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Abstract

This paper shows that existing definitions of code-injection attacks
(e.g., SQL-injection attacks) are flawed. The flaws make it possible
for attackers to circumvent existing mechanisms, by supplying
code-injecting inputs that are not recognized as such. The flaws
also make it possible for benign inputs to be treated as attacks. After
describing these flaws in conventional definitions of code-injection
attacks, this paper proposes a new definition, which is based on
whether the symbols input to an application get used as (normal-
form) values in the application’s output. Because values are already
fully evaluated, they cannot be considered “code” when injected.
This simple new definition of code-injection attacks avoids the
problems of existing definitions, improves our understanding of
how and when such attacks occur, and enables us to evaluate the
effectiveness of mechanisms for mitigating such attacks.

Categories and Subject Descriptors C.2.0 [Computer Communi-
cation Networks]: General—Security and protection; D.3.1 [Pro-
gramming Languages]: Formal Definitions and Theory—Syntax

General Terms  Security, languages, algorithms

1. Introduction

As the popularity of web applications has increased, so have reports
of attacks against them [20-22]. The most commonly reported
type of attack involves injecting code into a program output by an
application, as in SQL-injection attacks [22].

Standard examples of code-injection attacks include an attacker
entering the following strings as input to an application:

e > OR 1=1 --, to make the application output the program
SELECT balance FROM acct WHERE password=‘’ OR
1=1 --’ (underlined symbols are those the attacker has in-
jected into the output program). This SQL program always re-
turns the balance(s) from the acct table, even though an empty-
string password is supplied, because: (1) the 1=1 subexpression
is true, making the entire WHERE clause true, and (2) the --
command comments out the final apostrophe to make the pro-
gram syntactically valid. In this case, the attacker has injected
the code symbols OR, =, and - - into the output program.

e exit (), to make the application output the program SELECT
balance FROM acct WHERE pin=exit(). In this case, the
attacker has injected the code symbols exit () into the output
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program to mount a denial-of-service attack against the remote
database.

These attacks are commonly referred to as “code-injection at-
tacks” or “command-injection attacks” (CIAs, or just IAs), but here
we use the more specific term “code-injection attacks on outputs”
(CIAOs) to distinguish these attacks, which require code to be in-
jected into an application’s output, from more general notions of
CIAs, which require code to be injected only into memory used by
an application (e.g., [39]).

Much research has focused on mechanisms for mitigating
CIAOs, and a few efforts have been made to define CIAOs rig-
orously [3, 34, 37]. However, as Section 2 discusses, existing defi-
nitions are based on the flawed belief that CIAOs occur whenever
an application’s input alters the syntactic structure of its output
program. Incorrectly conflating CIAOs with changes to syntactic
structures causes existing definitions to be neither sound nor com-
plete: some CIAOs are not recognized as CIAOs (false negatives),
and some non-CIAOs are recognized as CIAOs (false positives).
The false negatives allow attackers to circumvent existing mecha-
nisms for preventing CIAOs.

Without a satisfactory definition of CIAOs, we can’t effectively
develop or analyze mechanisms for mitigating them; preventing
CIAOs in general requires understanding exactly how and when
they succeed. As Sun Tzu’s The Art of War famously expresses it,
“If you know yourself but not the enemy, for every victory gained
you will also suffer a defeat” [36].

This is a paper about “knowing the enemy”; it defines precise
circumstances under which CIAOs can be said to occur. Defining
CIAOs requires two subdefinitions: first we must define which sym-
bols in applications’ output programs constitute code; second we
must define when symbols have been injected into output programs.
The primary contribution and novelty of this paper lies in the first
of these subdefinitions; the second subdefinition can be approached
with well-known (but difficult-to-implement) techniques of taint
tracking. For the first subdefinition, this paper defines “code” sig-
nificantly differently from previous work—instead of code being
parse-tree-changing symbols, code here refers to symbols that do
not form values (i.e., fully evaluated terms). This paper argues that
CIAOs occur when at least one symbol injected into an output pro-
gram is used outside of a value.

To keep the definitions general, this paper tries to abstract as
much as possible from underlying languages, programs, and sys-
tem architectures. Although the definitions will require a few tech-
nical assumptions about the languages of applications’ output pro-
grams (such as that they have a well-defined set of normal-form
values), this paper’s definitions are not limited to SQL or other pop-
ular programming languages; the new definition of CIAOs applies
equally well to other code-injection attacks (e.g., LDAP-injection,
HTML/script-injection (XSS), and shell-injection attacks). Simi-
larly, the only assumption we make of applications is that tainted
inputs can be correctly tracked through them, so we know which
symbols in their outputs have been injected.



1.1 Summary of Contributions and Roadmap

This paper demonstrates problems in the conventional definition
of CIAOs (in Section 2). The problems make existing CIAO-
mitigating mechanisms neither sound nor complete—some CIAOs
are considered benign, while some non-CIAOs are considered at-
tacks. After discussing previous work, the paper presents (in Sec-
tions 3—4) a new definition of CIAOs that avoids these problems.

Ultimately, a definition of CIAOs has two important high-level
uses. First, a definition of CIAOs enables us to precisely determine
whether applications exhibit CIAOs. We put the new definition to
this first use by illustrating the new definition’s improved ability to
determine whether applications exhibit CIAOs (primarily in Sec-
tion 3.3). Second, a definition of CIAOs enables us to analyze the
effectiveness of mechanisms at mitigating CIAOs. We put the new
definition to this second use by analyzing the effectiveness of sev-
eral classes of mechanisms for detecting CIAOs (in Section 5).

More specifically, several properties of CIAOs become apparent
by considering the new definitions:

e Defining CIAOs as occurring when nonvalue symbols get in-
jected into output programs improves our ability to recognize
attacks. We illustrate the improvements in an idealized version
of SQL called SQL®, “SQL Diminished” (Sections 3—4.1).

CIAOs can be classified as copy-based or data-dependency-
based, depending on how applications propagate untrusted
(tainted) inputs into output programs (Section 4.2.1).

A class of attacks related to CIAOs exists, which we call code-
interference attacks. The definition of these attacks takes into
account control dependencies ignored by taint-tracking mecha-
nisms (Section 4.2.2).

Surprisingly, every application that always copies some un-
trusted input verbatim into an (SQL°) output program is vul-
nerable to CIAOs (Section 5.1). This result implies that sound
static mechanisms for detecting CIAOs must disallow all such
applications, conservatively ruling out a large class of applica-
tions in practice. The proof of this result (in Section 5.1) is con-
structive; the proof defines inputs that will successfully attack
any application that verbatim copies some untrusted input into
the output program. Although the proof is tailored to SQL°, the
proof techniques are general and applicable to other languages.

Similarly, applications that always copy some untrusted input
verbatim into an (SQL°) output program are vulnerable to code-
interference attacks (Section 5.1).

Neither static nor black-box analysis of applications can pre-
cisely detect CIAOs. (Section 5.2)

Precisely detecting CIAOs requires white-box, runtime-monitor-
ing mechanisms. Under reasonable assumptions, such mecha-
nisms can detect CIAOs in output programs of size n in O(n)
time and space. However, there are obstacles that make it diffi-
cult to implement such mechanisms in practice. (Sections 5.3—
5.4).

After presenting these results in Sections 2-5, Section 6 con-
cludes.

2. Related Work

Conventionally, CIAOs are considered to occur whenever an ap-
plication’s input alters the intended syntactic structure of its out-
put program. Bisht, Madhusudan, and Venkatakrishnan call this
“a well-agreed principle in other works on detecting SQL injec-
tion” [3]. Indeed, this definition has appeared in many documents:
[2-5, 9, 10, 13, 17, 27, 31, 34, 37]. Although a few papers define
CIAOs in other ways (e.g., CIAOs occur exactly when keywords

or operators get injected, including apostrophes used to form string
values in SQL [8, 25], or when injected strings span multiple to-
kens [38]), the conventional definition dominates the literature.

