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Abstract— Delay Tolerant Wireless Sensor Networks
(DTWSNs) are sensor networks where continuous connectivity
between the sensor nodes and their final destinations (e.g.,
the base station) cannot be guaranteed. Storage constraints
are particularly a concern in DTWSNs, since each node may
have to store sensed data for a long period of time due
to intermittent communication while continuously collecting
data. In this paper, we develop novel techniques to seamlessly
authenticate and compress sensed data, addressing the storage
concerns in DTWSNs in hostile environments by harnessing
both temporal and spatial correlation among sensed data.
By appropriately using Message Authentication Code (MAC)
and one-way hash functions, our techniques allow a node
(including intermediate, non-source nodes) to efficientlycom-
press sensed data without regenerating MACs. We explore
the trade-off between data distortion and storage reduction
provided by compression so that we can reach the maximum
data reduction while maintaining desired data quality.

I. I NTRODUCTION

Wireless sensor networks (WSNs) have recently received
a lot of attention due to a wide range of potential appli-
cations such as warehouse inventory, object tracking, and
environment monitoring. A typical WSN is expected to
consist of a large number of sensor nodes deployed in a
large scale, where the sensor nodes have limited power,
storage, communication, and processing capabilities.

In certain sensing applications, it is not feasible to pro-
vide real-time transmission of sensed data between WSNs
and their final destinations. Such WSNs are referred to as
Delay Tolerant Wireless Sensor Networks (DTWSNs) [7].
In such networks, continuous connectivity between the
sensor nodes and the data collectors (e.g., mobile sinks)
cannot be guaranteed due to intermittent communication.
Examples of DTWSNs in practice include ZebraNet [9]
and DataMules [15].

Storage constraints are particularly more concerns than
energy constraints in DTWSNs, since each sensor node may
have to store sensed data for a long period of time due to
intermittent communication while continuously collecting
data. Data compression is certainly a good candidate to
reduce the storage requirement by removing redundancy
in stored data while maintaining desired data quality. How-
ever, when a DTWSN is deployed in a hostile environment,
data integrity must be protected from unauthorized modifi-
cations by potential attackers.

In this paper, we address both compression and authenti-
cation issues for DTWSNs. Specifically, we develop novel
techniques to seamlessly integrate data authentication and

compression at the same time. Our contributions in this
paper are three-fold:

1) We develop authenticated data compression schemes
to allow each node not only to protect data integrity
by using Message Authentication Code (MAC), but
also to efficiently compress sensed data without
regenerating MACs. An important property of the
authentication scheme is that an intermediate node
(other than the data generator) can also compress the
sensed data while reusing the same MAC as long as
it follows the correct compression procedure.

2) We take advantage of the redundancy due to tem-
poral and spatial correlation among sensed data,
and develop bothauthenticated temporalandspatial
compression schemes.

3) We also investigate the trade-off between data quality
and storage reduction provided by compression. Our
schemes give a compression threshold so that each
node can reach the maximum data reduction while
maintaining desired data quality.

Our security analysis indicates that these schemes can
properly defend against external attacks. Moreover, we
study the performance of these schemes through simulation
using both real and simulated data sets. Our results demon-
strate that these schemes can effectively take advantage of
the temporal and spatial correlation among the sensed data
so that the required storage can be reduced without greatly
sacrificing the data quality.

The rest of the paper is organized as follows. Sec-
tion II discusses the assumptions and threat model. Sec-
tion III presents the proposed authenticated data compres-
sion schemes and their security analysis. Section IV reports
the simulation evaluation of the proposed techniques. Sec-
tion V discusses related work, and Section VI concludes
this paper and points out some future research directions.

II. A SSUMPTIONS ANDTHREAT MODEL

Assumptions: We assume a DTWSN consists of a large
number of resource constrained(regular) sensor nodes
and a fewmobile sinks, as illustrated in Figure 1. The
sensor nodes collect data from the physical environment,
while the mobile sinks travel to the network periodically
to retrieve the collected data and deliver them to one or
a few off-sitedata consumers. Optionally, there may be a
few storage nodesevenly deployed in the network, and a
sensor node may transmit its sensed data to a nearby storage
node for intermediate storage via a reliable channel. Both



Fig. 1. System Model

regular sensor nodes and storage nodes are stationary. A
mobile sink is a powerful device with high computational
capacity, no storage limit, long-lasting power, and mobility.
Data consumers are applications that will process the data
retrieved by mobile sinks.

