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Abstract 
Non-invasive diagnosis of lung cancer in early stages is one task where Radiomics helps. Clinical 

practice shows that the size of a nodule has high predictive power for malignancy. In the literature, 

Convolutional Neural Networks (CNN) have become widely used in medical image analysis. In 

this work, we study the ability of a CNN to capture nodule size in CT images after images are 

resized for CNN input. For our experiments, we used the National Lung Screening Trial dataset. 

Nodules were labeled into two categories (small/large) based on the original size of a nodule. After 

all extracted patches were re-sampled into 100-by-100-pixel images, a CNN was able to 

successfully classify test nodules into small and large size groups with high accuracy. In order to 

show the generality of our discovery, we repeated size classification experiments using Common 

Objects in Context (COCO) dataset. From the dataset, we selected three categories of images: 

bears, cats, and dogs. For all three categories a 5x2-fold Cross-Validation was performed to put 

them into small and large classes. The average Area Under Receiver Operating Curve (AUROC) 

is 0.954, 0.952 and 0.979 for the bear, cat and dog categories, respectively. So, camera image 
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rescaling also enables a CNN to discover the size of an object. The source code for experiments 

with the COCO dataset is publicly available in Github†. 

Keywords: Convolutional Neural Network, Explanation, Lung Cancer, Computed Tomography, 

Camera Images. 

Introduction 
In Radiomics convolutional neural networks (CNNs) are being used to try to answer all kinds 

of medical questions. Diagnosing (1-4), treatment response (5-7), patient survival time prediction 

(8-10), etc. A CNN can use 2D or 3D data. 

Due to the nature of a CNN, automated extraction of features and a determination of their 

association with labels; it happens that CNNs may learn unexpected image properties. For 

example, Zech et al. (11) presented a CNN model for pneumonia detection in chest X-Ray images. 

Authors showed that the resulting model was able to recognize hospitals and departments, as well 

as the imaging device because patients with different risk scores of pneumonia were scanned using 

different imaging protocols. In addition, sicker patients ended up in particular locations. As a 

result, hospital, department and scanner information is predictive by itself and was learned. 

In our previous work (12), we presented a CNN model that was trained to predict whether a 

benign lung nodule will become a malignant tumor in two years using low dose CT images. As 

one of the preprocessing steps, we used a warping technique to resize images to the CNN's input 

resolution. The warping method extracts a patch with a minimum bounding box, which is enough 

to include the region of interest (ROI). After extraction, the patch is resampled to the size required 

for the CNN input. The alternative for warping is cropping. Cropping extracts an ROI patch with 
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size equal to the CNN input image, thus resampling is not used. Figure 1 shows a visual 

representation of the warping and cropping methods. 

The warping method scales the X, and Y axes of an image using Sx, Sy coefficients 

respectively. These scaling coefficients depend on the size of an ROI. We hypothesize that a CNN 

may learn texture specific modifications associated with resampling and as a result learn the size 

of an ROI, i.e. CNN learns an object's (nodule's) size when the warping method is used. In lung 

cancer diagnosis, nodule size represented by the ROI is a highly predictive feature, thus a CNN 

may learn one of the most predictive diagnostic features. 

To check our hypothesis that nodule size was implicitly learned by our model, from (12), we 

designed a series of experiments. Nodules from the National Lung Screening Trial (NLST) were 

divided into two groups (small/large) using different labeling methods. For experiments with the 

NLST dataset we used a CNN architecture from our previous work (12) which focused on Lung 

cancer prediction in the future. We trained a model from scratch as well as tuning pre-trained 

models. 

Moreover, we tested whether this phenomenon is more than a unique effect that occurred in 

the NLST dataset i.e. if a CNN can decode size information from non-medical images. For that, 

we used the Common Objects in Context (COCO) dataset (13, 14). Out of 80 object categories we 

selected three: bears, cars, and dogs. The COCO dataset provides RGB images and segmentations 

of objects where the size of the objects varies. For the selected categories we repeated the size 

classification experiment using 5 times 2-fold cross-validation. The COCO dataset is publicly 

available. The pre-processing, training and testing source code is publicly available in Github (15). 
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Material and Methods 
National Lung Screening Dataset 

The NLST was a randomized trial of 53,439 patients that compared Low Dose CT (LDCT) 

vs. standard chest x-rays. After an initial screening (T0), follow-up screenings (T1 and/or T2) were 

conducted in intervals of approximately one-year. If at T1 a patient was diagnosed with cancer, 

he/she started treatment and did not have a T2 follow-up screening. According to the screening 

protocol, a screen was considered positive if a non-calcified nodule (NCN) had its longest diameter 

(LD) larger than 4 mm.  For positive screenings, radiologists provided a clinical description such 

as location, margin, etc. 

