
Ad Hoc Networks 10 (2012) 1204–1220
Contents lists available at SciVerse ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc
Self-sustaining, efficient and forward-secure cryptographic constructions
for Unattended Wireless Sensor Networks q

Attila Altay Yavuz ⇑, Peng Ning
Cyber Defense Laboratory, Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
a r t i c l e i n f o

Article history:
Received 21 February 2011
Received in revised form 17 February 2012
Accepted 26 March 2012
Available online 12 April 2012

Keywords:
Applied cryptography
Unattended Wireless Sensor Networks
(UWSNs)
Digital signatures
Forward security
Aggregate signatures
1570-8705/$ - see front matter � 2012 Elsevier B.V
http://dx.doi.org/10.1016/j.adhoc.2012.03.006

q A preliminary version of this paper appeared in
tional Conference on Mobile and Ubiquitous Systems: C
and Services (MobiQuitous 2009), pp. 1–10, July 13–1
⇑ Corresponding author.

E-mail addresses: aayavuz@ncsu.edu (A.A. Yavu
(P. Ning).
a b s t r a c t

Unattended Wireless Sensor Networks (UWSNs) operating in hostile environments face
great security and performance challenges due to the lack of continuous real-time commu-
nication with the final data receivers (e.g., mobile data collectors). The lack of real-time
communication forces sensors to accumulate sensed data possibly for long time periods,
along with the corresponding authentication tags. It also makes UWSNs vulnerable to
active adversaries, which can compromise sensors and manipulate the collected data.
Hence, it is critical to have forward security property such that even if the adversary can
compromise the current keying materials, she cannot forge authentication tags generated
before the compromise. Forward secure and aggregate signature schemes are developed to
address these issues. Unfortunately, existing schemes either impose substantial overhead,
or do not allow public verifiability, thereby impractical for resource-constrained UWSNs.

In this paper, we propose a new class of cryptographic schemes, referred to as Hash-Based
Sequential Aggregate and Forward Secure Signature (HaSAFSS), which allows a signer to
sequentially generate a compact, fixed-size, and publicly verifiable signature efficiently.
We develop three HaSAFSS schemes, Symmetric HaSAFSS (Sym-HaSAFSS), Elliptic Curve
Cryptography (ECC) based HaSAFSS (ECC-HaSAFSS) and self-SUstaining HaSAFSS (SU-HaS-
AFSS). These schemes integrate the efficiency of MAC-based aggregate signatures and the
public verifiability of Public Key Cryptography (PKC)-based signatures by preserving for-
ward security via Timed-Release Encryption (TRE). We demonstrate that our schemes
are secure and also significantly more efficient than previous approaches.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

An Unattended Wireless Sensor Network (UWSN) [1–5]
is a Wireless Sensor Network (WSN) in which continuous
end-to-end real-time communication is not possible for
sensors (senders) and their receivers (e.g., mobile collec-
tors, static sinks). In other words, receivers might not be
available for sensors from time to time, sometimes for long
. All rights reserved.

Sixth Annual Interna-
omputing, Networking
6, 2009.

z), pning@ncsu.edu
time periods. Sensors accumulate the sensed data in these
time periods, and transmit it to the receivers whenever
they become available (e.g., visits of mobile collectors
[2,5]).

Examples of UWSNs can be found in military WSN
applications (e.g., [6,1]), where sensors are deployed to
an adversarial and unattended environment to gather
information about enemy activities. One illustrative exam-
ple is LANdroids [7], a recent US Defense Advanced
Research Projects Agency (DARPA) research project, which
designs smart robotic radio relay nodes for the battlefield
deployment. These nodes are expected to be deployed in
hostile environments to gather military information and
upload to ally vehicles (e.g., UAV, soldier) upon their
arrivals.

http://dx.doi.org/10.1016/j.adhoc.2012.03.006
mailto: aayavuz@ncsu.edu
mailto: pning@ncsu.edu
http://dx.doi.org/10.1016/j.adhoc.2012.03.006
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc

1 For brevity, in this paper, we refer to an expensive cryptographic
operation, i.e., a modular exponentiation or a pairing operation, as an
ExpOp.

A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220 1205
The lack of real-time communication and the resource
constraints of UWSNs bring several security and perfor-
mance challenges, especially when an UWSN is deployed
in a hostile environment as described above. In particular,
inability to off-load the sensed data forces sensors to accu-
mulate a large amount of data along with their authentica-
tion information. More importantly, unattended settings
make the UWSN highly vulnerable to active [5] and/or mo-
bile adversaries [1,2]. Such an adversary can physically
compromise sensors and gain access to the accumulated
data as well as the existing cryptographic keys. When a
sensor is compromised, the adversary can always use the
cryptographic keys learned from the sender to generate
forged messages after the attack. However, it is critical to
prevent the adversary from modifying the data accumu-
lated before the adversary takes control of the sender [5].
Such a security property is referred to as forward security
[8].

Forward secure signatures have been proposed to pro-
vide forward security for pre-accumulated data [8]. In a
forward secure signature, a signer evolves her private key
periodically (either for each signed data item or for each
time period) in a one-way manner, and erases the previous
private key. While mitigating the effects of key exposure,
this strategy also brings significant storage and communi-
cation overheads because of the accumulation of the signa-
tures of individual data items. Recently, forward-secure
and aggregate signatures [5,9,10] were developed to ad-
dress this issue by integrating aggregate signatures (e.g.,
[11,12]) with forward-secure signatures. This approach al-
lows a signer to reduce linear signature size to a small and
constant size.

The above properties of forward secure and aggregate
signatures make them ideal cryptographic tools for achiev-
ing data integrity and authentication for UWSN applica-
tions in the presence of active adversaries [5]. However,
all existing PKC-based forward secure and aggregate signa-
ture schemes (e.g., [11,5,9]) impose extreme computa-
tional overheads on the network entities, which are
intolerable for resource-constrained UWSN applications.
Another alternative is to rely on symmetric key cryptogra-
phy via hash chains and Message Authentication Codes
(MACs) as in FssAgg-MAC [5]. However, such an approach
requires full symmetric key distribution and does not al-
low signatures to be publicly verifiable. This makes it
unscalable and impractical for large distributed UWSN
applications. Thus, it is necessary to seek highly efficient
and flexible forward secure and aggregate signatures for
UWSN applications.

In this paper, we propose a new class of cryptographic
schemes for UWSN applications, which we call Hash-Based
Sequential Aggregate and Forward Secure Signatures (HaS-
AFSS, pronounced as ‘‘Hasafass’’). We develop three specific
HaSAFSS schemes, a symmetric HaSAFSS scheme (called
Sym-HaSAFSS), ECC-based HaSAFSS scheme (called ECC-HaS-
AFSS), and a self-SUstaining HaSAFSS (called SU-HaSAFSS).

A nice property of these schemes is that they achieve
five seemingly conflicting goals, computational efficiency,
public verifiability, forward security, flexibility and scala-
bility at the same time. To achieve this, HaSAFSS schemes
introduce asymmetry between the senders and receivers
using the time factor via Timed-Release Encryption (TRE)
[13]. Using this asymmetry, our schemes achieve high
efficiency by minimizing costly Expensive Operations (Ex-
pOps),1 while still remaining publicly verifiable and forward
secure.

We summarize the properties of our schemes as
follows:

(1) Our schemes achieve near-optimal computational
efficiency and public verifiability at the same time.
They achieve the computational efficiency by adopt-
ing cryptographic hash functions to compute aggre-
gate and forward secure signatures, and thus are
much more efficient than all the existing schemes
(e.g., [11], FssAgg-BLS in [5], FssAgg-AR/BM [9]),
with the exception of FssAgg-MAC in [5]. When
compared with FssAgg-MAC [5], our schemes fur-
ther achieve public verifiability by eliminating sym-
metric key distribution.

(2) In our schemes, both signers (senders) and verifiers
(receivers) get equal benefits of computational effi-
ciency, while most existing schemes incur heavy
computational overhead on either the signer or ver-
ifier side. This property is especially useful for UWSN
applications in which both the signers and verifiers
need to process large amounts of data efficiently.

(3) Since our schemes achieve signature aggregation, a
signer always stores and transmits only a single
compact signature, regardless of the number of time
periods or data items to be signed. This offers band-
width efficiency.

(4) Based on an omni-symmetric design that provides
public verifiability, Sym-HaSAFSS is the most com-
putationally efficient scheme among of all its coun-
terparts. It is also the most verifier storage friendly
scheme by requiring only a small and constant stor-
age for the verifiers. However, it requires a linear
storage at the signer side.

(5) ECC-HaSAFSS requires storing one key for each
signer by offering a signer storage friendly scheme.
However, it requires an ExpOp to initialize each time
interval (but still requires only three hash operations
to sign/verify per-item), and also demands quadratic
storage overhead at the verifier side.

(6) Despite their simplicity and efficiency, Sym-HaS-
AFSS and ECC-HaSAFSS put a linear bound on the
maximum number of time periods that a signer
can use. Moreover, they require a pre-determined
and fixed data delivery schedule that all signers have
to agree upon before deployment. SU-HaSAFSS
addresses these limitations by offering the following
properties:

– SU-HaSAFSS enables a signer to use (practically)

unbounded number of time periods (this implies
the ability of generating unbounded number of
signatures) without requiring any re-keying after
the deployment. This allows a signer to operate

1206 A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220
in a hostile environment for a long time without
costly (sometimes impossible) re-deployment/
re-keying support. This also offers only a constant
key storage at the signer side and a linear key
storage at the verifier side.

– SU-HaSAFSS enables each sender to decide her
own data delivery schedule dynamically (after
the deployment) without requiring any (online)
communication with other signers or a trusted
third party. Therefore, SU-HaSAFSS can support
applications in which a pre-determined data
delivery schedule cannot be decided.

– To achieve these properties, SU-HaSAFSS requires
a few ExpOps per interval (for the initialization
purpose), and therefore is more computationally
costly than Sym-HaSAFSS and ECC-HaSAFSS.
However, SU-HaSAFSS is significantly more effi-
cient than all other PKC-based schemes (e.g.,
FssAgg) that require an ExpOp per data item
(SU-HasAFSS requires only three hash operations
per data item to sign or verify in given time
interval).
HaSAFSS schemes utilize already existing verification
delays in the envisioned UWSN applications as an opportu-
nity to achieve the aforementioned properties. Thus, they
are ideal solutions for UWSN applications in which high
computational, storage, or bandwidth efficiency is more
important than immediate verification.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 provides the pre-
liminaries. Section 4 presents our assumptions as well as
the security and data models. Section 5 describes the pro-
posed schemes in detail. Section 6 provides the security
analysis of the proposed schemes. Section 7 gives perfor-
mance analysis and compares the proposed schemes with
previous approaches. Section 8 concludes this paper.
2. Related work

2.1. Forward secure and/or aggregate signatures

A forward secure signature aims to minimize the effect
of key compromises. The first forward secure signature
scheme was proposed in [14]. In this scheme, each signa-
ture is associated with a time period in addition to the
signed data item. After each time period, the secret key
of the signer is changed and cannot be used for previous
time periods. Several new schemes were later proposed
to improve storage requirement, signature size, and com-
putational cost (e.g., [8,15–20]). Our paper is also related
to aggregate signatures, which aggregate n individual sig-
natures associated with n different users into a single,
compact signature. The first aggregate signature scheme
was proposed in [11], and then several new schemes
achieving more advanced properties were developed
(e.g., sequentiality [21], low storage overhead [22]).