We assume that sensor nodes and storage nodes can com-
municate with each other when necessary, possibly with
short delays. However, continuous connectivity between
nodes deployed in the network and the mobile sinks cannot
be guaranteed. Thus, sensor nodes (and storage nodes when
they are present) may have to store sensed data for a long
period of time while continuously collecting data. Finally,
we assume that the location information of sensor nodes is
known when it is needed.

We assume that each sensor node shares a master secret
key with the data consumer. Furthermore, we assume that
nodes in the network can establish a pairwise key using ex-
isting pairwise key establishment schemes (e.g., [12], [13],
[21]). Thus, node-to-node communication in the network
can be authenticated.

Threat Model: We assume that the adversary has power-
ful devices such as laptops and workstations. The adversary
can eavesdrop, inject, drop, and modify packets in the
network, since wireless communication is broadcast-based.
Under these assumptions, the adversary can manipulate the
data to its own advantage and send it to storage nodes
or mobile sinks. However, we assume that the adversary
hasn’t compromised the sensor nodes that report the sensed
data. In other words, the adversary doesn’t know the
authentication key to forge malicious but authenticated data.

Design Goal: Our goal is to develop efficient mecha-
nisms for integrated data authentication and compression,
so that regular sensor nodes, and storage nodes when
they are present, can authenticate the sensed data, possibly
after compression, to the data consumer. Moreover, com-
pression of sensed data should be controlled so that the
data after compression retains enough information for the
data consumer. Detecting compromised nodes that provide
malicious data is a related but orthogonal problem. We
assume there are other mechanisms for this (e.g., [20]),
but do not address it in this paper.

III. PROPOSEDSCHEMES

We consider two practical scenarios, where there are
(1) temporal correlation in data sensed by individual sensors
over time, and (2) spatial correlation in data sensed by
sensors physically close to each other. Accordingly, we
developauthenticated temporaland authenticated spatial
compression schemes for these scenarios, respectively. Due
to temporal and spatial correlation among sensed data,
each scheme achieves great storage reduction by removing
redundancy, while at the same time maintains a pre-defined
data quality. We also prove that our schemes protect in-
tegrity of data from the adversary through security analysis.

We note that these two schemes can be integrated when
there are both temporal and spatial correlations. Since the
integration is fairly straightforward, we do not explicitly
discuss it in this paper.

A. Authenticated Temporal Compression

A sensor node is supposed to continuously sense the
physical environment, collect data, and store them until
transmitting them to a receiving node. However, in a
DTWSN, there is no guarantee for the sensor node to
establish a communication channel to transmit the sensed
data. Thus, in certain cases, the sensor node may reach the
storage limit before it can transmit the sensed data, though
it is still necessary for it to collect data continuously.

Data compression is an ideal tool to address this problem.
In lossy compression, a sequence of data is typically
transformed into the frequency domain through, for ex-
ample, Discrete Cosine Transformations (DCT) or wavelet
transformations. Due to the correlation among the data, not
all the transformed data in the frequency domain retain
the same amount of information about the original data.
Indeed, some less important data items can be dropped
without significantly affecting the overall data quality.
More importantly, these transformed data items can be
ordered and gradually dropped to allow a gradual reduction
of storage requirement and at the same time a graceful
degradation in data quality. This is ideal for nodes in a
DTWSN; a node can gradually compress the stored data to
give space to newly collected data. When it can establish a
communication channel to the intended receiver, the sensor
node can transmit the best quality data it can afford.

Our basic idea is to provide an efficient authentication
method for the transformed data items. We would like to
have an authentication method that can be computed once,
and reused for gradual compression with little additional
overhead, even by intermediate nodes that do not know
the authentication key. This capability is not available ina
direct application of Message Authentication Code (MAC),
since any change in the authenticated data will lead to a
change in its MAC.

Our authenticated temporal compression scheme takes
advantage of the temporal correlation among sensed data.
We divide the time line into time intervals, and process the
data items sensed in each time interval individually. Our
scheme has five steps: transformation, MAC generation,



Fig. 2. Authenticated temporal compression

compression, verification, and reconstruction. The first two
steps take place on sensor nodes, the compression step may
happen either on the original sensor or an intermediate
storage node, while the last two steps occur on the data
consumer. Figure 2 illustrates these steps.

