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Abstract—CSI fingerprint localization is an advanced and
promising technique for indoor localization, which identifies the
user’s location by mapping his measured CSI against the server’s
CSI fingerprint database. This approach is highlighted due to its
high granularity for location distinction and strong robustness to
noise disturbances, but it also causes potential privacy leakage
for the three participants in localization process: the user, the
server, and the AP. Currently, there has been little research done
on this issue, and the existing work often ignores the privacy
concern on the AP. To fill the gap, this paper develops a privacy-
preserving fuzzy localization scheme with CSI fingerprint. On
one hand, it leverages the property of CSI training to guarantee
the randomness and independence of the user’s measurement
in each time of localization, and uses homomorphic encryption
to achieve the data transmission and measurement comparison
in cipher. These operations enable our scheme to preserve the
location privacy of the user and APs as well as the data privacy of
the server. On the other hand, the adoption of CSI fingerprint and
fuzzy logic enhances the localization accuracy greatly. Through
simulation experiments performed on CRAWDAD database, the
efficiency of our proposed scheme is validated.

I. INTRODUCTION

Indoor localization is an important and practical service for
commercial, public safety, and military applications [1]. Due
to the lack of GPS signals indoor and the increasing demand
for the high precision, low cost and convenient usage, a vast
range of approaches have been proposed based on various
signals. Among them, the CSI (Channel State Information)
fingerprint localization with access points (APs) is one of the
most advanced and promising technologies, which involves
three participants in the process of localization: the user, the
server, and the AP. It determines the user’s location by mapping
the CSI measurements from APs against the CSI fingerprints
pre-stored on the server.

As its name implies, CSI denotes the characteristic of the
transmission links for wireless signals. It includes the signal
power (SP), the time-of-arrival (ToA), and the angle-of-arrival
(AoA) [2]. Based on a training signal X sent by the transmitter
and a received signal Y , the CSI H between the transmitter
and receiver can be estimated [3]. In contrast to the traditional
fingerprint RSS (Received Signal Strength) which is vulnerable
to channel effects (e.g., multipath effect and shadow fading)
in the complex indoor environment, CSI takes advantage of
the channel effects as valuable signatures to label different
positions. By virtue of the abundant information contained
in CSI, the indoor locations can be distinguished with more

granularity, and less infrastructures (APs) are required to gain
the equivalent efficiency compared with RSS. Moreover, the
CSI fingerprint localization could be more robust because
occasional disturbances would only contaminate the values at
one or a small fraction of dimensions in the whole CSI vectors
of high dimension, while leaving values at other dimensions
unchanged. With the rapid development of commercial off-
the-shelf devices and novel techniques for CSI measuring [4],
it is more and more convenient to extract the CSI features in
practice. Solid evaluations and comparisons have proved that
the CSI based method outperforms the RSS based greatly in
localization [5]. Therefore, much work has been done in recent
years to explore the CSI fingerprint localization methods [6],
[7], [8], [9], or incorporate CSI into the existing localization
framework [10].

However, the working principles of the CSI fingerprint
localization also lead to potential threats on the privacy of
localization participants. For the user, his location retrieval
request conveying his CSI measurement to the server would
leak his location privacy, which indicates his behavior habits,
interests, and social relationships [11], [12]. For the server,
the violence of its data privacy would cause financial loss
to the service provider who has paid much money and time
to build the CSI fingerprint database. In particular for APs,
the leakage of their CSI data would expose their positions
to malicious attackers, thereby incurring physical access and
damage. Researchers have discovered that the ratio of signal
powers between the first peak and second peak in CSI can
be used as a physical layer metric to gauge the distance from
the AP [13]. The scheme in [14] depends on the ToA and
AoA to achieve localization based on only one AP. Conversely,
the similar technique could also be applied to locate the AP.
So the AP’s privacy is a problem that should not be ignored,
especially in the security protection of military applications.

Although many works have paid attention to the issue
of privacy-preserving in localization now, they might either
exclude the security consideration of the AP, or be designed
not for the CSI fingerprint based scenario. For example in
[15], Hong Li et al. develop a privacy-preserving localization
scheme with RSS fingerprint of WiFi signals to protect the
user and the server. But it provides no consideration on the
protection of APs. In [16], Tao Shu et al. design three protocols
for different privacy-preserving levels, among which the third
one is of the highest level of security. This scheme could
preserve the privacy of APs to a certain degree, but it is not
specifically designed for CSI fingerprint localization.



