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Abstract—Delay Tolerant Wireless Sensor Networks compression at the same time. Our contributions in this
(DTWSNS) are sensor networks where continuous connectivit paper are three-fold:
between the sensor nodes and their final destinations (e.g.,

the base station) cannot be guaranteed. Storage constramt 1) We develop authenticated data compression schemes

are particularly a concern in DTWSNSs, since each node may to a”QW each node not 0“')_’ to protect data integrity
have to store sensed data for a long period of time due by using Message Authentication Code (MAC), but
to intermittent communication while continuously collecting also to efficiently compress sensed data without

data. In this paper, we develop novel techniques to seamldgs
authenticate and compress sensed data, addressing the sige
concerns in DTWSNs in hostile environments by harnessing

regenerating MACs. An important property of the
authentication scheme is that an intermediate node

both temporal and spatial correlation among sensed data. (other than the data generator) can also compress the
By appropriately using Message Authentication Code (MAC) sensed data while reusing the same MAC as long as
and one-way hash functions, our techniques allow a node it follows the correct compression procedure.

(including intermediate, non-source nodes) to efficienthcom- 2) We take advantage of the redundancy due to tem-

press sensed data without regenerating MACs. We explore

the trade-off between data distortion and storage reductia poral and spatial correlation among sensed data,

provided by compression so that we can reach the maximum and develop botfauthenticated temporaind spatial
data reduction while maintaining desired data quality. compression schemes.
3) We also investigate the trade-off between data quality
. INTRODUCTION and storage reduction provided by compression. Our

. ) schemes give a compression threshold so that each
Wireless sensor networks (WSNs) have recently received  q4e can reach the maximum data reduction while

a lot of attention due to a wide range of potential appli- maintaining desired data quality.

cations such as warehouse inventory, object tracking, andOur security analysis indicates that these schemes can
environment monitoring. A typical WSN is expected t

ist of a | b : des deploved _T?Properly defend against external attacks. Moreover, we
consist ot a farge number ot Sensor nodes deploye 'sﬁ‘de the performance of these schemes through simulation

Iatrge scale, Wher-e tthe sen;or nodes_ have l'rt?'ﬁte.}d powl%lng both real and simulated data sets. Our results demon-
storage, communica |0n,|_an ' processing C?pa lI): €S- strate that these schemes can effectively take advantage of
In certain sensing applications, it is not feasible to prgpq temporal and spatial correlation among the sensed data

V'dde Legl-tfl_mel t(;ans_m|5_5|on of SinSEd data betvaeendWS that the required storage can be reduced without greatly
and their final destinations. Such WSNs are referred to crificing the data quality.

Delay Tolerant Wireless Sensor Networks (DTWSNSs) [7]. The rest of the paper is organized as follows. Sec-

In such networks, continuous connectivity between the,, || giscusses the assumptions and threat model. Sec-
sensor nodes and the data collectors (e.g., mobile sinig}, || presents the proposed authenticated data compres-
cannot be guaranteed due to intermittent communicatiQf,, schemes and their security analysis. Section IV report

Examples of DTWSNs in practice include ZebraNet [S¢ gimylation evaluation of the proposed techniques. Sec-

and DataMules [15]. tion V discusses related work, and Section VI concludes

Storage constraints are particularly more concems thafis naner and points out some future research directions.
energy constraints in DTWSNS, since each sensor node may

have to store sensed data for a long period of time due to Il. ASSUMPTIONS ANDTHREAT MODEL
intermittent communication while continuously collegfin ~ Assumptions: We assume a DTWSN consists of a large
data. Data compression is certainly a good candidate iomber of resource constraingegegular) sensor nodes
reduce the storage requirement by removing redundarmyd a fewmobile sinks as illustrated in Figure 1. The
in stored data while maintaining desired data quality. Hovgensor nodes collect data from the physical environment,
ever, when a DTWSN is deployed in a hostile environmenghile the mobile sinks travel to the network periodically
data integrity must be protected from unauthorized modifie retrieve the collected data and deliver them to one or
cations by potential attackers. a few off-sitedata consumersOptionally, there may be a