The most closely related schemes to ours are forward-
secure and aggregate signature schemes. The first for-
ward-secure and aggregate schemes were proposed by
Ma and Tsudik in [5] (i.e., FssAgg-MAC and FssAgg-BLS).
Later, Ma et al. developed FssAgg-AR and FssAgg-BM in
[9,10] that were more computational and storage efficient
than FssAgg-BLS. However, all these schemes are still not
efficient enough for UWSNs.

In the preliminary version of this work [23], we devel-
oped Sym-HaSAFSS and ECC-HaSAFSS that achieve the
near optimal computational efficiency and public verifi-
ability at the same time by leveraging the already existing
delays in UWSNs. These schemes are significantly more
efficient than FssAgg schemes, but they are still not flexible
enough as we discussed in the introduction.

In this paper, we add the new SU-HaSAFSS scheme,
which addresses the limitation of our previous schemes
by introducing slightly more computational overhead.
SU-HaSAFSS is still more computationally efficient than
all other PKC-based alternatives (e.g., FssAgg schemes), as
we will demonstrate in Section 7.

2.2. Timed-Release Encryption (TRE)

The purpose of TRE is to encrypt a message in such a
way that no entity, including the intended receivers, can
decrypt it until a pre-defined future time. The majority of
modern TRE schemes are based on Trusted Agent (TA), in
which a time server provides universally accepted time
reference and trapdoor information to users [24,13].
Hence, users can decrypt the ciphertext when its related
trapdoor information is released by the TA. Most of the re-
cent TRE schemes (e.g., [25–28]) are based on Identity-
Based (IB) cryptography [29].

Sym-HaSAFSS relies on only the basic TRE concept to
achieve a ExpOp-free construction, while SU-HaSAFSS
was inspired by the anonymous TRE mechanism [26] to
meet its requirements.

2.3. TESLA

TESLA [30] is an efficient broadcast authentication pro-
tocol that also uses delayed disclosure of the keying mate-
rial, assuming that signers and verifiers are loosely
synchronized. However, our schemes provide important
properties that are not available in TESLA.

First, in TESLA, an attacker A that compromises a signer
can easily forge all previously accumulated data items in a
given time interval, since asymmetry is directly introduced
by the signer. However, HaSAFSS schemes protect previ-
ously accumulated data items via mechanisms that
achieve forward security. Moreover, TESLA generates an
individual signature for each individual data item; how-
ever, HaSAFSS schemes compute an aggregate signature
for multiple data items, which reduces the storage and
communication overhead. Finally, HaSAFSS schemes also
achieves the ‘‘all-or-nothing’’ property (i.e., resistance
against the data truncation) due to the signature aggrega-
tion, which is not available in TESLA.

2.4. Self-healing techniques

Recently, a series of studies [2,3,1] based on self-healing
techniques have been proposed to achieve data survival in

A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220 1207
UWSNs. They first propose mobile adversary models, in
which the adversary compromises the sensors and deletes
the data accumulated in them. To confront such an adver-
sary, they propose collaborative techniques, in which non-
compromised sensors collectively attempt to recover a
compromised sensor [3,2] by introducing local random-
ness (with a PRNG) to their neighborhood. DISH [2] as-
sumes a read-only adversary and targets the data
secrecy. POSH [3] allows constrained write-only adversar-
ies and targets the data survival. Pietro et al. [1] elaborates
the adversary models given in [2,3] and provides experi-
mental and analytical results for them.

Note that the adversary models and security goals in
[2,3,1] are different from ours. In our schemes, the goal
of the adversary is to forge data and/or destroy the authen-
tication. However, the goal of the adversary in [2,3,1] is to
prevent the data from reaching the sink.

3. Preliminaries

G1 is a cyclic additive group generated by generator G
on an Elliptic Curve (EC) over a prime field Fp, where p is
a large prime number and q is the order of G. kG, where k
is an integer, denotes a scalar multiplication. G2 is a cyclic
multiplicative group with the same order q.
E, D, k, and jxj denote symmetric encryption function,

symmetric decryption function, concatenation operation,
and the bit length of variable x, respectively.

H1 and H2 are two distinct cryptographic hash func-
tions, which are both defined as H1/H2: {0,1}n ? {0,1}jHj,
where n denotes the bit length of randomly generated in-
put key and jHj denotes the output bit length of the se-
lected hash function. H3 is used to compute aggregate
signatures and is defined as H3: {0,1}⁄? {0,1}jHj. H4 is used
to map an input key to a point on the EC, i.e., H4:
{0,1}n ? aG. H5 : f0; 1gjtj ! Z�q is used to hash a t-bit time
instance T 2 {0,1}jtj (e.g., T = ‘‘22:43, June 21 2011’’). H6 is
defined as H6 : G2 ! Z�q. We also use a secure MAC to
compute individual signatures of data items, defined as
MACsk:{0,1}n � {0,1}⁄? {0,1}jHj.

tw denotes a single time interval, which is formed from
two consecutive pre-determined time points Tw�1 and
Tw > Tw�1. tw;w0 denotes a unified time interval, which starts
at the beginning of tw and ends at the end of tw0 .

SGN denotes a standard digital signature scheme (e.g.,
Schnorr [31], DSA [32]) and MMM denotes a Malkin Mic-
ciancio Miner (MMM) generic forward-secure signature
construction [20] instantiated from an appropriate base
scheme (e.g, [17,33]). ðsk; pkÞ ¼ SGN:Kgð1jÞ, r ¼ SGN:Sigsk
ðmÞ and fsuccess; failureg ¼ SGN:Verpkðr;mÞ denote the key
generation for security parameter j, signature generation
on message m with private sk and verification of r on m with
public key pk, respectively.

MMM signature scheme, in addition to the above stan-
dard algorithms, also has a key update algorithm, denoted
MMM.Upd(skw, w). That is, given the current private key
skw, the update algorithm generates one or several new
key instances to be used in the future. This is done by using
a sum composition and a product composition iteratively
based on a special tree structure. The details of this update
procedure can be found in [20].
Definition 1. ~e is a bilinear pairing ~e : G1 �G1 ! G2, i.e.,
an admissible map with the following properties:

1. Bilinearity: ~eðaP; bQÞ ¼ ~eðbP; aQÞ ¼ ~eðabP;QÞ ¼ ~e
ðP; abQÞ ¼ ~eðP;QÞab, 8P;Q 2 G1 and 8a; b 2 Z�q.

2. Non-degeneracy: 9P;Q 2 G1 such that ~eðP;QÞ–1. In our
settings, we select prime order groups in which
8P;Q 2 G1; ~eðP;QÞ–1, and therefore ~eðG;GÞ (G is the
generator of G1) is a generator of G2.

3. Efficiency: There exists an efficient algorithm to com-
pute ~eðP;QÞ;8P;Q 2 G1.
Definition 2. Elliptic Curve Discrete Logarithm Problem
(ECDLP) [34] is defined as follows: Given a prime p, a gen-
erator G 2 G, and a random point Q 2 E(Fp), find the integer
k, 0 6 k 6 p � 2, such that Q � kG. ECDLP is (s, �)-hard, if no
algorithm running in time less than s can solve the ECDLP
with a probability more than �. where � is computed over
the random choices of (G, k).
Definition 3. q-Bilinear Diffie–Hellman Inversion (q-BDHI)
problem ? [26] is defined as follows: Given (q + 1)-tuple
ðG; aG; a2G; . . . ; aqGÞ 2 G

qþ1
1 for some a; q 2 Z�p, compute

~eðG;GÞa
�1
2 G2. q-BDHI is (s, �)-hard, if no algorithm

running in time less than s can solve the q-BDHI with a
probability more than �, where � is computed over the
random choices of G.

4. Models

We first give our threat model and security model
including the HaSAFSS security definition and complex-
ity/system assumptions. We then present our data model.

4.1. Threat model and security model

Our treat model is based on a resourceful but Probabilis-
tic Polynomial Time (PPT) bounded adversary A with the
following abilities: (i) passive attacks against output of cryp-
tographic operations, (ii) active attacks including packet
interception/modification, and (iii) physically compromis-
ing senders/receivers (called as ‘‘break-in’’) and extracting
the cryptographic keys from the compromised nodes.
A aims to produce an existential forgery against the for-

ward-secure and aggregate signature of the accumulated
data that he obtained after the break-in. A may use any
cryptographic key and data that she extracted from the
compromised signers and verifiers.

Before giving the HaSAFSS security model, we review
the Quality of Forward Security (QoF) concept [9]:

Definition 4. QoF is a performance-forward security qual-
ity trade-off, which is decided according to the following
two key update methods:

� Per-item QoF: Each individual data item Dj is signed as
soon as it is collected.
� Per-interval QoF: A group of data item D0j is signed as a

single data item for each time period tj, where D0j
denotes all individual data items collected in tj.

1208 A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220
In terms of the key evolving strategy, these two meth-
ods are the same. However, they enable users to establish
a performance-security trade-off that can be decided
according to the requirements of application. That is, per-
item QoF provides the highest quality of forward security
(i.e., forward-security of each data item individually), but
it incurs high computational and storage overhead to the
signers and verifiers. In contrast, per-interval QoF provides
a low quality of forward security (i.e., only for across time
periods), but it also incurs less computational and storage
overhead to the the signers and verifiers.

4.1.1. HaSAFSS security objectives
The goal of HaSAFSS schemes is to achieve secure signa-

ture aggregation and forward security simultaneously. We
follow the example of previous forward-secure and aggre-
gate signature schemes (i.e., [5,9]), which focus on
forward-security, existential unforgeability and authenti-
cation properties, to analyze our schemes in Section 6.

Remark that HaSAFSS schemes exploit the already
existing delays (i.e., time factor) in UWSNs to achieve its
desirable properties. Thus, the forward-security objective
of HaSAFSS schemes is slightly different than that of previ-
ous forward-secure and aggregate schemes (i.e., [5,9,10]).
That is, HaSAFSS aims to achieve a time-valid forward-secu-
rity instead of a permanent forward-security.

Based on our threat model and security goals, the secu-
rity of HaSAFSS schemes is defined as follows:

Definition 5. The security of a HaSAFSS scheme is defined
as the non-existence of a PPT bounded adversary A who
produces an existential forgery against HaSAFSS even
under the exposure of current keying material in the
duration of a designated time interval tw;w0 . This is called as
Time-valid Forward-secure Existential Unforgeability (TFEU)
property.

Note that HaSAFSS schemes mainly rely on symmetric
cryptography to achieve the above goal.2 Indeed, in Sec-
tion 7, we show that they achieve the highest QoF (i.e.,
per-item QoF) in a given time interval, and still remain
much more computationally efficient than previous PKC-
based schemes.

