
BitTrickle: Defending against Broadband and

High-power Reactive Jamming Attacks

Yao Liu, Peng Ning

North Carolina State University, Raleigh, NC 27695

{yliu20, pning}@ncsu.edu

Abstract—Reactive jamming is not only cost effective, but
also hard to track and remove due to its intermittent jamming
behaviors. Frequency Hopping Spread Spectrum (FHSS) and
Direct Sequence Spread Spectrum (DSSS) have been widely used
to defend against jamming attacks. However, both will fail if
the jammer jams all frequency channels or has high transmit
power. In this paper, we propose BitTrickle, an anti-jamming
wireless communication scheme that allows communication in the
presence of a broadband and high power reactive jammer by ex-
ploiting the reaction time of the jammer. We develop a prototype
of BitTrickle using the USRP platform running GNURadio. Our
evaluation shows that when under powerful reactive jamming,
BitTrickle still maintains communication, whereas other schemes
such as 802.11 DSSS fail completely.

I. INTRODUCTION

A reactive jammer stays quiet when a target sender is not

transmitting, but jams the channel when it detects transmission

from the sender. Compared with constant jamming, reactive

jamming is not only cost effective for the jammer, but also

hard to track and remove due to its intermittent jamming

behaviors [2]. Reactive jamming has been widely used in

military applications to cut off the wireless communication

of the enemy army or disable radio-controlled devices [2].

Frequency Hopping Spread Spectrum (FHSS) (e.g., [8],

[17]) and Direct Sequence Spread Spectrum (DSSS)

(e.g., [12], [15], [20]) are dominantly used for anti-jamming

purposes. In FHSS, the sender and the receiver switch their

communication channel periodically to avoid jamming. In

DSSS, the sender multiplies the original message with a

pseudo-random sequence to obtain spreading gain. If the

jammer’s power is not strong enough to overwhelm the DSSS

signals with spreading gain, the receiver can use the same

pseudo-random sequence to recover the message. However,

FHSS, DSSS and their variants all share a common assumption

that the jammer can only jam part of channels or has limited

transmit power. Unfortunately, if the jammer jams all channels

simultaneously or transmits with high power to overcome the

spreading gain, these methods fail to maintain communication.

It may appear that a broadband, high-power reactive jammer

is perfect and invincible. First, the jammer can jam all channels

and overcome the spreading gain. In addition, the reactive

strategy arms the jammer with stealthiness, enabling them to

avoid detection and removal.

In this paper, we develop BitTrickle, a communication

scheme that allows wireless devices to exchange information

under broadband, high-power reactive jamming attacks. Bit-

Trickle requires no special hardware. Even wireless devices

that are not equipped with spread spectrum capability can use

BitTrickle to combat reactive jamming attacks.

BitTrickle achieves the anti-jamming capability by harness-

ing a subtle opportunity arising from an intrinsic feature of

reactive jamming, i.e., “the jammer stays quiet when the

channel is idle, but starts transmitting a radio signal as soon

as it senses activity on the channel” [19].

Channel sensing is indispensable for a reactive jammer to

determine if a target sender is transmitting. Channel sensing

causes a short delay. For example, energy detection, the most

popular channel sensing approach with very small sensing

time [9], requires more than 1ms to detect the existence of

target signals for a 0.6 detection probability and -110dBm

signal strength, when implemented in a fully parallel pipelined

FPGA for fast speed [5]. In addition, upon detecting the target

signal, the jammer needs to switch its status from quiet to

transmitting. The switching process further takes time. As

another example, German SGS 2000 series military jammer

has a switching time of about 50µs [3]. Therefore, before the

jammer actually jams, the sender has already transmitted ∆tR

bits, where ∆t is the reaction time of the jammer and R is

the transmission rate of the sender.

BitTrickle exploits such unjammed bits to establish

jamming-resilient communications. The receiver collects bits

that are transmitted by the sender but not jammed by the

reactive jammer, and assembles them to construct the original

message. It is worth pointing out that BitTrickle also works in

defending against random jammers that sleep after jamming

for a random time and resume afterwards.

Two technical challenges are addressed in developping

BitTrickle. First, the receiver needs to extract unjammed bits

from received bit stream. We develop a novel technique that

utilizes modulation properties to identify unjammed bits. In

addition, an error recovery mechanism is required to tolerate

synchronization errors (e.g., lost bits), deal with pollution at-

tacks, and guarantee the performance of error correction codes

(ECC). Accordingly, we develop an encoding and decoding

technique to enable error recovery with high efficiency.

The throughput of BitTrickle partially depends on the re-

active jamming pattern. Long jamming duration lowers the

throughput. This is similar to the situation that FHSS and

DSSS have a lower bit rate in the presence of a stronger

jammer who covers more channels and uses higher power.

However, at the same time, the reactive jammer risks higher

probability of being detected and removed. The goal of Bit-

Trickle is to raise wireless communication from non-existence

in extremely hostile environments (e.g., battlefield) to being

available, rather than support high-speed applications like

video streaming in benign environments. When FHSS and

DSSS cannot deliver a single bit, BitTrickle can still maintain

wireless communication.

A very important application of anti-jamming techniques

is tactical communication. FHSS and DSSS systems typically

support a bit rate from dozens bps to several kilo bps [3].

For example, PRC 3100H radio systems, which are FHSS

transceivers used by US Army to provide encrypted voice

and data communication in battlefields, can achieve a bit

rate up to 2400bps [3]. Our prototype implementation of

BitTrickle on the Universal Software Radio Peripheral (USRP)

platform [13] achieves a similar bit rate between 200-2,500

bps. Further, BitTrickle can also be implemented on more

advanced hardware (e.g., commercial or military chips) than

USRPs to guarantee a desired bit rate in the presence of an

extreme jammer with very short reaction time.

The contribution of this paper is three-fold: (1) we develop

BitTrickle by exploiting a jammer’s reaction time, which

enables wireless communication even when previous anti-

jamming techniques fail; (2) we develop two novel techniques

in BitTrickle, including a modulation error based method to

extract unjammed bits from received bit stream, and an encod-

ing and decoding method to recover the original message from

message fragments whose positions in the original message

are unknown; (3) we implement a BitTrickle prototype using

the USRP platform [13], and evaluate the performance of

BitTrickle in terms of packet delivery rate and throughput.