1) Transformation: Each sensor continuously collects
data from the physical environment. Assume the sensor
node has collected a sequence of data for one sensing
period (e.g., fromT0 to T1), represented as a vector
S = (s1, s2, · · · , sn)T . The sensor node then applies a
transformationW (e.g., DCT, wavelet transformations) to
S. (Note that the choice of transformation is independent
of our approach.) Thus, the node gets a sequence of
transformed data items, represented as a vector

X = W (S) = (x1, x2, . . . , xn)T .

Note that in typical transformations used in compression,
such as DCT and wavelet transformations,X = W (S) is
simply X = WS, whereW is ann × n matrix.

2) MAC Generation:The key requirement of the MAC
generation step is that the MAC computed for each time
interval should remain the same even if some transformed
data items are discarded during compression. This require-
ment is critical in reducing the overhead introduced by
authentication.

We propose a chaining technique using a cryptographic
hash functionH (e.g., SHA-1). In the compression step,
we follow the way in which typical compression schemes
use to determine what data to drop during compression.
That is, the item with the smallest absolute value inX
contributes the least to the quality of compressed data,
and gets discarded first. Accordingly, the sensor node sorts
the absolute values of the transformed data items inX in
descending order before applying the chaining technique.

Let xo(i) be thei-th element in the sorted list. Given the
transformed dataX = (x1, x2, ..., xn)T , the sensor node
performs the following operations:

Cn = H(xo(n), o(n)),
Cn−1 = H(Cn, xo(n−1), o(n − 1)),

...
C1 = H(C2, xo(1), o(1)).

The sensor node then computes the MAC of the sequence
of data byMACX = MACK(C1), whereK is the secret
key shared between the sensor node and the data consumer.
Note that the position ofxi in X is implicitly represented
in X but explicitly included in the computation ofMACX .

3) Compression: The compression step can be per-
formed by either the original sensor node or an intermediate
storage node. The compression node discards the items with
the smallest absolute values in the transformed data vector
X . We use a masking vectorM , which is a vector with1
and 0 representing the corresponding value inX retained
and discarded, respectively. This masking vector may be
stored using a lossless compression algorithm such as Run-
length Encoding (RLE) compression.

There are two major issues in the compression step:
(1) how to avoid recomputing the MAC while discarding
non-critical data, and (2) how to avoid compressing too
much to provide good enough data to the data consumer.

The first issue is easy to address due to the chaining
technique used in MAC generation. When there is no
compression, the data presented by the sensor node is
X = (x1, x2, · · · , xn)T , MACX . Verification can be easily
performed by repeating the MAC generation process and
comparing the result withMACX . When it is necessary to
drop a few data items, for example,xo(j+1), · · · , xo(n), the
compression node simply computes

Cn = H(xo(n), o(n)),
Cn−1 = H(Cn, xo(n−1), o(n − 1)),

...
Cj+1 = H(Cj+2, xo(j+1), o(j + 1)).

The compression node discardsxo(j+1), · · · , xo(n), and
sets 0 at their corresponding positions in the masking vector
M . Thus, the data presented by the compression node is

X ′ = (xi1 , xi2 , · · · , xij
)T , Cj+1, MACX , M.

The compression can continue if more data items need
to be discarded. This allows compression to be performed
gradually when there is a need to further reduce the storage.
Note that a summary ofxo(j+1), · · · , xo(n) has already
been contained inCj+1. With the above data items, a
receiver can easily verifyMACX . For example, suppose
the transformed data vector by a sensor node isX =
(5, 3, 1, 4, 0) and the compression node can drop the items
(0, 1) in X while maintaining the pre-defined data quality.
Then the transformed data vector isX ′ = (5, 3, 4) with the
masking vectorM = (1 1 0 1 0). The original position of
each remaining data item inX can be easily derived using
its current position inX ′ and the masking vectorM .



This compression process avoids recomputing the MAC
from scratch. It requires light computation; it takes approx-
imately two hash operations for each data item dropped
from X , which can be efficiently done on sensor nodes.