Remark. The time validity requirement in Definition 5
implies that a signer should transmit the forward-secure
and aggregate signature computed in tw;w0 to the verifiers,
before the TTP releases the time trapdoor key associated
with tw0 . Such a requirement is compatible with the
periodic data collection characteristic of the envisioned
UWSN applications [5,7,6]. Details of how our schemes
handle data/time trapdoor information are given in data
models and Section 5.

HaSAFSS schemes integrate various cryptographic
primitives in a novel and efficient way to achieve their
security and efficiency goals. In Section 6, we prove that
2 Sym-HaSAFSS relies on an omni-symmetric construction, but ECC-
HaSAFSS and SU-HaSAFSS consult a few ExpOp once to initialize a desired
time interval. However, SU-HaSAFSS still uses only symmetric primitives to
sign/verify each data item in this time interval, and therefore it preserves
the computational efficiency of HaSAFSS constructions.
breaking a HaSAFSS scheme is as difficult as breaking its
underling primitive(s). Therefore, HaSAFSS schemes
achieve TFEU as long as the below assumptions hold:

Assumption 1. We assume that cryptographic primitives
used in our schemes have all the semantic security
properties [35] as follows:

(i) H1, H2, . . . , H6 are secure and collision-free hash
functions producing indistinguishable outputs from the
random uniform distribution [36]. (ii) MAC is Existential
Unforgeable Under Chosen Message Attacks (EU-CMA)
[37]. (iii) Symmetric encryption function E is Indistin-
guishable under Chosen Ciphertext Attacks (IND-CCA
secure) [38]. (iv) ECDLP [34] and q-BDHI problem [39] are
(s, �)-hard with appropriate parameters.
Assumption 2. We assume a Trusted Third Party (TTP),
which is trusted by all network entities. (i) The adversary
A cannot compromise the TTP; (ii) Amay jam the TTP, but
if an entity continuously tries, its messages can eventually
reach the TTP; (iii) the TTP releases time trapdoor keys
(secret cryptographic keys) with which the receivers verify
the forward secure and aggregate signatures generated by
the senders (the TTP acts as a Trusted Agent (TA) as in TRE
schemes [27]). We assume that time trapdoor keys released
by the TTP reach the receivers eventually. Details of the time
trapdoor key delivery are given in the data models.
4.2. Data model

We consider three data delivery models for the envi-
sioned UWSN applications:

(a) Pre-determined data delivery model: This model
addresses applications in which signers/verifiers
and the TTP can agree on a prospective data delivery
schedule so that data/trapdoor delivery can be per-
formed based on this schedule. In this model, the
TTP passively broadcasts time trapdoor keys based
on a pre-determined schedule, and it is assumed that
the verifiers (e.g., mobile collectors) will be available
for their signers based on this schedule. This data
delivery model is realized via synchronous time trap-
door release mode in Sym-HaSAFSS and ECC-HaSAFSS.
The TTP passively broadcasts time trapdoor keys
according to a pre-determined data delivery sche-
dule, which is followed by both the signers and
verifiers.

(b) On-demand data delivery model: This model
addresses applications where the nature of applica-
tion does not allow a prospective delivery schedule.
In this case, the TTP provides the time trapdoor
information to the verifiers on demand. A represen-
tative scenario would be a military UWSN applica-
tion, in which soldiers gather information from
sensors from time to time and then request time
trapdoor keys from the TTP (e.g., UAV/satellite). Note
that in the worst case, verifiers can obtain time trap-
door keys from a mobile TTP directly (e.g., MTC
(Mobile Tactical Center) [40]). Thus, Assumption 2-(iii)

A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220 1209
is realistic. On-demand data delivery model is real-
ized via asynchronous time trapdoor release mode in
Sym-HaSAFSS and ECC-HaSAFSS. The TTP broadcasts
time trapdoor keys when she receives more than a
threshold number of (authenticated) requests (e.g.,
s = 90%) from the verifiers. Note that in this model,
the collaborative requests of verifiers might cause
the release of time trapdoor key before all senders
(signers) upload their data to the verifiers. In this
case, verifiers reject the data received after the
release of the time trapdoor key. However, this is
not critical for many applications using on-demand
data delivery model. Some examples of such appli-
cations are as follows: (i) receivers (verifiers) visit
senders to collect the data and then demand the
time trapdoor key from the TTP. (ii) The application
demands a rapid decision based on the available
data collected by the receivers. In this case, minimiz-
ing the verification delay is more important than
collecting the data from all signers in the system.
For instance, if majority of the verifiers receive the
same data from a group of sender at an early stages
of a given time interval, they do not have to wait
until the end of this interval for the verification.
Remark that in this model, time trapdoor keys are
computed in a slightly different way than that of
the pre-determined data delivery model. That is,
the TTP imposes an order on the elements of
reversed hash chain (i.e., time trapdoor keys), which
allows verifiers to trace the time trapdoor keys in an
asynchronous setting.

(c) Self-Decisive data delivery model: This model offers a
flexible data delivery schedule for the signers. It
requires neither a prospective data delivery sche-
dule nor a collaborative request mechanism for the
time trapdoor release (no interaction with the
TTP). Instead, the TTP passively broadcasts time
trapdoor keys periodically with a unit time l (e.g.,
per-minute). Each signer herself decides how long
(e.g., a time duration l � x for any desired x 2 N)
she needs to accumulate, sign and seal the data
(independent from the TTP and other signers). Veri-
fiers decrypt and verify the data when its associated
time trapdoor key is released.

This model enables HaSAFSS to address applications
that require users to operate long times in hostile environ-
ments autonomously. One example would be mobile
reconnaissance vehicles (e.g., autonomous LANdroids [7])
that gather information from a target area. Such a vehicle
autonomously decides sense, sleep and broadcast time
durations, and signs and seals the data according to the sit-
uation. No entity can modify or recover the data that the
vehicle accumulated until the end of designated time dura-
tion, even if it is captured by the enemy.

Self-decisive data delivery model is realized via the
periodic time trapdoor release mode in SU-HaSAFSS.

Remark. (i) Signers do not need to communicate with the
TTP. Verifiers communicate with the TTP only in on-
demand data delivery model, only once for each time
period (the TTP can be offline most of the time). (ii) In
HaSAFSS, similar to the previous forward-secure and
aggregate schemes (e.g., [5,9,10,41]), the signer computes
aggregate signatures of distinct data items accumulated-
so-far (i.e., similar to the condensed signatures notion in
[42]). Cross-signer signature aggregation (e.g., [11,12,22])
is out of our scope. (iii) Introducing an asymmetry with a
time factor requires that the data to be verified must be
received by the verifiers before its associated keying
material is released. Receivers reject any data item/signa-
ture received after the release of its associated time
trapdoor key.
5. Proposed schemes

We now present the proposed Sym-HaSAFSS, ECC-HaS-
AFSS and SU-HaSA FSS schemes. Before giving the detailed
description, we first present an overview of these schemes,
providing instruments and strategies that are common to
all HaSAFSS schemes.

5.1. Overview

The main goal of the HaSAFSS schemes is to create a for-
ward secure and aggregate signature scheme, which is as
efficient as a MAC-based signature scheme and is publicly
verifiable at the same time. Our schemes achieve this goal
based on the following observations:

Delay is already intrinsic to the envisioned UWNS appli-
cations; such delays can be used to introduce asymmetry
naturally between the signer (sender) and the verifiers
(receivers) in order to bring both public verifiability and
efficiency to the envisioned UWSN applications. HaSAFSS
introduces this asymmetry with the aid of TRE concept, in-
stead of offloading this task simply to the signers. Hence,
even when the signers are compromised, such asymmetry
can still guarantee the forward security and signature
aggregation in a publicly verifiable way during the desired
time interval.

The HaSAFSS schemes consist of four algorithms: Key
generation, forward-secure and aggregate signature gener-
ation, time trapdoor release, and forward-secure aggregate
signature verification.

5.1.1. HaSAFSS instruments and strategies
The HaSAFSS schemes rely on four main types of cryp-

tographic keys; they use these keys in different ways to
achieve different properties. There are also other types of
cryptographic keys that are specific to a particular HaSAFSS
scheme (e.g., public tokens in SU-HaSAFSS), whose details
will be given the corresponding schemes.

� Per-data item key: Per-data item key is used with a MAC
to generate or verify forward-secure and aggregate sig-
natures during a given time interval (a single interval tw

in Sym-HaSAFSS/ECC-HaSAFSS and a unified interval
tw;w0 in SU-HaSAFSS. We take the unified interval as a
basis in this overview). The first per-data item key of
a given tw;w0 , called the chain root of the per-data item
keys (i.e., k0) in tw;w0 , is either derived from an auxiliary

1210 A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220
key (Sym-HaSAFSS) or randomly generated (ECC-HaS-
AFSS/SU-HaSAFSS) at the beginning of tw;w0 . The signer
signs each accumulated data item individually by com-
puting its MAC using the corresponding per-data item
key (derived from k0) and updates her per-data item
key with a hash operation (and deletes the previous
one). The signer then folds individual signature of the
newly collected data item into the existing aggregate
signature by concatenating and hashing them together.
This strategy provides the forward security of these
data items in tw;w0 . To enable verifiers to publicly verify
this signature at the end of tw;w0 by following the same
procedure as in the signature generation, an asymmetry
should be introduced between the signer and verifiers
(by preserving the forward security) . This is done via
encrypted chain roots.
� Encrypted chain root: Such asymmetry can be intro-

duced by two conditions. First, k0 should remain confi-
dential in tw;w0 . In this way, if the signer is compromised
in tw;w0 , the adversary cannot obtain k0 before the end of
tw;w0 , and therefore she cannot forge signatures com-
puted via k0 (k0 is also updated for each signed data
item). At the same time, k0 should be publicly available
to all verifiers at the end of tw;w0 so that any entity
should be able to verify signatures computed via k0.
The signer seals k0 until the end of tw;w0 by encrypting
it with a session key Kw;w0 as cw;w0 ¼ EKw;w0 ðk0Þ, and then
deleting ðk0;Kw;w0 Þ.
� Session keys and time trapdoor keys: To enable the recov-

ery of k0 from cw;w0 at the end of tw;w0 , each session key
Kw;w0 is controlled with a time trapdoor key tkw0 . HaSAFSS
schemes achieve their distinctive properties by follow-
ing different session key and time trapdoor key compu-
tation mechanisms:

In Sym-HaSAFSS and ECC-HaSAFSS, each time trapdoor
key is constructed as an element of a hash chain to enable
its ExpOp-free verification and session key recovery. These
time trapdoor keys are released by following either the
synchronous or asynchronous data delivery model (see
Section 4).

Sym-HaSAFSS pre-computes each encrypted chain root
with its corresponding session key and time trapdoor key,
and gives them to the signers before the deployment. This
omni-symmetric approach allows ExpOp-free session key
computation and recovery, but it sacrifices the signer stor-
age efficiency. In contrast, ECC-HaSAFSS allows each signer
to randomly generate his own session key and therefore it
achieves the signer storage efficiency. However, it requires
an ExpOp per-time interval to compute this key, and also
incurs a linear public key storage per-signer to the verifiers
(i.e., quadratic storage overhead). Despite their computa-
tional efficiency, the above mechanisms limit the sustain-
ability and flexibility of Sym-HaSAFSS and ECC-HaSAFSS.