The rest of the paper is organized as follows. Section II

shows the overview of BitTrickle and two technical challenges

we face in this work. Sections III and IV present our methods

for addressing these technical challenges. Section V describes

the implementation and evaluation. Section VI discusses re-

lated work, and Section VII concludes this paper.

II. OVERVIEW OF BITTRICKLE

As discussed earlier, BitTrickle exploits the sensing delay

of reactive jamming to enable message transmission. In this

section, we describe the high-level behaviors of the sender

and the receiver, respectively, and then discuss the technical

problems that need to be solved to build BitTrickle.

A. Transmission at the Sender

The sender encodes a message using a BitTrickle encoder,

which enables the receiver to recover the message in the

presence of partial message corruption. A message is encoded

in a way such that the receiver can identify the boundary of a

received encoded message, and thus no extra synchronization

preamble is required for transmitting the encoded message. If

a message is too long, the sender may first split it into short

messages, and then encode those short messages.

To transmit encoded message, the sender needs to find

times when the jammer is not jamming. The sender may

take a random backoff before each transmission, as shown

in Figure 1. This makes it hard for the reactive jammer to

predict when the sender will start the next transmission. The

. n

11
t

.

.
12
t n n n n n n

1n
t n n n

2n
t

13
t 3n

t

Fig. 1. Transmission at the sender

jammer may attempt to jam the communication for longer

time periods. However, this will increase the chance for the

reactive jammer to be detected and removed. If the sender

resides in the power range of the jammer, the need of random

backoffs can be removed. Before each transmission, the sender

may perform channel sensing to determine whether or not the

jammer is transmitting. If not, the sender immediately sends

bits without waiting for the backoff time to expire. The sender

may transmit each bit of the encoded message for multiple

times to increase the chance that the receiver receives this bit.

Note that BitTrickle can also address random jamming

attacks. In both reactive and random jamming scenarios, a

common feature is that multiple transmitted bits are lost. In

Section IV, we will show how BitTickle deals with lost bits.

Figure 1 shows the most conservative situation, where the

sender transmits one bit a time. The sender can improve the

performance by transmitting multiple bits a time. To this end,

the sender may learn how many bits can be delivered within

the jammer’s reaction time through, for example, detecting

the point where jamming happens or using ACK packets from

the receiver, which can be transmitted in a similar way. This

paper focuses on the transmission of single bits. Extending the

approach to transmitting multiple bits a time is straightforward.

B. Reception at the Receiver

The receiver’s task is to extract the unjammed bits and

reconstruct the original message from these unjammed bits,

which are possibly collected from multiple transmissions.

Jamming

detector
BitTrickle

decoder
Authenticator

Recovered

message
Received

bits

Unjammed

bits

The sender’s

bits

Fig. 2. Reception at the Receiver

Extracting Unjammed Bits: Figure 2 shows the high-level

view of the receiver’s operations. The receiver processes each

received bit with the jamming detector, which checks if this

bit is jammed, and discard all jammed bits. The output of the

jamming detector is thus a collection of unjammed bits.

Dealing with Pollution Attacks: An intelligent jammer

may attempt to pollute the unjammed bits to defeat our

scheme. Specifically, the jammer transmits fake bits to the

receiver when the sender is not transmitting. Those fake

bits can cause a high decoding complexity (e.g., exponential

complexity) at the receiver. Therefore, the receiver should

have the ability to remove the jammer’s bits. Accordingly,

the receiver feeds the output of the jamming detector to

an authenticator, which distinguishes the sender’s bits from

the jammer’s bits by using physical layer authentication ap-

proaches such as radiometrics (e.g., [4]) and radio frequency

(RF) fingerprints (e.g., [14]). As cryptographic authentication

faces cryptanalysis based attacks (e.g., birthday attacks against

digital signatures), physical layer authentication may also face

similar threats as revealed by [7]. A hybrid of multiple physical

layer approaches may be explored to defense against sophis-

ticated attacks. How to improve the authentication capability,

including cryptographic and physical layer authentication, is

complementary to this work.

We assume that the jammer cannot break physical layer

authentication approaches. However, In practice, false nega-

tives and false positives may happen with small probabilities

when those approaches are employed. With a false negative,

the jammer’s bits are identified as the sender’s bits. With a

false positive, the sender’s bits are identified as the jammer’s

bits. Although false negatives and false positives are events

of small probabilities, they may introduce a small number of

inserted bits and lost bits. In Section IV, we will show how

the receiver handles inserted and lost bits.

Reconstructing Original Message: After obtaining un-

jammed bits, the receiver still faces several challenges in

reconstructing the original message: First, a bit may get lost, if

itself and all its copies are jammed by the jammer or mistaken

as a false positive. Second, the sender transmits each bit for

multiple times, and thus the receiver may receive duplicate

bits. In addition, false negatives insert a small number of jam-

mer’s bits into the input of the decoder. Therefore, to deal with

transmission errors such as inserted, lost, and duplicate bits,

the receiver utilizes a BitTrickle decoder, which corresponds

to the BitTrickle encoder used by the sender.

C. Technical Challenges

Detecting (Un)Jammed Bits: Traditional jamming detec-

tion aims to find out if wireless communication is jammed

(e.g., [16], [19]). However, jamming detection in BitTrickle

needs to distinguish jammed bits from unjammed bits. One

may suggest the use of received signal strength (RSS) of each

bit to distinguish jammed and unjammed bits. Unfortunately,

this method will fail when the distribution of RSS values are

inherently time-varying due to reasons like the movement of

communicators or the use of power control techniques. In

Section III, we propose a novel jamming detector that uses

modulation properties to distinguish jammed and unjammed

bits. The proposed detector does not rely on RSS values, and

thus can be used in general wireless applications that have

either dynamic or static RSS.

BitTrickle Decoder: Transmission errors such as lost or

duplicate bits may happen when there exist jamming attacks

or a retransmission mechanism is employed. A small number

of lost or duplicate bits can make many bits mis-aligned,

which greatly reduce the efficiency of ECC. To deal with lost

and duplicate bits, we develop BitTrickle decoder, which can

find the original position for each received bit in the encoded

message, and enable the use of ECC with high efficiency.

