∅ is not derivable, then
by Lemma 17, τ ′ = τ ′1→τ ′2 and τ1≤τ ′1. Because val(τ1) = ∅ is not derivable and τ1≤τ ′1,
Lemma 14 ensures that val(τ ′1) = ∅ is not derivable. Then applying the inductive hy-
pothesis to v:τ ′, where τ ′ = τ ′1→τ ′2, we find that v = λx:τ3.e. The remaining cases of τ
are proved similarly.
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A.5. Subtyping Completeness
We’re now ready to state and prove the key lemma used to show completeness,
Lemma 23. As in λ, we first prove a slightly stronger version of the desired complete-
ness result. Also as in λ, the proof of Lemma 23 is constructive (in part because the
proof of Lemma 15 is constructive).

LEMMA 23. Strong Completeness.

∀S, τ1, τ2 : (S`τ1≤τ2 not derivable ⇒ ∃E, τ, v, e : (E[τ2]:τ ∧ v:τ1 ∧ E[v]7→∗e ∧ stuck(e)))

PROOF. The proof is by induction on the failing derivation of S`τ1≤τ2. In all cases,
the underivability of S`τ1≤τ2 implies that τ1 is not a ⊥ (i.e., val(τ1)=∅ is underivable)
and τ2 is not a >.

We first show that the lemma holds on any S`τ1≤τ2 judgment in the failing deriva-
tion such that this judgment doesn’t have a child of the form S′`τ ′1≤τ ′2. These cases
occur when τ1 = real and τ2 = nat, or when exactly one of τ1 and τ2 is a function/pro-
duct/sum/recursive type.

Case τ1 = real and τ2 = nat:
This case’s proof is the same as in the proof of Lemma 7.

Case τ1 = τ ′1→τ ′′1 and τ2 6= τ ′2→τ ′′2 :
Construct a lambda value v:τ1 as shown in the proof of Lemma 15, and define E and τ
as follows:

E=


neg([ ]) if τ2 = nat or τ2 = real
casereal[ ] of inlx′⇒2.718 else inr y′⇒2.718 if τ2 = τ ′2+τ ′′2
[ ].snd if τ2 = τ ′2 × τ ′′2
unroll([ ]) if τ2 = µt.τ

τ=

{
real if τ2 = nat or τ2 = real or τ2 = τ ′2+τ ′′2
τ ′′2 if τ2 = τ ′2 × τ ′′2
[µt.τ/t] τ if τ2 = µt.τ

Then E[τ2]:τ , by the definitions of E and τ and the typing rules. Moreover, let e =
E[v], so E[v] 7→∗ e and stuck(e) (because stuck(E[v]), where v is a lambda value).

Case τ1 6=τ ′1→τ ′′1 , τ2=τ ′2→τ ′′2 , and both val(τ1)=∅ and val(τ ′2)=∅ are underivable:
By Lemma 15 there exist v and v′2 such that v : τ1 and v′2 : τ ′2. With τ1 6= τ ′1→τ ′′1 and
v : τ1, Lemma 22 implies that v can’t be a lambda value. Let E = [ ](v′2), τ = τ ′′2 , and
e = v(v′2). Then E[τ2]:τ (because τ2 = τ ′2→τ ′′2 , v′2:τ ′2, and τ = τ ′′2 ). Moreover, E[v] = e, so
E[v] 7→∗ e, and stuck(e) (because e = v(v′2), where v can’t be a lambda value).

Case τ1 = µt1.τ1, τ2 6= µt2.τ2, val(τ1)=∅ is underivable, and if τ2=τ ′2→τ ′′2 then val(τ ′2)=∅
is underivable:
By Lemma 15 there exists a v such that v:µt1.τ1. Hence, by Lemma 22, v is a rolled
value. Also by Lemma 15, if τ2=τ ′2→τ ′′2 then there exists a v′2 such that v′2:τ ′2. Now define
E and τ as follows:

E=


neg([ ]) if τ2 = nat or τ2 = real
casereal[ ] of inlx⇒2.718 else inr y⇒2.718 if τ2 = τ ′2+τ ′′2
[ ].snd if τ2 = τ ′2 × τ ′′2
[ ](v′2) if τ2 = τ ′2→τ ′′2

τ=

{
real if τ2 = nat or τ2 = real or τ2 = τ ′2+τ ′′2
τ ′′2 if τ2 = τ ′2 × τ ′′2 or τ2 = τ ′2→τ ′′2

Then E[τ2]:τ , by the definitions of E and τ and the typing rules. Moreover, let e =
E[v], so E[v] 7→∗ e and stuck(e) (because stuck(E[v]), where v is a rolled value).
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Case τ1 6= µt1.τ1, τ2 = µt2.τ2, and val(τ1)=∅ is underivable:
There are two subcases to consider: either (1) τ1 is a > or (2) not. In subcase (1), let
v = 0, so v:τ1 by T-SUBSUME and S->. In subcase (2), Lemma 15 guarantees a v
such that v:τ1, and Lemma 22 guarantees that v isn’t a rolled value. Hence, in all
subcases, v:τ1 and v isn’t a rolled value. Now let E = unroll([ ]), τ = [µt2.τ2/t2]τ2, and
e = unroll(v). Then E[τ2]:τ by T-CTXT, T-VAR, and T-UNROLL. Moreover, E[v] = e, so
E[v] 7→∗ e, and stuck(e) (because e = unroll(v), where v can’t be a rolled value).

