
Efficient SDH Computation In Molecular Simulations Data

Yi-Cheng Tu 1, Shaoping Chen 2, Sagar Pandit 3, Anand Kumar 4, and
Vladimir Grupcev 5

1,4,5 Department of Computer Science and Engineering, University of South Florida,
Tampa, Florida - 33620

2 Department of Mathematics, Wuhan University of Technology, 122 Luosi Road, Wuhan,
Hubei, 430070, P. R. China

3 Department of Physic, University of South Florida, Tampa, Florida - 33620

{1ytu, 4akumar8, 5vgrupcev}@cse.usf.edu, 2chensp@whut.edu.cn,
3pandit@cas.usf.edu

ABSTRACT
Analysis of large particle or molecular simulation data is
integral part of the basic-science research community. It
often involves computing functions such as point-to-point
interactions of particles. Spatial distance histogram (SDH)
is one such vital computation in scientific discovery. SDH
is frequently used to compute Radial Distribution Function
(RDF), and it takes quadratic time to compute using naive
approach. Naive SDH computation is even more expensive
as it is computed continuously over certain period of time
to analyze simulation systems.

Tree-based SDH computation is a popular approach. In
this paper we look at different tree-based SDH computa-
tion techniques and briefly discuss about their performance.
We present different strategies to improve the performance
of these techniques. Specifically, we study the density map

(DM) based SDH computation techniques. A DM is essen-
tially a grid dividing simulated space into cells (3D cubes)
of equal size (volume), which can be easily implemented by
augmenting a Quad-tree (or Oct-tree) index. DMs are used
in various configurations to compute SDH continuously over
snapshots of the simulation system. The performance im-
provements using some of these configurations is presented
in this paper. We also present the effect of utilizing compu-
tation power of Graphics Processing Units (GPUs) in com-
puting SDH.

Categories and Subject Descriptors
I.6.6 [Computing Methodologies]: Simulation and Mod-
eling—Simulation Output Analysis

Keywords
Molecular Simulation, Radial Distribution Function, Spatial
Distance Histogram, Structural Biology, Protein Structure

Copyright is held by author/owner(s).
ACM-BCB’12, October 7-10, 2012, Orlando, FL, USA.
ACM 978-1-4503-1670-5/12/10

1. INTRODUCTION
Particle/Molecular simulations (PS/MS1) are computer

simulations in which the basic components of large systems
interact with one another under certain postulated empiri-
cal forces for certain duration of time [2]. Simulation tech-
niques are primarily applicable in the modeling of complex
chemical and biological systems that are beyond the scope
of theoretical models. MS are applied in various scientific
domains such as material sciences, biomedical sciences, and
biophysics. Large scale celestial structure formation is an-
other example from astrophysics where N-body simulations
are predominantly used [5, 7].

Quantitative analysis of large simulation data is important
for scientific discoveries. Statistical properties of particles or
some complex functions on particles’ coordinates are often
computed to find interesting patterns [5]. Interactions be-
tween pairs of particles and their statistical properties are of
special interest to scientists. Computation of these quanti-
ties for N particles require O(N2) computations using brute-
force approach. In this paper, we focus on one such analyti-
cal function: the Spatial Distance Histogram (SDH), which
asks for a histogram of the distances of all pairs of parti-
cles in the simulated system. SDH is often used to compute
Radial Distribution Function (RDF). Computation of ther-
modynamic characteristics of a system require RDF. The
RDF is important in the computation quantities like total
pressure and energy, otherwise these cannot be calculated.

In this paper we look at different tree-based SDH com-
putation techniques and discuss briefly about their perfor-
mance. We present different strategies to improve the per-
formance of these techniques. Specifically, we study the
density map (DM) based SDH computation techniques. A
DM is essentially a grid dividing simulated space into cells
(3D cubes) of equal size (volume), which can be easily im-
plemented by augmenting a Quad-tree (or Oct-tree) index.
DMs are used in various configurations to compute SDH
continuously over snapshots of the simulation system. The
performance improvements using some of these configura-
tion is presented in this paper. We also present the idea of
utilizing computation power of Graphics Processing Units
(GPUs) in computing SDH. Characteristics of the GPU sys-
tem are briefly discussed along with challenges of implemen-
tation.

1We use MS and PS interchangeably.



2. SDH BASICS
An algorithm to compute SDH based on a data structure

called density map (DM) is presented here. A DM is essen-
tially a grid dividing simulated space into cells (3D cubes)
of equal size (volume), which can be easily implemented by
augmenting a Quad-tree(or Oct-tree) index [10]. To gen-
erate a DM of higher resolution, we divide each cell of this
grid again into equally sized cells. We use a region Quad-tree
to organize different density maps of the simulation data. A
tree node represents each cell of the DM, so a density map is
essentially the collection of all nodes on one level of the tree.
Count of points in each cell are stored in the corresponding
tree node. Nodes with zero count are removed from the tree,
as they do not carry any particles. The height of the tree
(denoted as h) is determined in a way such that the average
number of points in all possible leaf nodes is no smaller than
a predefined threshold β. To be specific, we have

h = ⌈log
2d

N/β⌉

This is necessary to ensure that the DM-based algorithms
do not enter the quadratic-time computation state.