We extracted two cohorts from NLST (16) Cancer patients in the training cohort (Cohort1) 

had a positive (non-cancer) screening at time 0 and were diagnosed with cancer on the first follow-

up (N = 104). Cancer patients in the test cohort (Cohort2) had a positive nodule, so non-cancer 

screening, at time 0 and time 1. They were diagnosed with cancer at time 2. For each cancer patient, 

two non-cancer subjects were selected by demographic criteria: the same age, sex, and other 

available criteria. Finally, we excluded cases with technical problems or other challenges that 

prevented the analysis of nodules. When removing a cancer patient from the dataset the 

corresponding non-cancer patients remained. A detailed description of the dataset can be found in 

Cherezov et al (17). 

In this work we are not focused on Lung Cancer diagnosis, thus we relabeled patients. Labels 

in this study represent the size of a nodule: small or large. Different categorization methods can be 

used for relabeling. To analyze model performance and stability we used five methods for 

categorization. 
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Longest diameters for a nodule of 6, 8 and 10 millimeters were used as a threshold for splits. 

They were chosen because they are considered representative milestones in the evolution of a 

nodule according to Lung-RADS (18). 

As we can see from Figure 1, scaling parameters, Sx and Sy, for patch length and height are 

independent. The smaller the length/height the larger the corresponding scaling factor and 

influence on texture. Thus, for each patch, we selected the smallest of the two values, length or 

height. For labeling, as a threshold, we used a median of the smallest values in the training cohort. 

Finally, as a threshold value, we used the median value of a nodule ROI area in pixels. 

The numbers of patients within each class for all labeling approaches are shown in Table 1. 

Cohort1 T0 was used as a training dataset. Cohort2 T0, T1, and T2 were used as an unseen test 

cohort. 

COCO Dataset 
The Common Objects in Context dataset (13, 14) consists of 330,000 large scale images 

among which more than 200,000 images are labeled. Overall there are 1.5 million segmented 

objects of 80 categories. 

In our work, we used images provided by the COCO team as the training and the validation 

sets in 2014 and 2017 years. Images were combined into a single set. 5 times 2-fold Cross-

Validation technique was performed on the combined dataset. The preprocessing, training and 

testing source code is publicly available in Github (15). 

We selected three categories: bears, cats, and dogs. For the selected categories 2730, 9940, 

and 11452 object's patches were extracted, respectively. For patch extraction, we used bounding 

boxes provided by the COCO dataset. The largest bounding box within each category was 

computed. For all three categories, the maximum bounding box was 640x640 pixels. As a part of 
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warping method, all the patches were resampled into 640 by 640 images and used as input to a 

CNN for training and testing. 

In the COCO dataset we used only one labeling method. We computed the median area of 

extracted patches before resampling and used the resulting value for thresholding i.e. if a patch 

area is smaller than the median area of a category then the resampled image is considered small, 

otherwise, it is considered as a large image. Labeling was performed individually for each category 

before cross-validation. 

Previous Results on NLST dataset 
In NLST, for our experiments, we chose a CNN architecture and pre-trained model presented 

by Paul et al. (12) because the authors used the same dataset for training the model and showed 

up-to-date performance. The original model was trained to predict if a benign nodule will evolve 

into a malignant tumor in two years. Following our hypothesis, this trained model could (and did) 

learn nodule sizes from texture as well as malignancy characteristics. We studied this question in 

experiments described below. 