In this paper, we address both compression and authefgiv storage nodegvenly deployed in the network, and a
cation issues for DTWSNSs. Specifically, we develop noveknsor node may transmit its sensed data to a nearby storage
techniques to seamlessly integrate data authenticatidn aode for intermediate storage via a reliable channel. Both
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Ill. PROPOSEDSCHEMES

We consider two practical scenarios, where there are
(1) temporal correlation in data sensed by individual ses1so
over time, and (2) spatial correlation in data sensed by
sensors physically close to each other. Accordingly, we
developauthenticated temporahnd authenticated spatial
compression schemes for these scenarios, respectivedy. Du
to temporal and spatial correlation among sensed data,
each scheme achieves great storage reduction by removing
redundancy, while at the same time maintains a pre-defined
data quality. We also prove that our schemes protect in-
tegrity of data from the adversary through security analysi

We note that these two schemes can be integrated when
there are both temporal and spatial correlations. Since the
integration is fairly straightforward, we do not expligitl

regular sensor nodes and storage nodes are stationanfigfuss it in this paper.
mobile sink is a powerful device with high computation
capacity, no storage limit, long-lasting power, and maili
Data consumers are applications that will process the datad sensor node is supposed to continuously sense the
retrieved by mobile sinks. physical environment, collect data, and store them until

We assume that sensor nodes and storage nodes can dGgpsmitting them to a receiving node. However, in a
municate with each other when necessary, possibly with' WWSN. there is no guarantee for the sensor node to
short delays. However, continuous connectivity betwe@r?tab“Sh a pommumcatlon channel to transmit the sensed
nodes deployed in the network and the mobile sinks canfita- Thl_JS'_ in certaln cases, the Sensor node may reach the
be guaranteed. Thus, sensor nodes (and storage nodes \ﬁlt]%r@g_e limit before it can transmit the sense_d data, though
they are present) may have to store sensed data for a I(’)tn'% still necessary fqr It t‘? collect data contlnuoysly.
period of time while continuously collecting data. Finally ata compression is an ideal tool to address this problem.

we assume that the location information of sensor nodes'fs /0SSy compression, a sequence of data is typically
known when it is needed. transformed into the frequency domain through, for ex-

Wi that h de sh ¢ amré)le, Discrete Cosine Transformations (DCT) or wavelet
€ assume that each Sensor node shares a master sga) Lformations. Due to the correlation among the data, not
key with the data consumer. Furthermore, we assume tgﬂt

. ) L . the transformed data in the frequency domain retain
nodes in the network can establish a pairwise key using %
n

Fig. 1. System Model

aA' Authenticated Temporal Compression

He same amount of information about the original data.
isting pairwise key establishment schemes (e.g., [12], [1 g

217, Th de-t d ication in th f deed, some less important data items can be dropped
[21]). Thus, hode-to-node communication in the NEWOIg, ., ¢ significantly affecting the overall data quality.
can be authenticated.

More importantly, these transformed data items can be
Threat Model: We assume that the adversary has powegrdered and gradually dropped to allow a gradual reduction
ful devices such as laptops and workstations. The adversgfystorage requirement and at the same time a graceful
can eavesdrop, inject, drop, and modify packets in thfgradation in data quality. This is ideal for nodes in a
network, since wireless communication is broadcast-basggfrWwsN; a node can gradually compress the stored data to
Under these assumptions, the adversary can manipulatedi¥@ space to newly collected data. When it can establish a
data to its own advantage and send it to storage nodgsmmunication channel to the intended receiver, the sensor
or mobile sinks. However, we assume that the adversafyde can transmit the best quality data it can afford.
hasn’t compromised the sensor nodes that report the sensedyr pasic idea is to provide an efficient authentication
data. In other words, the adversary doesn't know thfiethod for the transformed data items. We would like to
authentication key to forge malicious but authenticatdd.danayve an authentication method that can be computed once,
Design Goal: Our goal is to develop efficient mecha-and reused for gradual compression with little additional
nisms for integrated data authentication and compressiongrhead, even by intermediate nodes that do not know
so that regular sensor nodes, and storage nodes whiem authentication key. This capability is not availablein
they are present, can authenticate the sensed data, gosslisect application of Message Authentication Code (MAC),
after compression, to the data consumer. Moreover, cogince any change in the authenticated data will lead to a
pression of sensed data should be controlled so that ttenge in its MAC.
data after compression retains enough information for theOur authenticated temporal compression scheme takes
data consumer. Detecting compromised nodes that provativantage of the temporal correlation among sensed data.
malicious data is a related but orthogonal problem. W&/ divide the time line into time intervals, and process the
assume there are other mechanisms for this (e.g., [2@Jata items sensed in each time interval individually. Our
but do not address it in this paper. scheme has five steps: transformation, MAC generation,