In his paper, we develop a privacy-preserving fuzzy lo-
calization scheme with CSI fingerprint to provide protections
to the user, server and AP together. Under this scheme, the
request signal from the user would be obfuscated, and the
location retrieval would be carried out in cipher, such that the
user’s privacy can be protected. More importantly, based on
the characteristic that the CSI is calculated through a training
signal, this scheme has APs to use the training signals that are
random and secret to the user, such that the user can neither
know his CSIs between APs and himself exactly, nor learn
the true differences between his own measurement and the
measurements derived from the CSI fingerprint database. In
this way, the privacy of the server and APs can be protected.
Additionally, the employment of the fuzzy algorithm in lo-
cation retrieval can greatly enhance the localization accuracy
while preserving privacy.

The contributions of this paper are three-fold: Firstly, to the
best of our knowledge, we propose the first privacy-preserving
mechanism for CSI fingerprint localization to protect the
privacy of the user, AP and server at meantime. Secondly,
we establish a fuzzy localization framework to implement
the proposed privacy-preserving mechanism. Thirdly, We carry
out simulation experiments on the publicly accessible data set
CRAWDAD to validate our scheme.

II. BACKGROUND

In this section, we will present some background knowl-
edge for the development of our privacy-preserving fuzzy
localization scheme with CSI fingerprint. The first one is
the basic fingerprint localization method regardless of the
fingerprint type. The second one is the fuzzy algorithm used
for location retrieval to improve localization accuracy. The last
one is the Paillier cryptosystem used to encrypt the interactive
data homomorphically in localization process.

A. Basic CSI Fingerprint Localization

A basic fingerprint localization scheme is composed of
offline training stage and online service stage. It works mainly
as follows.

1) Offline Training Stage: In offline training stage, the
service provider would build up a fingerprint database by
sampling certain measurements at each reference location,
and store the database on the server. No matter whether
the fingerprint is RSS or CSI, a single fingerprint is a n-
dimensional vector as

Hk = [h1k, h2k, · · · , hnk]
T ∈ Cn (1)

It corresponds to the k-th reference location lock, which is
expressed in terms of 2-dimensional or 3-dimensional coordi-
nates, k = 1, 2, · · · ,M . M is the volume of the database. The
fingerprint database can be formulated as

Ψ = [H1, H2, · · · , Hk, · · · , HM ] ∈ Cn×M (2)

2) Online Service Stage: In online service stage, a user
to-be-localized samples his own fingerprint as

H0 = [h10, h20, · · · , hn0]
T ∈ Cn (3)

and transmits this n-dimensional vector to the server. In order
to retrieve his location, H0 would be mapped against all Hks in
the fingerprint database Ψ with some algorithms, such as KNN
(K Nearest Neighbor) algorithm [15], [17]. By this algorithm,
the server would identify the user’s location as the centroid of
the K reference locations, which correspond to the K nearest
fingerprints to the user’s measurement.

B. Fuzzy Logic

Created by Zadeh, the fuzzy logic is a useful tool to deal
with the uncertainty and vagueness in computation [18]. As
shown in Figure (1), a typical Fuzzy Logic System (FLS)
consists of four components: the fuzzy rule, the fuzzifier, the
fuzzy inference engine, and the defuzzifier. Take the fingerprint
localization for example, the roles that the four components
play in a FLS can be summarized as follows.

Fuzzifier DefuzzifierFuzzy inference engine

Fuzzy rule

Input Output

Fuzzy Logic System (FLS)

Fig. 1. Diagram of the typical Fuzzy Logic System

1) Fuzzy Rule: The fuzzy rule is the basis of reasoning in
a FLS. Under the background of fingerprint localization, the
k-th (k = 1, 2, · · · ,M) fingerprint can be regarded as the k-th
fuzzy rule in the form of

IF H0 is Hk, THEN loc0 is lock. (4)

The user’s measurement H0 and location loc0 are the variable
vectors of fuzzy input and fuzzy output, while the reference
fingerprint Hk and reference location lock are the k-th center
vectors of fuzzy input and fuzzy output corresponding to the
k-th fuzzy rule.

2) Fuzzifier: Before an input vector is fed into a FLS, it
needs to be fuzzified firstly by the fuzzifier as a preparation.
In the scenario of fingerprint localization discussed here, a
probability μk will be generated for the input to describe how
nearly it is close to the k-th input center vector, i.e., how likely
it “belongs to” the k-th fuzzy rule. This probability is called
membership, and the function to generate membership is called
membership function.