Now let us address the second issue, how to avoid
compressing too much. We use a distortion threshold to
represent the data quality desired by the data consumer. In
other words, given a distortion thresholdD, the distortion
between the compressed data and the original data should
not exceedD for the compressed data to be useful for
the data consumer. Formally, given the original sequence
of data S, the sequence of compressed dataS′, and the
distortion thresholdD, the data recovered through decom-
pressingS′ should satisfy the following condition:

‖S − S′‖ = δ ≤ D, (1)

where ‖Z‖ =
√

z2
1 + z2

2 . . . + z2
n is the L2 norm of an

n-dimension vectorZ = (z1, z2, · · · , zn).
In general, to see if a compression action will exceed

the distortion threshold, one will have to reconstruct the
data from the compressed data and verify if the result has
exceeded the threshold. Specifically, the compression node
needs to compute

δ = ‖S − S′‖ = ‖W−1(X) − W−1(X ′)‖,

whereX and X ′ are the transformed data vectors before
and after the compression, andW−1 is the inverse trans-
formation used to reconstruct data vectorS′ from X ′. The
node then needs to compareδ with the distortion threshold
D to determine if the compression is acceptable or not.

Fortunately, in a typical transformation used in compres-
sion (e.g., DCT and wavelet transformations), the transfor-
mation function can be represented asW (S) = WS, where
W is ann×n orthogonal matrix. As Lemma 1 shows below,
the distortion due to compression can be computed without
performing the inverse transformation.

Lemma 1:SupposeX = WS andX ′ = WS′, whereW
is an n × n transformation matrix. IfW is an orthogonal
matrix (i.e.,WT W = I), then‖X − X ′‖ = ‖S − S′‖.

Proof:

‖X − X
′‖ = ‖WS− WS

′‖ = ‖W(S− S
′)‖

= {W(S − S
′)W(S − S

′)}1/2

= {(S− S
′)WT

W(S − S
′)}1/2

= {(S− S
′)(S − S

′)}1/2 = ‖S− S
′‖.

According to Lemma 1, the compression node can simply
compute the distortion due to discarding certain trans-
formed data items using the transformed data directly. This
removes the need for inverse transformation. Moreover, the
compression node can incrementally compute the distortion
due to only keeping the firstx transformed data items,
where x runs from 1 to n, and identify the threshold at
which the distortion will exceedD.

4) Verification: Assume that the data consumer receives
the data items

X ′ = (xi1 , xi2 , · · · , xij
)T , Cj+1, MACX , M

through the mobile sink. The data consumer first recovers
the position of each data item in the originalX by using its
current position inX ′ and the masking vectorM . The data
consumer then sorts the absolute values of the data items
in X ′ in the descending order, wherexo(i) is the i-th data
item in X ′ ando(i) is the position ofxo(i) in the original
X . The data consumer computes

Cj = H(Cj+1, xo(j), o(j)),
Cj−1 = H(Cj , xo(j−1), o(j − 1)),

...
C1 = H(C2, xo(1), o(1)).

as well asMACK(C1). If MACK(C1) is the same as the
receivedMACX , the data items are authenticated.

5) Reconstruction:Based on the masking vectorM , the
data consumer adds0 to proper positions inX ′. Then,
the data consumer performs a reverse transformationS′ =
W−1(X ′) to reconstruct the sensed data in the time domain.

6) Security Analysis:In the authenticated temporal com-
pression scheme, the finalMACX is computed fromC1

using a keyK shared between the sensor node and the data
consumer. Thus, without the knowledge ofK, the adversary
will not be able to use a differentC1 to forge a valid
MACX . Moreover, it is easy to see that the hash value
C1 is computed from all the data itemsx1, · · · , xn and
their respective positions inX . Any changes inx1, · · · , xn,
including re-arranging their order, will cause a change in
C1. Similarly, any change in the masking vectorM will
lead to the change in the positions of the data items,
thus leading to a change inC1. Due to the pre-image
resistance property of a cryptographic hash function, it is
computationally infeasible for the adversary to forge any
data item and still be able to obtain the sameC1. Thus,
the adversary will not be able to generate aMACX for
forged data. The adversary may over-compress the data,
but the effect will not be worse than simply corrupting the
data. The adversary may also attempt to replay previous
messages. However, a standard solution such as a sequence
number can defeat such attacks.