S1os Sn Let z,(; be thei-th element in the sorted list. Given the
| transformed dataX = (21,72, ...,7,), the sensor node

To ™ performs the following operations:

{X1s X25 see , Xn }

Sorted in descending order On = H(xo(n)v o(n))’
{ Xoup Xo@p ... » Xom) Onfl — H(Cnvxo(n—l)a o(n _ 1))’
MAC
.
Co= H(Xo(u, 0(m), Cot = H(Cp, Xo1s 0(n-1)), 3 Ci = H(Cy,wo(1),0(1)).
vo+, Ci=H(C3, X1, 0(1)), MACx=MACk(C,) )
e C"' o 3 The sensor node then computes the MAC of the sequence
ompression .
—————'— of data byM ACx = MACk(C4), whereK is the secret
A F L key shared between the sensor node and the data consumer.
Set mask M={ by, b, ..., b, }, where b = 0 (drop) or 1 (retain); Note that the position of; in X is implicitly represented
Send X=X, Xizp - 5 Xk Gyt MACH, M in X but explicitly included in the computation 6 AC'x.

erincaton_ 3) Compression: The compression step can be per-
, formed by either the original sensor node or an intermediate
e A storage node. The compression node discards the items with
or! in descending order, {Xy(1), Xo(2)> > Xo(j)} .
Regenerate Cj= H( Cyy Xog)» 0G)), - » Cr=H(C2, Xoq, 0(1)); the smallest absolute values in the transformed data vector

Verify MACK(C)=MACx X. We use a masking vectdd/, which is a vector withl

and 0 representing the corresponding valueXnretained
and discarded, respectively. This masking vector may be
stored using a lossless compression algorithm such as Run-
length Encoding (RLE) compression.

Fig. 2. Authenticated temporal compression There are two major issues in the compression step:
compression, verification, and reconstruction. The first twk) how to avoid recomputing the MAC while discarding
steps take place on sensor nodes, the compression step Rfgjcritical data, and (2) how to avoid compressing too
happen either on the original sensor or an intermedidf&/Ch to provide good enough data to the data consumer.
storage node, while the last two steps occur on the datal N€ first issue is easy to address due to the chaining
consumer. Figure 2 illustrates these steps. technlque_ used in MAC generation. When there is no

1) Transformation: Each sensor continuously collectSOmpression, the data presented by the sensor node is

: : _ T ificati i
data from the physical environment. Assume the sensdr= (¥1,%2,- -, xn)", MACx. Verification can be easily

node has collected a sequence of data for one senshfjformed by repeating the MAC generation process and
period (e.g., fromT, to Ti), represented as a vectolcOmparing the result witd/ ACx. When it is necessary to

S = (s1,52,--,s,)". The sensor node then applies &rop a few data items, for example,(; 1), -+ ; Zo(n), the
transformation’V (e.g., DCT, wavelet transformations) toCOMpression node simply computes

S. (Note that the choice of transformation is independent c, H (T o(m), 0(n)),

of our approach.) Thus, the node gets a sequence of Coor = H(CpyZom-1y,0(n — 1)),
transformed data items, represented as a vector

|

Reconstruction

|

" 13wnsuo? ejeq

Based on M (mask), add 0 to proper positions in the received data;
Reconstruct { S1'y 82y e s Sn’}

X =W(S) = (x1,22,...,2n)". Ciri = H(Cji2,%o(41),0( +1)).