3) Fuzzy Inference Engine and Defuzzifier: The fuzzy
inference engine is the core of a FLS. It is responsible to
execute fuzzy reasoning according to the fuzzy rules. Based
on the memberships of inputs, the inference engine derives
the memberships of the output, which describe how nearly the
output is close to each output center vector. Since the output
of the inference engine is still fuzzy, it is necessary to use the
defuzzifier to generate the definite output of the FLS. In our
discussion on fingerprint localization, the operations of fuzzy
inference and defuzzification can be performed together as

loc0 =

∑M
k=1 μk · lock∑M

k=1 μk

(5)



C. Paillier Cryptosystem

The construction of our privacy-preserving localization
scheme relies on the Paillier cryptosystem. It is an asymmetric
encryption method invented by Pascal Paillier based on deci-
sional composite residuosity problem [19]. In this work, we
design Paillier encryption scheme as follows.

• Key generation: Choose two large prime numbers p, q,
and compute N = pq and φ(N) = (p−1)(q−1). The
public key is N , and the private key is 〈N,φ(N)〉.

• Encryption: For a plaintext m ∈ ZN , choose a random
number r ∈ Z∗

N , and the ciphertext is given by

�m� = (1 +N)m · rN mod N2 (6)

• Decryption: Given a ciphertext c ∈ ZN2 , the plaintext
is obtained by

m =
[cφ(N) mod N2]− 1

N
· φ(N)−1 mod N (7)

The Paillier encryption scheme has the following additively
homomorphic property. For m1, m2, m, c ∈ ZN , there are

�m1 +m2 mod N� = �m1� · �m2� mod N2 (8)

�c ·m mod N� = �m�c mod N2 (9)

III. FUZZY CSI FINGERPRINT LOCALIZATION AND ITS

PRIVACY THREATS

In this section, we propose a fuzzy localization framework
with CSI fingerprint that is not equipped with any privacy-
preserving mechanism. It identifies the user’s location with
fuzzy logic based on a simple idea that the reference location
with less error in fingerprint mapping should contribute more
to the final localization result. Under this framework, we
discuss the privacy leakage threats on the user, server and AP
respectively.

A. Fuzzy CSI Fingerprint Localization

As a fingerprint localization method, the structure of our
fuzzy framework with CSI fingerprint is shown in Figure (2).
In the training stage, the service provider needs to determine
a fuzzy parameter for the future service, besides establishing
the CSI fingerprint database. In the service stage, the fuzzy
memberships with which the user’s location “belongs to”
different reference locations would be calculated by the server,
and the final estimation of user’s location is the sum of all
reference locations weighted by the memberships.

APs

User

Send service

request Send training signals

Sample CSI 

measurement

Send CSI measurement Location 

retrieval

Return location result

Server

Online service stage Offline training stage

Establish CSI fingerprint 

database and determine 

fuzzy parameter

Service provider

Fig. 2. Framework of fuzzy CSI fingerprint localization

1) Offline Training Stage: Assume there are B APs de-
ployed and M reference locations. In offline training stage,
the service provider samples CSI data for mk times at the k-
th reference location lock to get the measurement Lk(j) =
[L1k(j)

T , L2k(j)
T , · · · , LBk(j)

T ]T , j = 1, 2, · · · ,mk, k =
1, 2, · · · ,M . Lbk(j) in Lk(j) is the nb-dimensional CSI vector
contributed by the b-th AP, b = 1, 2, · · · , B. The total dimen-

sion of Lk(j) is n =
∑B

b=1 nb. Let Hbk = 1
mk

∑mk

j=1 Lbk(j).
The service provider regards the following vector as the CSI
fingerprint for lock.

Hk = [HT
1k, H

T
2k, · · · , HT

bk, · · · , HT
Bk]

T ∈ Cn (10)

For the convenience of writing, it can be reformulated as (1).
The whole CSI fingerprint database is

Ψ = [H1, H2, · · · , Hk, · · · , HM ] ∈ Cn×M (11)

For the convenience of writing, it can be reformulated as (2).
In our fuzzy localization scheme, we adopt Guassian fuzzy

membership function as

μk = exp(−Dk

σ2
) (12)

where Dk = ‖H0−Hk‖22, H0 is the user’s CSI measurement,
and σ2 is the fuzzy parameter. According to fuzzy theory, σ2

is related to the “width” of Guassian membership function.
It can be selected by the service provider based on practical
experience or expert knowledge, such as

σ2 =
1

M

M∑
k=1

(
1

mk

mk∑
j=1

‖Lk(j)−Hk‖22) (13)

The service provider stores both Ψ and σ2 on the server.