However, the conventional definition of CIAOs has inherent
problems: some CIAOs do not alter the syntactic structures of
output programs, while some non-CIAOs do. To illustrate these
problems, Sections 2.1 and 2.2 discuss the conventional definitions
of CIAOs used by SQLCHECK [34, 37] and CANDID [2, 3]. As
far as we’re aware, these are the only existing formal definitions of
CIAOs.

2.1 CIAOs in SqlCheck

SQLCHECK considers the intended syntactic structure of an output
program to be any parse tree in which each injected input is the
complete derivation of one terminal or nonterminal. For example,
parsing the output program SELECT balance FROM acct WHERE
password=‘’ OR 1=1 --’ produces a parse tree in which the
injected symbols > OR 1=1 -- are not the complete sequence of
leaves for a single terminal or nonterminal ancestor; SQLCHECK
therefore recognizes this CIAO.

However, some of what SQLCHECK considers intended (i.e.,
non-attack) structures are actually attacks. For example, pars-
ing the output program SELECT balance FROM acct WHERE
pin=exit () produces a tree in which the input symbols exit ()
are the complete sequence of leaves for a single nonterminal
(function-call') ancestor. Hence, SQLCHECK does not recognize
this CIAO as an attack. Similarly, an output program of the form
.. .WHERE flag=1000>GLOBAL wouldn’t be recognized as an at-
tack, despite the injection of a greater-than operator (which may
allow an attacker to efficiently extract the value of the GLOBAL
variable, by performing a binary search over its range). Although
SQLCHECK allows policy engineers to specify a set of terminal
and nonterminal ancestors that inputs may derive from—so engi-
neers could disallow inputs derived as function-call and compari-
son expressions—it’s unclear how an engineer would know exactly
which ancestors to allow derivations from. Moreover, engineers
may wish to sometimes allow, and sometimes disallow, inputs to
derive from particular terminals and nonterminals (as illustrated in
Section 3.3), which is impossible in SQLCHECK.

Conversely, some of what SQLCHECK considers unintended
(i.e., attack) structures are actually not attacks. For example, an
application might input two strings, a file name £ and a file exten-
sion e, and concatenate them to generate the program SELECT *
FROM properties WHERE filename=‘f.e’. Although the user
has injected no code, SQLCHECK flags this output as a CIAO be-
cause the user’s inputs are not complete sequences of leaves for a
single terminal or nonterminal ancestor. In this case, the immediate
ancestor of the user’s inputs would (assuming a typical grammar)
be a string literal, but neither of the user’s inputs form a complete
string literal—they 're missing the dot and single-quote symbols.

The CANDID papers describe other, lower-level problems with
SQLCHECK’s definitions [2, 3].

2.2 CIAOs in Candid

CANDID considers the intended syntactic structure of an output
program, generated by running application A on input I, to be
whatever syntactic structure is present in the output of A on input
VR(I). Here VR is a (valid representation) function that converts
any input 7 into an input I’ known to (1) be valid (i.e., non-CIAO-
inducing) and (2) cause A to follow the same control-flow path as
it would on input I. CANDID begins by assuming this VR function
exists, while acknowledging that it does not; in this basic case,

! All major SQL implementations we are familiar with allow statements to
call functions, including administrator-defined functions [19, 28, 29].



CANDID defines a CIAO to occur when A’s output on input I has
a different syntactic structure from A’s output on input VR(I).

Besides the nonexistence of function VR, there are some prob-
lems with this definition of CIAOs. First, the definition is circular;
CIAOs are defined in terms of VR, which itself is assumed to out-
put non-CIAO-inducing inputs (i.e., the definition of CIAOs relies
on the definition of VR, which relies on the definition of CIAOs).
Second, the definition assumes that multiple valid syntactic struc-
tures cannot exist. For example, suppose VR(, ’)=aaa and appli-
cation A on input ¢, ’ outputs SELECT * FROM t WHERE name
IN (‘a’,‘b’), while A on input aaa executes in the same way
to output SELECT * FROM t WHERE name IN (‘aaaab’).Both
of these outputs are valid SQL programs, yet the programs have
different syntactic structures (a two-element list versus a single-
element list), and neither exhibits a CIAO (in no case has code been
injected; only values, which take no steps dynamically, have been
injected). CANDID would classify the non-CIAO input of ¢, ’ as an
attack in this case.

To deal with the nonexistence of function VR, CANDID attempts
to approximate VR by defining VR(I) to be 1 when [ is an integer
and o'’ when I is a string (where al'is a sequence of a’s hav-
ing the same length as I). Supplying a concrete definition of VR
resolves the circularity problem in CANDID’s basic definition of
CIAOs, but it doesn’t resolve the second problem described in the
previous paragraph (that multiple valid syntactic structures may ex-
ist).

Moreover, CANDID’s approximation of VR creates new prob-
lems:

e The approximation incorrectly assumes a string of a’s or a 1
could never be attack inputs. An application could inject an in-
put a or 1 into an output program as part of a function call,
field selection, or even keyword (e.g., and), all of which could
be CIAOs. For example, suppose an application outputs a con-
stant string, echoes its input, and then outputs parentheses; on
input exit it outputs the program . ..pin=exit (). CANDID
would not recognize this CIAO because the application outputs
...pin=aaaa() on input aaaa, which has the same syntactic
structure as the ...pin=exit() output. The problem here is
that aaaa is actually an attack input for this application.

The approximation may also cause benign inputs to be detected
as attacks. For example, suppose an application outputs SELECT
* FROM t WHERE flag=TRUE on input TRUE, and follows the
same control-flow path to output SELECT * FROM t WHERE
flag=aaaa on input VR(TRUE)=aaaa. Because these two out-
put programs have different syntactic structures (a boolean lit-
eral versus a variable identifier), CANDID would flag the input
TRUE as an attack, even though the user has injected no code.

The approximation can also break applications, as discussed
in [3]. To illustrate this problem, let’s consider the application
if (input<2) then restart() else output(1l/(input-
1)). CANDID cannot in general operate on this application be-
cause it evaluates applications on both actual (I) and candidate
(VR(I)) inputs, while following the control-flow path required
to evaluate the actual input. In this case, whenever the appli-
cation’s actual input is greater than one, CANDID will try to
evaluate 1/ (input-1) on the candidate input 1, which causes
the application to halt with a divide-by-zero error, despite there
being no errors in CANDID’s absence.

It could be argued that the example applications in the bullets
above would be uncommon in practice. But limiting the defini-
tion of CIAOs to common applications obligates us to define what
makes an application common, so we can test whether a given ap-
plication is “common” enough for the definition of CIAOs to apply.

Even then, one couldn’t say anything about CIAOs in uncommon
applications.

Related-work Summary CIAQOs cannot be said to occur when an
application’s output program has an altered syntactic structure.

® CIAOs can occur without altering the syntactic structure of
output programs (e.g., by injecting exit () or 1000>GLOBAL
in SQLCHECK, or exit in CANDID).

e Non-CIAOs can occur while altering the syntactic structure of
output programs (e.g., by injecting file name £ and extension e
in SQLCHECK, or TRUE in CANDID).

3. Partitioning Program Symbols into Code and
Noncode

This section begins building a new definition of CIAOs. Because
CIAOs occur when code symbols get injected into output programs,
the question of which output-program symbols constitute code is
key to defining CIAOs. This section addresses that question and
defines how to separate code from noncode. (The discussion is
limited to the context of CIAOs; in other contexts it makes sense
to consider entire output programs as “code”.)