Note that in typical transformations used in compression, | "€ compression node discardls; 1), - , Z,(»), and
such as DCT and wavelet transformatiofs,= W (S) is sets 0 at their corresponding positions in the masking vecto

simply X — W5, whereW is ann x n matrix. M. Thus, the data presented by the compression node is

2) MAC Generatlon:The key requirement of the MA(_: X' = (@i, @y, - ’%)T’ Cis1, MACx, M.
generation step is that the MAC computed for each time
interval should remain the same even if some transform&tle compression can continue if more data items need
data items are discarded during compression. This requite-be discarded. This allows compression to be performed
ment is critical in reducing the overhead introduced bgradually when there is a need to further reduce the storage.
authentication. Note that a summary of,j;1), -, %oy has already

We propose a chaining technique using a cryptograplieen contained irC;,,. With the above data items, a
hash functiond (e.g., SHA-1). In the compression stepreceiver can easily verifW/ ACx. For example, suppose
we follow the way in which typical compression schemethe transformed data vector by a sensor nodeXis=
use to determine what data to drop during compressidi, 3,1, 4,0) and the compression node can drop the items
That is, the item with the smallest absolute valueXn (0,1) in X while maintaining the pre-defined data quality.
contributes the least to the quality of compressed dafBhen the transformed data vectorXs = (5, 3, 4) with the
and gets discarded first. Accordingly, the sensor node somsasking vectord = (1 1 0 1 0). The original position of
the absolute values of the transformed data item&im each remaining data item i can be easily derived using
descending order before applying the chaining techniquis current position inX’ and the masking vectay/.



This compression process avoids recomputing the MAC4) Verification: Assume that the data consumer receives
from scratch. It requires light computation; it takes appro the data items
imately two hash operations for each data item dropped
from X, which can be efficiently done on sensor nodes.
Now let us address the second issue, how to avdidrough the mobile sink. The data consumer first recovers
compressing too much. We use a distortion threshold tiee position of each data item in the origimdlby using its
represent the data quality desired by the data consumerclirent position inX’ and the masking vectav/. The data
other words, given a distortion threshal?l the distortion consumer then sorts the absolute values of the data items
between the compressed data and the original data shanldX’ in the descending order, whetg;) is thei-th data
not exceedD for the compressed data to be useful foitem in X’ ando(i) is the position ofz,; in the original
the data consumer. Formally, given the original sequengdg The data consumer computes
of data S, the sequence of compressed déata and the

X/ = (xil,xh,- N ,Iij)T,CjJrl,]VIACX,]VI

distortion thresholdD, the data recovered through decom- g7 - gggﬁ;’%m’ ZEJ.)E’ )
pressingS’ should satisfy the following condition: =t = grLo(i=1): OV ’
IS ~5'| =6 <D, (1) G = HG oy, oll))

as well asM ACk (Cy). If MACk(Cy) is the same as the
where || Z|| = /2§ +23... 4 22 is the L, norm of an receivedM ACx, the data items are authenticated.
n-dimension vecto = (z1, 22, - , 2n). 5) ReconstructionBased on the masking vectdf, the
In general, to see if a compression action will exceedata consumer add$ to proper positions inX’. Then,
the distortion threshold, one will have to reconstruct théhe data consumer performs a reverse transformation
data from the compressed data and verify if the result hlg—!(X") to reconstruct the sensed data in the time domain.
exceeded the threshold. Specifically, the compression nod®) Security Analysisin the authenticated temporal com-

needs to compute pression scheme, the final AC'x is computed fromC,
using a keyK shared between the sensor node and the data
S=|S—-8=|wX)-Ww X", consumer. Thus, without the knowledgefsf the adversary

will not be able to use a different’; to forge a valid
where X and X' are the transformed data vectors beforg/ AC'y. Moreover, it is easy to see that the hash value