III. DETECTION OF (UN)JAMMED BITS

A. Preliminaries on Modulation

I/Q modulation has been widely used in modern wireless

systems, including WCDMA, WiMax, ZigBee, WiFi, and

DVB (Digital Video Broadcasting). I/Q modulation encodes

data bits into physical layer symbols, which are the trans-

mission units in the physical layer. In the following, we use

Quadrature Phase-Shift Keying (QPSK) modulation, a typical

I/Q modulation, to illustrate how I/Q modulation works.

QPSK – An Example I/Q Modulation: QPSK encodes two

bits into one symbol at a time. In Figure 3, bits 00, 01, 10,

and 11 are represented by points whose coordinates are (0, 1),
(−1, 0), (0,−1), and (1, 0) in an I/Q plane, respectively. The

I/Q plane is called a constellation diagram. A symbol is the

coordinate of a point in the constellation diagram. For a bit

sequence 0010, the modulation output are two symbols: (0, 1)
and (0,−1). A received symbol is not exactly the same as the

original symbol sent by the sender, since wireless channels

usually introduce noise to signals that pass through them [8].

To demodulate, the receiver finds the point that is closest to

the received symbol in the constellation diagram. For example,

in Figure 3, the point closest to the received symbol is (0, 1).

Thus, the demodulation output is 00.

Fig. 3. QPSK modulation/demodulation

B. Observation

Intuitively, jamming signals can introduce a large distortion

to signals transmitted by the sender, since the goal of the

jammer is to corrupt the signals. If a received symbol is

jammed, it may greatly deviate from its ideal point in the

constellation diagram and can hardly be recovered. To get

more insights in this process, we perform experiments to

examine the impacts of jamming on symbol locations.

We collect the received symbols using USRPs [13], which

are radio frequency (RF) front ends equipped with analog to

digital (AD) and digital to analog (DA) converters. In our

experiments, three USRPs are used as the sender, the receiver,

and the jammer, respectively, each of which is connected to

a computer. Automatic gain control (AGC) is employed by

USRPs. We set the bit rate as 1Mbps, carrier frequency as

5GHz, and modulator as QPSK.

We consider a normal scenario and a jamming scenario.

In the first one, only the sender transmits randomly gener-

ated packets to the receiver, while in the second one, both

the sender and the jammer transmit random packets to the

receiver concurrently. The receiver record the coordinates of

the received symbols in the constellation diagram.

In the normal scenario, as shown in Figure 4, the received

symbols form four clusters, each of which centers around an

ideal point of QPSK. However, in the jamming scenario, as

shown in Figure 5, the received symbols randomly spread over

the constellation diagram. Thus, it is hard to identify the ideal

−4 −2 0 2 4
−4

−2

0

2

4

I

Q

Fig. 4. Normal scenario

−4 −2 0 2 4
−4

−2

0

2

4

I

Q

Fig. 5. Jamming scenario

points for the received symbols, and demodulation errors may

happen frequently.

C. Detection Method

Let dunjam (or djam) be the distance between an unjammed

(or a jammed) symbol and the origin in the constellation dia-

gram. As shown in the above experiment, unjammed symbols

are close to their ideal constellation points, and thus dunjam

approximately equals to the distance between an ideal point

and the origin. In contrast, jammed symbols deviate from

their ideal points. Due to AGC, such deviation is actually a

convergence from ideal points toward the origin rather than

an expansion out of the constellation diagram range. Hence,

unlike unjammed symbols, jammed symbols are randomly

distributed within the constellation diagram, and the expected

value of djam is smaller than that of dunjam. For example,

in Figures 4 and 5, the average distance between a received

symbol and the origin is 2.2524 and 1.2628, respectively.

We propose to use the distance d between a received symbol

and the origin of the constellation diagram as a metric to detect

the existence of jammed symbols. For each received symbol,

we compute the corresponding distance d, and compare d with

a threshold t. If d > t, the received symbol is marked as

unjammed. Otherwise, it is jammed and we discard it.

Note that different metrics can be explored to accommodate

different variants of I/Q modulation. For example, rectangular

based I/Q modulation (e.g., 64 QAM) may use the distance

between a received symbol and the closest constellation point

as the detection metric. We choose the metric dunjam (or

djam) due to its simplicity. This metric serves as an example

to illustrate how our observation can be utilized for detecting

jammed and unjammed symbols.

The detection accuracy can be enhanced by using the

temporal correlation of adjacent symbols. Let si and di

denote the i-th received symbol and its distance from the

origin, respectively. We determine whether si is jammed

or not by examining it along with its neighbor symbols

si−N , ..., si−1sisi+1, ..., si+N , where N is system parameter.

Symbol si is marked as unjammed, if all symbols in this

sequence have distances larger than the threshold. As we will

show below, this method can enhance the detection accuracy.

D. False Positives and False Negatives

False positives (FP) and false negatives (FN) are two types

of errors that may happen in the detection. In a false positive,

dunjam of at least one symbol in the temporal sequence is

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Threshold t (N=1)

 P
ro

b
a

b
ili

ty
 o

f
F

N
/F

P

Theoretical(FN)

Theoretical(FP)

Measured(FN)

Measured(FP)

Fig. 6. Theoretical and mea-
sured probabilities of false posi-
tive/negative when N = 1.

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Threshold t (N=3)

 P
ro

b
a

b
ili

ty
 o

f
F

N
/F

P

Theoretical(FN)

Theoretical(FP)

Measured(FN)

Measured(FP)

Fig. 7. Theoretical and mea-
sured probabilities of false posi-
tive/negative when N = 3

less than or equal to t, and thus an unjammed symbol is

incorrectly classified as a jammed symbol. In a false negative,

djam of all symbols in the temporal sequences are larger than

t, and thus a jammed symbol is incorrectly classified as an

unjammed symbol. Theorems 1 and 2 give both probabilities

of false negative and false positive. Proofs can be found in our

technical report [11].

Theorem 1: (Probability of false positive) The probability

Pfp that an unjammed symbol is classified as a jammed

symbol is 1− (M1(
v

σN
, t

σN
))2N+1, where M1 is the Marcum

Q-function, v is the distance between an ideal point and the

origin of the constellation diagram, t is the threshold, 2N + 1
is the length of the temporal sequence, and σN

2 is the variance

of the jamming signal.