The other cases of S`τ1≤τ2 judgments having no child of the form S′`τ ′1≤τ ′2—that is,
the cases where exactly one of τ1 and τ2 is a product/sum type—are proved similarly.

The remaining cases of S`τ1≤τ2 judgments in failing derivations occur when both τ1
and τ2 are function/sum/product/recursive types.

Case τ1 = τ ′1→τ ′′1 and τ2 = τ ′2→τ ′′2 :
This case’s proof almost matches that given for Lemma 7. All the logic remains the
same, with only two nontrivial differences: (1) in the first subcase in Lemma 7, we
obtained a v′′1 :τ ′′1 by Lemma 3, but here we replace this v′′1 with an e′′1 :τ ′′1 (which exists
because all types in λADT are inhabited), and (2) in the second subcase in Lemma 7,
we obtained a v′2:τ ′2 by Lemma 3, but here we obtain the same by Lemma 15 and the
assumption that τ2 isn’t a > (i.e., val(τ ′2)=∅ is underivable).

Case τ1 = µt1.τ1 and τ2 = µt2.τ2:
In this case, the underivable judgment S`τ1≤τ2 has S∪{τ1≤τ2}`τ1u≤τ2u as a child
in the failing derivation, where τ1u = [µt1.τ1/t1]τ1 and τ2u = [µt2.τ2/t2]τ2. By the
inductive hypothesis, there existE′, τ ′, v′, and e′ such thatE′[τ2u]:τ ′, v′:τ1u,E′[v′] 7→∗ e′,
and stuck(e′). Let v = rollτ1(v′), E = E′[unroll([ ])], τ = τ ′, and e = e′. Then by rule T-
ROLL, v:τ1. Also, E′[τ2u]:τ ′ means that {x′:τ2u} ` E′[x′]:τ ′, which implies by Lemma 20
that {x:τ2, x

′:τ2u} ` E′[x′]:τ ′; then because {x:τ2} ` unroll(x) : τ2u, Lemma 21 ensures
that {x:τ2} ` E′[unroll(x)]:τ ′, which means that E′[unroll([τ2])]:τ ′. Hence, E[τ2]:τ .
Also, by the definitions of E and v, we have E[v] = E′[unroll(rollτ1(v′))], so E[v] 7→
E′[v′], where E′[v′] 7→∗ e′. Thus, because e′ = e and stuck(e′), E[v] 7→∗ e, and stuck(e).

The remaining inductive cases, in which both τ1 and τ2 are product/sum types, are
proved similarly. The product-types case constructs v as a pair expression and uses a
fst or snd expression to eliminate the pair in E. The sum-types case constructs v as
an inl or inr expression and uses a case expression to eliminate the injection in E.

Having proved a stronger version of completeness in Lemma 23, the weaker version
follows as a corollary.

COROLLARY 24. Completeness.

∀τ1, τ2 : (τ1≤τ2 ⇐ ¬∃E, τ, e, e′ : (E[τ2]:τ ∧ e:τ1 ∧ E[e]7→∗e′ ∧ stuck(e′)))

PROOF. By Lemma 23, if τ1≤τ2 is not derivable then there exist E, τ , e, and e′ such
that E[τ2]:τ , e:τ1, E[e] 7→∗ e′, and stuck(e′). The corollary is the contrapositive of this
result.

A.6. Subtyping Soundness
With completeness proved, we move on to proving the soundness of the subtyping
relation using type-safety lemmas. Lemmas 25–27 are used to prove Preservation
(Lemma 28), while Lemma 29 is used to prove Progress (Lemma 30).
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LEMMA 25. Typing Inversion.