3.1 Overview of Partitioning Technique

Let’s begin by defining what is not code, rather than what is. This
paper considers noncode to be the closed values in a programming
language. Values are valid but operationally irreducible terms (i.e.,
normal forms) [16, 32]. Values can be thought of as the “fully eval-
uated” computations in a programming language, typically includ-
ing standalone string and integer literals, pointers, objects, lists and
tuples of other values, etc. Values are closed when they contain no
free variables; open values have free variables (e.g., a tuple value
like (4,x) and standalone variables are open values).

Closed values are fully evaluated, dynamically passive con-
structs, which by themselves cause no dynamic computation to oc-
cur. On the other hand, because nonvalues and open values are not
part of these passive terms, they are used to help specify dynami-
cally active computation and therefore constitute code (in the case
of open values, the dynamic activity specified by a free variable is a
substitution operation, which substitutes a term for the free variable
at runtime). Injecting symbols that only form closed values into an
output program therefore cannot be considered a CIAO—only irre-
ducible, dynamically passive terms (i.e., “noncode”) will have been
introduced. CIAOs occur when untrusted inputs get used outside of
closed values in output programs.

3.2 Formal Assumptions and Definitions

An application vulnerable to CIAOs outputs programs in some
language L (e.g., SQL) having finite concrete-syntax alphabet X1,
(e.g., the set of printable ASCII characters). An output program,
which we call an L-program, is a finite sequence of ¥;, symbols
that form an element of L.

Definition 1. For all languages L with alphabet ¥y, (i.e., L C
31), an L-program is an element of L.

Additional definitions will rely on the following assumptions
and notational conventions:

e The length of program p is denoted as |p| (so when p =
0102..0n, Where each o is a program symbol in 37, we have
p| = n).

e The i*" symbol in program p is denoted as pl[i].

e Well-defined functions exist for computing free variables in
all output-program languages under consideration. Function



FV(p,l, h) takes an L-program p = 0102..0y, a low symbol
number [ € {1..n}, and a high symbol number h € {l..n} and
returns the set of variables that are free in the shortest term in p
that contains all of the symbols o;..0p,.

e Well-defined functions also exist for testing whether terms are
values in all output-program languages under consideration.
Predicate Valr (p,l, h) is true iff the shortest term that contains
the I** to h*" symbols in L-program p is a value.

When the output language L is clear from context, we’ll omit it as
a subscript on F'V 1, and Val;, functions.

We now formalize Section 3.1°s intuition of noncode program
symbols. We use the predicate NC'V to indicate whether symbols
in an L-program form a noncode value. NC'V is true for an L-
program p and low and high program-symbol numbers [ and h iff
the shortest term containing the I*" to h'"* symbols in p is a closed
value.

Definition 2. For all languages L, predicate NCV (p,l, h) over
Lx{1..|p|} x {l..|p|} is true iff FV (p,1,h) = 0 and Val(p,l, h).

Code symbols are those that cannot possibly be part of any
noncode value. When pl[i] is code (where p is an output program),
we write Code(p, 1).

Definition 3. Forall L-programs p = o102..0y, and position num-
bersi € {1..|p|}, Code(p, i) is true iff for all low and high symbol-
position numbers | € {1..i} and h € {i..|p|}, "~NCV (p,l, h).

3.3 Example Separation of Code from Noncode

The remainder of this section illustrates Definition 3 in the con-
text of SQL° (SQL Diminished), an idealized SQL-style language
inspired by the MSDN SQL Minimum Grammar [18]. Figure 1
presents SQL°’s syntax, which makes several assumptions:

e Full SQL° programs are valid statements.
e Operators in SQL° have standard precedence and associativity.

e A set of (administrator-defined and/or standard-library) param-
eterless functions exists, and SQL® expressions (i.e., exprs)
can invoke these functions with the ID() syntax (where ID is
an identifier, in this case a function name). Such function calls
are possible in typical SQL implementations [14, 19, 28, 29].

Similarly, a set of (administrator-defined and/or standard) vari-
ables exists, and variable identifiers are valid SQL° expressions.

Comments in SQL° begin with -- and continue to the first
newline.

String literals in SQL° have the same escape sequence as string
literals in full SQL (i.e., a double apostrophe represents a single
apostrophe). Also as in full SQL, apostrophe directions are
irrelevant in SQL°, though we use directed apostrophes in this
paper for clarity.

Values in SQL° are the last six terms listed in Figure 1 for cate-
gory expr (i.e., from INT_LITERAL to NULL). Intuitively, the values
in a typed programming language are normally all the fully evalu-
ated terms of each type in the language. SQL® has types for integers
(INT), strings having a given size (CHAR (INT_LITERAL) ), booleans
(BOOL), and floats having a given precision (FLOAT (INT_LITERAL)),
so its values are the fully evaluated terms of each of these types—
including integer literals, string literals, the true and false key-
words, and floating-point literals. Finally, NULL is a fully evaluated
term of any type, also a value.

Given that values in SQL° are exactly the last six terms listed
as exprs in Figure 1, Definitions 2 and 3 imply that C'ode(p, 7)
holds iff, after parsing program p, p[i] is not part of a nonterminal
categorized as one of these six kinds of exprs. Noncode symbols

statement ::= CREATE TABLE ID (id_type_list )
| DELETE FROM ID w_option
| DROP TABLE ID
‘ INSERT INTO ID vals
| SELECT s_list FROM ID w_option

id-type_.list == IDtype|id_type-list, ID type

type = INT |CHAR ( INT_LITERAL ) |BOOL
| FLOAT ( INT_LITERAL )
woption = ¢ |WHERE expr
expr = expr op expr | NOT expr | ( expr )
| expr ISNULL | ID|ID ()
| INT_LITERAL | STR_LITERAL | TRUE
| FALSE | FLOAT_LITERAL | NULL
op == OR|AND| < | > | = |+ |*
vals = VALUES (e_list)
| SELECT s-list FROM ID w_option
elist = expr|e.list, expr
s list == *|i.list
ilist 5= ID|ilist, ID

Figure 1. Syntax of SQL°.

are those in closed values; all others are code. This definition also
works when partitioning whitespace and comment symbols: no
symbol involved in whitespace or comments can possibly be within
a value (all values in SQL° are single tokens), so whitespace and
comment symbols are code.

A few observations about this definition of code in SQL°:

e Parsing is necessary to determine whether a symbol is code.
For example, an integer literal is code when used in a type
specification, but noncode when used as an expression.

Conventional definitions of CIAOs are incompatible with the
definition of code in SQL°. For example, there exists no set
of terminals and nonterminals in Figure 1 that exactly de-
rive noncode symbols (exprs may contain code, and even
INT_LITERALs may be code depending on the context); hence,
our definition of code is inexpressible with SQLCHECK [34].

Code and noncode can’t be partitioned by considering noncode
to be literals. Some literals are code (e.g., an integer in a type)
and other are not (e.g., an integer expression). Although all non-
literals (e.g., a CREATE keyword) are code in SQL°, languages
with more sophisticated values (e.g., lists) may have nonlit-
eral, noncode symbols (e.g., commas between elements of a list
value).

Code and noncode also can’t be partitioned by considering code
to be keywords and operators. Some keywords are code (e.g.,
CREATE) and others are not (e.g., TRUE). Some symbols that are
neither keywords nor operators are code (e.g., function-name
IDs) and others are not (e.g., literals).

Next, let’s consider several example output programs, beginning
with the examples from Sections 2.1 and 2.2, to see how the new
definitions partition injected symbols.

21t may also be reasonable to partition lexer-removed symbols (typically
whitespace and comments) into code and noncode in other ways. For ex-
ample, one might consider lexer-removed symbols code iff their existence
affects the sequence of tokens in the output program.