B. Authenticated Spatial Compression

The authenticated spatial compression scheme is in-
tended for a storage node to authenticate and compress
data collected by the nearby sensor nodes by exploiting
the spatial correlation among them.

We first consider a special situation in which sensor
nodes are nicely arranged in regular grid intersections. This
assumption allows us to view the sensed data by these
nodes as different pixels in an image. Thus, we can apply
transformations used by 2D compression algorithms (e.g.,
2D DCT or 2D wavelet transformations) at the storage
node. We then extend the result to randomly deployed
sensor networks by using interpolation. Specifically, the
storage node first uses interpolation to transform data



sensed at random locations to values that could have been
sensed at artificial, regular grid locations, and then applies
techniques developed for the special situation to perform
authenticated compression. We assume the sensor nodes
know their locations, and provide and authenticate their
locations with the sensed data. In both cases, the storage
node finds a compression threshold that can reach the
maximum data reduction while maintaining desired data
quality. Note that a reliable channel between a sensor node
and the storage node is important due to data loss could
affect the data distortion for both cases.

1) Grid-based Deployment:In a grid-based deployment,
sensor nodes are deployed at regular points and all sensor
nodes form a grid layout. A storage node is also deployed
to store data received from these nodes.

Assume that the storage node has received a sequence of
data itemsS sensed by these nodes at a certain time. The
storage node then applies a 2D transformationW (e.g.,
2D DCT, 2D wavelet transformations) toS and obtains
X = W (S).

As discussed earlier, the data item with the smallest
absolute value inX contributes the least to the quality of
the compressed data, and thus gets discarded first. We use
a masking matrix, which is also anm × m matrix with 1
and 0 representing the corresponding value inX retained
and discarded, respectively. This masking matrix may be
stored using a lossless compression algorithm such as RLE
compression.

Based on the values of elements inX, we can sort them
and generate the MAC in the same way as in authenticated
temporal compression with the key shared between the
storage node and the data consumer. The verification of the
compressed data and the determination of the compression
threshold can be done in the same way as well. We omit
the details here.

An important issue is that the locations of the sensors
must be included and authenticated along with the com-
pressed data. Keeping the initial deployment locations is
not sufficient to deal with potential physical attacks, in
which the adversary may move the sensor nodes to different
locations. Thus, only keeping the initial locations will lead
to incorrect conclusions when there are physical attacks.

Note that this requirement is not unique to our authenti-
cated spatial compression scheme. In many sensor network
applications, locations are critical in the interpretation of
sensed data, and any sensor network application that re-
quires sensor locations will have to keep and authenticate
sensors’ locations to deal with the above physical attacks.

2) Random Deployment:In practice, it is often not
possible to uniformly deploy sensor nodes at regular grid
points due to challenges faced by the deployment process
such as terrain conditions. In the following, we extend the
result from the grid-based sensor deployment to randomly
deployed sensor networks.

Figure 3 illustrates the treatment of randomly deployed
sensor networks. Assume that the storage node receives
a sequence of data items sensed byn nearby sensor
nodes, denotedS = (s(x1, y1), s(x2, y2), · · · , s(xn, yn)),

Fig. 3. Random sensor deployment and interpolation

wheres(xi, yj) represents the data sensed by the node at
location (xi, yj). The storage node then uses interpolation
to transformS to values that could have been sensed at
artificial, regular grid locations. Specifically, we assumea
simple interpolation functionf(x, y) = c1x + c2y + c3.
For each artificial location, the storage node finds three real
sensor nodes that are closest to the artificial location but not
on the same line. (Note that having three nodes on the same
line will not lead to a successful interpolation.) The storage
node then uses the locations and the sensed values at the
three real sensor nodes and the functionf(x, y) to calculate
the value that could have been sensed at the artificial grid
location. Alternatively, the storage node may take more than
three sensor nodes and use a Minimum Mean Squared Error
(MMSE) estimator to get a better estimate of the artificial
data values.

Using the interpolation function, the storage node creates
an artificial data matrixA for regular grid points in the grid
layout. The storage node then applies a 2D transformation
W (e.g., 2D DCT or wavelet transformations) toA and
obtainsX = W (A). As discussed earlier, the storage node
sortsX, generates the MAC, and uses the masking matrix
M in the same way as in the grid-based sensor deployment.