2) Online Service Stage: In online service stage, a user
can be aware of his location by interacting with the server and
APs. The server would figure out the user’s location with a
fuzzy method. The detailed process is as follows.

Firstly, the user broadcasts service request to APs. For
b = 1, 2, · · · , B, the b-th AP replies training signal Xb that
is known to the user beforehand. Correspondingly, the user
receives signal Yb0. Based on Xb and Yb0, the user can solve
the CSI vector Hb0 as demonstrated in [3]. To avoid the
interference among different training signals, APs send signals
in the order how Hbks are arranged in Hk (k = 1, 2, · · · ,M ),
and in each time slot there is only one AP sending. All Hb0s
lined up together compose the entire CSI measurement of the
user as

H0 = [HT
10, H

T
20, · · · , HT

b0, · · · , HT
B0]

T ∈ Cn (14)

For the convenience of writing, it can be reformulated as
(3). Then the user sends H0 to the server for fuzzy location
retrieval.

After receiving user’s message, the server computes the
localization result according to (12) and (5), and returns this
result to the user finally.

B. Privacy Threats in Fuzzy CSI Fingerprint Localization

The use of CSI fingerprint and fuzzy algorithm can enhance
the localization accuracy, but does nothing more to protect
the privacy compared with other fingerprint based schemes.
In this work, we assume that all the participants involved in



localization (the user, the server, and the AP) are all honest
but curious. This means that they comply with the specified
localization process and do not collaborate with attackers.
Next, we will summarize the privacy threats on the user, server
and AP respectively.

1) For the user: In localization, the threats on the user’s
privacy are three-fold. Firstly, the user may expose his CSI
to attackers when he requests localization service, leading
his location to be inferred unwantedly. Secondly, the user’s
location can be learned by the server according to his CSI
measurement reported. Thirdly, an attacker can capture the CSI
measurement sent by the user, and use it to retrieve the user’s
location on the server.

2) For the server: In localization, an attacker can fabricate
a large number of artificial CSI measurements in a fuzzing
like way, or sample real CSI measurements at a large number
of spots. Then he uses these measurements to ask the server
for localization service. By recording all pairs of the CSI and
its corresponding location, he can establish his own fingerprint
database which is similar to the original one on the server.

3) For the AP: When APs send training signals to the user
in service stage, they might leak out their CSI data, which can
be used to infer their locations with the technologies mentioned
in Introduction. It might lead to the threats of access and
damage physically.

IV. PRIVACY-PRESERVING IN FUZZY CSI FINGERPRINT

LOCALIZATION

As discussed before, the privacy threats in CSI fingerprint
localization are mainly attributed to the direct service request
from the user, and the fingerprint comparison in plaintext. So
in this section, we will present a privacy-preserving fuzzy
localization scheme with CSI fingerprint to deal with the
two problems above. Moreover, we will analyze its protective
effects on the user, server and AP respectively.

A. Privacy-Preserving Localization Scheme

Based on the framework of fuzzy CSI fingerprint localiza-
tion, our privacy-preserving scheme is additionally equipped
with a set of protective mechanism to address the privacy
threats in localization. Firstly, an obfuscating operation would
be performed by the user when he requests training signals
from APs. Secondly, a homomorphic encryption method would
be used for the data transmission and measurement comparison
in cipher. Lastly and the most importantly, random secret
training signals would be leveraged by APs to break the
correlation of the user’s measurement with the CSIs of APs
and the CSI fingerprints on the server. The work flow of
our privacy-preserving fuzzy scheme is shown in Figure (3).
According to the different parties and their operations in
localization, the detailed localization process can be divided
into the following five steps.
Step 1: Preparation

In offline training stage, the service provider establishes
the CSI fingerprint database Ψ as (2) and determines the fuzzy
parameter σ2 as (13). Then he stores Ψ on the server, but re-
leases σ2 and each reference location lock (k = 1, 2, · · · ,M)
to the public. It is worth noting that the fuzzy parameter σ2

here should be different from that in the original fuzzy scheme

APs
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Send service request

Server

Online service stage

Offline training stage

Service provider

Compute in cipher

Return results in cipher 

Send training signals Transmit training signals

Release fuzzy parameter 

and reference locations
Store CSI fingerprint database

Decrypt ciphertexts and 

identify location

Transmit retrieval request 

Sample measurements 

and encrypt data

Establish CSI fingerprint database 

and determine fuzzy parameter

Fig. 3. Privacy-preserving fuzzy localization scheme with CSI fingerprint

without privacy-preserving. The new selection strategy will be
given in Step 3.
Step 2: Service request