“ 1 2 3 4 5 6 7 8 9 10 11

Thispaper || Yes Yes Yes No Yes Yes No Yes Yes Yes No

SQLCHECK [34] || Yes No No Yes No No No No No No No

CANDID [3] || Yes Yes Yes No No No Yes No No No Yes

WASP [8] and Nguyen-Tuong et. al. [25] || Yes Yes Yes No No No No No No No Yes
Xuet.al.[38] || Yes Yes Yes No No No No No No No No

Figure 2. A comparison of definitions for partitioning code and noncode. Column numbers refer to the example output programs enumerated
in Section 3.3, row names indicate partitioning techniques, and cells specify whether any of the underlined symbols are considered code.

1. SELECT balance FROM acct WHERE password=‘’ OR
1=1 --’>  The injected OR, =, and - - (and spaces) are code,
so a CIAO has occurred.

2. SELECT balance FROM acct WHERE pin= exit()
injected symbols are code, so a CIAO has occurred.

3. ...WHERE flag=1000>GLOBAL The injected > is code, so a
CIAO has occurred.

4. SELECT * FROM properties WHERE filename=‘f.e’ No in-
jected symbols are code, so a CIAO has not occurred.

All the

5. ...pin=exit() All the injected symbols are code, so a

CIAO has occurred.

6. ...pin=aaaa() Again, all the injected symbols are code, so
a CIAO has occurred.

7. SELECT * FROM t WHERE flag=TRUE
bols are code, so a CIAO has not occurred.

8. SELECT * FROM t WHERE flag=aaaa An open expres-
sion (which causes a substitution operation to be performed
at runtime) was injected, so a CIAO has occurred.

9. SELECT * FROM t WHERE password=password Again,
an open expression (which causes a substitution operation to be
performed at runtime) was injected, so a CIAO has occurred.

10. CREATE TABLE t (name CHAR(40))
bols are code, so a CIAO has occurred.

11. SELECT * FROM t WHERE name=‘x’
are code, so a CIAO has not occurred.

No injected sym-

All the injected sym-

No injected symbols

In all of these cases, the partitioning avoids the problems with con-
ventional CIAO definitions described in Section 2 and matches our
intuition about which program symbols are code (and consequently
cause a CIAO if injected).

Figure 2 compares this paper’s partitioning of the example out-
put programs enumerated above with the partitionings used in pre-
vious work. The only scenarios in which we believe previous defi-
nitions would be favored over this paper’s definitions are when the
assumptions made by this paper’s definitions cannot be satisfied
easily, that is, when it’s difficult to define the set of closed values in
the output-program language.

4. Definition of CIAOs

Defining CIAOs requires subdefinitions of code and injection. At
this point code has been defined; it is time to consider what it means
for an attacker to inject symbols into an output program. Intuitively,
injected symbols are the ones that propagate unmodified from an
untrusted input source to the output program. A CIAO occurs when
at least one untrusted input symbol propagates into, and gets used
as code in, an output program.

To know when input symbols have propagated, possibly through
copy operations, to output programs, one could taint all untrusted
inputs to applications and have those applications transparently

propagate taints through copy operations (Section 4.2 will consider
propagating taints through other operations as well). Then output
programs could be tested to determine whether any of their tainted
symbols are used as code. Tracking taints to determine which
output-program symbols derive from untrusted inputs is a well-
studied technique (e.g., [6, 8, 25, 31, 38]).

4.1 Formal Assumptions and Definitions

As in earlier sections, underlines will represent tainted symbols
(i.e., those injected from untrusted sources). As a technicality, if
some element of X is already underlined then all underlines in
this paper may need to be replaced with some other annotation not
present on any X symbol. Then, for all languages L with alphabet
3, let L denote the same language but with alphabet X, where X
contains tainted and untainted versions of every symbol in 3. Thus,
the tainted output language L contains exactly those programs in
L, except that programs in L can have symbols tainted in any way.
The following three definitions formalize these ideas.

Definition 4. For all alphabets ¥, the tainted-symbol alphabet X
is:{o|oceXV (o ex:0o=0)}

Definition 5. For all alphabets 3. and symbols o € 3, the predi-
cate tainted(o) is true iff o ¢ X.

Definition 6. For all languages L with alphabet ¥, the tainted
output language L with alphabet ¥ is:

{o1.0n | Jot..0y, € L: Vi€ {1l.n}: (0i=0; V oy=0})}

Given a regular, non-taint-tracking application, which out-
puts L-programs, a faint-tracking application, which outputs L-
programs, is constructed by ensuring all the following.

1. All symbols input to the application from untrusted sources are
marked tainted.

2. Taints propagate through all operations that copy or output
symbols.

3. Besides inputting symbols from untrusted sources and copying
and outputting already tainted symbols, there are no other ways
to introduce tainted symbols.

4. Taints are invisible to the application; they have no effect on its
execution.

The only assumption this paper makes of applications is that they
can be reasoned about as taint-tracking applications obeying these
four rules.

At last, CIAOs can be defined as occurring whenever an injected
(i.e., tainted) symbol in an application’s output is used as code.

Definition 7. A CIAO occurs exactly when a taint-tracking appli-
cation outputs L-program p = o1..0, such that 3i € {1..n} :
(tainted(o;) N Code(p,1)).

4.2 Discussion of the CIAO Definition

There are several points of discussion related to Definition 7.



Syntactic versus Semantic Analysis Contrary to previous
work [3, 34], Definition 7 does not limit CIAO detection to syn-
tactic analysis. Although testing whether sequences of program
symbols denote closed values typically requires only syntactic
analysis (e.g., values are defined syntactically for SQL° in Sec-
tion 3.3), such testing could conceivably require stronger-than-
syntactic analysis. For example, semantic analysis may be required
to determine whether the output programs date:=1/1/11 and
balance:=1/1/11 exhibit CIAOs in output-program languages
with slashes used in both date-literal and integer-division expres-
sions.

Expected (Nonmalicious) CIAOs Although CIAOs often consti-
tute malicious use of an application, some application programmers
expect CIAOs to occur and don’t consider them malicious. For ex-
ample:

e A translator between programming languages may input an
expression like x+y and output a program containing the same
expression or some code like r1:=r1+r2, with the nonvalue
+ symbol having been injected. This is not a problem, and
authors of programming-language translators would typically
not consider CIAOs on their translators harmful.

Tools like phpMyAdmin provide interfaces for remote users to
enter MySQL programs and then have those programs output
for other systems to execute [30].

Applications may check inputs before injecting them as code in
output programs, such as the application if(input=
‘safeFunction’) then output(input+‘()’) else
raise badNameExn, or the application if (input.matches
(‘Math.*’)) then output(input+‘()’) else raise
badNameExn. Programmers of these applications may not con-
sider CIAOs of checked inputs to be malicious (though it may
nonetheless be desirable to detect CIAOs in such programs,
for example, to prevent the latter application from outputing
Math.pit+exit()).

We believe that whether an act is “malicious” or an “attack” or
against a programmer’s “‘expectations” or “intentions” is subjec-
tive. The only artifact we can examine is the programmer’s code,
but that code may not capture the programmer’s intentions. Defi-
nition 7 therefore does not depend on subjective factors like pro-
grammers’ intentions; CIAOs are defined as occurring whenever
an application injects untrusted input into the code of an output
program, regardless of whether the application programmer would
consider the CIAOs malicious.

To make an analogy to memory safety, there are mechanisms
to prevent memory-safety violations, e.g., type checkers. However,
some memory-safety violations are not harmful and may be fully
intended by programmers. For example, a programmer with knowl-
edge of how integers and floats are encoded may find that writing an
arbitrary float value to integer-type memory does exactly what s/he
wants very efficiently. As another example, one of the difficulties
encountered by “Safe C” projects is that some memory-safety vio-
lations are actually intentional and clever optimizations [7, 11, 23].

Definitions of memory-safety violations don’t (as far as we’re
aware) take into account programmer intentions; mechanisms for
preventing memory-safety violations disregard programmer in-
tentions and prevent all memory-safety violations, regardless of
whether a programmer considers some particular violation mali-
cious. Analogously, Definition 7, unlike the conventional defini-
tions of CIAOs used by previous work, sidesteps the subjective
questions of whether output programs are intended or malicious.
Definition 7 just focuses on detecting whether code has been in-
jected into output programs.