Theorem 2: (Probability of false negative) Given that each

ideal point in the constellation is jammed with equal probabil-

ity, the probability Pfn that a jammed symbol is classified as

an unjammed symbol is (e
−t2

2σ2)2N+1, where t is the threshold,

2N + 1 is the length of the temporal sequence, and σ2 is the

variance of the I/Q coordinate of a received symbol.

Experimental Validation: To verify the theoretical re-

sults, we run the temporal check enhanced method to detect

unjammed symbols from symbols collected for normal and

jamming scenarios in our earlier experiment. The measured

false positive probability Pfp and false negative probability

Pfn are computed by Pfp = 1 − # detected symbols

total symbols
and Pfn =

detected symbols

total symbols
, respectively. Meanwhile, we compute Pfp and

Pfn using Theorems 1 and 2. The computation results are

shown in Figures 6 and 7. Note that statistic parameters v, σN ,

and σ are determined based on our earlier experiment1. Both

theoretical and real measured results are in close consistency.

A large N can result in both small Pfn and Pfp. When N = 1,

both real measured Pfn and Pfp can be as low as 0.0444 by

using a threshold t that equals to 1.6. If we increase N to 3,

we can achieve even lower error rate.

E. Determining the Threshold

The threshold t can be determined based on the system

requirement for Pfn and Pfp. For example, if the false

negative probability Pfn is required to be less than α, we

have (e
−t2

2σ2)2N+1<α. By treating t as an unknown and solve

the inequality, we can get t>
√

2σ2 lnα2N+1. As the threshold

1v = 2.3949, σN = 0.3838, and σ = 1.0344

t increases, Pfp increases but Pfn decreases. If the goal is to

minimize both Pfp and Pfn, as shown in Figures 6 and 7,

the minimization result and the corresponding t form the

intersection point of the Pfp and Pfn curves.

IV. BITTRICKLE ENCODING/DECODING

The original message is first encoded with a traditional

ECC (e.g., Reed-Solomon codes) before being processed by

BitTrickle. ECC corrects substitution errors (i.e., bit “‘1” is

replaced by “0” and vice-versa). The BitTrickle encoding

scheme further encodes the ECC-coded message to allow a

receiver to decode the correct positions of received bits and

recover from synchronization errors.

A. Basic Idea

For the sake of presentation, we call the input to BitTrickle

encoding (i.e., the ECC-coded message) as a BTmessage.

BitTrickle Encoding: The sender and the receiver agree

on a sequence that is formed by n integers, where n is the

length of the BTmessage. We call such an integer sequence a

positioning code and each integer in the sequence a label.

As shown in Figure 8, the BTmessage is 10110 and the

positioning code is 03572. For 1 ≤ i ≤ 5, the sender labels the

i-th bit of the message using the i-th label in the positioning

code (e.g., the second bit is 0 and its label is 3). In the labeling,

the sender uses one symbol to represent both a bit and its label.

(Details of labeling will be presented in Section IV-B.) Note

that a symbol is the transmission unit of physical layer. Once

a receiver receives a symbol, the receiver knows both the bit

and its label. The encoding results are shown in Figure 8.

Fig. 8. BitTrickle encoding

Transmission Errors: The sender takes random backoffs or

performs channel sensing to avoid colliding with the jammer.

Without loss of generality, we assume the sender adopts the

backoff based method. Figure 9 shows an example. The sender

transmits the first symbol for 3 times, takes a random backoff,

and transmits this symbol again for 3 times. The sender

repeats until the last symbol is transmitted. Due to jamming

and retransmissions, a symbol may get lost or duplicated. In

Figure 9, all copies of the 2nd symbol are lost and the 4th

symbol is duplicated. Also, there may exist a small amount of

inserted symbols caused by false negatives of the authenticator.

1
t 3

t
4

t
2

t
5

t
7

t
8

t
6

t
9

t

1
t

3
t

2
t

5
t

7
t

8
t 9

t

Fig. 9. Transmission Errors

BitTrickle Decoding: The receiver demodulates each re-

ceived symbol to extract the bit and corresponding label

carried by this symbol. Figure 10 shows an example following

Figure 9. The extracted bits and labels are 111110 and 052772,

respectively. The receiver then takes two steps to correct

synchronization errors.

Fig. 10. BitTrickle decoding

The first step is merging, in which bits are merged into

a single bit if they are identical and have the same label.

As shown in Figure 10, the 4th and the 5th received bit are

identical (i.e., both of them are 1), and have the same label 7.

Thus, they are merged together. The merging result is 11110
and the corresponding labels are 05272. An incorrect merging

may happen if multiple bits in the BTmessage are identical

and use the same label. In Section IV-C, we give the analytical

upper bound of the error probability, and show that the upper

bound decreases quickly as configurable parameters such as

the number of retransmissions increases. The second step is

alignment, which consists of two substeps:

(1) Dealing with False Negatives: Although most fake

symbols can be identified by the physical layer authenticator,

a small amount of them may survive due to false negatives of

the authenticator. Those symbols are actually incoherent pieces

of the fake symbol stream and the correlation between their

labels and the positioning code is weak. Therefore, to filter out

inserted bits, we perform alignment on the most correlated part

between the positioning code and the merged received labels.

We find the largest common subsequence (LCS) between the

positioning code and received labels, and align the LCS with

the positioning code. For example, in Figure 10, the received

labels are 05272, where the underlined 2 is the inserted label

from the jammer. The LCS between 05272 and the positioning

code 03572 is 0572. Thus, the inserted label is filtered.

LCS is not necessarily unique. Finding all LCSs requires

exponential time complexity in the worst case, whereas finding

one LCS is solvable in polynomial time by dynamic program-

ming [6]. Therefore, we utilize existing dynamic programming

method to only find one LCS. It is possible that there exist

multiple LCSs and the LCS returned by dynamic programming

contains inserted labels. However, as shown in the appendix

of [11], such probability decreases quickly with the increase of

the percentage of the sender’s labels. Since false negatives are

rare events, the sender’s labels comprise the great majority

of total received labels, and thus there is a high chance

that the sender’s labels form the LCS of received labels and

positioning code. Retransmissions further increase this chance.