When requesting localization service from APs, the user
obfuscates his request signal with some methods. As discussed
in [3], if the CSI fingerprint is defined in time domain, a delay-
and-sum mechanism will be required, and if the CSI fingerprint
is defined in frequency domain, a scaling modulation will be
implemented for each subcarrier instead.
Step 3: CSI measuring

As a reply to the user’s request, the b-th (b = 1, 2, · · · , B)
AP sends him a random training signal Xb, which is secret to
the user and independent on any CSI data. At the same time,
the value of Xb is transmitted to the server.

On the server side, supposing that Xb is sent over an indoor
wireless channel with CSI Hbk, the server can obtain the
imagined output Ybk for k = 1, 2, · · · ,M . The server arranges
all Ybks in the same order as Hbks in Ψ, thus yielding a new
measurement database as

Ψ
′
= [Y1, Y2, · · · , Yk, · · · , YM ] ∈ Cn×M (15)

where Yk = [Y T
1k, Y

T
2k, · · · , Y T

bk, · · · , Y T
Bk]

T is the k-th refer-

ence measurement. Like Ψ before, Ψ
′

can be reformulated for
the convenience of writing as

Ψ
′
=

⎡
⎢⎢⎣
y11 y12 · · · y1k · · · y1M
y21 y22 · · · y2k · · · y2M

...
...

...
...

yn1 yn2 · · · ynk · · · ynM

⎤
⎥⎥⎦ ∈ Cn×M (16)

To adapt to the new measurement database above, the selection
of fuzzy parameter σ2 in Step 1 should be modified as

σ2 =
1

M

M∑
k=1

(
1

mk

mk∑
j=1

B∑
b=1

‖Y L
bk(j)− Ybk‖22) (17)

where Y L
bk(j) is the imagined output supposing Xb is sent over

an indoor wireless channel with CSI Lbk(j).
On the user side, he cannot solve his CSI vector due to

the unknown Xb for b = 1, 2, · · · , B. Instead, he puts each
received signal Yb0 together in a line as

Y0 = [Y T
10, Y

T
20, · · · , Y T

b0 , · · · , Y T
B0]

T ∈ Cn (18)



Like H0 before, the new measurement Y0 can be reformulated
for the convenience of writing as

Y0 = [y10, y20, . . . , yn0]
T ∈ Cn (19)

Note that

D
′
k = ‖Y0 − Yk‖22 =

n∑
i=1

(yi0 − yik)
2

=

n∑
i=1

(yi0)
2

︸ ︷︷ ︸
G1

+

n∑
i=1

(−2yi0 · yik)
︸ ︷︷ ︸

G2

+

n∑
i=1

(yik)
2

︸ ︷︷ ︸
G3

(20)

The user generates a public key Kp and a private key
Ks using Paillier cryptosystem. With Kp, he computes the
following ciphertexts

S1 = �G1� = �

n∑
i=1

(yi0)
2� (21)

S2 = {�−2y10�, �−2y20�, · · · , �−2yn0�} (22)

Then he transmits {S1, S2,Kp} as the location retrieval request
to the server.
Step 4: Fingerprint comparison in cipher

With the data from user, the server computes the ciphertext
of D

′
k as follows.

�G2� = �
n∑

i=1

(−2yi0 · yik)� =
n∏

i=1

(�−2yi0�)
yik (23)

�G3� = �(yik)
2� (24)

�D
′
k� = �G1 +G2 +G3� = �G1� · �G2� · �G3� (25)

Then, the server returns encrypted �D
′
k� (k = 1, 2, . . . ,M) to

the user.
Step 5: Location identification

The user decrypts every D
′
k from �D

′
k� using Ks. In the

similar fuzzy way that the server does in Section III, the user
identifies his location finally via (12) and (5) by replacing Dk

by D
′
k.

B. Analysis

In our privacy-preserving CSI fingerprint localization
scheme, the confidentiality of the encrypted data is guaranteed
by Paillier cryptosystem. Combining with the interactions
among the user, server and APs, we will analyze the privacy-
preserving effects on them respectively.