and after the compression, afd—! is the inverse trans- C, is computed from all the data itemsy,--- ,z, and
formation used to reconstruct data vectdrfrom X’. The their respective positions i . Any changes i1, - - - , Zn,
node then needs to compafievith the distortion threshold including re-arranging their order, will cause a change in
D to determine if the compression is acceptable or not. ;. Similarly, any change in the masking vectdf will
Fortunately, in a typical transformation used in comprefead to the change in the positions of the data items,
sion (e.g., DCT and wavelet transformations), the transfahus leading to a change i®;. Due to the pre-image
mation function can be representedi®E$S) = W.S, where resistance property of a cryptographic hash function, it is
W is annxn orthogonal matrix. As Lemma 1 shows belowgcomputationally infeasible for the adversary to forge any
the distortion due to compression can be computed withaldta item and still be able to obtain the safg Thus,
performing the inverse transformation. the adversary will not be able to generate\BACx for
Lemma 1:SupposeX = WS andX’' = WS’, wherelV  forged data. The adversary may over-compress the data,
is ann x n transformation matrix. Ifi’ is an orthogonal but the effect will not be worse than simply corrupting the
matrix (i.e., WTW =I), then|| X — X'|| = ||S — 5| data. The adversary may also attempt to replay previous
Proof: messages. However, a standard solution such as a sequence
number can defeat such attacks.

! ! I
X=X IWS — WS'|| = [[W(S — ST B. Authenticated Spatial Compression
= {W(S—-S)W(S —§')}/2 : : . .
The authenticated spatial compression scheme is in-
{(8 -8 )WTW(S —8)}'/2 tended for a storage node to authenticate and compress
= {(S—S)(S—-8")2=|s-¥5|. data collected by the nearby sensor nodes by exploiting
the spatial correlation among them.
u We first consider a special situation in which sensor
According to Lemma 1, the compression node can simphodes are nicely arranged in regular grid intersections Th
compute the distortion due to discarding certain tranassumption allows us to view the sensed data by these
formed data items using the transformed data directly. Tm®edes as different pixels in an image. Thus, we can apply
removes the need for inverse transformation. Moreover, ttransformations used by 2D compression algorithms (e.g.,
compression node can incrementally compute the distortid® DCT or 2D wavelet transformations) at the storage
due to only keeping the first transformed data items,node. We then extend the result to randomly deployed
where z runs from1 to n, and identify the threshold atsensor networks by using interpolation. Specifically, the
which the distortion will exceed. storage node first uses interpolation to transform data



sensed at random locations to values that could have bé ™" ‘ a3}

sensed at artificial, regular grid locations, and then agpli
techniques developed for the special situation to perfor
authenticated compression. We assume the sensor nc
know their locations, and provide and authenticate the
locations with the sensed data. In both cases, the stor:
node finds a compression threshold that can reach 1
maximum data reduction while maintaining desired da
quality. Note that a reliable channel between a sensor nc
and the storage node is important due to data loss couiu’
affect the data distortion for both cases. Fig. 3. Random sensor deployment and interpolation

1) Grid-based Deploymentn a grid-based deployment,
sensor nodes are deployed at regular points and all sendBgre s(z;, y;) represents the data sensed by the node at
nodes form a grid layout. A storage node is also deploy@fation (z;,y;). The storage node then uses interpolation
to store data received from these nodes. to transformS to values that could have been sensed at

Assume that the storage node has received a sequencarficial, regular grid locations. Specifically, we assuene

data itemsS sensed by these nodes at a certain time. TRENPle interpolation functiony (z,y) = ciz + cay + cs.
storage node then applies a 2D transformatibn(e.g., For each artificial location, the storage node finds threk rea

2D DCT, 2D wavelet transformations) t§ and obtains Sensor nodes that are closest to the artificial location dut n
X = W(S). on the same line. (Note that having three nodes on the same

As discussed earlier, the data item with the smalle$fe will notlead to a successful interpolation.) The sg&a
absolute value ifX contributes the least to the quality offode then uses the locations and the sensed values at the

the compressed data, and thus gets discarded first. We t}ge real sensor nodes and the functf¢a, y) to calculate

a masking matrix, which is also an x m matrix with 1  the value that could have been sensed at the artificial grid
and 0 representing the corresponding valueXnretained location. Alternatively, the storage node may take mora tha
and discarded, respectively. This masking matrix may plaree sensor nodes and use a Minimum Mean Squared Error
stored using a lossless compression algorithm such as RIMMSE) estimator to get a better estimate of the artificial
Compression_ data values.