For example, the sender may transmit a BTmessge for 3 times.

For each transmission, the receiver can obtain a LCS. Given

a 0.1 probability that a LCS contains inserted bits, the chance

that at least one LCS does not contain inserted bits is 0.999.

(2) Generating Alignment Output: In the LCS 0572, the

labels 0, 5, 7, and 2 match the 1st, 3rd, 4th, and the last

label in the positioning code, respectively. Thus, the receiver

knows that the second bit is lost, and corrects synchronization

errors by filling a bit that can be either 1 or 0 in the position

shown in Figure 10. The alignment output is further processed

by traditional ECC to recover the original message. There

may exist multiple alignment outputs. In Section IV-C, we

develop a fast alignment approach that not only achieves

desired alignment accuracy, but also reduces the overhead by

only trying a subset of all combinations.

Diversity Degree of a Positioning Code: To avoid incorrect

merging/alignment, we require that consecutive labels in the

positioning code to be different. Specifically, the i-th label in

the positioning code does not equal to any of its previous d

labels (i.e., i− 1-th, ..., i− d-th label) and successive d labels

(i.e., i + 1-th, ..., i + d-th label), where d ≥ 1 is an adjustable

parameter, referred to as diversity degree of the positioning

code. For example, when diversity degree is 2, the 8th label

should not be the same as the 7th, 6th, 9th and 10th label.

B. Encoding at Sender

The sender adds special data content (e.g., 11111) to both

the beginning and the end of a BTmessage, so that a receiver

can recognize the boundary of a BTmessage. We refer to the

special data content as a message delimitation code (MDC).

Afterwards, the sender labels the i-th bit of the BTmessage

by packing the i-th bit and the i-th label of the positioning

code into one physical layer symbol. For example, assume

that i-th bit is 1 and its label is 2. The sender appends 10

(i.e, binary form of 2) to the data bit 1, and the result is 110,

which are modulated into one symbol (e.g., a 8PSK symbol).

To improve efficiency, bits in the MDC are not labeled. For an

M-ary modulator that encodes log2 M bits by one symbol, the

maximum value of a label of the positioning code should be

2log2 M−1 − 1 = M
2 − 1. For example, an 8PSK symbol uses

one bit to carry data information and two bits to carry the label.

Hence, a label is less than or equal to 3 (i.e., 11). Packing a

data bit and its label in one symbol achieves atomicity: data

bits are always associated with their labels. Upon receiving a

symbol, the receiver knows both the data bit and its label.

C. Decoding at Receiver

Before decoding, the receiver searches for boundaries of a

BTmessage. The boundary of the BTmessage is identified if

the receiver can observe an MDC or a certain data pattern

that is a part of MDC. For example, assume that the MDC

equals to 1111111, the receiver identifies the beginning or

end of a BTmessage if the receiver receives 1111111, mul-

tiple consecutive 1’s (e.g., 1111), or multiple consecutive 1’s

interleaved with quite a few 0’s (e.g., 1110111). The third

condition deals with bits inserted by false negatives. Note that

most fake MDCs injected by the jammer have already been

filtered out by the physical layer authenticator.

To reduces the chances that the entire MDC is jammed,

the sender and the receiver can increase the length of the

MDC according to the severity of jamming attacks, so that

the receiver can observe at least a part of the MDC. Alterna-

tively, they may take a backoff time between transmitting two

consecutive symbols of an MDC.

10 15 20 25 30
0

0.05

0.1

0.15

0.2

Number of retransmissions

P
ro

b
a

b
ili

ty
 o

f
m

e
rg

in
g

 e
rr

o
rs

analytical(d=4)

simulated(d=4)

analytical(d=6)

simulated(d=6)

analytical(d=8)

simulated(d=8)

Fig. 11. Merging errors

10 15 20 25 30
0

0.1

0.2

0.3

0.4

Number of retransmissions

P
ro

b
a

b
ili

ty
 o

f
a

lig
n

m
e

n
t

e
rr

o
rs

analytical(d=4)

simulated(d=4)

analytical(d=6)

simulated(d=6)

analytical(d=8)

simulated(d=8)

Fig. 12. Alignment errors

The receiver then demodulates the symbols of the received

BTmessage, extracts a data bit and a label from each symbol,

and takes two steps to correct synchronization errors.

Merging: Bits are identified as duplicated and merged into

a single bit if they are consecutive, identical and have the same

label. To detect and merge duplicated bits, the receiver points

a cursor to the first bit/label of the received BTmessage. Then,

the receiver compares the bit/label pointed by the cursor and

each of the following Nr − 1 bits/labels, where Nr denote

the number of retransmissions for a single bit. If inequality

occur (e.g, two bits are not equal or have different labels),

the receiver merges all equal bits/labels together and points

the cursor to the next bit/label. The receiver repeats until all

bits/labels of the received BTmessage are scanned.

Merging Errors: Different bits may be incorrectly merged

together. Theorem 3 give the upper bound of the probability

of merging errors. The proof can be found in [11].

Theorem 3: (Probability of merging errors) The probability

pe that a received BTmessage is merged incorrectly is less than

1− (1− prd
−pr(n−n(1−pr)+1)

2(R−d))n(1−pr)−1, where n is the length

of a positioning code, R is the number of possible values for

each label, r is the number of retransmissions for each bit in

the BTmessage, d is the diversity degree of the positioning

code, and p is the probability that a bit transmitted is lost.

We use simulations to validate the analytical upper bound.

All simulations are done in MATLAB 7.7.0. We let R = 32
and p = 0.95, and perform 10,000 trails. In each trial, we

randomly generate a message and a positioning code of length

155, and label the message using the positioning code. We

retransmit each bit of the message for r times (10 ≤ r ≤ 30),

and delete each retransmitted bit with probability p. We

then merge the remaining bits, and compare the result with

the correct result obtained based on the original generated

message. If both results are not equal, a merging error happens

and we mark this trial as failed. We compute the simulated

probability of merging error and its analytical upper bound

using (# failed trials
total trials

) and Theorem 3, respectively.