For determining the stopping point of compression, the
storage node additionally needs to reconstruct the original
data from the interpolated values at artificial grid points.As
in Equation (1), we use a distortion thresholdδ to represent
the data qualityD desired by the data consumer. The
thresholdδ is the difference between the original sequence
of data S and the sequence of the compressed dataS′.
Since the storage node compresses the values at the artificial
points rather than the original values, the storage node
needs to reconstruct the original data before it computes
the thresholdδ. Thus, the storage node computes

δ = ‖S − S′‖ = ‖f−1(W−1(X)) − f−1(W−1(X ′))‖,

whereX and X ′ are the transformed data vectors before
and after the compression,W−1 is the inverse transfor-
mation used to reconstruct artificial data matrixA′ from
X ′, and f−1 is the inverse interpolation function used
to reconstruct dataS′ from A′. Through these steps, the
storage node determines the compression threshold that
can reach the maximum data reduction while maintaining
desired data quality.

The verification of the compressed dataX ′ and the
masking matrixM by the data consumer can be done in



the same way as in the grid-based deployment. If they are
authenticated, the data consumer adds0 to the proper po-
sitions inX ′. Then, it performs the inverse transformation
A′ = W−1(X ′) to reconstruct the values for artificial grid
points. Finally, the data consumer can reconstruct the values
at the original locations by using interpolation again. This
time, for each real sensor location, the data consumer uses
three or more artificial sensors that are closest to the real
sensor location.

3) Security Analysis:In the authenticated spatial com-
pression, sensor nodes and storage nodes can establish
a pairwise key using existing pairwise key establishment
schemes (e.g., [12], [13], [21]). Thus, the communication
between sensor nodes and storage nodes in the network
can be authenticated. Following the same argument for
authenticated temporal compression, without knowing the
authentication key, the adversary will not be able to com-
pute a valid MAC, and any modification to the compressed
data will be detected. Moreover, replay attacks can be
defeated by using a standard solution such as a sequence
number.

Another threat is the potential physical attacks in which
the adversary moves sensor nodes to different locations.
However, in the authenticated spatial compression scheme,
the locations of sensors are provided and authenticated
along with the compressed data. Thus, such physical attacks
will not be effective.

Our authenticated spatial scheme cannot deal with the
situation where the storage nodes are compromised. How-
ever, as we assumed in our threat model (see Section II),
we assume that there are other mechanisms to detect
compromised nodes (e.g., [20]).

IV. SIMULATION RESULTS

We evaluate our authenticated temporal and spatial com-
pression schemes through simulation. We are interested
in understanding the trade-off between data distortion
and storage reduction provided by compression. Specif-
ically, our simulation is focused on demonstrating that
our schemes give a compression threshold so that each
sensor node can reach the maximum storage reduction
while maintaining desired data quality.

In our simulation, we use Haar wavelet transforma-
tion [17] and DCT transformation [3] to transform sensor
data in the time (or space) domain to the frequency domain.
As discussed earlier, both transformation functions have
the orthogonal property, and as a result, the distortion due
to compression can be computed without performing the
inverse transformation. This greatly saves the computational
overheads on sensor nodes.

We use the run-length encoding (RLE) algorithm to
compress the masking vector (or matrix), which consists of
consecutive zeros or ones. RLE is a lossless and simple data
compression algorithm, which is good for many consecutive
data elements in a vector.

A. Simulation Data Sets

In our simulation experiments, we use both real and
simulated data sets to examine the proposed schemes.

Real Data Set:To examine how our authenticated data
compression schemes perform in a real-world deployment,
we test them using the data set from the GoMOOS
project [1]. GoMOOS is a working prototype for a regional
ocean observing system. Special sensor nodes, calledbuoys,
were deployed along with the coastline of the Gulf of Maine
to sample meteorological data. In our simulation, we use the
underwater temperature data collected by ten buoys from
2007-08-13 17:00:00 UTC to 2007-09-04 00:00:00 UTC.
This data set exhibit temporal locality, but they do not
display spatial locality due to the locations of buoys. Thus,
we only use this data set for the authenticated temporal
compression