SU-HaSAFSS uses a pairing based time trapdoor key
structure, which is inspired by AnTRE [26]. Such a struc-
ture allows signers to compute their own session keys
and encrypted chain roots without relying on pre-com-
puted public keys. Hence, despite being slightly more
costly than Sym-HaSAFSS and ECC-HaSAFSS, SU-HaSAFSS
addresses their limitations and also preserves the per-data
item efficiency of HaSAFSS constructions over the tradi-
tional PKC-based schemes.

After the release of the time trapdoor key, the verifiers
never accept any obsolete signature associated with this
time trapdoor key from any signer.

5.2. Sym-HaSAFSS

The four algorithms of Sym-HaSAFSS are given below:

� Key generation: The TTP performs key generation as
follows:
(1) Choose the maximum clock synchronization error

as dt and the trapdoor release times as 0 < T0 <
T1 < . . . < TL � 1. Every two consecutive time points
Ti � 1 and Ti form the ith time interval ti. The TTP
can update dt dynamically when needed by broad-
casting new dt along with a time trapdoor keys.
The new dt must be digitally signed with its associ-
ated time trapdoor key and must be broadcasted
sufficiently earlier than its actual use. This ensures
that all entities are aware of this update before
new (authentic) dt is used.

(2) Randomly generate a hash chain vw=H1(vw � 1) for
w = 1, . . . ,L � 1, whose elements will be used as the
secret time trapdoor keys in the reversed order as
tkw = vL�1�w for w = 0, . . . ,L � 1. Each tkw is associ-
ated with time interval tw for w = 0, . . . ,L � 1. Com-
pute the encrypted chain roots for each signer IDi

as follows:

(a) Generate the initial per-interval key

z0
R f0; 1gn for each IDi. The objective of the

per-interval key is to provide a fresh initiali-
zation key for each time period, from which
the signer IDi will derive the chain root (i.e.,
per-item key) of that time interval. That is,
the chain root of IDi for each tw is derived as
k0 = H2(zw) and zw+1 = H1(zw) for w = 0, . . . ,
L � 1.

(b) Compute the session key as Kw = H3(tkwkIDi)
and the encrypted chain root of IDi for tw as
cw ¼ Etkw ðk0Þ for w = 0, . . . ,L � 1.

3) Distribute required keys and the data delivery sche-
dule to each IDi and verifiers as IDi:{z0,cw,Tw,dt} and
Verifiers:{tk0 = H1(tk0),Tw,dt} for w = 0, . . . ,L � 1,
respectively.

� Time trapdoor release: Time trapdoor release can be exe-
cuted in two different modes:
(1) Synchronous mode: According to the pre-determined

delivery time schedule, at the end of each tw, the
TTP releases the secret time trapdoor key tkw.

(2) Asynchronous mode: In this mode, step 2 of the key
generation phase is executed in a slightly different
than that of in the synchronous mode. That is, the
hash chain is generated as vw = H1(vw � 1kw � 1)
for w = 1, . . . ,L � 1, whose elements are used as
the secret time trapdoor keys in the reversed order
as (tkw, w) = (vL�1�w,L � 1 � w) for w = 0, . . . ,L � 1.
Each tkw is associated with time interval tw along
with an index w for w = 0, . . . ,L � 1.

Fig. 1. Sym-HaSAFSS and ECC-HaSAFSS Key generation.

Fig. 2. Sym-HaSAFSS and ECC-HaSAFSS signature generation/verification.

A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220 1211
Each verifier sends a request to the TTP for the
release of (tkw, w), when she is done with the data
accumulation (or, a mobile TTP visits and requests
the data from the verifiers). When the TTP receives
more than a threshold number of (authenticated)
requests (e.g., s = 90%), the TTP releases (tkw, w).
Note that each verifier keeps the index of the last
time trapdoor she received a state information
(include this index in her trapdoor request as
well). This ensures that verifiers and the TTP are
synchronized based on the index number despite
the mode itself asynchronous (with respect to
the time).

� Forward-secure and aggregate signature generation:
(1) At the beginning of tw, derive the per-data item key

as k0 = H2(zw), update the per-interval key as
zw+1 = H1(zw) and delete zw from the memory.

(2) Assume that the signer IDi computed r 0,l�1 on
D0, . . . ,Dl�1 in tw. Compute r0,l on new Dl as ðrl ¼
MACkl

ðDlÞ;r0;l ¼ H3ðr0;l�1krlÞÞ, where kl = H1(kl�1).

1212 A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220
In the synchronous mode, all keys and signatures
associated with tw expire at the end of tw. Thus,
signer IDi must transmit pkt = {IDi:D0, . . . ,Dl, r0,l, cw,
tw} before tw ends. In the asynchronous mode, signer
IDi can transmit pkt at any time before the TTP
releases tkw. However, if the signer transmits it
too late, she may miss the opportunity to have ver-
ifiers accept it if the transmission is after the trap-
door release.

� Forward-secure and aggregate signature verification:
(1) Assume that the verifier has received pkt at time t.

In the synchronous mode, the verifier checks
whether the time condition (t + dt) 6 tw holds for
r0,l. If yes, the verifier buffers pkt and waits for the
end of tw to obtain tkw from the TTP. In the asyn-
chronous mode, the verifier sends a request to the
TTP to obtain tkw. Note that due to the nature of
UWSN applications, there may be a delay before this
request is delivered to the TTP (or, the TTP might
not be able to visit the verifiers for a long time). In
this mode, the verifier can buffer pkt as long as it
is received before the release of tkw.

(2) When the TTP releases tkw, each verifier verifies tkw

by checking whether tkw¼? H1ðtkw�1Þ;w > 0ðw ¼ 0;
Hðtk0Þ ¼ tk0Þ. If tkw is verified, then the verifier veri-
fies r0,l as follows: The verifier decrypts cw by com-
puting Kw = H3(tkwkIDi) and k0 ¼ DKw ðcwÞ. Using the
per-data item key, the verifier computes individual
signatures of Dj as r0j ¼ MACkj

ðDjÞ and kj+1 = H1(kj)
for j = 0, . . . ,l. Finally, the verifier computes
r00;j ¼ H3ðr00;j�1kr0jÞ for j = 1, . . . ,l, where r00;0 ¼ r00,
and checks r00;l¼

? r0;l. If they match, the verifier
accepts r0,l; otherwise, reject.

As a result, only using the cryptographic hash and sym-
metric encryption functions, Sym-HaSAFSS generates pub-
licly verifiable, forward secure and aggregate signatures.
Signature generation/verification cost of a single data item
in Sym-HaSAFSS is only three hash operations, which are ex-
tremely efficient when compared with all PKC-based alter-
natives. This optimal computational efficiency of Sym-
HaSAFSS makes it an ideal choice for resource-constrained
UWSN applications.

5.3. ECC-HaSAFSS

In contrast to Sym-HaSAFSS, ECC-HaSAFSS addresses
the applications where the signers are storage limited
while the receivers can afford certain storage [5]. To
achieve this, ECC-HaSAFSS uses pre-computed public keys
instead of pre-computed encrypted chain roots, and at
the same it enables each signer to compute her own ses-
sion keys after the deployment.

In ECC-HaSAFSS, the TTP generates the initial per-inter-
val key r0 for each signer i before the deployment. Each
signer i then updates the per-interval key at the beginning
of each time interval tw and computes the session key Kw

using the per-interval key rw with an ECC scalar multiplica-
tion. Signer i then randomly generates a per-data item key
k0 (i.e., the first per-data item key in tw). To protect k0 in tw,
signer i encrypts it with Kw to obtain the encrypted chain
root cw. After this stage, signer i computes the signature
using the per-data item k0 following the signature genera-
tion step 2 in Sym-HaSAFSS.

To verify the signature, a verifier first recovers Kw from
the public key of signer i (i.e., Vw) using tkw with an ECC
scalar multiplication. Note that (V0, . . . , VL�1) of signer i
are pre-computed by the TTP before the deployment to en-
able such a recovery via tkw. The verifier then decrypts the
per-data item key of signer i and verifies the signature fol-
lowing the same steps of the signature generation.

� Key generation: The TTP generates tkw of each tw for
w = 0, . . . ,L � 1 by following the Sym-HaSAFSS initializa-
tion steps. The TTP then generates the public key of
each IDi for each tw as follows: Generate the initial
per-interval key as r0

R
Z�q, and compute the public

key of each tw as Vw = (tkw � rw)G � tkw(aw)G, where
(awG = H4(tkw), rw+1 = H1(rw)) for w = 0, . . . ,L � 1. Give
each signer IDi her own r0, and give Vw of each IDi for
w = 0, . . . ,L � 1 to all verifiers.
� Time trapdoor release: Same as in Sym-HaSAFSS.
� Forward-secure aggregate signature generation:

(1) At the beginning of tw, signer IDi randomly gener-
ates a per-data item key k0, and computes the ses-
sion key as Kw = H1(rwG) and then the encrypted
chain root as cw ¼ EKw ðk0Þ. She updates the per-
interval key as rw+1 = H1(rw) and deletes (Kw, rw)
from the memory.

(2) Signer IDi computes r0,l on (D0, . . . ,Dl) for tw using k0

by following step 2 in Sym-HaSAFSS signature gen-
eration, and then broadcasts pkt = (D0, D1, . . . ,Dl, r0,l,
cw, tw, IDi) before the end of tw.

� Forward-secure and aggregate signature verification:
When a verifier receives pkt, she first checks timing/
request conditions for the received packet and verifies
tkw upon its receipt as in step 2 Sym-HaSAFSS signature
verification. The verifier then recovers the session key
as Kw ¼ H1ðtk�1

w Vw þ H4ðtkwÞÞ and decrypts the per-data
item key as k0 ¼ DKw ðcwÞ. The verifier verifies r0,l using
k0 by following step 2 in Sym-HaSAFSS signature
verification.

Figs. 1 and 2 summarize Sym-HaSAFSS and ECC-HaS-
AFSS key generation and signature generation/verification
steps, respectively.

5.4. SU-HaSAFSS

To explain the intuition behind SU-HaSAFSS, we first
discuss the limitations of Sym-HaSAFSS and ECC-HaSAFSS.

� Key pre-distribution and limited usage: In Sym-HaSAFSS,
encrypted chain roots are directly computed from the
time trapdoor keys. Similarly, in ECC-HaSAFSS, public
keys are a function of time trapdoor keys. Hence, in
both schemes, these keys have to be pre-computed
and distributed before the deployment. The above
requirement incurs a linear storage overhead to the
signers in Sym-HaSAFSS, and a quadratic storage over-
head to the verifiers in ECC-HaSAFSS. In both cases,
the storage overhead grows linearly with the maximum

Fig. 3. SU-HaSAFSS Key generation and time trapdoor release.

3 Signcryption is a PKC primitive that simultaneously performs the
functions of both digital signature and encryption [43].

4 The costs of ExpOps required to initialize tw;w0 are amortized even in a
short term, since the overall cost is dominated by the per-item cost.