Based on the values of elementsXn we can sort them  Using the interpolation function, the storage node creates
and generate the MAC in the same way as in authenticaartificial data matrixA for regular grid points in the grid
temporal compression with the key shared between tl@yout. The storage node then applies a 2D transformation
storage node and the data consumer. The verification of the (€.9., 2D DCT or wavelet transformations) # and
compressed data and the determination of the compressifinsX = W (A). As discussed earlier, the storage node
threshold can be done in the same way as well. We on§RrtsX, generates the MAC, and uses the masking matrix
the details here. M in the same way as in the grid-based sensor deployment.

An important issue is that the locations of the sensorsFor determining the stopping point of compression, the
must be included and authenticated along with the cordtorage node additionally needs to reconstruct the ofligina
pressed data. Keeping the initial deployment locations @&ta from the interpolated values at artificial grid poirts.
not sufficient to deal with potential physical attacks, it Equation (1), we use a distortion threshéltb represent
which the adversary may move the sensor nodes to differéi¢ data qualityD desired by the data consumer. The
locations. Thus, only keeping the initial locations wilate thresholds is the difference between the original sequence
to incorrect conclusions when there are physical attacks0f data S and the sequence of the compressed d#ta

Note that this requirement is not unique to our authentince the storage node compresses the values at the drtificia
cated spatial compression scheme. In many sensor netwp@its rather than the original values, the storage node
applications, locations are critical in the interpretatiof nNeeds to reconstruct the original data before it computes
sensed data, and any sensor network application that e threshold. Thus, the storage node computes
quires sensor locations will have to keep and authenticate. _ Mo =111 —1 s
sensors’ locations to deal with the above physical attacks.% =I5 =S =17 W= (X)) = 7O,

2) Random Deploymentin practice, it is often not where X and X’ are the transformed data vectors before
possible to uniformly deploy sensor nodes at regular grahd after the compressiofiy ! is the inverse transfor-
points due to challenges faced by the deployment procesation used to reconstruct artificial data matrlx from
such as terrain conditions. In the following, we extend th&’, and f~! is the inverse interpolation function used
result from the grid-based sensor deployment to randontty reconstruct dats” from A’. Through these steps, the
deployed sensor networks. storage node determines the compression threshold that

Figure 3 illustrates the treatment of randomly deployechn reach the maximum data reduction while maintaining
sensor networks. Assume that the storage node receidesired data quality.

a sequence of data items sensed bynearby sensor The verification of the compressed daf and the
nodes, denote® = (s(z1,y1),s(x2,¥2), - ,s(Tn,¥n)), masking matrix by the data consumer can be done in

Interpolation

a(3,3) a(m,1) a (m,m)



the same way as in the grid-based deployment. If they ake Simulation Data Sets
authenticated, the data consumer addse the proper po- |, ¢ simulation experiments, we use both real and

sitions in X’. Then, it performs the inverse transformatiogimwated data sets to examine the proposed schemes
A’ = W~(X') to reconstruct the values for artificial grid * ro5| Data Set: To examine how our authenticated data

points. Finally, the data consumer can reconstruct theesa“{:ompression schemes perform in a real-world deployment,

at the original locations by using interpolation again.sThiWe test them using the data set from the GoMOOS

time, for each rea_l sensor location, the data consumer use, iect [1]. GOMOOS is a working prototype for a regional
three or more artificial sensors that are closest to the r ean observing system. Special sensor nodes, daltegs
sensor location. were deployed along with the coastline of the Gulf of Maine