Simulated Data Set:In addition to the real data set, we
also use an energy model [8] to simulate values possibly
collected by sensors. We assume that an energy source at lo-
cation(xs, ys) emits a signal, which is measured by sensor
nodes deployed in the network. The signal strength emitted
by the energy source decays as the distance to sensor nodes
increases. If the constant decay coefficient isK, the signal
strength measured by the sensor nodei is Ei = C

(di)K + rt,
whereC is the energy emitted by the source node,di is
the distance from the nodei at location (xi, yi) to the
energy source (i.e.,

√

(xs − xi)2 + (ys − yi)2), and rt is
the random variation of the signal over time, which follows
a normal distributionN(µ, σ2) [8]. The valueK is typically
from 2.0 to 5.0 based on the environment. In our simulation,
we follow the suggestion in [5] and use a value ofK = 3.0.

B. Authenticated Temporal Compression

We evaluate the authenticated temporal compression us-
ing both the real data set and the simulated data set. For the
real data set, we extract 1,024 data items from each buoy,
which samples the hourly temperature1 meter underwater.
For the simulated data set, we generate 1,024 data items
by using the energy model for one time period.

We explore the relationship between data distortion and
storage reduction on the authenticated temporal compres-
sion. We use thestorage reduction ratioto measure the
saving in storage. Specifically, we first compute the storage
overhead byH = New

Original = (On−Nm)Bytes+RLEnBytes
OnBytes ,

where On is the number of transformed data items for
each item,Nm is the number of transformed data after
data compression, andRLEn is the number of bytes to
encode the masking vector using RLE compression. Then
we compute the storage reduction ratio byR = 1 − H .

We usedistortion ratio to measure the degree of distor-
tion between the compressed and the original data. Specifi-
cally, the distortion ratio is measured byd = ‖S−S′‖

‖S‖ , where
S andS′ are the vectors representing the original and the
compressed data values, respectively.

Figure 4 illustrates the relationship between the average
data distortion and storage reduction for the real and the
simulated data sets, respectively. Overall, the graphs for
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Fig. 4. Temporal distortion degree and storage reduction ratio

both data sets are very similar. This demonstrates that our
simulated data set has similar temporal correlation to the
real data set.

Figure 4 shows that the distortion ratio for the Haar trans-
formation is close to zero until the storage reduction is close
to 0.5 in both data sets. After that, the distortion ratio forthe
Haar transformation starts to drastically increase. However,
the distortion ratio for the DCT transformation remains less
than 0.02 until the storage reduction reaches almost 1 in
both data sets. This is because the DCT transformed data
is almost all concentrated on low frequencies.

Our simulation results demonstrate that if the sensed data
is highly correlated with each other in the time domain,
both the Haar and the DCT transformations can lead to
good storage reduction without hurting the data quality
much. Moreover, the DCT transformation can lead to better
storage reduction than the Haar transformation for the same
expected data distortion.

C. Authenticated Spatial Compression

We evaluate the authenticated spatial compression using
the simulated data set. The real sensor data cannot be used
due to the lack of spatial coverage. We apply our schemes
to two deployment scenarios. First, we generate 1,024
simulated data items for the grid-based sensor deployment
using the energy model function. The simulated data set
represents the signal strength measured by sensor nodes
at 1,024 grid intersections in the area. The storage node
receives sensed data from these nodes at a certain time.

For random sensor deployment, we simulate 1,024 values
sensed by sensor nodes at random locations using the
energy model. The storage node deployed in the network
stores data items received from these sensor nodes. The
storage node then uses interpolation to generate 1,024
values at the artificial grid locations.

The storage node uses both 2D Haar and 2D DCT
transformations to generate the transformed data matrix. We
use the same metrics, storage reduction ratio and distortion
ratio, as in the evaluation of temporal compression.

Figure 5 illustrates the relationship between the distortion
ratio and the storage reduction ratio for both grid-based and
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Fig. 5. Spatial distortion degree and storage reduction

random deployments. For the grid-based deployment, the
distortion degree for the 2D Haar transformation remains
close to zero until the storage reduction ratio is almost
1. The distortion ratio for the 2D DCT transformation is
almost proportional to the storage reduction ratio.