A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220 1213
number of time period (i.e., L). Furthermore, this puts a
linear bound on the maximum number of time periods
that a signer can use. Once the pre-computed values
are depleted, the TTP needs to replenish them via an
authenticated channel. The nature of some applications
might not allow such a re-initialization, and even if pos-
sible, it incurs O(L) communication overhead for each
signer.
� Inflexible data delivery schedule: In Sym-HaSAFSS and

ECC-HaSAFSS, time trapdoor keys cannot be derived
from a desired time instance, and therefore have to be
either released based on a pre-determined data delivery
schedule, or requested collaboratively by the verifiers.
In either case, signers cannot decide their own data
delivery schedule independent from the TTP or the
verifiers.

5.4.1. SU-HaSAFSS strategy
SU-HaSAFSS enables each signer to compute her own

key set without requiring any online coordination with the
TTP or verifiers. This self-sustaining approach does not
put any upper bound on the maximum number time peri-
od to be used, and therefore achieves high storage effi-
ciency (i.e., O(1) storage for the signer, and O(S) storage
for the verifiers). It also allows a signer to decide her own
data delivery schedule independently. That is, a signer
can sign the data items not in a pre-determined time inter-
val tw, but in a time interval tw;w0 for any w0 > w.

SU-HaSAFSS achieves these goals as follows:

� Key generation: The TTP provides each signer a master
public key S and a master token V, with which the
signer can initialize an interval tw;w0 for any w0 > w. To
do this, the signer first randomly generates a chain root
k0, which will be used to sign and encrypt data items
accumulated in tw;w0 . The signer then generates a ses-
sion key Kw;w0 using a random number rw and token V,
and then seals k0 as cw;w0 ¼ EKw;w0 ðk0Þ.

To enable the recovery of k0 at the end of tw;w0 (with Kw;w0),
the signer also computes an auxiliary token Zw;w0 with
ðrw; Tw0 ; SÞ via two scalar multiplications. Zw;w0 serves as
the masked version of Kw;w0 , and its computation does not
require the knowledge of trapdoor keys. Once the signer
erases ðrw;Kw;w0 Þ from the memory, no entity including
the signer herself can recover k0 before the end of tw;w0 . In
this way, SU-HaSAFSS introduces the desired asymmetry
between signer and verifiers.
� Forward-secure aggregated signature generation (and

encryption): Assume that the adversary A breaks-in at
time t during tw;w0 . In contrast to Sym-HaSAFSS and
ECC-HaSAFSS, the above self-sustaining strategy allows
A to initialize a new key set independent from the cur-
rent one (chain roots are no longer generated by the
TTP). Therefore, A can compute a different signature
on the data items accumulated in [tw,t] apart from the
existing signature (note that A still cannot forge the
existing aggregate signature computed in [tw,t]).
SU-HaSAFSS prevents this by using a symmetric cipher
along with the forward-secure MAC strategy (i.e., Step
2 in Sym-HaSAFSS signature generation). That is, each
Dj is both signed and then encrypted with kj, and (Dj,kj)
are deleted from the memory. Since k0 is sealed until
the end of tw0 , A cannot decrypt (D0, . . . ,Dj) accumulated
in [tw, t], and therefore cannot compute a different sig-
nature on them.
Another advantage of this approach is that it offers for-
ward-secure encryption and signature simultaneously
via symmetric cryptography. Therefore, it is signifi-
cantly more efficient than all existing forward-secure
signcryption3 schemes (e.g., [44]) with the limitation
that it cannot achieve immediate verification.
� Time trapdoor release and signature verification: To

recover Kw;w0 at the end of tw;w0 , we use a pairing-based
time trapdoor key structure, which was inspired by
AnTRE [26]. Such a time trapdoor key structure allows
the derivation of all time trapdoor keys from a single
master secret key s without revealing it. When tkw0 is
released at the end of tw;w0 , the verifier first removes
the mask of Zw;w0 using tkw0 via a pairing operation
(i.e., Step 2 in SU-HaSAFSS signature verification). The
verifier obtains k0 as k0 ¼ DKw;w0 ðcw;w0 Þ, and then both
decrypt and verify data items using k0.
� Efficiency: SU-HaSAFSS preserves the computational

efficiency of HaSA-FSS construction over the traditional
PKC-based schemes, since the per-item cost is still only
three hash operations as in Sym-HaSAFSS4.

5.4.2. Detailed description

� Key generation: Executed by the TTP as follows:
(1) Choose dt and the time trapdoor release period as l

(i.e, a unit time such as 1 h). Every two consecutive
time points Ti�1 = (i � 1)l and Ti = i �l form the ith
time interval ti for i > 0, and tw;w0 denotes a unified
time interval beginning from tw to the end of tw0 .

Fig. 4. SU-HaSAFSS signature generation and verification.

1214 A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220
(2) Generate a master private/public key pair and a

token as ðs R Z�q; S ¼ sGÞ and V ¼ ~eðG;GÞ 2 G2,
respectively. Also generate a private/public key pair

as ðsk; pkÞ ¼ SGN:Kgð1jÞ that will be used to sign or
verify time trapdoor keys.

(3) Generate a MMM private/public key pair for each IDi

as (sk0,pk) = MMM.Kg(1j), and then distribute the
required keys as IDi : fS;V ; sk0; pk;G; ~e; q,dt,l} and

Verifiers : fpk;8i; IDi : pk; dt ;lg.
Fig. 3 summarizes key generation and time trapdoor
release phases.
� Forward-secure aggregated signature generation:

(1) The signer IDi initializes an interval tw;w0 ;w0 > w:
5 In SU-HaSAFSS, each signer can seal its own data independent from
each other for different time periods, and untimely release of a time
trapdoor key might expose several signers’ data before their intended time.
Therefore, the asynchronous mode is not used in SU-HaSAFSS.
(a) Compute the session key of tw;w0 as

Kw;w0 ¼ H6ðVrw Þ, where rw
R

Z�q. Also compute
the auxiliary token for tw;w0 as Zw;w0 ¼ rwSþ
rwH5ðTw0 ÞG, where Tw0 ¼ l �w0 (i.e., the end of
tw;w0).

(b) Generate k0
R f0; 1gn and compute cw;w0 ¼

EKw;w0 ðk0Þ for tw;w0 , and securely erase
ðrw;Kw;w0) from the memory.

(c) Compute �cw;w0 ¼MMM:Sigskw
ðcw;w0 kZw;w0 ktwktw0

kwkIDi). Update skw following the MMM key
update procedure.

(2) Given the current ðbD0; . . . ; bDl�1;r0;l�1Þ, compute bDl

and r0,l on newly collected data item Dl as follows:
(a) Compute r0,l on (Dl,r0,l�1) with kl by following
step 2 in Sym-HaSAFSS signature generation.

(b) Compute bDl ¼ Ekl
ðDlÞ, update kl+1 = H1(kl), and

securely erase (Dl, kl) from the memory.

Broadcast pkt ¼ fIDi : bD0; . . . ; bDl;r0;l; cw;w0 ;

Zw;w0 ; tw; tw0 ;w; �cw;w0 g before the end of tw;w0 .
� Trapdoor release: The TTP computes the time trapdoor
key corresponding to tw as tkw = (s + H5(Tw))�1G, where

Tw = l � w. The TTP then signs it as tkw ¼ SGN:

SigskðtkwkwÞ, and broadcasts ðtkw; tkw;wÞ at the end of
each time period tw periodically.5

� Signature verification and decryption: Assume that the
verifier received pkt at time t:
(1) If (t + dt)> tw0 then abort. Otherwise, if
ffailureg ¼ MMM:Verpkð�cw;w0 ; hcw;w0 kZw;w0 ktwkt0wk
wkIDiki) then abort. Otherwise, buffer pkt and wait
the release of tkw0 . After tkw0 is received from the

TTP, if ffailureg ¼ SGN:Verpkðtkw0 ; tkw0 kwÞ then abort,

else continue to the next step.
(2) Recover the session key as Kw;w0 ¼ H6ð~eðZw;w0 ; tkw0 ÞÞ,

and decrypt k0 ¼ DKw;w0 ðcw;w0 Þ.

A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220 1215
(3) Decrypt data items as Dj ¼ Dkj
ðbDjÞ for j = 0, . . . ,l, and

verify (D0, . . . ,Dl, r0,l) with k0 by following step 2 in
Sym-HaSAFSS signature verification.Fig. 4 summa-
rizes SU HaSAFSS signature generation/verification
steps.

5.5. Fine-grained verification with HaSAFSS

Forward-secure and aggregate signatures (e.g., [5,9,
45,23,41]) verify the data stream via only its final aggre-
gate signature. This prevents the truncation attack (see
Section 6.1) and save the storage. However, this approach
also causes certain drawbacks:

(i) The verification of any subset of data items requires
the verification of the entire data steam. That is, verifiers
need to receive the entire data stream to verify an individ-
ual data item in this data stream. This may cause verifica-
tion failures if senders cannot transmit the entire data
stream before the release of time trap door key. (ii) The
failure of signature verification does not give any informa-
tion about which data item(s) were corrupted/forged.

Ma et al. developed immutable-FssAgg (iFssAgg)
schemes [10] to enable the selective verification of individ-
ual data items without being vulnerable to truncation at-
tacks. However, publicly verifiable iFssAgg schemes
double the signing/verifying costs of their base schemes.
Immutable version of FssAgg-MAC is efficient but it is not
publicly verifiable as its base scheme.

A very simple variant of HaSAFSS schemes can achieve
the selective verification of data items in a given data
stream without being vulnerable to truncation attacks.
Note that different than all previous publicly verifiable for-
ward-secure and aggregate signature schemes, the aggre-
gation operation of HaSAFSS schemes is a one-way hash
function. Therefore, the signer can just keep partial aggre-
gate signatures r0j;j0 ; l > j0 > j on (Dj, . . . ,Dj0) and also com-
pute an aggregate signature r0,l on the entire stream
(D0, . . . ,Dl) as usual. Partial aggregate signatures cannot be
used to launch a truncation attack against r0,l as they are
independent cryptographic hash outputs of different data
item subsets.

This allows a storage-selective verification trade-off
that can be decided according to the requirement of
application.
6. Security analysis

We prove the security of HaSAFSS schemes in three
stages:

Lemma 1 proves that no entity, including the signer and
the adversary A even after the break-in in tw;w0 , can decrypt
cw;w0 without knowing its corresponding time trapdoor key
tkw0 . That is, no entity can obtain the chain root k0 before
the release of tkw0 . This guarantees that HaSAFSS schemes
introduce the desired asymmetry between the signer and
verifiers amd preserves forward security.

Based on Lemmas 1, 2 proves that HaSAFSS schemes re-
main forward-secure and existential unforgeable during
interval tw;w0 by regularly updating per-item keys evolved
from chain root k0.
Finally, Theorem 1 proves that the successful verifica-
tion of r0,l via k0 guarantees TFEU property (i.e., Definition
5) based on Lemma 2.