As shown in Figure 11, the simulated probability is only

slightly less than its analytical upper bound, which indicates

that the result Theorem 3 is a tight upper bound. A larger

diversity degree d can achieve smaller error probability. As

the number r of retransmissions increases, both the simulated

probability and its upper bound decrease and approach to 0. In

particular, when d = 8 and r = 20, the simulated probability

and the analytical upper bound are 0.0005 and 0.0006.

Merging errors will generate additional lost bits during

message recovery. In the following, we develop a method to

recover lost bits through alignment and ECC.

Alignment: The goal of alignment is to find the actual

position of each received bit in the original BTmessage. Let

S denote the positioning code and L the merged labels (e.g.,

in Figure 10, the merged labels are 0572).

(1) Basic Alignment Method: If the length of the position-

ing code is small, we can do alignment in a brute force way.

Specifically, assume that the length of L is q. The receiver can

find all length-q subsequences of S, and compare each of them

with L. For each subsequence that equals to L, the receiver

generates an alignment output by padding 1’s or 0’s into the

positions of lost bits. For example, assume that padding bits

are 1’s and the received message after merging is 00. For

L = 17 and S = 1317, the alignment outputs are 0110 and

1100. Each alignment output is further processed by traditional

ECC decoding, where replacement errors (i.e., 1 → 0 or

0 → 1) are corrected. Since there may exist multiple alignment

outputs, the receiver may obtain multiple decoding results,

among which the one that can pass cyclic redundancy check

(CRC) or authentication is the recovered message. If the length

of S is large, this method is time consuming. We develop a

fast alignment approach below to reduce the overhead.

(2) A Fast Alignment Method: To achieve fast alignment,

we propose to only find one alignment. We further show that

given proper configurations, this single alignment leads to a

very small error probability. We use a simple greedy strategy to

obtain a single alignment. Specifically, the receiver compares

labels of L with those of the positioning code S, trying to

find S’s leftmost or rightmost subsequence that equals to L.

For example, if L = 17 and S = 1177, the S’s leftmost and

rightmost subsequence that equals to L is underlined in 1177
and 1177, respectively. The positions of the leftmost/rightmost

subsequence is 13/24, and thus the corresponding decision is

that the first and the third bits of the BTmessage are received

(or the second and the last bits are received).

Alignment Errors: For basic alignment, the probability that

alignment errors happen is 0. For fast alignment, alignment

errors may happen if the positions of the leftmost/rightmost

subsequence are not formed by the correct positions of the

received bits. Theorem 4 gives the upper bound of the proba-

bility of alignment errors. The proof can be found in [11].

Theorem 4: (Probability of alignment errors) The probabil-

ity pe that the receiver fails to generate correct alignments is

1 − ∑n

k=q

(k

q)
∑

n
w=q (w

q)
(1 − prd

−pr(n−q+1)

R−d
)k−q , where n is the

length of a positioning code, R is the number of possible

values for each label, r is the number of retransmissions for

each bit in the BTmessage, d is the diversity degree of the

positioning code, and p is the probability that a bit is lost.

We also use simulation to validate the analytical upper

bound of alignment errors. The parameters are the same as

those used in the simulation for merging errors (i.e., R = 32,

p = 0.95, and 10,000 trials). In each trial, we randomly

generate a positioning code of length 155, retransmit each

label for r times (10 ≤ r ≤ 30), and delete each retransmitted

label with probability p. The remaining labels are merged

together. Then we find the positions of received bits (labels)

using the fast alignment alignment approach, and compare

the result with the true positions. If they are not equal, an

alignment error happens and we mark this trial as failed. We

compute the simulated probability of alignment error and its

analytical upper bound using (# failed trials
total trials

) and Theorem 4.
Figure 12 shows that the error probability decreases as

diversity degree d and the number of retransmissions increase.

From Figure 12, we can observe that theorem 4 gives a tight

upper bound of the error probability. In particular, when d = 8
and r = 20, both the simulated probability and the upper

bound are about 0.0006.

V. IMPLEMENTATION AND EVALUATION

We develop a prototype system for BitTrickle to facilitate

the experimental evaluation of BitTrickle performance under

reactive jamming. The prototype system consists of a sender

and a receiver, both implemented as a USRP connected to

a commodity PC that runs the sender (receiver) program.

The USRPs uses XCVR2450 daughter boards operating in the

2.4GHZ range as RF front ends. The software implementing

BitTrickle is based on GNURadio [1].

Reactive Jammer: We setup a high power and sensitive

reactive jammer to test the performance of BitTrickle. The

jammer is implemented on USRPs using GNURadio [1]. We

employ energy detection to achieve a lower channel sensing

time (i.e., a signal is detected if received signal strength

exceeds a configurable threshold). In our design of the jammer,

we equip the jammer with two RFX2400 daughter boards

that are used as a transmitter and a receiver, respectively.

For both the transmitter and receiver component, we set the

parameter “samples per symbol” the minimum value supported

by GNURadio to reduce the processing delay (i.e., 2 and 4 for

transmitter and receiver, respectively). Also, to maximize the

impact of the jammer on the BitTrickle receiver, we let the

jammer transmits with maximum gain and place the jammer

very close to the receiver (i.e., within 0.1 meter range of the

receiver). Parameters of the jammer is shown in Table I.

TABLE I
TECHNICAL DETAILS OF THE REACTIVE JAMMER

Parameter Value
Frequency range 2.3 – 2.9 GHz

Channel sensing time 0.6 ms

Transmit power 50 mW
Interpolation/Decimation rate 64/32

Maximum receiving RF bandwidth 16 MHz

Compared Schemes: We compare the following schemes:

(1) BitTrickle: The prototype implementation of BitTrickle

sender and receiver. This approach uses Reed-Solomon

(RS) error correction codes, and differential 8PSK modula-

tor/demodulater. The prototype system supports two RS coding

rates, which are RS(155, 55) and RS(60, 36). (2) GNURadio

Benchmark: The communication tool provided by GNURadio

for data transmission and file transfer between two USRPs.