For the random deployment, both the 2D Haar and the
2D DCT transformations lead to a distortion ratio at about
0.3 even with small storage reductions. This is mainly
due to the error introduced by the interpolation process.
Fortunately, the distortion ratio remains around 0.3 as the
storage reduction ratio grows, until the storage reduction
reaches 0.6 for the DCT transformation, and close to 1
for the Haar transformation. This result indicates that if
certain data distortion is tolerable, both transformations can
help reduce the storage requirement significantly. Moreover,
the 2D Haar transformation demonstrates stronger ability
to reduce the storage requirements for the same expected
data distortion ratio. Thus, the 2D Haar transformation is
a better choice for authenticated spatial compression than
the 2D DCT transformation.

D. Computation, Memory, and Communication Overhead

We now briefly present computation, memory, and com-
munication overhead of our schemes as follows:

Computational Overhead:Assume thatN is the total
number of data items sensed by a sensor node in a given
time intervaltw, where each data item isn-bit length. The
approximate total execution timeT is as follows:

T = TMAC + N × (TH + TD + Talgo/c)

whereTMAC is the time for generatingMAC, TH denotes
for a cryptographic hash function (e.g., SHA-1),TD is
for computing data distortion, andTAlgo is for computing
the transformation algorithm.TMAC andTH take3, 636µs
for SHA-1 and1, 473µs for MD5 to process single data
item with the input size of 512bits in ATmega128L on
MICAz [2] [4]. TD takes three clock cycles (i.e., about
0.406µs) to process single data item (i.e., one clock cycle
for an addition and two clock cycles for a multiplication
with 7.3728 MHz clock frequency in ATmega128L [11]).
TAlgo is small in WSNs, since performing fast DCT, which



does not require floating-point operations, on an8×8 block
(i.e.,c is 64) takes1, 394.16µs (i.e.,11,153 cpu cycles) [11].

Memory Overhead:TMAC and TH require n × (N +
1)bits in memory. The memory requirement forTD is n×
Nbits. And TAlgo takes n × (N/c)bits. Thus, the total
memory requirement of our schemes isM = n × (2N +
1 + N/c)bits.

Communication Overhead:In the nature of data com-
pression, our schemes reduce the communication overhead,
which simultaneously implies the less energy consumption
( [10] suggests that data communication is more expensive
than computation).

V. RELATED WORK

The delay tolerant network (DTN) architecture is origi-
nally designed for the interplanetary Internet [6]. However,
it is also applicable to other types of networks that suffer
from the lack of continuous connectivity. The concept of
DTWSN was first proposed in [7], in which WSNs are
deployed in mobile and extreme environments.

Several DTWSN applications have already been used. In
ZebraNet [9], custom tracking collars (attached to zebras)
collect their mobility pattern and report collected data when
they pass within the radio communication range of a mobile
base station. In DataMules [15], a mule periodically visits
sensor nodes and collects data by using a non-interactive
message store-and-forward service.

Data aggregation and data compression are different
solutions to address the storage concern in DTWSNs. In
secure data aggregation schemes [14], [18], [19], the base
station can estimate the original data sensed by sensor
nodes within a certain range. In these schemes, the base
station cannot recover the original data for each sensor node
due to the nature of aggregation algorithms (e.g., average
function).

However, in our schemes, the base station can recover
the raw data with a very high precision for each sensor
node. Since our schemes provide lossy compression (e.g.,
Discrete Cosine Transform (DCT) [3] and wavelet compres-
sion [16], [17]), our schemes allow higher compression ra-
tio with imperceptibly small inaccuracies in decompressed
signals in WSNs. In this paper, we address the integration
of authentication and lossy compression for DTWSNs.

VI. CONCLUSION

In this paper, we developed novel techniques to seam-
lessly authenticate and compress sensed data in DTWSNs.
By taking advantage of the inherent temporal and spatial
correlation among the sensed data, our techniques allow
sensor nodes that face storage pressure to sacrifice the
data quality within a tolerable range to exchange for space
for continuous sensing. The novel authentication technique
allows any node to compress the sensed data without know-
ing the authentication key. Our exploration of the trade-
off between data distortion and storage reduction gives a
compression threshold so that our schemes can reach the
maximum data reduction while maintaining desired data
quality. We evaluate our schemes through simulation; our

results demonstrate that these schemes provide significant
storage reduction for typical sensor network applications.

In our future work, we will explore and compare other
transformations, and hopefully identify the best transforma-
tion for different types of sensing applications.
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