Non-CIAO injection attacks Some injection attacks on output
programs are not code-injection attacks on output programs. For
instance, consider the output program SELECT balance FROM
acct WHERE password = TRUE. Here, a type error will occur
(assuming that password is not of boolean type), potentially caus-
ing unexpected failures. Although this output program contains
symbols that may have been injected with malicious intent, those
symbols are part of a closed value and are therefore not used as
code. Because code has not been injected, the output program does
not exhibit a CIAO according to Definition 7.

Function values Functions are first-class values in many lan-
guages, and it may seem strange to allow arbitrary closed func-
tion values to be injected into output programs. However, a func-
tion value is dynamically passive; a function value only activates
when operated upon, by applying the function. Hence, injecting a
function value does not constitute a CIAO, but injecting a function
application does (assuming the injected application is not within
some other closed value, such as an outer lambda term).

Alternate-encoding and second-order attacks Definition 7 has
no problem with “alternate-encoding attacks”. Alternate encod-
ings allow attackers to mask injected code, for example, by in-
putting exec (char (0x73687574646£776e)) instead of a direct
SHUTDOWN command [8]. Definition 7 detects such attacks because
the injected function calls are recognized as code. Definition 7 also
detects “second-order injection attacks” (where an attacker stores
some code in a database that an application later retrieves and in-
jects into its output [1, 26]), as long as the database input to the
application is considered untrusted (or, as a more precise alterna-
tive, the database could store flags indicating which of its entries’
symbols are tainted).

Defining “injection” Finally, Definition 7 interprets “injection”
as meaning that symbols have been directly copied from input to
output. For example, loading a tainted symbol from memory into
a register would taint that register’s value, but adding two tainted
integers involves no direct copying and therefore produces an un-
tainted result. Thus, Definition 7 does not consider CIAOs to occur
when applications output programs whose code symbols are “mas-
saged” versions of untrusted inputs—the massaging (i.e., noncopy
manipulation) prevents the input symbols from being considered
injected. Intuitively, an application like output (input () +1) may
input a 1 from an untrusted user and then output the program 2. In
this case it seems inaccurate to say that the user “injected” the 2,
given that the user never entered a 2, and the application produced
the 2 by actively transforming its input. If anything, the application
and user have collaborated to produce the 2 that got output. One
could consider this example demonstrative of a more general class
of attacks: data-dependency-based CIAOs.

4.2.1 Data-dependency-based CIAOs

Following this train of thought leads us to define data-dependency-
based CIAOs in exactly the same way as regular CIAOs (which
henceforth will also be called copy-based CIAOs), except that for
data-dependency-based CIAOs we broaden taint propagation to
occur on all data operations, not just copies and outputs. That is,
for any data dependency in which the value of a symbol o de-
pends on the value of at least one tainted symbol, o must also be
tainted. In the example above, we would taint the 2 produced by
adding a tainted 1 with an untainted 1. As a better example, con-
sider the application output (toUpper (input ())+¢ () ’), which
outputs EXIT() after inputting exit. Definition 7 does not con-
sider this exit input to be a copy-based CIAO because with
copy-based tainting, the output is just EXIT(), with no symbols
tainted/underlined. However, the exit input is a data-dependency-
based CIAO because with data-dependency-based tainting, the out-



put is EXIT(). Note that every copy-based CIAO is also a data-
dependency-based CIAO.

In many cases, such as the all-caps-function-name application
above, it may be helpful to detect and prevent data-dependency-
based CIAOs. In other cases, data-dependency-based-CIAOs may
be expected, so system administrators may not find it helpful for
them to be caught and flagged (similar to expected copy-based
CIAOs, discussed above). For example, an application for man-
aging online courses might hash an input student number to ob-
tain a discussion-group number g and then output a program like
SELECT numPosts FROM group_g where threadNum=4. As-
suming g is obtained through noncopy operations on the untrusted
student-number input, this application exhibits a non-copy-based,
data-dependency-based CIAO. But the application programmers
and system administrators would likely not consider this data-
dependency-based CIAO malicious.

4.2.2 Code-interference Attacks

Broadening taint propagation further, one might consider taints to
propagate even through control dependencies. To illustrate, let’s
consider the following application, which is semantically equiva-
lent to the input-echoing application output (input()) and per-
forms what [3] calls a “conditional copy”.

while(there are more input symbols) {
switch(next input symbol) {
case ‘a’ : output(‘a’); break;
case ‘b’ : output(‘b’); break;

.
}

This switch-based application is invulnerable to (copy-based and
data-dependency-based) CIAOs because there are no data depen-
dencies between input and output symbols—every symbol output
is a constant hardcoded into the application source code. On the
other hand, the semantically equivalent input-echoing application
is vulnerable to (copy-based and data-dependency-based) CIAOs
because it directly copies input symbols into the output. These are
reasonable consequences of only dealing with code-injection at-
tacks; CIAOs only occur when code symbols in output programs
directly depend on untrusted input.

Still, it may be desirable to prevent applications from behav-
ing as the switch-based application above does, and more gener-
ally, to prevent untrusted inputs from interfering at all (even in-
directly, through control dependencies) with the code symbols an
application outputs. To do so, we propose studying CIntAOs—
code-interference attacks on outputs. The switch-based application
above is vulnerable to CIntAOs because its input can interfere with
the code symbols that get output.

An application is vulnerable to CIntAOs whenever inputs dif-
fering in untrusted symbols can cause the application to output
programs differing in code symbols. In other words, applications
invulnerable to CIntAOs must, when given the same trusted inputs,
always output programs containing the same code symbols.

Definition 8. A CIntAO occurs exactly when:

1. Application A, on trusted and untrusted input sequences T €™
and UEX™, outputs L-program p.
2. There exists another untrusted input sequence U'€X* such
that:
(a) OnT and U’, A outputs L-program p’.
(b) The subsequence of code symbols in p is not equal to the
subsequence of code symbols in p’.

The switch-based application above is invulnerable to CIAOs
but vulnerable to CIntAOs. It also is possible for applications to

be invulnerable to CIntAOs but vulnerable to CIAOs. For example,
the application if input=°1+1’ then output(input) else
output (‘1+1’) exhibits a CIAO on input ‘141’ but cannot ex-
hibit a CIntAO because there is no way to change the subsequence
of code symbols in the output program by changing the untrusted
input.

Although it may sometimes be desirable to detect CIntAOs, the
strictness with which they’re defined causes many reasonable appli-
cations, which are free of CIAOs, to exhibit CIntAOs. For example,
an application could accept some untrusted input indicating which
currency to output an account balance in; if the desired currency is
not the default, the application might output some code to multiply
the fetched balance by a conversion rate. This application exhibits
neither data-dependency-based nor copy-based CIAOs because the
code symbols it outputs (e.g., the multiplication symbol) are not
data-dependent on the input currency. However, this application
does exhibit CIntAOs because the input currency affects (through
a control dependency) the code that gets output (i.e., whether or
not a multiplication gets included in the output program). Hence,
this example application illustrates that CIntAOs, like copy- and
data-dependency-based CIAOs, may be expected and not consid-
ered malicious for some applications.

5. Implications of the Definition of CIAOs

Analyzing the previous sections’ definitions provides insight into
the pervasiveness of CIAO and CIntAO vulnerabilities, as well as
various mechanisms’ effectiveness at mitigating CIAOs.