Lemma 1. HaSAFSS schemes guarantee the confidentiality of
k0 in the time duration between the releases of tkw � 1 and
tkw0 as long as Assumptions 1 and 2 hold.
Proof. Assume that A breaks-in during the interval tw;w0 .
Obtaining k0 from cw;w0 without knowing its corresponding
session key Kw;w0 is as difficult as breaking E. It is therefore
sufficient to show that Kw;w0 remains confidential until the
end of tw;w0 (i.e., until its corresponding time trapdoor key
tkw0 is released):

Sym-HaSAFSS: In Sym-HaSAFSS, w = w0. Thus, Kw;w0 ¼ Kw

and cw;w0 ¼ cw. For a given tkw � 1, computing
Kw = H3(tkwkIDi) without knowing tkw is as difficult as
inverting H1 since tkw = H1(tkw�1). This contradicts with
Assumption 1-(i).

SU-HaSAFSS: For given ðS;V ; tw0 Þ, obtaining Kw;w0 with-
out knowing tkw0 is as difficult as solving q-BDHI problem:

Assume that A outputs a session key K⁄ before the
release of tkw0 in a polynomial time s with a non-neglible
probability � such that it correctly decrypts its correspond-
ing per-data item key as k0 ¼ DK� ðcw;w0 Þ. This implies
K� ¼ Kw;w0 and Kw;w0 ¼

? H6ðêðZw;w0 ; tk
�
w0 ÞÞ holds for tk�w0 . This

means A also non-trivially computed a valid time trapdoor
key tk�w0 .

We then verify that ~eðtk�w0 ; ðSþ H5ðTw0 ÞGÞÞ ¼ 1, and
therefore tk�w0 ¼ ðsþ H5ðTw0 ÞÞ�1G. This implies that A
solved q-BDHI problem, and this contradicts with Assump-
tion 1-(iii).

ECC-HaSAFSS: For given Vw, obtaining Kw without
knowing tkw is as difficult as solving ECDLP problem:

Assume that A outputs a session key K⁄ before the
release of tkw in s with � such that k0¼

? DK� ðcwÞ holds. This
implies K⁄ = Kw, and therefore A non-trivially computed a
valid time trapdoor key tk�w such that Kw ¼ H1

ððtk�wÞ
�1Vw þ H4ðtk�wÞÞ. Hence, tk�w ¼ tkw and A extracted

tkw from Vw. This contradicts with Assumption 1-(iii). h
Lemma 2. Assume that A breaks-in at time t during interval
tw;w0 , after r0,l on (D0, . . . ,Dl) was computed. Producing an
existential forgery against HaSAFSS in the time duration
between the releases of tkw�1 and tkw0 is as difficult as break-
ing either one of the cryptographic hash functions (H1, H2, H3)
or MAC.
Proof. Lemma 1 guarantees that k0 remains confidential
until the end of tw;w0 . At the same time, the signer regularly
updated k0 for each accumulated data item until A breaks-
in at time t:

Sym-HaSAFSS and ECC-HaSAFSS: Step 2 in Sym-HaSAFSS
signature generation updated per-interval and per-item
keys as (zl+1 = H2(zl),kl+1 = H1(kl)), respectively, and then
deleted (zl, kl) from the memory. Obtaining any previous
per-interval key from zl+1 is as difficult as breaking H2.
Similarly, obtaining any previous per-item key from kl+1 is
as difficult as breaking H1. Without knowing (k0, . . . ,kl),

1216 A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220
forging r0,l on (D0, . . . ,Dl) is as difficult as breaking MAC
function or H3 (selectively deleting or truncating a data
item from (D0, . . . ,Dl) is subsumed in this forgery). There-
fore, Sym-HaSAFSS remains forward-secure and existential
unforgeable in tw¼w0 . The signature generation in ECC-
HaSAFSS is identical to that of Sym-HaSAFSS, and therefore
this analysis also applies to it.

SU-HaSAFSS: Step 2 in SU-HaSAFSS is identical to that of
Sym-HaSAFSS except that it additionally encrypts the data
items as bDj ¼ Ekj

ðDjÞ. Thus, producing a forgery against SU-
HaSAFSS is as difficult as breaking either E or one of
(MAC,H1,H2,H3). Similarly, computing an independent valid
signature on (D0, . . . ,Dl) apart from r0,l is as difficult as
breaking E. Hence, SU-HaSAFSS remains forward-secure
and existential unforgeable in tw;w0 . h
Theorem 1. The verifier receives packet pkt in time t. The
successful verification of r0,l on (D0, . . . ,Dl) guarantees TFEU
property (Definition 5) in the time duration between the
releases of tkw � 1 and tkw0 .
Proof. The verifier should ensure the freshness and
authenticity of k0 before proceeding to the verification:

- Freshness: The timing condition ðt þ dtÞ < tw0 (and also
the request condition of the asynchronous mode in
Sym-HaSAFSS and ECC-HaSAFSS) prevents the verifier
from accepting any obsolete signature associated with
tkw0 . That is, if A breaks-in after the release of tkw0 , she
cannot compute a ‘‘valid’’ signature on (D0, . . . ,Dl) using
any key associated with t0 6 tw0 .

- Authenticity: k0 is obtained from cw;w0 via tkw0 .
� Sym-HaSAFSS and ECC-HaSAFSS: "(w = w0),tkw can

easily be verified, since they are elements of a hash
chain and are released in the reverse order. Since
tkw is authenticated, only an authenticated k0 can
be recovered correctly from cw via this time trapdoor
key. Therefore, the successful verification of r0,l with
k0 also implies that only the claimed IDi could com-
pute such r0,l before the release of tkw.

� SU-HaSAFSS: 8w0; tkw0 is verified with pk via SGN to
ensure its origin and integrity. Similarly, �cw;w0 is ver-
ified with pk via MMM to ensure the forward-secure
integrity and origin of ðcw;w0 ; Zw;w0 ; tw; tw0 Þ. That is, the
verifier ensures that the claimed interval tw;w0 is cor-
rect and ðcw;w0 ; Zw;w0 Þ are intact.

Based on Lemma 2 and the fact that k0 is fresh and
authenticated, we prove that HaSAFSS schemes achieve the
TFEU property. h

6.1. Discussion

6.1.1. Truncation attack
Another security property related to forward-secure

and aggregate signatures is the defense against truncation
attack identified in [45,10]. Truncation attack is a special
type of deletion attack, in which A deletes a continuous
subset of accumulated data items. This attack can be pre-
vented via ‘‘all-or-nothing’’ property [5]: A should either
retain all previously accumulated data items, or not use
them at all (i.e., A cannot selectively delete/modify any
subset of the data [10]). Lemma 2 proves that HaSAFSS
schemes are secure against any type of deletion attack
including the truncation attack.

6.1.2. Lack of immediate verification
Despite all the advantages, introducing asymmetry be-

tween the signer and verifiers using the time factor brings
a natural complication: HaSAFSS schemes cannot provide
immediate verification on the verifier side. In order to ver-
ify a received signature, a verifier needs to wait for the re-
lease of the time trapdoor key corresponding to this
signature. However, such a property is compatible with
the non-real-time nature of the envisioned UWSN applica-
tions. Thus, HaSAFSS schemes are ideal solutions for the
envisioned UWSN applications. Note, however, that while
delayed detection is intrinsic for UWSNs, it might pose a
treat for certain real-life applications such as secure log-
ging [10].

In HaSAFSS schemes, the TTP is assumed to be trusted
(i.e., it does not act maliciously against legitimate users).
Therefore, the adversary models that include ‘‘curious time
server’’ (e.g., [26]) do not apply to HaSAFSS. This allows us
to simplify the time trapdoor mechanism used in [26].
7. Performance analysis

In this section, we present the performance analysis of
HaSAFSS schemes and compare them with FssAgg schemes
(best known alternatives) in terms of their quantitative
and qualitative properties. We use the notation in Table
1 for our analysis and comparison. In our experimental
evaluation, we use ECDSA [33] as SGN and the base signa-
ture scheme for MMM in SU-HaSAFSS.

7.1. Computational overhead

In all HaSAFSS schemes, the cost of signing a single data
item is only three hash operations (i.e., overall cost for l
data items accumulated in tw;w0 is (3H)l). While Sym-HaS-
AFSS does not require any ExpOp, ECC-HaSAFSS and SU-
HaSAFSS need to perform EMul and 5EMul operations,
respectively, but only once at the beginning of tw;w0 for
the initialization purpose (the rest of the signature gener-
ation is only hash-based). The analysis of signature verifi-
cation cost is similar to the signature generation except
that SU-HaSAFSS requires an additional PR + Emul opera-
tion for the initialization.

7.1.1. Comparison
All publicly verifiable (PKC-based) FssAgg schemes re-

quire ExpOp(s) to sign or verify a data item. For example,
FssAgg-BLS requires O(l)(Exp + H) and O(l)(PR + H) for the
signature generation and verification, respectively. Simi-
larly, FssAgg-AR and FssAgg-BM require O(l)ExpOp for the
signature generation and verification.

Tables 2 and 3 compare the computational costs of HaS-
AFSS schemes with FssAgg schemes analytically and
numerically, respectively.

Table 1
Notation used in the performance analysis and comparison of HaSAFSS and FssAgg schemes.

Exp: Modular exponentiation mod p Enc/Dec: Symmetric enc./dec. L: # of time periods
EMul: ECC scalar multiplication over Fp S0/V0: # of senders/verifiers w: Current time period
Muln: Modular multiplication mod n ‘: # of data items PR: ECC pairing operation
Sqr: Squaring mod n H: Hash operation x: FssAgg security parameter
jrj,jskj,jpkj: Bit lengths of signature, private key and public key of the given scheme, respectively.

Suggested bit lengths to achieve 80-bit security for the above parameters are as follows for each compared scheme: large primes (jpj = 512, jqj = 160) for
ECC-HaSAFSS, SU-HaSAFSS and FssAgg-BLS. Integers (jnj = 1024, x = 160) for FssAgg-AR and FssAgg-BM, where n is Blum–Williams integer [9].

Table 2
Analytical comparison of HaSAFSS and FssAgg schemes in terms of dominant cryptographic operations.

HaSAFSS FssAgg

Sym SU ECC BLS AR BM MAC

Signer (3H)l 5EMul + (4H + Enc)l EMul + (3H)l (Exp + H)l 3x � Sqr þ x
2 Muln

� �
l x � Sqr þ x

2 Muln
� �

l (3H)l
Verifier (3H)l 4EMul + PR + (4H + Dec)l EMul + (3H)l (PR + H)l xðLþ lÞSqr þ lþ x

2

� �
Muln L � Sqr + (2l + l � x)Muln (3H)l

HaSAFSS schemes require only three hash operations per-item while FssAgg schemes require at least one ExpOp per-item (initial ExpOps to start given time
interval in SU-HaSAFSS and ECC-HaSAFSS become insignificant even for small l values (e.g., l = 10)). Also, in HaSAFSS, both signers and verifiers equally
enjoy this computational efficiency (extra PR + EMul in SU-HaSAFSS in the initialization also becomes negligible asymptotically).