The CNN model was a cascade network. There are two branches ("left"/"right"). The "left" 

branch consists of a max-pooling layer before merging. The "right" branch consists of two 

convolution layers where each of them were followed by a max-pooling layer. After the second 

max-pooling layers the "right" and the "left" branches are merged. After merging there are 

convolution and a max-pooling layers. Their result represented as a vector (flattened) and used as 

an input to a single fully connected layer, which is considered as an output layer in the architecture. 

The CNN model showed 76% accuracy on the NLST dataset. Detailed information about the 

architecture and performance of the model can be found in the original paper. 

In comparison, Hawkins et al. (19) used 219 Radiomics features (size, location intensity and 

texture features) extracted from each patient in NLST cohorts, explained above, to build a 
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conventional radiomics model (Naive Bayesian, Random Forests, SVM classifiers) to predict if a 

benign nodule will evolve into a malignant tumor in two years. As a baseline result, Hawkins used 

the accuracy of the ROI volume feature only. The accuracy of the volume feature was 71.6%. A 

complete list of experiments and detailed information about results can be found in the original 

paper. 

Experiments 
Design of experiments on the NLST dataset was focused on three questions: 1) Is a CNN 

model capable of learning an original nodule's size after image resampling? 2) Is a CNN model 

capable of using encoded size information in its decision-making process? 3) Does the model from 

our previous work implicitly use encoded size information? 

In order to check the generality of a CNN implicitly learning an object’s size, we designed 

a size detection experiments on RGB camera dataset. 

Experiment design for the NLST dataset 
First (Experiment 1), we trained a CNN model from scratch using Paul's architecture (12). 

All weights are randomly initialized and the model was trained on Cohort1 to classify nodules with 

respect to one of the size labeling methods described above. The goal of this experiment was to 

determine how much information about the size of a nodule is encoded into the texture by 

resampling can be extracted by a CNN. 

Second, (Experiment 2), we tuned the CNN model created as a result in Experiment 1, 

originally trained to classify nodule size. The model was tuned (100 epochs with 0.0001 learning 

rate, 0.1 dropout) to predict if a benign nodule evolves into a malignant nodule in two years. 

Learning rates for all convolution layers were set to zero, fixing the features extracted from the 

image, and the last fully connected layer was randomly reinitialized. The goal of this experiment 
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was to determine if encoded by scaling and decoded by CNN, size information can be used in a 

decision-making process for Lung Cancer diagnosis. 

Third (Experiment 3), we tuned Paul's pre-trained CNN model designed to predict if a benign 

nodule will evolve into a malignant tumor in two years. The model was tuned (100 epochs with 

0.0001 learning rate, 0.1 dropout) to predict nodule size. A detailed description of the model can 

be found in our previous  work (12). Learning rates for all convolution layers, which would have 

extracted features from the images, were set to zero and the last layer, fully connected, was 

randomly reinitialized. The goal of this experiment is to determine how much information about  

nodule size was used by Paul's CNN (12). 

In the experiments 1 and 2 Cohort1 T0 was used for a training and Cohort2 T0, T1, T2 were 

used for testing. For comparability with our previous results in the experiment 3 we used Cohort1 

T0 for training and Cohort2 T0 for testing. 

Experiment design for the COCO dataset 
We performed 5 times 2-fold Cross-Validation technique for the COCO dataset. At each 

iteration, a training fold was used to develop a CNN model capable of classifying an extracted 

patch into one of two categories (small/large). The CNN architecture is shown in Figure 2. 

Learning rate = 0.0001. Decay = 0.001. Epochs = 100. We used early stopping techniques with 

patience = 10. As a Validation set, we used 20% of the training fold. The CNN was trained from 

scratch for each training fold. For repeatability we used predefined individual seeds for each 

dataset split into folds and training/validation sets. 

Results 
For the NLST dataset, we checked whether Paul's CNN architecture from our previous work 

was capable of decoding size information when trained from scratch. The pre-trained model can 
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be tuned for size group classification. Finally, a model trained for size classification can be tuned 

for tumor malignancy classification. 

For the COCO dataset, we checked if a CNN is capable to classify common camera images 

into size groups. 