A. Γ`n:τ ⇒ (nat≤τ)
B. Γ`r:τ ⇒ (real≤τ)
C. Γ`succ(e):τ ⇒ (Γ`e:nat ∧ nat≤τ)
D. Γ`(e1, e2):τ ⇒ ∃τ1, τ2 : (Γ`e1:τ1 ∧ Γ`e2:τ2 ∧ τ1×τ2≤τ)
E. Γ`neg(e):τ ⇒ (Γ`e:real ∧ real≤τ)
F. Γ`λx:τ1.e:τ ⇒ ∃τ2 : (Γ∪{x:τ1}`e:τ2 ∧ τ1→τ2≤τ)
G. Γ`e1(e2):τ ⇒ ∃τ1, τ2 : (Γ`e1:τ1→τ2 ∧ Γ`e2:τ1 ∧ τ2≤τ)
H. Γ`inlτ ′

1+τ
′
2
(e):τ ⇒ (Γ`e:τ ′1 ∧ τ ′1+τ ′2≤τ)

I. Γ`inrτ ′
1+τ

′
2
(e):τ ⇒ (Γ`e:τ ′2 ∧ τ ′1+τ ′2≤τ)

J. Γ`(caseτ ′ e1 of inlx⇒ e2 else inr y ⇒ e3):τ ⇒
∃τ1, τ2 : (Γ`e1:τ1+τ2 ∧ Γ∪{x:τ1}`e2:τ ′ ∧ Γ∪{y:τ2}`e3:τ ′ ∧ τ ′≤τ)

K. Γ`e.fst : τ ⇒ ∃τ1, τ2 : (Γ`e:τ1×τ2 ∧ τ1≤τ)
L. Γ`e.snd : τ ⇒ ∃τ1, τ2 : (Γ`e:τ1×τ2 ∧ τ2≤τ)
M. Γ`rollµt.τ (e):τ ⇒ (Γ`e:[µt.τ/t]τ ∧ µt.τ≤τ)
N. Γ`unroll(e):τ ⇒ ∃t, τ : (Γ`e:µt.τ ∧ [µt.τ/t]τ≤τ)
O. Γ`x:τ ⇒ (Γ(x)≤τ)

PROOF. By induction on the derivation of Γ ` e : τ . In all the lemma’s cases, exactly
two rules could apply: T-SUBSUME (in which case the result follows from an inductive
argument) and another rule (in which case the result is immediate). For example,
Γ`e.fst:τ is derivable with T-SUBSUME and T-FST. With T-SUBSUME, the inductive
hypothesis implies Γ ` e : τ1×τ2 and τ1≤τ ′, for a type τ ′ such that τ ′≤τ . By Corollary 19
then, τ1≤τ , as required. If Γ`e.fst:τ is derived with T-FST, we can assume Γ ` e : τ1×τ2
and τ = τ1. By Corollary 19 then, τ1≤τ , as required. All the other cases are proved
similarly.

LEMMA 26. β-Preservation.

∀e, τ, e′ : ((e:τ ∧ e 7→β e
′) ⇒ e′:τ)

PROOF. By case analysis of e 7→β e
′. We show the proofs of the β-SUCC, β-APP, and

β-UNROLL cases. The proofs of the β-NEG cases are similar to that of β-SUCC; the
proofs of the β-LEFT and β-RIGHT cases are similar to that of β-APP; and the proofs
of the β-FST and β-SND cases are similar to that of β-UNROLL.

Case
n′ = n + 1

succ(n) 7→β n′
β-SUCC

Because succ(n):τ , Lemma 25 ensures that nat≤τ , while rule T-NAT ensures that
n′:nat. Hence, n′:τ by rule T-SUBSUME.

Case
(λx:τ1.e1)(v) 7→β [v/x]e1

β-APP

By Lemma 25 and the assumption that (λx:τ1.e1)(v):τ , we have (λx:τ1.e1):τ ′1→τ ′2,
v:τ ′1, and τ ′2≤τ . By Lemma 25 again and the result that (λx:τ1.e1):τ ′1→τ ′2, we also
have {x:τ1}`e1:τ2 and τ1→τ2≤τ ′1→τ ′2. Because {x:τ1}`e1:τ2, rule T-LAM implies that
(λx:τ1.e1):τ1→τ2. Given that (λx:τ1.e1):τ1→τ2 and v:τ ′1, Lemma 15 implies that both
val(τ1→τ2) = ∅ and val(τ ′1) = ∅ are underivable, so we can use Lemma 17 on the fact
that τ1→τ2≤τ ′1→τ ′2 to obtain τ ′1≤τ1 and τ2≤τ ′2. Then, because v:τ ′1, T-SUBSUME implies
v:τ1, so with {x:τ1}`e1:τ2, Lemma 21 implies [v/x]e1:τ2. Finally, with [v/x]e1:τ2 and
τ2≤τ ′2≤τ , we have [v/x]e1:τ by T-SUBSUME.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



On Subtyping-Relation Completeness, with an Application to Iso-Recursive Types A:35

Case
unroll(rollµt.τ (v)) 7→β v

β-UNROLL

By Lemma 25 and the assumption that unroll(rollµt.τ (v)):τ , we have rollµt.τ (v):µt′.τ ′

and [µt′.τ ′/t′]τ ′≤τ . Then by Lemma 25 again and the result that rollµt.τ (v):µt′.τ ′,
we find v:[µt.τ/t]τ and µt.τ≤µt′.τ ′. Because µt.τ≤µt′.τ ′, Lemma 12 implies that
[µt.τ/t]τ≤[µt′.τ ′/t′]τ ′. Hence, we have v:[µt.τ/t]τ and [µt.τ/t]τ≤[µt′.τ ′/t′]τ ′≤τ , so v:τ by
rule T-SUBSUME.