1) For the user: Firstly, because of the obfuscation in
service requesting, the user masks his true CSI towards un-
trusted APs and other potential attackers in the environment.
Secondly, as the measurements transmitted to the server have
been encrypted asymmetrically, it is unfeasible for the server
to know the user’s location from his location retrieval request.
Thirdly, by the same reason of encryption, attackers cannot
learn the user’s location from the ciphertexts returned by the
server. To sum up, the location privacy threat on the user can
be addressed.

2) For the server: For each time of localization, the training
signals are chosen by APs randomly and kept secret to the user.
There is no latent consistency in the measurements sampled
at the same location. Consequently, the attacker cannot steal
the CSI fingerprint on the server by requesting localization
service for multiple times. Although the reference locations
are released to the public, they are irrelevant to the concrete
values of CSI fingerprints in the database. So the data privacy
threat on the server can be addressed.

3) For the AP: Since the training signals sent by APs are
random and secret, the user and other potential attackers cannot
learn their true CSIs when sampling measurements. So the
locations of APs would not be inferred through CSI data. The
location privacy threat on the AP can be addressed.

V. SIMULATION EXPERIMENTS

As analyzed before, our proposed privacy-preserving mech-
anism is capable to protect the location privacy of the user and
APs as well as the data privacy of the server in localization.
So in this section, we will focus on evaluating the accuracy
of the localization scheme. All our simulation experiments are
carried out on the publicly accessible data set CRAWDAD
[20], which contains over 9300 temporal CSI data measured
in an real indoor environment as shown in Figure (4). For
(almost) all pairs of locations, the CSI is measured for 5
times. We choose the former 4 measurements for fingerprint
training, i.e. mk = 4, and leave the last one for testing. The
dimension of the CSI vector contributed by each AP is set to
be nb = 6. Considering that the accuracy enhancement of our
localization scheme lies in the adoption of fuzzy algorithm
and CSI fingerprints, so under the same privacy-preserving
mechanism aforementioned, we will make comparisons with
other schemes from two perspectives as follows.
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Fig. 4. The measuring environment of CRAWDAD [6]

A. Compared with KNN Algorithm

Given the same CSI fingerprint database, the localization
errors of schemes with fuzzy algorithm and KNN algorithm are
illustrated in Figure (5). For the KNN based scheme, we only
show the condition when K = 2, because the performance of
schemes with other values of K is even worse for this case. In
the left subfigure, the APs’ placements are selected intuitively,
while in the right subfigure, the APs’ placements are optimized
by traversing all possible options for both of the schemes. The
x-axis represents the number of APs employed for localization



(denoted as B), and the y-axix represents the localization error.
From the figure, it can be seen that the localization error of
our scheme with fuzzy algorithm is dramatically less than that
of the scheme with KNN algorithm, and its decreasing rate
is much faster than the counterpart. In the intuitive scenario,
when B = 2, the mean error of our fuzzy scheme is 0.0223m,
which can be negligible in practice. While for the KNN based
scheme, even when B = 5, its mean error is still 2.5266m,
which is 4 times more than the mean error of fuzzy scheme
with only one AP. In the optimized scenario, the mean error
of our fuzzy scheme is less than the KNN based scheme for
over 2 orders of magnitude when B ≥ 2.
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Fig. 5. Compared with the scheme with KNN algorithm

B. Compared with RSS Fingerprint

With the same fuzzy algorithm, the logarithmized lo-
calization errors of schemes with CSI fingerprint and RSS
fingerprint are illustrated in Figure (6). Like the above, in
the left subfigure, the APs’ placements are selected intuitively,
while in the right subfigure, the APs’ placements are optimized
for both of the schemes. The x-axis represents the number of
APs B, and the y-axix represents the logarithmized localization
error. From the figure, it can be seen that our scheme with CSI
fingerprint surpasses the scheme with RSS fingerprint greatly
in localization accuracy. In the intuitive scenario, from B = 1
to B = 5, the difference between the logarithmized mean
errors of the RSS based scheme and our CSI based scheme
increases from 0.7467 to 3.5421. In the optimized scenario,
when B = 2, 3, both the mean and maximum errors of our
CSI based scheme is less than those of the RSS based scheme
for over 2 orders of magnitude.
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Fig. 6. Compared with the scheme with RSS fingerprint

VI. CONCLUSION

In this paper, we develop a privacy-preserving fuzzy lo-
calization scheme with CSI fingerprint using homomorphic

encryption and fuzzy logic. It cannot only achieve better
localization accuracy, but also protect the location privacy of
the user and APs as well as the data privacy of the server.
Through simulation experiments performed on CRAWDAD
database, it is comfirmed that the proposed scheme is efficient.
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