NLST results 
Results of Experiment 1 (Table 2) show that a CNN model can distinguish the difference 

between small and large nodules with high accuracy. Labeling using 6, 8 and 10 mm of a nodule’s 

longest diameter as a threshold showed smaller accuracy values compared to other labeling 

methods. Potentially this is caused by the fact that the longest diameter length does not take into 

account lengths of nodule projections onto axes, which, as we discussed above and showed in 

Figure 1, define Sx, Sy scaling factors and as a result, encode size into image texture. 

Hawkins et al. (19) used the accuracy of an ROI volume feature in a baseline performance  

model for the prediction that a benign nodule evolves into a malignant tumor in two years. In that 

experiment, accuracy was 71.6%. Paul et al. (12) using the same dataset, but a CNN for a nodule 

classification improved the accuracy to 76%. These values can be considered as lower and upper 

bound values for Experiment 2. In the experiment we tuned a CNN model, trained to classify the 

size of an ROI, to classify if a benign nodule will evolve into a malignant tumor in two years. 

Following our assumption that if a CNN learns to extract the size of ROI then the CNN's accuracy 

should not be significantly smaller than the baseline result provided by Hawkins, though 

performance using 2D versus 3D features may vary. Paul’s CNN model was trained from scratch 

to predict the malignancy of a nodule. Thus, results of a tuned model in Experiment 2 would not 

be expected to be higher because most probably Paul’s CNN model learned to extract additional 

texture features associated with cancer compared to a model trained to extract size information. 
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Results from Experiment 2 (Table 3) show that a CNN trained to classify nodule size can be 

used for diagnosis. Nevertheless, due to the fact that accuracy values in the experiment are 

consistently smaller than the accuracy of the CNN trained for diagnosis, we can surmise  that the 

model from our previous work (12) learns additional image characteristics. 

Results from Experiment 3 (Table 4) show that the CNN model trained for nodule 

malignancy prediction (12) can be used for nodule size detection and as a result, we assume that 

nodule size is a feature of the image that the model learned. 

COCO Results 
The result for 5 times 2-fold Cross-Validation on the COCO dataset is shown in Table 5. As 

we can see for all the selected categories accuracy and AUC metrics show "high" performance. 

Performance in the "Dog" category is higher in comparison to performance in the other two 

categories. We assume that this is related to the number of images among different categories. 

There are 11452, 9940, and 2730 images for "Dog", "Cat", and "Bear" categories respectively. 

Discussion 
In this paper, we examined the hypothesis that an object's size is encoded into the image 

texture by resampling during the pre-processing step and decoded by a CNN. We used two 

datasets. For the National Lung Screening Trial dataset, we trained a model from scratch as well 

as tuned pre-trained models from our previous work. In the Common Objects in Context dataset 

we performed 5 times 2-fold Cross-Validation where CNN models were trained from scratch. The 

results of the experiments support our hypothesis on both datasets. Thus, image warping 

(resampling) implicitly encodes an object's size information into texture. 

Radiomics, as a cross-disciplinary field, uses clinical data, imaging data, and machine 

learning tools. It was considered that when CNN models are used it will be hard to include clinical 

features into a model. Nevertheless, we showed that at least in our previous models the CNN 
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learned to decode a nodule's size and used it in its decision-making process. As a result, this raises 

a question. Is it possible to encode some other clinical features into medical images such that a 

CNN model could use it and which will benefit the performance of the model? As we can see, 

there are some examples when it occurs. A model recognized hospitals, departments, and scanners 

from chest X-Ray images  because this information was related to pneumonia risk score (11). In 

our work, the CNN model was able to learn tumor size because the size is an important feature in 

Lung Cancer diagnosis and malignancy prediction. In these examples, clinical information was 

encoded accidentally and researchers did not choose what information to encode. Thus, the 

question is if it is possible to control that process? 

We shared the code which we used for experiments in the COCO dataset. The code is capable 

to repeat the provided experiments with categories that were used in this work as well as capable 

to perform the same experiments based on the remaining categories. In addition, the code provides 

tools for different types of filtering (15). 
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Figure 1. Cropping (A) and Warping (B) patch extraction methods. The solid line represents the 
region of interest border. The dashed line represents an extracted patch border. This assumes that 
CNN input is a 100x100-pixel image. X and Y represent the corresponding patch’s width and 
height, respectively. 