A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220 1217
In HaSAFSS schemes, the cost of signature generation
and verification for a single data item is the same (i.e., only
three hash operations). This is much more efficient than
PKC-based FssAgg schemes requiring at least one ExpOp
per-item and also equally efficient to the FssAgg-MAC.
For instance, the signature generation for l = 104 data items
with SU-HaSAFSS is 135, 2996, and 1412 times more effi-
cient than FssAgg-BLS, FssAgg-AR and FssAgg-BM, respec-
tively. Similarly, the signature verification for l = 104 data
items with SU-HaSAFSS is 1554, 1850, and 476 times more
efficient than FssAgg-BLS, FssAgg-AR and FssAgg-BM,
respectively.

Note that HaSAFSS schemes are always more computa-
tionally efficient than any PKC-based scheme that requires
an ExpOp per-item. Thus, by specifically comparing HaS-
AFSS schemes with FssAgg schemes, we can see their dif-
ference from this general class of schemes.

Sym-HaSAFSS and FssAgg-MAC are equally efficient,
while ECC-HaSAFSS and SU-HaSAFSS are more costly than
FssAgg-MAC due to their initialization costs. However,
HaSAFSS schemes and PKC-based FssAgg schemes have
the advantage of being publicly verifiable against FssAgg-
Table 3
Execution time (in ms) Comparison of HaSAFSS and FssAgg schemes.

HaSAFSS

Sym SU ECC

Signer l = 10 0.06 7.83 0.63
l = 102 0.6 8.55 1.35
l = 103 6.1 15.75 8.55
l = 104 61.2 87.77 80.9

Verifier l = 10 0.06 17.88 0.63
l = 102 0.6 18.6 1.35
l = 103 6.1 25.8 8.55
l = 104 61.2 97.8 80.9

(i) The execution times were measured on a computer with an Intel(R) Core(TM)
HaSAFSS schemes, FssAgg-BLS/MAC [5] using the MIRACL library [46], and FssAg
execution times of each scheme were selected to achieve 80-bit security, whose
based on the cost of signing/verifying data items accumulated in a given interva
MAC, which is a critical requirement for large and ubiqui-
tous systems.

While being more costly at initialization, SU-HaSAFSS is
comparable with Sym-HaSAFSS and ECC-HaSAFSS asymp-
totically, and it also possesses several qualitative advanta-
ges over them as we will discuss in Section 7.3.

7.2. Storage and communication overhead

Besides their computational efficiency, HaSAFSS
schemes are also storage/ bandwidth efficient and comple-
ment each other in terms of their storage overhead.

In Sym-HaSAFSS, each signer initially stores L encrypted
chain roots. As the time goes from one period into the next,
the signer deletes the encrypted chain root associated with
the previous time period from her memory. Thus, each
signer stores (L � w) keys in tw. However, each verifier al-
ways stores only a single key (negligible jHj overhead, e.g.,
160 bit). In ECC-HaSAFSS, each signer stores only one key,
however, in order to recover session keys, each verifier
stores L public keys for each signer (i.e., quadratic storage
overhead as O(L � S0)jpj).
FssAgg

BLS AR BM MAC

10.2 264 128 0.06
140 25.8 � 102 12.7 � 102 0.6
11.8 � 102 26.6 � 103 12.5 � 103 6
11.9 � 103 26.3 � 104 12.4 � 104 60

156 77.1 � 103 524 0.06
15.4 � 102 78.4 � 103 920 0.6
14.9 � 103 88.2 � 103 51.6 � 102 6
15.2 � 104 18.1 � 104 46.6 � 103 60

i7 Q720 at 1.60 GHz CPU and 2GB RAM running Ubuntu 10.10. We tested
g-AR/BM [9] using the NTL library [47]. Parameter sizes determining the
suggested bit lengths were discussed in Table 1. (ii) Execution times are
l tw;w0 including the initialization costs.

1218 A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220
In SU-HaSAFSS, each signer is capable of computing her
own key set after the deployment (independent from the
TTP). Therefore, the key/signature storage of a signer is
constant including the overhead due to generic signature
and MMM signatures (i.e., O(1)(jskj + cjHj)). Each verifier
stores only one MMM public key (i.e., jpk0j) for each signer
(and one extra public key to verify time trapdoor keys).
Thus, in contrast to ECC-HaSAFSS, the storage overhead
of a verifier is linear as O(S0)jpk0j.
7.2.1. Comparison
Table 4 asymptotically compares HaSAFSS and FssAgg

schemes in terms of storage overhead.
From a verifier’s perspective, Sym-HaSAFSS, which re-

quires only single key storage, is the most storage efficient
scheme among all the compared schemes. SU-HaSAFSS
and FssAgg schemes both require linear storage. ECC-HaS-
AFSS and FssAgg-BLS require quadratic storage and obey
the traditional resourceful verifier assumption to address
such UWSN applications (e.g., high-end mobile receivers
[5]). From a signer’s perspective, all compared schemes ex-
cept for Sym-HaSAFSS and FssAgg-MAC require constant
storage.

All compared schemes incur only a constant signature
transmission overhead due to their signature aggregation
property. Thus, when compared with traditional signature
schemes (e.g., [33,48,31]), they are much more communi-
cation efficient (data items have to be transmitted in any
case and therefore their overhead is not the part of com-
parison). Note that the signature aggregation also offers
‘‘all-or-nothing’’ property that provides the resilience
against the truncation attacks as discussed in Section 6.1.

The communication overhead required to transmit a
time trapdoor key is small and constant, since it is broad-
casted only once for each time period. In Sym-HaSAFSS
and ECC-HaSAFSS, the TTP broadcasts tkw (i.e., the wth ele-
ment of the reversed hash chain) at the end of tw, which
incurs jHj (e.g., 160 bits) transmission overhead. In SU-
HaSAFSS, the TTP broadcasts the time trapdoor key as
ðtkw; tkw;wÞ, which incurs jqj + jrj + jindexj (e.g., 160 +
320 + 16 = 500 bits) transmission overhead.

The pre-determined data delivery model and the self-
decisive data delivery model do not require a collaborative
time trapdoor request mechanism, as the TTP only releases
a time trapdoor key passively once for the each time peri-
od. Hence, the time trapdoor communication overhead of
these models is negligible. However, in the on-demand
delivery model, requesting time trapdoor keys authenti-
cally from the TTP might incur a non-negligible communi-
cation overhead. That is, assuming each verifier sends a
request via a pre-computed ECDSA token (which does
not require an expensive operation), the total communica-
Table 4
Asymptotic comparison of HaSAFSS and FssAgg schemes in terms of their storage

HaSAFSS

Sym SU ECC

Signer O(L � w)jHj O(1)(jskj + cjHj) O(1)(jHj + jqj)
Verifier O(1)jHj O(S0)(pk0) O(L � S0)jpj
tion overhead of the TTP is (s � S0)jrj0, where jrj0 denotes
the bit length of ECDSA token signature (e.g., 320 bits).

7.3. Sustainability, applicability and flexibility

In addition to the above quantitative criteria, we also
analyze our schemes in terms of some important qualita-
tive properties. Table 5 compares HaSAFSS schemes and
FssAgg schemes in terms of the following properties:

7.3.1. Public verifiability
This property is especially important for the scalability

and applicability of a scheme to the large and distributed
UWSNs. All compared schemes achieve public verifiability
with the exception of FssAgg-MAC.

7.3.2. Unbounded time period and flexible data delivery
schedule

All compared schemes with the exception of SU-HaS-
AFSS puts a linear bound on the number of time periods
(and implicitly on the number of data items to be signed)
that a signer can use after the system initialization. Elimi-
nating this limitation, SU-HaSAFSS offers a unique sustain-
ability that can be highly useful in many applications such
as military UWSNs. That is, SU-HaSAFSS minimizes any
risk that may stem from the requirement of replenishing
cryptographic keys and re-initializing the entire system
(e.g., costly and sometimes impossible re-deployment/re-
programming, long-term network disconnections).

Another related property is the flexible data delivery
schedule, which is only offered by SU-HaSAFSS among
our schemes. This property allows a signer to decide its
own data delivery schedule herself after the deployment,
and therefore SU-HaSAFSS can address applications in
which a pre-determined data delivery schedule cannot be
decided. Note that FssAgg schemes directly achieve this
property, since they do not rely on the time factor.

The above properties depend on the ability that signers
can compute their own key sets after the deployment.
Therefore, they are also related to the storage overhead
introduced by the compared schemes, which was dis-
cussed in the previous section.

7.3.3. Forward-secure confidentiality
SU-HaSAFSS can integrate forward-secure encryption

and forward-secure integrity in a seamless way, since it re-
lies on symmetric cryptography to achieve these goals.
Note that to achieve the same property, FssAgg schemes
have to resort to costly PKC-based forward-secure encryp-
tion schemes (e.g., [49]), which will make these schemes
even more expensive.
overheads.

FssAgg

BLS AR BM MAC

O(1)(jskj + jrj) O(1)(zjskj + jrj) O(V0)jHj
O(L � S0)jpj O(S0)jnj O(S0)jHj

Table 5
Comparison of HaSAFSS and FssAgg schemes in terms of some important qualitative properties.

HaSAFSS FssAgg

Sym SU ECC BLS AR BM MAC

Public verifiability U U U U U U X
Unbounded time periods X U X X X X X
Forward-secure confidentiality X U X X X X X
Flexible delivery schedule X U X U U U U

Signer storage efficient X U U U U U X
Verifier storage efficient U U X X U U U

Immediate verification X X X U U U U

A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220 1219
7.3.4. Immediate verification
The main drawback of HaSAFSS schemes is that they

cannot achieve immediate verification. A more detailed
discussion about this issue was given in Section 6.1. FssAgg
schemes achieve immediate verification, since they do not
rely on the time factor.

Overall, being equally storage efficient to FssAgg
schemes but much more computationally efficient than
them, and at the same same time being more sustainable
and flexible than Sym-HaSAFSS and ECC-HaSAFSS, SU-HaS-
AFSS is an ideal choice for large scale UWSN applications
with mildly resource-constrained signers. In contrast,
Sym-HaSAFSS is an ideal alternative for highly computa-
tionally resource-constrained applications with mildly
storage-constrained signers.
8. Conclusion

In this paper, we proposed a new class of cryptographic
schemes, Hash-Based Sequential Aggregate and Forward
Secure Signature (HaSAFSS), which is suitable for UWSN
applications. HaSAFSS schemes achieve the most desirable
properties of both symmetric and PKC-based forward-se-
cure and aggregate signature schemes at the same time.
They achieve this by using already existing verification de-
lays in the envisioned UWSN applications via three realis-
tic data/time trapdoor delivery models.

We proposed three HaSAFSS schemes, Sym-HaSAFSS,
ECC-HaSAFSS and SU-HaSAFSS in this paper. All these
schemes achieve high computational efficiency, low
storage and communication overhead, public verifiability,
signature aggregation and forward-secure integrity simul-
taneously. They are significantly more efficient than all of
their PKC-based counterparts and still remain publicly ver-
ifiable in contrast to other symmetric schemes. Sym-HaS-
AFSS and ECC-HaSAFSS complement each other by being
a signer storage friendly and a verifier storage friendly
scheme, respectively. Preserving all other desirable proper-
ties of HaSAFSS schemes, SU-HaSAFSS is much more com-
putationally efficient than all of the previous PKC-based
counterparts, and additionally achieves unique properties
such as unlimited number of time periods, forward-secure
confidentiality, and flexible data delivery schedule.
Acknowledgements

We would like to thank Dr. Di Ma who kindly provided
her implementation of FssAgg schemes [5,9,10]. We also
would like to thank anonymous reviewers of the prelimin-
ary version of this paper [23] for their useful comments.