3) Security Analysisin the authenticated spatial com-+o sample meteorological data. In our simulation, we use the
pression, sensor nodes and storage nodes can estaligflerwater temperature data collected by ten buoys from
a pairwise key using existing pairwise key establishmepb07-08-13 17:00:00 UTC to 2007-09-04 00:00:00 UTC.
schemes (e.g., [12], [13], [21]). Thus, the communicatiophis data set exhibit temporal locality, but they do not
between sensor nodes and storage nodes in the netwgidplay spatial locality due to the locations of buoys. Thus
can be authenticated. Following the same argument fge only use this data set for the authenticated temporal
authenticated temporal compression, without knowing th®mpression
authentication key, the adversary will not be able to com- Simulated Data Set:In addition to the real data set, we
pute a valid MAC, and any modification to the compresseglso use an energy model [8] to simulate values possibly
data will be detected. Moreover, replay attacks can k@llected by sensors. We assume that an energy source at lo-
defeated by using a standard solution such as a sequegggon (z,,y,) emits a signal, which is measured by sensor
number. nodes deployed in the network. The signal strength emitted

Another threat is the potential physical attacks in whichy the energy source decays as the distance to sensor nodes
the adversary moves sensor nodes to different locatioicreases. If the constant decay coefficienkisthe signal
However, in the authenticated spatial compression schemsgength measured by the sensor noieE; = ﬁ + 1y,
the locations of sensors are provided and authenticatgtere C is the energy emitted by the source nodg,is
along with the compressed data. Thus, such physical attads distance from the node at location ;,y;) to the
will not be effective. energy source (i.e./(zs — z;)2 + (ys — v;)2), andr; is

Our authenticated spatial scheme cannot deal with tH random variation of the signal over time, which follows
situation where the storage nodes are compromised. Hownormal distributionV(n, o%) [8]. The valueK is typically
ever, as we assumed in our threat model (see Section fipm 2.0 to 5.0 based on the environment. In our simulation,
we assume that there are other mechanisms to deteetfollow the suggestion in [5] and use a valuefof= 3.0.
compromised nodes (e.g., [20]).

B. Authenticated Temporal Compression

We evaluate the authenticated temporal compression us-
IV. SIMULATION RESULTS ing both the real data set and the simulated data set. For the
real data set, we extract 1,024 data items from each buoy,

We evaluate our authenticated temporal and spatial comhich samples the hourly temperatureneter underwater.
pression schemes through simulation. We are interesfeok the simulated data set, we generate 1,024 data items
in understanding the trade-off between data distortidsy using the energy model for one time period.
and storage reduction provided by compression. Specif-We explore the relationship between data distortion and
ically, our simulation is focused on demonstrating thajtorage reduction on the authenticated temporal compres-
our schemes give a compression threshold so that ea@n. We use thestorage reduction ratidco measure the
sensor node can reach the maximum storage reductigving in storage. Specifically, we first compute the storage
while maintaining desired data quality. overhead byl = Orjz'[;;:ml - (On*Nm%?ffgz;fLE"Byt“,

In our simulation, we use Haar wavelet transformawhere O,, is the number of transformed data items for
tion [17] and DCT transformation [3] to transform sensoeach item,N,, is the number of transformed data after
data in the time (or space) domain to the frequency domagata compression, anfL E,, is the number of bytes to
As discussed earlier, both transformation functions hae@code the masking vector using RLE compression. Then
the orthogonal property, and as a result, the distortion due compute the storage reduction ratio By= 1 — H.
to compression can be computed without performing the We usedistortion ratio to measure the degree of distor-
inverse transformation. This greatly saves the computatio tion between the compressed and the original data. Specifi-
overheads on sensor nodes. cally, the distortion ratio is measured By= ”SH_Sﬁ/” , Where