The source codes are located at gnuradio/gnuradio-examples/

python/digital. (3) 802.11 DSSS: IEEE 802.11 protocol run-

ning at direct-sequence spread spectrum (DSSS) mode on

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Threshold

P
ro

b
a

b
ili

ty
 o

f
F

N
/F

P

False positive(FP)

False negative(FN)

Fig. 13. Jamming detector

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Threshold

P
ro

b
a

b
ili

ty
 o

f
F

N
/F

P

False positive

(FP)
False negative

(FN)

Fig. 14. Authenticator

802.11 wireless cards. This approach uses a 11-bits barker

code for spreading, carrier sense multiple access with collision

avoidance mechanism (CSMA/CA) to resolve collisions on

shared channels, and forward error correction (FEC) to enable

the reconstruction of the original data.

Evaluation Metrics: A jammer aims to prevent the com-

munication between legitimate users. Therefore, how well

the sender and the receiver can communicate under jamming

attacks is a primary concern to assess anti-jamming systems.

We use the following metrics to evaluate the performance: (1)

Packet delivery ratio: The ratio of the number of correctly

received packets to the total number of packets transmitted

by the sender. We consider a packet to be received correctly

if the packet passes CRC check. (2) Throughput: This is the

number of successfully delivered bits normalized by time unit.

We use bits per second to measure the throughput.

A. Component Evaluation

Jamming Detector: The function of jamming detector is to

remove jammed symbols. We implement the temporal based

detection method discussed in Section III-C to detect jammed

symbols. To evaluate false negative rate and false positive

rate, we also perform off-line analysis in MATLAB. Figure 13

shows the result for N = 5, where N denotes the temporal

sequence length. We can see that a threshold of 0.3 balances

the false negative and false positive.

Physical Layer Authenticator: We implement a simple

device authenticator based on [4], which uses modulation

error metrics (i.e., frequency error, phase error, magnitude

error, EVM, I/Q offset, SYNC correlation) to identify wireless

devices. To simplify the implementation of the authenticator,

we only choose EVM (error vector magnitude) as the metric

to identify the sender. In the training stage (the jammer is

turned off), we let the sender transmit and record the EVMs of

received symbols. Those EVMs are used as the fingerprints of

the sender’s signal. The receiver computes the Euclidean dis-

tance between received k symbols and each of the fingerprints.

The minimum distance is then compared with a threshold to

decide if the received symbols are from the sender. To test

false negative and false positive rate, we again perform off-

line analysis in MATLAB. Figure 14 shows the result. For

a threshold that equals to 14.5, the authenticator can achieve

a 0.0970 false negative rate and a 0.0788 false positive rate.

Noted that we use a very simple physical layer authenticator in

our prototype system. Certainly other advanced authenticators

can be used to get an even lower false rate and higher security.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jamming probability

P
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

BitTrickle

BitTrickle(0ms)

802.11DSSS

benchmark

Fig. 15. Packet delivery ratio

10 20 30 40

0

200

400

600

800

1000

Trials

T
h

ro
u

g
h

p
u

t
(b

it
s
/s

)

BitTrickle

DSSS\benchmark

Fig. 16. Throughput

B. Performance of BitTrickle

We set the bit rate of the sender, the jammer, and the receiver

to be 1Mbps. The sender transmits 100 data packets, each with

1500 bytes. Positioning codes are randomly generated, and the

diversity degree is set to 2 throughout the evaluation. Since the

size of a data packet (1,500 bytes) is too long to be directly

used with the positioning code and ECC, we divide it into

multiple blocks and append a CRC checksum to each block.

We use block size 36 or 55 bits, then RS(60,36) or RS(155,

55) for ECC, and finally a positioning code of 60 or 155 bits.

Packet Delivery Ratio: We consider different jamming

intensities. We use a probabilistic reactive jammer that jams

at probability p for 0 ≤ p ≤ 1 once detects a sender’s signal.

The jamming duration is set to be 10 times of the transmission

time of a single packet. We compute packet delivery ratio as
correct packets (blocks)

total transmitted packets (blocks)
. Figure 15 shows the result.

(1) 802.11 DSSS and GNURadio Benchmark: Packet

delivery ratio decreases as jamming probability increases. Due

to the lack of ECC and retransmission mechanism, the packet

delivery ratio of GNURadio benchmark decreases at a rate

linearly proportional to the jamming probability. Although

802.11 DSSS achieves a higher packet delivery ratio than

GNURadio benchmark, when jamming probability exceeds

0.7, the performance of 802.11 DSSS degrades dramatically.

For both 802.11 and benchmark, when the jamming probabil-

ity equal to 1, the packet delivery ratio drops to 0.

(2) BitTrickle: We use a random backoff ranging between

150–200 ms and set the number of bit retransmissions to be

15. Figure 15 shows that BitTrickle achieves a stable packet

delivery ratio that is around 1 no matter how the jamming

probability varies. We then reduce the backoff time to 0 ms

and increase the bit retransmissions to 60. Figure 15 shows that

the packet delivery ratio of BitTrickle decreases as jamming

probability increases. This is because the reduced backoff time

increases the chance that the sender’s signal collides with

the jammer’s signal. The modulator used by the BitTrickle

prototype has a higher bit error rate (i.e., BER) than that used

by GNURadio benchmark (i.e., GFSK). Therefore, the packet

delivery ratio of BitTrickle is less than that of benchmark when

jamming probability is small (e.g., ≤ 0.7). However, when the

probability is 1, unlike benchmark and 802.11, BitTrickle with

zero backoff still achieves a non-zero delivery ratio.

Throughput: We consider a common jamming scenario,

where the reactive jammer jams the channel as long as it hears

the target signal (i.e., p = 1). To be conservative, we set the

backoff time of BitTrickle to be 0 ms. We performs 40 trials. In

each trial, the number of bit retransmissions is set to 60 and the

sender transmits 100 data packets to the receiver. We compute

throughput as
correct packets (blocks)×packet (block) length

transmission time
. Figure 16

plots the computed throughput for each trial. The GNURadio

benchmark and 802.11 DSSS fail to send any packet, whereas

BitTrickle still achieves a throughput that ranges between 200–

900 bits/s, allowing communication to continue.