5.1 Pervasiveness of CIAO and CIntAO Vulnerabilities

We’ve been surprised to find that any application that always
blindly copies some untrusted input verbatim into its SQL° output
is vulnerable to a (copy-based) CIAO at runtime. Theorem 9 for-
malizes this result; it states that if an application always includes an
untrusted input (¢,,) verbatim in its output (without even inspecting
that input), and the same application has some input (v1, .., vy,) for
which it outputs a valid SQL® program, then there exists a way
to construct the untrusted input (a.») such that the application’s
output will contain an injected code symbol. The proof is construc-
tive; it shows how to inject code into any such application using a
detailed case analysis of the kind of value the untrusted input (vy,,)
gets injected into. Although the proof is tailored to SQL°, the proof
techniques are general.

Theorem 9. For all n-ary functions A and (n-1)-ary
functions A" and A", if Vityeyin: A(i1,..,0n) =
Al(il, .oy imfl, im+1, ey in)iﬂA”(ih .oy Z‘m71, im+1, .oy in), where
1 <m < nandJvi,..,vn: (vm € EJSFQLO N A(vi,..,vn) €
SQL®), then Jai,..,an: A(ai,..,an) € SQL® and A(a1, .., an)
exhibits a (copy-based) CIAO.

Proof. By assumption, Jv1, .., v, : A(v1,..,vn) € SQL°. First,
if A(v1,..,v,) exhibits a CIAO, then simply set ai,..,an to
V1, ..,Un. On the other hand, if A(v1,..,v,) does not exhibit a
CIAO, then, by the definition of CIAOs, v,, must be a substring of
a value, because v,,, is not empty and appears verbatim in the output
of A(v1,..,v5). Note that changing the untrusted vy, input to am,,
without changing any of the other n — 1 inputs, will cause A to out-
put A (V1, oy Um—1, Um41s «, Un)@m A" (U1, o, Um—1, Um41, -y Un ),
that is, the same output program but with a, instead of v,,,. We will
show that no matter the type of the value that v,, is a substring of,
there exists an a,, that will cause A(v1, .., Um—1, Gm, Um+1, .., Un)
to exhibit a (copy-based) CIAO but still remain valid.

e Case STR_LITERAL: a,, = if (the first character of v,, is
not an apostrophe or is the first apostrophe of a double-



apostrophe escape sequence) then '+ GLOBAL + ‘v, else
‘’ + GLOBAL + vy,
Examples:

= ‘fname’ becomes ‘f” + GLOBAL + ‘name’.

= ¢’ becomes ‘’ + GLOBAL + “ “ .

= ‘thame’ becomes ‘ * + GLOBAL + ‘fname’.

Let s,, denote the string literal that v,, is a substring of.
If vy, does not start s,, (which could happen if v,, begins
with the first apostrophe of a double-apostrophe escape se-
quence), then the string literal must have been started earlier,
as A(vi,..,vn) € SQL®. In this case, our construction of am,
terminates the string literal that has been started, inserts a code
symbol (the concatenation operator), a global variable, another
code symbol, and then begins a second string literal. If v,, ter-
minated s, then this new string literal will also be terminated
by vm. If vy, did not terminate s,,, then it must have been
terminated later, again because A(v1,..,vn) € SQL®. As a
result, this second string literal will also be terminated later. On
the other hand, if v,,, did start s,,, (or is the second apostrophe
of a double-apostrophe escape sequence), then our construction
creates an empty string literal (or finishes the escape sequence
and terminates the literal) and concatenates a global variable
and then concatenates another second string literal started by
Um. Again, we know that this second string literal will be ter-
minated, either by v,, or the characters following it, for the
same reasons as earlier. Thus, our construction of a,, causes
Sm, when a,, has been substituted for v,,, to be parsed as
s’ + GLOBAL + s", where s’ and s” are both valid string
literals. Note that expr OP expr is a valid expr, and as long
as GLOBAL is of type string, s’ + GLOBAL + s” will be of
the same type as s,,. As any expr can by replaced by another
expr of the same type, the program will remain valid after the
substitution of a,, for v,,. As a,, contains a code symbol (i.e.
2 concatenation operators, as well as whitespace), a CIAO is
exhibited.

Case INT_LITERAL, FLOAT_LITERAL: a,, = vy, 1*exit()*2

Examples:
= -100 becomes -1 * exit() * 2100.
= 11E34 becomes 11E1 * exit() *234.

This construction works for similar reasons as the
STRING_LITERAL case above; In addition to the 2 multipli-
cation code symbols, this construction also has a function call.
Case TRUE, FALSE, NULL: Let ID,, denote the keyword
that vy, is a substring of; hence ID,, can be written as
IDy I Dy (Where 1D, and 1D,y are in X5g10).
If I D, has a boolean type, then let O P be OR and let SU B be
1000 > GLOBAL. Otherwise, let OP be +, and let SU B be
exit() if ID,, has an integer or float type, or GLOBAL oth-
erwise. Then let ay, = VI Dy OP SUB OP IDy—vm,.

Examples:
= FALSE becomes FALSE OR 1000> GLOBAL OR
FALSE.
= NULL + 3 becomes NULL + exit() + NULL + 3.

By assumption, v,, is a substring of a keyword ID,,. We as-
sumed earlier that A(v1,..,vn) € SQL®, so ID,, must be
a valid keyword. We also know that in A(vi,..,vn), Um is
preceded by ID,,_ and followed by ID,,.. We construct
am such that it finishes the identifier or keyword started by
the existing I/ D,,—, inserts a code symbol depending on the
type of ID,,, conducts an attack, then inserts another code
symbol, and begins a new identifier or keyword to be fin-
ished by the existing I D,,+. As a result, where originally the

program used ID,, as an expr, the modified program uses
ID,, OP SUB OP ID,. Furthermore, the type of the expr
remains unchanged, as if 1D, has a boolean type, then O P
will be OR, and a boolean OR’d with a boolean is a boolean. If
1D, has a float or integer type, then O P will be the arithmetic
operator +, which will return either a float or an integer type. If
ID,, has a string type, then the + operator denotes concatena-
tion, and two stings concatenated with each other form a string.
Note that the only keyword that is a value and can have a type
of int, float, or string is NULL, as it can assume any type.

Note that a CIAO has already occurred when NULL is used in
expr IS NULL, because NULL is only a value when parsed as
an entire expr. O

Furthermore, any application that verbatim copies untrusted in-
put into the (SQL°) output program is either vulnerable to CIntAOs
or can be made to output an invalid program. Again, the proof is
constructive; it shows how to create an untrusted input that changes
the sequence of code symbols in, or invalidates, the output program.

Theorem 10. For all n-ary functions A and (n-1)-ary
functions A" and A", if Vi, ey in: A(i1, ..y in) =
Al(i1, ooy im—l, im+1, ey ’in)iﬂA/l(Z’1, .y im—l 5 ’im+1, ey Zn), where
1 <m < nand Jvi,..,vn: (Um € Z}'QLO A A(vr, ., vp) €
SQL®), then A either exhibits a CIntAO or can be made to pro-
duce an invalid SQL° program.

Proof. Observe that every symbol in an SQL° program is either
part of a value or not. If v,, contains a symbol recognized as
part of a value, then the input can be modified in the manner
described in the proof of Theorem 9, and the sequence of code
symbols will be modified; by definition, A exhibits a CIntAO. On
the other hand, if v,, contains a code symbol, then a different
symbol can be provided. If the SQL® program is still valid, then
a CIntAO has occurred, as the sequence of code symbols has
changed. If changing the code symbol made the program invalid
then the second condition of the implication is satisfied. O

Given that (program-outputting) applications commonly copy
some untrusted input verbatim into the output, Theorems 9-10
show that vulnerabilities to CIAOs and CIntAOs are pervasive.

5.2 Limitations of Static and Black-box Mechanisms to
Detect CIAOs

Determining whether an application is vulnerable to CIAOs re-
quires knowing which input symbols propagate to the output pro-
gram. This makes it undecidable to precisely detect (both copy-
based and data-dependency-based) CIAOs using static code analy-
sis or black-box analysis.