We use the run-length encoding (RLE) algorithm t& and.S’ are the vectors representing the original and the
compress the masking vector (or matrix), which consists cbmpressed data values, respectively.
consecutive zeros or ones. RLE is a lossless and simple datkigure 4 illustrates the relationship between the average
compression algorithm, which is good for many consecutiviata distortion and storage reduction for the real and the
data elements in a vector. simulated data sets, respectively. Overall, the graphs for
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both data sets are very similar. This demonstrates that sandom deployments. For the grid-based deployment, the
simulated data set has similar temporal correlation to tléstortion degree for the 2D Haar transformation remains
real data set. close to zero until the storage reduction ratio is almost
Figure 4 shows that the distortion ratio for the Haar trand- The distortion ratio for the 2D DCT transformation is
formation is close to zero until the storage reduction iseloalmost proportional to the storage reduction ratio.
to 0.5 in both data sets. After that, the distortion ratiotfa For the random deployment, both the 2D Haar and the
Haar transformation starts to drastically increase. Hemnev2D DCT transformations lead to a distortion ratio at about
the distortion ratio for the DCT transformation remainsled.3 even with small storage reductions. This is mainly
than 0.02 until the storage reduction reaches almost 1dne to the error introduced by the interpolation process.
both data sets. This is because the DCT transformed d&tatunately, the distortion ratio remains around 0.3 as the
is almost all concentrated on low frequencies. storage reduction ratio grows, until the storage reduction
Our simulation results demonstrate that if the sensed dagaches 0.6 for the DCT transformation, and close to 1
is highly correlated with each other in the time domairfpr the Haar transformation. This result indicates that if
both the Haar and the DCT transformations can lead ¢ertain data distortion is tolerable, both transformagioan
good storage reduction without hurting the data qualityelp reduce the storage requirement significantly. Morgove
much. Moreover, the DCT transformation can lead to betttre 2D Haar transformation demonstrates stronger ability
storage reduction than the Haar transformation for the sateereduce the storage requirements for the same expected

expected data distortion. data distortion ratio. Thus, the 2D Haar transformation is
a better choice for authenticated spatial compression than
C. Authenticated Spatial Compression the 2D DCT transformation.

We evaluate the authenticated spatial compression usiqg : L
the simulated data set. The real sensor data cannot be ulg.e&:omputanon, Memory, and Communication Overhead

due to the lack of spatial coverage. We apply our schemes/Ve now briefly present computation, memory, and com-
to two deployment scenarios. First, we generate 1,0anication overhead of our schemes as follows:
simulated data items for the grid-based sensor deployment Computational OverheadAssume thatV is the total
using the energy model function. The simulated data de¢mber of data items sensed by a sensor node in a given
represents the signal strength measured by sensor ndif@g intervalt,,, where each data item is-bit length. The
at 1,024 grid intersections in the area. The storage nodeProximate total execution tini€ is as follows:
receives sensed data from these nodes at a certain time.
For random sensor deployment, we simulate 1,024 values T =Twac + N> (T +Tb + Tuigo/ )
sensed by sensor nodes at random locations using tigereT ;¢ is the time for generating/ AC, Ty denotes
energy model. The storage node deployed in the netwdts a cryptographic hash function (e.g., SHA-I)p is
stores data items received from these sensor nodes. Tévecomputing data distortion, arifls;,, is for computing
storage node then uses interpolation to generate 1,QRé transformation algorithn®;4c andTy take3, 636us
values at the artificial grid locations. for SHA-1 and1,473us for MD5 to process single data
The storage node uses both 2D Haar and 2D DGiem with the input size of 512bits in ATmegal28L on
transformations to generate the transformed data matex. WICAz [2] [4]. Tp takes three clock cycles (i.e., about
use the same metrics, storage reduction ratio and digtortin406..s) to process single data item (i.e., one clock cycle
ratio, as in the evaluation of temporal compression. for an addition and two clock cycles for a multiplication
Figure 5 illustrates the relationship between the distarti with 7.3728 MHz clock frequency in ATmegal28L [11]).
ratio and the storage reduction ratio for both grid-baset aff'4;,, is small in WSNs, since performing fast DCT, which



does not require floating-point operations, or8a8 block results demonstrate that these schemes provide significant
(i.e.,cis 64) takesl, 394.16us (i.e.,11,153 cpu cycles) [11]. storage reduction for typical sensor network applications
Memory OverheadTi;ac and Ty requiren x (N + In our future work, we will explore and compare other
1)bits in memory. The memory requirement fdf, isn x  transformations, and hopefully identify the best transfar
Nbits. And T4;4, takesn x (N/c)bits. Thus, the total tion for different types of sensing applications.
memory requirement of our schemesiis = n x (2N +
1+ N/c)bits. ACKNOWLEDGMENT
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