The histogram of distances between all pairs of particles
is built by traversing the tree, starting at a specific level,
while processing pairs of cells in each level. Focal point of
this algorithm is a procedure named ResolveTwoTrees.
To resolve two cells A and B (with total particle counts na

and nb, respectively) of a DM we first read the coordinates
of the two cells and compute the minimum and maximum
distances between these two cells. These distances are called
range. If the range falls into a required distance range of a
histogram bucket i, we say A and B are resolvable. In this
case, we increment the count of bucket i by na × nb. If the
two cells are not resolvable we can follow different strategies
to compute their histogram (Figure 1):

1. Resolve all cell pairs formed between the children of A
and B in the Quad-tree.

2. Apply heuristics to distribute the number of distances
into buckets covered by the minimum and maximum
distances (range) between cells.

The ResolveTwoTrees procedure is applied on all pairs
of cells of the starting DM. The starting DM can be a level
in which cell diagonal is less than or equal to the histogram
bucket width.

It is easy to see that no matter how small the cells are in
a density map, non-resolvable cell pairs always exist. There-
fore, when we reach the lowest level of the tree (case 1
above), we have to calculate all point-to-point distances of
the particles in the unresolved cells. The heuristics (case 2)
can be applied whenever we decide to stop traversing the
tree.

Existence of chemical bonds and/or inter-particle forces
in natural systems often tend to spread out the particles
evenly in sub-regions [2, 3].2 Also the particles do not move
randomly in the system. Group of particles tend to move
in a smooth trajectory path. Therefore, there is a poten-
tial to use the spatial and temporal uniformity for efficient
histogram computation. Utilizing the spatiotemporal uni-
formity present in sub-regions of simulation space, captured

2SDH computation becomes a trivial task if whole simula-
tion system is uniform.

Algorithm ResolveTwoTrees

Input: Cells A,B; Counts na, nb; Heuristic
Output: Distance Histogram H

1 if A and B are resolve into bucket i
2 H [i] = H [i] + nanb

3 else if Heuristic then Apply heuristic and update H
4 else if A and B are leaf nodes
5 Compute point-to-point distances between points of
6 A and B
7 Update distances in H
8 else for each child a of A
9 for each child b of B
10 ResolveTwoTrees(a, b)

Figure 1: Resolving sub-trees of density map tree

by cells of DM, can improve the SDH computation time
while applying the heuristics. Also, computation time can
be significantly improved by employing powerful GPUs. In
the following section we briefly look into the details of all
such strategies.

3. COMPUTATION STRATEGIES
The ResolveTwoTrees procedure is the basic computa-

tion unit before applying any of the strategies listed above.
We discuss various strategies that can be applied to compute
the SDH efficiently.

Basic Techniques.
In current state-of-the-art SDH computation techniques

space-partitioning trees such as kd-trees, as reported in [6,
11], cluster the data. The clusters are treated as basic pro-
cessing units to build the histogram. The key idea in such
methods is to process all the particles in a tree node (clus-
ter) as a whole, rather than processing particle-to-particle
distances.

A DM-based SDH (DM-SDH) algorithm designed using
Quad-tree data structure is presented by Tu et al. [11]. They
have studied the algorithm running time theoretically and
presented formal proof of DM-SDH along with experimen-
tal results on real MS data sets. It has been proved that

the running time for DM-SDH is Θ(N
3

2 ) for 2D data and

Θ(N
5

3 ) for 3D data. Case 1 explained in previous section is
essentially the DM-SDH algorithm.

Basic Techniques with Heuristics.
A histogram by itself is an approximation of the underly-

ing data distribution, an approximate histogram generated
from a given dataset will still be useful in statistical sense. In
many cases a coarse SDH will greatly help fine-tune the sim-
ulation programs. An approximate SDH algorithm (ADM-
SDH), with running time not related to the data size N was
also introduced in [11]. This algorithm follows the idea of
ResolveTwoTree with an exception that the sub-trees rooted
at non-resolvable cells are not traversed when a desired error
bound is achieved. The distances nanb are distributed over
the range of buckets choosing one of the following strategies:

• All distances into one bucket that is chosen randomly,

• Evenly distributed into all buckets of overlap range, or



• According to proportions of range overlapping over
each bucket of the histogram.

All these heuristics take constant time to compute the solu-
tion for two cells. Running time of ADM-SDH is influenced
by a guaranteed error bound as well as by the histogram
bucket size w. A thorough analysis of error bounds and the
performance of ADM-SDH is presented in a recent work [4].

SDH is often computed on consecutive snapshots (called
frames) of the simulation system. The basic techniques
have to be started afresh on each new frame to get the SDH.
Algorithms can be significantly improved if spatiotemporal
uniformity of the simulation system is utilized. Existence of
chemical bonds and/or inter-particle forces in natural sys-
tems often tend to spread out the particles evenly [2, 3]. As
a result particles are found to be uniformly distributed in lo-
calized regions of the simulation space. Such uniform regions
can be assumed as single components in SDH computation
while introducing very small errors.