 

Threshold 
Cohort1 T0 Cohort2 T0 Cohort2 T1 Cohort2 T2 

Small Large Small Large Small Large Small Large 

LD 6 mm 57 204 44 193 39 171 44 166 

LD 8 mm 129 132 126 111 106 104 89 121 

LD 10 mm 183 65 172 65 140 70 126 84 

Median of 
min axe 

122 139 89 148 128 82 124 86 



14 
 

Median 
nodule area 

128 133 99 138 123 87 117 93 

Total 261 237 210 210 
Table 1. Number of patients in groups after labeling nodules by size. The number of patients in 
Cohort2 at T0 and T1/T2 vary because some patients were excluded due to low image quality or 
patient removal for the trial. 

 

 

Figure 2. The CNN architecture used for size classification in the COCO dataset. There are eight 
convolution layers with 3x3 kernels. Each convolution layer is followed by a max-pooling layer 
with a 2x2 window and stride equal to 2. For all but the last layers the ReLU activation function 
was used. The softmax activation function was used for the last fully connected (FC) layer. 
Dropout for all FC layers was set to 0.75. 

 

 

 

Threshold Cohort2 T0 (%) Cohort2 T1 (%) Cohort2 T2 (%) 

LD 6 mm 95 (0.97) 79.52 (0.85) 81.4 (0.85) 

LD 8 mm 89 (0.947) 79 (0.839) 76 (0.82) 

LD 10 mm 94.5 (0.9784) 87 (0.867) 84 (0.877) 

Median of min 
size 

99.2 (0.9998) 92.38 (0.94) 94.28 (0.95) 
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Median nodule 
size 

94.93 (0.9894) 97.14 (0.9978) 95.7 (0.9974) 

Table 2. Accuracy and AUC (in brackets) of a CNN trained from scratch for classification a nodule 
original size group (Experiment 1). 

 

Threshold LD 6 mm LD 8 mm LD 10 mm Median of 
min size 

Median 
nodule size 

Accuracy (%) 72.15 
(0.76) 

74.26 
(0.788) 

75.1 
(0.8182) 

74.26 
(0.786) 

74.26 
(0.794) 

Table 3. Accuracy and AUC (in brackets) of a CNN trained for nodule original size classification 
after tuning for cancer classification (Experiment 2). Accuracy of a CNN trained from scratch to 
classify cancer is 76%. Accuracy of cancer classification using a tumor volume only is 71.6%. 

 

Threshold Cohort2 T0 (%) Cohort2 T1 (%) Cohort2 T2 (%) 

LD 6 mm 93.67 (0.969) 79.52 (0.82) 81.4 (0.858) 

LD 8 mm 90.3 (0.923) 81 (0.8438) 80.5 (0.828) 

LD 10 mm 93.67 (0.9763) 87.14 (0.9235) 84.76 (0.907) 

Median of min size 100 (1) 92.4 (0.937) 94.3 (0.962) 

Median nodule size 97.89 (0.989) 98.57 (0.989) 98.09 (0.99) 
Table 4. Accuracy and AUC (in brackets) of a CNN trained for cancer classification after tuning 
to classify a nodules original size group (Experiment 3). 

Run Fold Bear Cat Dog 

1 
A 89.8 (0.942) 88.5 (0.929) 93.4 (0.983) 

B 89.9 (0.964) 88.2 (0.968) 93.9 (0.974) 

2 
A 85.2 (0.946) 88.6 (0.966) 93 (0.98) 

B 88.3 (0.965) 89.8 (0.956) 94.1 (0.98) 

3 A 88.5 (0.964) 88.6 (0.951) 86.3 (0.971) 
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B 90.7 (0.969) 86.6 (0.951) 91.6 (0.98) 

4 
A 88.5 (0.97) 87.2 (0.954) 92.4 (0.986) 

B 90.5 (0.944) 89.2 (0.959) 93.2 (0.981) 

5 
A 89.8 (0.95) 88.8 (0.953) 93.1 (0.982) 

B 88.8 (0.933) 88.8 (0.94) 93.5 (0.982) 
Table 5. Accuracy and AUC (in brackets) results for 5 time 2-fold Cross-Validation in the COCO 
dataset. 

 




