Programming Languages [Fall 2008]

Test I
NAME: __
Instructions:

1) This test is 8 pages in length.
2) You have 75 minutes to complete and turn in this test.
3) Short-answer questions include a guideline for how many sentences to write. Respond in complete English sentences.
4) This test is closed books, notes, papers, friends, neighbors, etc.

5) Use the backs of pages in this test packet for scratch work. If you write more than a final answer in the area next to a question, circle your final answer.
6) Write and sign the following: “I pledge my Honor that I have not cheated on this test.”

Signed: __

1. [5 points]

What are first-class functions? [1-2 sentences]

2. [4 points]
What is an ambiguous CFG? [1-2 sentences]
3. [5 points]
What type does the function fun f (a,b) = b::a have?

4. [6 points]

In class we discussed a function that was almost identical to the following.

fun f(x) =

let

 val v = 5;

 val y = x+v;

 val v = y+v;

 fun g(x) = x+v;

in

 g(x+1)

end;
Using ML syntax, define the simplest possible function that is equivalent to f.

5. [18 points]

a) Is an if expression of the form if e1 then e2 else e3 syntactic sugar in ML, given that ML already has syntax for defining and invoking anonymous functions?
b) If you answered no in part (a), provide an example of such an if expression that cannot be converted into one or more anonymous-function declarations and calls. If you answered yes in part (a), show how to convert any such if expression into one or more anonymous-function declarations and calls.
c) Is a let expression of the form let val x1=e1 in e end syntactic sugar in ML, given that ML already has syntax for defining and invoking anonymous functions?
d) If you answered no in part (c), provide an example of such a let expression that cannot be converted into one or more anonymous-function declarations and calls. If you answered yes in part (c), show how to convert any such let expression into one or more anonymous-function declarations and calls.

e) Is a let expression of the form let val x1=e1; val x2=e2; in e end syntactic sugar in ML, given that ML already has syntax for defining and invoking anonymous functions?
f) If you answered no in part (e), provide an example of such a let expression that cannot be converted into one or more anonymous-function declarations and calls. If you answered yes in part (e), show how to convert any such let expression into one or more anonymous-function declarations and calls.

6. [16 points]

Consider the following poorly documented but valid ML function F.

fun F L n =

let

 fun rm done nil n m = done
 | rm done (e::es) n m =

 if (m>=n)

 then (done@es)

 else (rm (done@[e]) es n (m+1))

in

 rm nil L n 0

end;

a) What is the type of F?

b) To what value does the following expression evaluate?

F [1,2,3,4,5] 3;
c) Succinctly summarize what F does.

d) Explain precisely what the following expression returns.
F [1,2,3];
7. [20 points]

a) Implement a new function called foldr2 that operates just like foldr except that it folds through two lists simultaneously.
For example:

 foldr2 (fn(x,y)=>print(Int.toString(x))) () [9,1,4] [6,3,2,5,7]

and:

 foldr2 (fn(x,y)=>print(Int.toString(x))) () [9,1,4,5,7] [6,3,2]
both cause the following to be printed:

 75421396

Notice that the rightmost elements of the longest list get folded first. When the lists have equal length, the first list passed to foldr2 gets folded before the second list.
Use ML syntax in your implementation (including pattern matching, anonymous variables, and as-bindings when appropriate). Do not use any built-in higher-order functions (such as map, foldl, or foldr) in your implementation.
b) What type does foldr2 have?

8. [26 points]
For this problem you can assume that all uses of N refer to natural numbers (either zero or the successor of a natural number), so none of your solutions need to contain explicit judgments of the form ├ N nat. Keep your solutions as simple as possible and do not use ellipses (...).
a) Define inference rules for doubling natural numbers. Use the following judgment form:
├ d(N1) = N2
b) Define inference rules for adding natural numbers. Use the following judgment form:
├ N1 + N2 = N3
c) Define inference rules for multiplying natural numbers (your inference rules can make use of addition judgments of the form ├ N1 + N2 = N3). Use the following judgment form:
├ N1 * N2 = N3
d) Using your definitions of valid doubling and addition judgments from parts (a) and (b) above, prove that for all N1 and N2, if ├ d(N1) = N2 then ├ N1 + N1 = N2.

Your proof can make use of the following lemma (which you do not need to prove).

Commutativity Lemma: For all N1, N2, and N3, if ├ N1 + N2 = N3 then ├ N2 + N1 = N3.

PAGE
7