Theorem 11. There exists an application A, which inputs a string
of symbols over alphabet 3. and outputs L-programs, such that it is
undecidable, when given only an input string s € ¥* and a (e.g.,
Turing-machine) encoding of A, to determine whether A exhibits a
(copy-based or data-dependency-based) CIAO on s.

Proof. Let A be an application that inputs a string s, executes
subprogram p, and then outputs s if s equals “1+1” but otherwise
outputs just “1”. This A outputs programs in any language having
integers and addition. Also, A exhibits a (copy-based and data-
dependency-based) CIAO iff its subprogram p halts and its input
s is “l1+1”. Statically determining whether A exhibits a CIAO on
input “1+1” therefore reduces to the halting problem. O

Theorem 12. There exists an application A, which inputs a string
of symbols over alphabet 3. and outputs L-programs, such that it
is impossible, when given only an input string s € X" and the
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Figure 3. Overview of a CIAO-Preventing Mechanism. Trusted components are shaded.

ability (i.e., an oracle) to predict the output of A on any input, to
determine whether A exhibits a (copy-based or data-dependency-
based) CIAO on s. In other words, there exist observationally
equivalent applications A and A" and a string s such that A(s)
exhibits a CIAO but A'(s) does not exhibit a CIAO.

Proof. Let A be the input-echoing application output (input)
and A’ the conditional-copy application from Section 4.2.2. Recall
from Section 4.2.2 that A and A’ are observationally equivalent,
A is vulnerable to CIAOs (e.g., on an input like 1+1), and A’ is
invulnerable to CIAOs.

Theorems 11-12 are interesting because they rule out certain
classes of mechanisms from being able to precisely detect CIAOs.
Some of the mechanisms ruled out were previously thought to
precisely detect CIAOs; an example is SQLCHECK’s black-box,
“bracket”-based tainting mechanism (in which untrusted inputs get
surrounded by special characters, and output symbols are consid-
ered tainted iff they’re surrounded by those characters) [34]. Al-
though previous work showed that SQLCHECK’s tainting mecha-
nism is flawed [3], Theorems 11-12 are more general, in that they
rule out entire classes of mechanisms from being able to precisely
detect CIAO:s.

Of course, Theorems 11-12 don’t rule out static analysis and
black-box mechanisms as being useful for mitigating CIAOs. Al-
though such mechanisms can’t detect CIAOs precisely, they can
detect CIAOs conservatively (i.e., soundly but not completely) with
no/low runtime overhead, while avoiding the many practical obsta-
cles to monitoring taints dynamically (some of which are described
in Section 5.4).

However, sound static mechanisms for detecting CIAOs must be
so conservative as to reject a large class of common applications,
which may limit their appeal. Recall that Theorem 9 showed that all
applications that copy some untrusted input verbatim into an output
program can be made to exhibit a CIAO at runtime. Hence, sound
static mechanisms for detecting CIAOs must reject all of this large
class of common applications. (Similarly, Theorem 10 implies that
sound CIntAO-detecting static mechanisms must reject all such ap-
plications as well.) Related work on static-analysis techniques for
detecting CIAOs [12, 35, 40] appear to be consistent with this re-
sult; none seem to allow applications to copy untrusted input ver-
batim into output programs. Having a formal definition of CIAOs
makes it possible to prove that this characteristic is mandatory for
all sound, static, CIAO-detecting mechanisms.

5.3 Design of Mechanisms for Precisely Detecting and
Preventing CIAOs

Theorems 11-12 prove that precisely detecting CIAOs requires
a dynamic white-box mechanism. A high-level design of such a

mechanism follows straightforwardly from the definitions in Sec-
tions 3—4.

A dynamic white-box mechanism can precisely detect and pre-
vent CIAOs by:

e tainting all symbols input to an application A from untrusted
sources,

e transparently tracking one taint bit per symbol,

e propagating taints through exactly A’s copy and output opera-
tions (for copy-based CIAOs) or all data operations (for data-
dependency-based CIAOs),

e intercepting A’s output programs, and

e forbidding execution of output programs that contain at least
one tainted symbol used outside a value (i.e., as code).

Figure 3 illustrates such a mechanism.

Theorem 13. Assuming a mechanism M performs these opera-
tions on an application that outputs programs in a language with
decidable free-variable (F'V') and value (V al) functions, it is de-
cidable for M to precisely detect and prevent CIAOs.

Proof. Immediate by Definition 7 and the definitions of data-
dependency CIAOs and mechanism M given above. O

Algorithm 1 directly implements this generic design of dynamic
white-box mechanisms for preventing CIAOs. The algorithm relies
on auxiliary functions for (1) adding taint tracking to applications,
(2) signaling that untrusted inputs are tainted, (3) calculating the set
of free variables in a sequence of program symbols, and (4) decid-
ing whether program symbols constitute a value.

Each of the three nested for loops in Algorithm 1 executes O (n)
times, where n denotes the size of the output program. Hence, if
we ignore the complexities of the F'V and Val functions (which
are dependent on the output-program language), the top-level for
loop of Algorithm 1 runs in O(n®) time. Assuming that the F'V/
and Val functions run in time linear in their input size, then, the
top-level for loop of Algorithm 1 runs in O(n*) time.

The space required by the top-level for loop of Algorithm 1
consists of the 4, low, and high counters (each of size O(lgn)),
the IsCiao flag (of size O(1)), and whatever space is required
to invoke and execute the F'V and Val functions. Assuming that
invoking and executing the F'V and V' al functions uses space linear
in their input size, then, the top-level for loop of Algorithm 1 uses
O(n) space.

Optimized CIAO-Preventing Mechanism Algorithm 1 can be
optimized to run in O(n) time and space, under the assumption that
the output-program language has an LR(k) grammar in which every
closed value matches some syntactic category (e.g., in SQL° every



Algorithm 1: Basic CIAO-Preventing Mechanism

Input: Application A and inputs 7', U (trusted, untrusted)
Ensure: A’s output is executed iff it doesn’t exhibit a CIAO
A’ <~ AddTaintTracking(A)
Output < A’ (T, Taint(U))
for i < 1 to |Output| do
if tainted(Output[i]) then
IsCiao < true
for low < 1to i do
for high < i to |Output| do
if FV(Output, low, high) = () and
Val(Output, low, high) then
I1sCiao < false
end if
end for
end for
if /sCiao then
throw CiaoFException
end if
end if
end for
Execute(Output)

closed value matches the expr category). When output-program
languages satisfy this assumption, Algorithm 1’s top-level for loop
can be replaced with a shift-reduce parse of the application’s output
program. When reducing a closed-value right-side R of a produc-
tion to a nonterminal N, the parser sets an isVal attribute for NV
and erases taints on all output-program symbols represented by
R (except for any symbols represented by nonterminals in R for
which isVal has been set—such symbols have already had their
taints erased). After running this taint-erasing parser, all output-
program taints in closed values will have been erased, so a CIAO is
detected if and only if some tainted symbol remains in the output
program.

Algorithm 2 presents pseudocode for this optimized CIAO-
preventing mechanism. The algorithm relies on auxiliary functions
for (1) adding taint tracking to applications, (2) signaling that
untrusted inputs are tainted, (3) tokenizing output programs, and
(4) shift-reduce parsing output programs.

Theorem 14. The let-in block of Algorithm 2 runs in O(n) time
and space.

Proof. The tokenization portion of Algorithm 2 runs in O(n) time
and space (where again n is the size of the application’s output pro-
gram). A standard shift-reduce parse of the output program, without
the additional actions performed on reductions, runs in O(n) time
and space; the total number of right-hand-side-production sym-
bols reduced to nonterminals during the parse is O(n) [15]. Be-
cause the total number of right-hand-side-production symbols re-
duced to nonterminals during the parse is O(n), all the non-taint-
clearing reduction actions in Algorithm 2 (i.e., /N.isVal<—true,
N .begin < s1.begin, etc.) occur in O(n) total time and space. The
forloop in Algorithm 2’s in block also runs in O(n) time and space,
so Algorithm 2’s entire in block uses linear time and space, in ad-
dition to the time and space used to clear taints.