LEMMA 27. Well-Typed, Filled Contexts.

∀Γ, E, e, τ : (Γ`E[e]:τ ⇒ ∃τ ′ : (Γ ` e:τ ′ ∧ Γ`E[τ ′]:τ))

PROOF. By induction on the structure of E. If E = [ ], then the result is immediate
with τ ′=τ , because Γ`e:τ by assumption and Γ`[τ ]:τ by the definition of well-typed con-
texts and rule T-VAR. If E = succ(E′) then we can apply Lemma 25 to the assumption
that Γ`succ(E′[e]):τ to find that Γ`E′[e]:nat and nat≤τ . By the inductive hypothesis
then, there exists a τ ′ such that Γ ` e:τ ′ and Γ ` E′[τ ′]:nat, so by the definition of well-
typed contexts, Γ∪{x:τ ′} ` E′[x]:nat. Then by rule T-SUCC, Γ∪{x:τ ′} ` succ(E′[x]):nat,
implying by T-SUBSUME and nat≤τ that Γ ∪ {x:τ ′} ` succ(E′[x]):τ . Hence, by rule T-
CTXT we have Γ`E[τ ′]:τ , which completes this proof case. The proofs of the other cases
are all similar.

LEMMA 28. Preservation.

∀e, τ, e′ : ((e:τ ∧ e 7→ e′) ⇒ e′:τ)

PROOF. Only one rule derives e 7→ e′, so it must be the case that e = E[e1], e′ = E[e2],
and e1 7→β e2 (for some E, e1, and e2). Because e:τ , we have E[e1]:τ , so by Lemma 27
there exists a τ ′ such that e1:τ ′ and E[τ ′]:τ . Combining e1:τ ′ with e1 7→β e2, Lemma 26
ensures that e2:τ ′. Finally, because E[τ ′]:τ , we have {x:τ ′}`E[x]:τ , which combines with
e2:τ ′ and Lemma 21 to imply that E[e2]:τ . Hence, e′:τ as required.

LEMMA 29. Decomposition.

∀e, τ :

(
e : τ ⇒

(
∃v : (e = v)

∨ ∃E, e1, e2 : (e = E[e1] ∧ e1 7→β e2)

))
PROOF. By induction on the derivation of e:τ . The proof is a standard progress proof

using the canonical-forms Lemma 22 (and Lemma 15 in the T-APP case, to ensure that
Case C of Lemma 22 applies).

LEMMA 30. Progress.

∀e, τ : (e:τ ⇒ (∃v : (e = v) ∨ ∃e′ : (e 7→ e′)))

PROOF. By assumption, e:τ , so Lemma 29 implies that either e = v or e = E[e1]
such that e1 7→β e2. In the case of e = E[e1] such that e1 7→β e2, the dynamic semantics
ensures that e 7→ E[e2].

Preservation and Progress imply type safety.

LEMMA 31. Type Safety.

∀e, τ, e′ : ((e:τ ∧ e 7→∗ e′) ⇒ ¬stuck(e′))

PROOF. By induction on the derivation of e 7→∗ e′, using Progress and Preservation
(Lemmas 30 and 28) in the usual way.

As with λ, the soundness of the subtyping relation follows from the variable-
substitution and type-safety results (Lemmas 21 and 31).
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LEMMA 32. Soundness.

∀τ1, τ2 : (τ1≤τ2 ⇒ ¬∃E, τ, e, e′ : (E[τ2]:τ ∧ e:τ1 ∧ E[e]7→∗e′ ∧ stuck(e′)))

PROOF. The proof is the same as for soundness in λ (Lemma 6).

A.7. Subtyping Preciseness
Finally, the completeness and soundness results combine to ensure that the subtyping
relation defined in Figure 9 is precise with respect to type safety.

THEOREM 33. Preciseness.
The ≤ relation is precise with respect to type safety. Formally, for all types τ1 and τ2:

τ1≤τ2 ⇐⇒
(
¬∃E, τ, e, e′:
E[τ2] : τ ∧ e:τ1 ∧ E[e] 7→∗ e′ ∧ stuck(e′)

)
PROOF. Immediate by Corollary 24 and Lemma 32.
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