Heuristics Utilizing Spatiotemporal Uniformity.
Uniform distribution of particles in localized regions leads

us to new heuristic for SDH computation. As shown in [1]
utilizing this type of uniformity does not introduce signif-
icant errors in the output histogram. Exploiting uniform
region property makes the running time of the algorithm
independent of the bucket width w – such dependency is
the main drawback of existing algorithms. We generate the
statistical distribution of the distances between uniform re-
gions via Monte Carlo simulations, and put the nanb dis-
tances into overlapping range of histogram buckets based on
this distribution. This is similar to the heuristics discussed
above.

Temporal similarity among neighboring frames is another
property that can be combined with uniform regions. Given
a frame f0 and its SDH, we can obtain the SDH of next
frame f1 by dealing only with the regions that do not ex-
hibit temporal similarity between the two frames, while ig-
noring regions that are similar. We designed an incremental

algorithm [1] that can quickly compute SDH of a frame from
the SDH of a base frame that was obtained using traditional
single-frame algorithms.

A combination of temporal similarity and spatial unifor-
mity properties can improve SDH computation. Temporal
similarity introduces small errors when cells with very small
changes are eliminated from the computation. If this prop-
erty is to be ignored, the uniform property can still be ap-
plied for efficient SDH computation.

Computations Using GPUs.
Parallel processing is an obvious strategy to reduce com-

puting time in our problem. GPUs are massively parallel
systems and are more effective than general purpose CPUs,
especially for algorithms like ours that process large blocks of
data in parallel. Large number of threads can be created on
the GPU multi-processors. These multi-processors execute
threads in SIMD (Single Instruction Multiple Data) fash-
ion [9]. Thread creation and context-switch times are very
low for the GPUs as compared to the threads on CPUs.

We develop an algorithm to take advantage of GPU’s pro-
cessing power. The cells of a chosen DM are placed in the
GPU global memory such that consecutive threads can read
consecutive cells through coalesced access mechanism [8].

Every single GPU thread processes a pair of cells in the
DM. A distinct pair of cells is processed by each thread.
Each block (group of threads) executing on a multiproces-
sor processes different portions of the density map. Thus,
parallel processing can help improve performance of the al-
gorithm.

Global memory of the GPU can cause performance is-
sues due to its limited speed of access. Density map can
be placed in the shared memory to get better access speeds.
Each thread can access distinct pairs of cells from the shared
memory for SDH computation. One major obstacle in im-
plementing this idea is the limited size of shared memory.
The algorithm design and implementation should address
this probelm.

4. CONCLUSIONS
In this paper we discussed different tree-based SDH com-

putation algorithms. The basic exact solution performs bet-
ter than quadratic-time algorithms. Approximate version
of the basic solution can promise error bounds and improve
computation time. However, the real performance improve-
ment was observed when spatiotemporal uniformity of the
simulation data was utilized. Quad-tree was efficiently used
to take advantage of the data locality and statistical data
distribution properties. Therefore, spatiotemporal unifor-
mity based algorithms showed significant performance im-
provements. We further improved the performance of these
algorithms with the use of GPUs. In future, the GPUs can
play important role in computation of multi-body correla-
tion functions and other complex analytical functions which
are important to the scientific community.

5. REFERENCES
[1] A. Kumar et al. Distance histogram computation

based on spatiotemporal uniformity in scientific data.
In EDBT, pages 288–299, 2012.

[2] M. Allen. Introduction to Molecular Dynamics

Simulation, volume 23. John von Neumann Institute
of Computing, NIC Seris, 2003.

[3] Andrey Omeltchenko et. al. Scalable I/O of large-scale
molecular dynamics simulations: A data-compression
algorithm. Computer physics communications,
131(1–2):78–85, 2000.

[4] S. Chen, Y.-C. Tu, and Y. Xia. Performance analysis
of a dual-tree algorithm for computing spatial distance
histograms. The VLDB Journal, 20, 2011.

[5] D. Frenkel and B. Smit. Understanding Molecular

Simulation: From Algorithms to Applications,
volume 1. Academic Press, Inc., 2nd edition, 2001.

[6] A. G. Gray and A. W. Moore. N-body problems in
statistical learning. In NIPS, pages 521–527, 2001.

[7] D. Landau and K. Binder. A Guide to Monte Carlo

Simulations in Statistical Physics. Cambridge
University Press, 2005.

[8] NVIDIA. CUDA C Best Practices Guide, Ver. 4, 2011.

[9] NVIDIA. CUDA C Programming Guide, Ver. 4, 2011.

[10] J. A. Orenstein. Multidimensional tries used for
associative searching. Information Processing Letters,
14(4):150–157, 1982.

[11] Y.-C. Tu, S. Chen, and S. Pandit. Computing distance
histograms efficiently in scientific databases. In ICDE,
pages 796–807, 2009.