To determine the total time and space used by taint-clearing
operations, observe that clearTaints is always initially invoked, in
Algorithm 2’s in block, on symbols matching a nonterminal N such
that N.isVal=true. During execution, clearTaints may call itself
recursively only on parse-tree-descendent nonterminals with false
isVal attributes. Because parsing is bottom-up, then, pointers to

Algorithm 2: Optimized CIAO-Preventing Mechanism (for appli-
cations whose output-program language has an LR(k) grammar in
which every closed value matches some syntactic category)

Input: Application A and inputs 7', U (trusted, untrusted)
Ensure: A’s output is executed iff it doesn’t exhibit a CIAO
A’ <~ AddTaintTracking(A)
Output < A’ (T, Taint(U))
let
function clearTaints (p1,...,pn) =
for i < 1ton do
Current < dereference(p;)
if Current is a terminal then
for j < Current.begin to Current.end do
Output[j].Tainted = false
end for
else if Current.isVal=false then
clearTaints(Current.children)
end if
if i < n then // clear tainted whitespace, if any
Next < dereference(pi+1)
for j < Current.end to Next.begin do
Output[j].Tainted = false
end for
end if
end for
end function
end let
in
tokens < run tokenize (Output)
on recognition of token ¢ do
t.begin <— position of first symbol of ¢ in Output
t.end < position of last symbol of ¢ in Output
end on
end run
run shift-reduce-parse (tokens)
on reducing by production N ::= s1 52 ...
$1..8n 1s a closed value do
N.isVal < true
clearTaints(list of pointers to s1,. .., Sn)
N .begin < s;.begin
N.end < s,.end
end on
on reducing by production N ::= s1 52 ...
$1..Sn, 18 not a closed value do
N.isVal + false
N .children < list of pointers to s1..5y,
N .begin < s1.begin
N .end < s,.end
end on
end run
for i < 1 to |Output| do
if tainted(Output[i]) then
throw CiaoFException
end if
end for
end in
Execute(Output)

Sn, Where

Sn, Where

the same syntax-tree symbol may never be passed as arguments to
clearTaints more than once, and every output-program taint may be
cleared at most once (technically this result also relies on the facts
that isVal attributes are constant once set, taints can only be cleared
by clearTaints, and clearTaints, when called on pointers to symbols
$1..Sn, can only clear taints at output-program positions s;.begin



to sy.end). Also observe that, ignoring recursive clearTaints calls,
each run of clearTaints executes in time proportional to the number
of pointers to nonterminals passed as arguments plus the number
of taints cleared. Then because (1) pointers to the same syntax-
tree symbol may never be passed as arguments to clearTaints more
than once, (2) the total number of nonterminals in the parse tree is
O(n) [15], (3) every output-program taint may be cleared at most
once, and (4) each run of clearTaints executes in time proportional
to the number of pointers to nonterminals passed as arguments
plus the number of taints cleared, we have that the total time (and
therefore space) used by all clearTaints operations is O(n).

Hence, Algorithm 2’s entire let-in block uses O(n) time and
space, as required.

5.4 Obstacles to Monitoring Taints in Practice

Many taint-monitoring mechanisms and frameworks exist for mit-
igating CIAOs (e.g., [6, 8, 25, 31, 38]). None separate code from
noncode the way this paper has, but one framework, Dytan [6],
which has not yet been publicly released, implements (for x86 ap-
plications) the taint-tracking functionality our definitions require.
Hence, it appears possible to use Dytan to precisely detect (copy-
based and data-dependency-based) CIAOs in x86 applications (by
ensuring that all operations in Section 5.3’s bulleted list are per-
formed).

Even with powerful taint-monitoring frameworks like Dytan,
there are several obstacles to ensuring that taint-monitoring mech-
anisms obey the four tainting constraints listed in Section 4.1. This
subsection briefly summarizes these obstacles, most of which are
discussed in greater length elsewhere (e.g., [6, 8, 24, 31, 33]).

The first of the four tainting constraints in Section 4.1 requires
all symbols input to the application from untrusted sources to be
tainted. Untrusted inputs may come from many sources (e.g., HTTP
GET and POST requests, cookies, server variables, or a database),
and enumerating all these untrusted sources may be difficult and
error prone. Hence, following Halfond, Orso, and Manolios, one
might instead use positive tainting [8] (i.e., tracking which output-
program symbols derive from trusted sources, often just the string
literals hardcoded in an application). It would be straightforward to
adjust this paper’s definition of CIAOs to use positive (rather than
negative) tainting: CIAOs would occur when some code symbol in
an output program is not positively tainted.

The second and third of the four tainting constraints require that
taints propagate through exactly copy and output operations (for
copy-based CIAOs), or all data operations (for data-dependency-
based CIAOs). Because a taint bit must be tracked for every input
symbol, the tainting mechanism must operate with fine granularity,
which previous work has found to induce high runtime overhead
(e.g., many thousands of percent of overhead) [6, 24, 38]. In addi-
tion, monitoring taints typically requires executing applications in
modified runtime environments, which limits portability [9]. And
propagating taints through output operations, so output programs
can be caught and checked prior to being executed, may be diffi-
cult; it may be hard to enumerate all the ways an application can
output programs (e.g., to files, remote hosts, or standard output). If
an application’s outputs can circumvent a CIAO-mitigating mecha-
nism, the mechanism is unsound. Applications might also circum-
vent taint-monitoring mechanisms by executing external (e.g., na-
tive) code [8].

The last of the four tainting constraints requires taints to be
transparent. This transparency ensures that taint tracking does not
affect application behaviors; CIAO-preventing mechanisms should
only modify application behaviors when attacks are detected (in
which case the behavior must be modified to prevent injected code
from being output). To be transparent, tainting mechanisms have
to isolate taints from applications. Hence, CIAO-mitigating mecha-

nisms cannot use bracketing techniques to track taints (e.g., [34])—
the brackets are visible to applications [3]. Another important ob-
stacle to ensuring transparency in practice is that runtime mecha-
nisms generally induce overhead on application performance, and
this overhead may make time-sensitive applications behave differ-
ently. Perfect transparency may therefore be difficult or impossible
to achieve for time-sensitive applications in practice.

6. Summary

This paper has defined code-injection attacks on outputs. The defi-
nition simply considers CIAOs to occur when untrusted inputs get
used as nonvalues (or open values) in output programs. This defi-
nition avoids problems with conventional CIAO definitions, which
sometimes consider CIAOs to be non-CIAOs and vice versa.

The new definition of CIAOs has been used to:

e Distinguish between copy-based CIAOs, data-dependency-
based CIAOs, and CIntAOs based on whether taints propagate
through copy, data, or all (data and control) dependencies.

Prove that a large class of applications (i.e., those that always
blindly copy some untrusted input to the output program) are
inherently vulnerable to CIAOs and CIntAOs, so sound static
mechanisms must disallow these applications from executing.

Prove that precisely detecting CIAOs requires dynamic white-
box mechanisms. The generic design of such mechanisms fol-
lows immediately from the definition of CIAOs. Under reason-
able assumptions these mechanisms can be optimized to detect
CIAOs in output programs in O(n) time and space. Nonethe-
less, due to their reliance on taint tracking, many obstacles im-
pede implementation of precise CIAO-mitigating mechanisms
in practice.

Hence, the new definition of CIAOs has been used to analyze
precisely when they occur, how they can be mitigated, and how
efficiently they can be mitigated. We hope these results can serve
as a foundation for improving the effectiveness of future CIAO-
mitigating mechanisms.
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