
 1

Programming Languages [Fall 2014]

Practice Test III

NAME: __

Instructions:

1) This test is 4 pages in length.

2) You have 2 hours to complete and turn in this test.

3) Short-answer questions include a guideline for how many sentences to write. Respond

in complete English sentences.

4) This test is closed books, notes, papers, friends, neighbors, etc.

5) Use the backs of pages in this test packet for scratch work. If you write more than a

final answer in the area next to a question, circle your final answer.

6) Write and sign the following:

“I pledge my Honor that I have not cheated, and will not cheat, on this test.”

 Signed: __

 2

1. [10 points]

What is a programming language? [1-2 sentences]

2. [20 points]

a) Implement map in terms of foldr (without using side effects), or if it can’t be done,

briefly explain why not.

fun map F L =

b) Now implement foldr in terms of map (without using side effects), or if it can’t be

done, briefly explain why not.

fun foldr F v L =

3. [20 points]

Encode an xor function in λUT. Your function must take Church booleans b1 and b2 and

return an encoded Church boolean equivalent to b1 xor b2.

4. [10 points]

Define the dynamic semantics of λUT using evaluation contexts.

 3

5. [20 points]

Assuming that progress and preservation theorems hold for λST, prove the following

standard type-safety theorem:

e1,e2,τ : (e1:τ  e1 * e2) e2:τ  ((v: e2=v)  (e3: e2 e3)))

 4

6. [20 points]

Define the first-order abstract syntax of diML, with all the extensions we’ve formalized

in class, like aggregate data types, references, exceptions, etc. (You should also be able

to define the higher-order abstract syntax and static and dynamic semantics of the fully

extended version of diML. Given enough time, you should also be able to prove its

soundness. )