We also test the BitTrickle throughput under different ECC

coding rate (i.e., RS(155,55) and RS(60,36)). Figure 17 plots

the throughput as a function of signal-to-jamming ratio (SJR)

(i.e., the ratio of the reaction time to jamming duration). As

0.1 0.13 0.17 0.25 0.5
900

1100

1300

1500

1700

1900

2100

2300

2500

SJR

T
h

ro
u

g
h

p
u

t
(b

it
s
/s

)

RS(155,55)

RS(60,36)

Fig. 17. Throughput for different coding rate.

shown in Figure 17, RS(60,36) leads to a higher throughput

than RS(155,55) when SJR is less than 0.25. That’s because

RS(60,36) requires a shorter positioning code than RS(155,55),

which reduces the chance of synchronization errors. As SJR

increases, the receiver gets more information from the sender,

and thus the probability of synchronization errors decreases.

The error correction capability of RS(155,55) is stronger than

that of RS(60,36). For small SJRs, RS(155,55) does not suffer

from severe synchronization errors, and thus it can correct

more substitution errors and achieve a better throughput.

VI. RELATED WORK

FHSS and DSSS (e.g., [8], [12], [15]) have been widely used

for jamming defense. However, they cannot defend against

broadband or high power jammers. A recent paper considers

threats from broadband jammers, and proposes to use timing-

based covert channels to address broadband jammers [18]. The

idea is to map the inter-arrival times of a sender’s corrupted

packets into information bits [10]. This method fails if the

jammer launches pollution attacks or transmits with high

power to overwhelm transmitted packets. Our work considers

both broadband and high power jammers, as well as pollution

attacks. Our work is also related to reactive jamming detection.

Strasser et al proposed to detect jamming attacks by using

the correlation between corrupted bits and the corresponding

RSS [16]. However, [16] aims to identify the cause of bit errors

for individual packets, whereas the jamming detector in this

paper aims to distinguish unjammed bits from jammed bits.

VII. CONCLUSION

We developed BitTrickle to enable wireless communication

when a broadband and high power reactive jammer is present.

BitTrickle delivers information by harnessing the reaction time

of a reactive jammer. It does not assume a reactive jammer

with limited spectrum coverage and transmit power, and thus

can be used in scenarios where traditional approaches fail. We

implemented a prototype of BitTrickle based on GNU Radio.

Our results showed that BitTrickle achieved a reasonable

throughput when 802.11 DSSS and GNURadio benchmark

were completely disabled by the jammer.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation

(NSF) under grant CNS-1016260. The authors would also like

to thank the anonymous reviewers for their helpful comments.

REFERENCES

[1] GNU Radio - The GNU Software Radio. http://www.gnu.org/software/
gnuradio/.

[2] Reactive jamming technologies. http://www.ece.gatech.edu/academic/
courses/ece4007/08fall/ece4007l02/lm5/jammer.doc.

[3] Jane’s Military Communications, Edition 22, 2001–2002. Jane’s Infor-
mation Group INC, Virginia, USA, 2002.

[4] V. Brik, S. Banerjee, M. Gruteser, and S. Oh. Wireless device iden-
tification with radiometric signatures. In MobiCom ’08: Proceedings
of the 14th ACM international conference on Mobile computing and
networking, pages 116–127, New York, NY, USA, 2008. ACM.

[5] D. Cabric, A. Tkachenko, and R. W. Brodersen. Experimental study of
spectrum sensing based on energy detection and network cooperation.
In TAPAS ’06: Proceedings of the First International Workshop on
Technology and Policy for Accessing Spectrum, page 12, New York,
NY, USA, 2006. ACM.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, 2nd. MIT Press, 2001.

[7] B. Danev, H. Luecken, S. Capkun, and K. E. Defrawy. Attacks
on physical-layer identification. In Procceedings of the 3nd ACM

Conference on Wireless Networking Security (WiSec ’10), pages 89–98,
March 2010.

[8] A. Goldsmith. Wireless Communications. Cambridge University Press,
August 2005.

[9] H. Kim and K. G. Shin. In-band spectrum sensing in cognitive
radio networks: energy detection or feature detection? In MobiCom
’08: Proceedings of the 14th ACM international conference on Mobile
computing and networking, pages 14–25, 2008.

[10] L. Lazos, S. Liu, and M. Krunz. Mitigating control-channel jamming
attacks in multi-channel ad hoc networks. In Proceedings of 2nd ACM
Conference on Wireless Networking Security (WiSec ’09), March 2009.

[11] Y. Liu and P. Ning. Bittrickle: Defending against broadband and high-
power reactive jamming attacks. Technical Report TR-2011-17, NC
State University, Computer Science Department, July 2011.

[12] Y. Liu, P. Ning, H. Dai, and A. Liu. Randomized differential dsss:
Jamming-resistant wireless broadcast communication. In Proceedings
of the 2010 IEEE INFOCOM, 2010.

[13] Ettus Research LLC. The USRP product family products and daughter
boards. http://www.ettus.com/products. Accessed in April 2011.

[14] N. Patwari and S. K. Kasera. Robust location distinction using temporal
link signatures. In MobiCom ’07: Proceedings of the 13th annual ACM
international conference on Mobile computing and networking, pages
111–122, New York, NY, USA, 2007. ACM.

[15] Robert A. Scholtz. Spread Spectrum Communications Handbook.
McGraw-Hill, 2001.

[16] M. Strasser, B. Danve, and S. Capkun. Detection of reactive jamming in
sensor networks. ACM Transaction on Sensor Networks, 7, Aug. 2010.

[17] M. Strasser, C. Pöper, S. Čapkun, and M. Čagalj. Jamming-resistant key
establishment using uncoordinated frequency hopping. In Proceedings
of the 2008 IEEE Symposium on Security and Privacy, 2008.

[18] W. Xu, W. Trappe, and Y. Zhang. Anti-jamming timing channels
for wireless networks. In WiSec ’08: Proceedings of the first ACM

conference on Wireless network security, pages 203–213, New York,
NY, USA, 2008. ACM.

[19] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The feasibility of launching
and detecting jamming attacks in wireless networks. In Proceedings

of ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc ’05), 2005.

[20] R. Zhang, Y. Zhang, and X. Huang. JR-SND: Jamming-resilient secure
neighbor discovery in mobile ad hoc networks. In Procceedings of

the 32nd International Conference on Distributed Computing Systems
(ICDCS’11), June 2011.