References

[1] D. Pietro, L. Mancini, C. Soriente, A. Spognardi, G. Tsudik, Catch me (if
you can): data survival in unattended sensor networks, in:
Proceedings of the 6th IEEE International Conference on Pervasive
Computing and Communications (PerCom ’08), 2008, pp. 185–194.

[2] D. Ma, G. Tsudik, DISH: Distributed self-healing, in: Proceedings of
the 10th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS ’08), Springer-Verlag, 2008, pp.
47–62.

[3] R.D. Pietro, D. Ma, C. Soriente, G. Tsudik, Posh: proactive co-operative
self-healing in unattended wireless sensor networks, in: IEEE
Symposium on Reliable Distributed Systems (SRDS ’08), 2008, pp.
185–194.

[4] J.C. McEachen, J. Casias, Performance of a wireless unattended sensor
network in a freshwater environment, in: Proceedings of the 41st
Annual Hawaii International Conference on System Sciences (HICSS
’08), IEE, Washington, DC, USA, 2008.

[5] D. Ma, G. Tsudik, Forward-secure sequential aggregate
authentication, in: Proceedings of the 28th IEEE Symposium on
Security and Privacy (S& P ’07), 2007, pp. 86–91.

[6] Trident Systems, Trident’s Family of Unattended Ground Sensors,
<http://www.tridsys.com/white-unattended-ground-sensors.htm>.

[7] I.P.T.O.I.D.A.R.P.A. (DARPA), BBA 07-46 LANdroids Broad Agency
Announcement, 2007, <http://www.darpa.mil/ipto/solicit/baa/BAA-
07-46_PIP.pdf>.

[8] M. Bellare, S. Miner, A forward-secure digital signature scheme, in:
Advances in Crpytology (CRYPTO ’99), Springer-Verlag, 1999, pp.
431–448.

[9] D. Ma, Practical forward secure sequential aggregate signatures, in:
Proceedings of the 3rd ACM symposium on Information, Computer
and Communications Security (ASIACCS ’08), ACM, NY, USA, 2008,
pp. 341–352.

[10] D. Ma, G. Tsudik, A new approach to secure logging, ACM Transaction
on Storage (TOS) 5 (1) (2009) 1–21.

[11] D. Boneh, C. Gentry, B. Lynn, H. Shacham, Aggregate and verifiably
encrypted signatures from bilinear maps, in: Proc. of the 22th
International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT ’03), Springer-Verlag, 2003,
pp. 416–432.

[12] Y. Mu, W. Susilo, H. Zhu, Compact sequential aggregate signatures,
in: Proceedings of the 22nd ACM symposium on Applied computing
(SAC ’07), ACM, 2007, pp. 249–253.

[13] R. Rivest, A. Shamir, D. Wagner, Time-lock Puzzles and Timed-
release Crypto, Tech. Rep., Cambridge, MA, USA, 1996.

[14] R. Anderson, Two remarks on public-key cryptology, invited lecture,
in: Proceedings of the 4th ACM conference on Computer and
Communications Security (CCS ’97), 1997.

[15] M. Abdalla, L. Reyzin, A new forward-secure digital signature
scheme, in: Advances in Crpytology (ASIACRYPT ’00), Springer-
Verlag, 2000, pp. 116–129.

[16] B. Libert, J. Quisquater, M. Yung, Forward-secure signatures in
untrusted update environments: Efficient and generic constructions,
in: Proceedings of the 14th ACM conference on Computer and
communications security (CCS ’07), ACM, 2007, pp. 266–275.

[17] G. Itkis, L. Reyzin, Forward-secure signatures with optimal signing
and verifying, in: Advances in Cryptology (CRYPTO ’01), Springer-
Verlag, 2001, pp. 332–354.

[18] H. Krawczyk, Simple forward-secure signatures from any signature
scheme, in: Proceedings of the 7th ACM Conference on Computer

http://www.tridsys.com/white-unattended-ground-sensors.htm
http://www.darpa.mil/ipto/solicit/baa/BAA-07-46_PIP.pdf
http://www.darpa.mil/ipto/solicit/baa/BAA-07-46_PIP.pdf

1220 A.A. Yavuz, P. Ning / Ad Hoc Networks 10 (2012) 1204–1220
and Communications Security, (CCS ’00), ACM, pp. 108–
115.

[19] A. Kozlov, L. Reyzin, Forward-secure signatures with fast key update,
in: Proc. of the 3rd International Conference on Security in
Communication Networks (SCN ’02), 2002.

[20] T. Malkin, D. Micciancio, S.K. Miner, Efficient generic forward-secure
signatures with an unbounded number of time periods, in: Proc. of
the 21th International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT ’02), Springer-Verlag, 2002,
pp. 400–417.

[21] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, B. Waters, Sequential
aggregate signatures and multisignatures without random oracles,
in: Proc. of the 25th International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT ’06),
Springer-Verlag, 2006, pp. 465–485.

[22] A. Boldyreva, C. Gentry, A. O’Neill, D. Yum, Ordered multisignatures
and identity-based sequential aggregate signatures, with
applications to secure routing, in: Proceedings of the 14th ACM
Conference on Computer and Communications Security, (CCS ’07),
ACM, 2007, pp. 276–285.

[23] A.A. Yavuz, P. Ning, Hash-based sequential aggregate and forward
secure signature for unattended wireless sensor networks, in:
Proceedings of the 6th Annual International Conference on Mobile
and Ubiquitous Systems (MobiQuitous ’09), 2009.

[24] T. May, Time Release Crypto, Tech. Rep., February 1993.
[25] H. Varsakelis, K. Chalkias, G. Stephanides, Low-cost anonymous

timed-release encryption, in: Proceedings of the 3rd International
Symposium on Information Assurance and Security (IAS ’07), IEEE
Computer Society, 2007, pp. 77–82.

[26] K. Chalkias, D. Hristu-Varsakelis, G. Stephanides, Improved
anonymous timed-release encryption, in: 12th European Symposium
on Research in Computer Security (ESORICS ’07), 2007, pp. 311–326.

[27] S.S. Chow, S.M. Yiu, Timed-release encryption revisited, in:
Proceedings of the 2nd International Conference on Provable
Security (ProvSec ’08), Springer-Verlag, 2008, pp. 38–51.

[28] Y. Hwang, D. Yum, P. Lee, Timed-release encryption with pre-open
capability and its application to certified e-mail system, in:
Proceedings of the 8th International Conference on Information
Security, (ISC ’05), Springer-Verlag, 2005, pp. 77–82.

[29] D. Boneh, M. Franklin, Identity-based encryption from the weil
pairing, SIAM Journal on Computing 32 (2003) 586–615.

[30] A. Perrig, R. Canetti, D. Song, D. Tygar, Efficient authentication and
signing of multicast streams over lossy channels, in: Proceedings of
the IEEE Symposium on Security and Privacy, 2000.

[31] C. Schnorr, Efficient signature generation by smart cards, Journal of
Cryptology 4 (3) (1991) 161–174.

[32] A. Menezes, P.C. van Oorschot, S. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996. ISBN: 0-8493-8523-7.

[33] American Bankers Association, ANSI X9.62-1998: Public Key
Cryptography for the Financial Services Industry: The Elliptic
Curve Digital Signature Algorithm (ECDSA), 1999.

[34] D. Hankerson, A. Menezes, S. Vanstone, Guide to Elliptic Curve
Cryptography, Springer, 2004.

[35] O. Goldreich, Foundations of Cryptography, Cambridge University
Press, 2001.

[36] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for
designing efficient protocols, in: Proceedings of the 1st ACM
Conference on Computer and Communications Security (CCS ’93),
ACM, NY, USA, 1993, pp. 62–73.

[37] US National Institute of Standards and Technology, DES modes of
operation, Federal Information Processing Standards Publication 81
(FIPS PUB 4-3), December 1980.

[38] J. Katz, Y. Lindell, Introduction to Modern Cryptography (Chapman &
Hall/Crc Cryptography and Network Security Series), Chapman &
Hall/CRC, 2007.

[39] D. Boneh, X. Boyen, Efficient Selective-ID secure identity-based
encryption without random oracles, in: Proc. of the 23th
International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT ’04), 2004, pp. 223–238.

[40] A.A. Yavuz, F. Alagöz, E. Anarim, HIMUTSIS: Hierarchical multi-tier
adaptive ad-hoc network security protocol based on signcryption
type key exchange schemes, in: Proceedings of the 21th
International Symposium Computer and Information Sciences
(ISCIS ’06), Lecture Notes in Computer Science, vol. 4263, Springer-
Verlag, 2006, pp. 434–444.

[41] A.A. Yavuz, P. Ning, BAF: An efficient publicly verifiable secure audit
logging scheme for distributed systems, in: Proceedings of 25th
Annual Computer Security Applications Conference (ACSAC ’09),
2009, pp. 219–228.
[42] E. Mykletun, M. Narasimha, G. Tsudik, Signature bouquets:
immutability for aggregated/condensed signatures, in: Proceedings
of the 9th European Symposium on Research in Computer Security
(ESORICS ’04), Springer-Verlag, 2004, pp. 160–176.

[43] Y. Zheng, Digital signcryption or how to achieve cost(signature &
encryption) << cost(signature) + cost(encryption), in: Proceedings of
Advances in Cryptology (CRYPTO ’97), 1997, pp. 165–179.

[44] S.M. Chow, L.C. Hui, S. Yiu, K.P. Chow, Forward-secure
multisignature and blind signature schemes, Applied Mathematics
and Computation 168 (2) (2005) 895–908.

[45] D. Ma, G. Tsudik, A new approach to secure logging, in: Proc. of the
22nd Annual IFIP WG 11.3 Working Conference on Data and
Applications Security (DBSEC ’08), 2008, pp. 48–63.

[46] Shamus, Multiprecision Integer and Rational Arithmetic c/c++
Library (MIRACL), <http://www.shamus.ie/>.

[47] V. Shoup, NTL: A Library for Doing Number Theory, <http://
www.shoup.net/ntl/>.

[48] R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the
ACM 21 (2) (1978) 120–126.

[49] R. Canetti, S. Halevi, J. Katz, A forward-secure public-key encryption
scheme, Journal of Cryptology 20 (3) (2007) 265–294.

Dr. Attila Altay Yavuz graduated from North
Carolina State University (NCSU) with a PhD
degree in Computer Science. He received a BS
degree in Computer Engineering from Yildiz
Technical University in 2004 and a MS degree
in Computer Science from Bogazici University
in 2006, both in Turkey.
Dr. Attila A. Yavuz is interested in design,
analysis and application of cryptographic
primitives and protocols to enhance the secu-
rity of computer networks and systems. His
current research is focus on the developing

efficient cryptographic primitives to provide the security in Virtual Com-
puting Clouds (VCC), wireless networks, cyber-physical systems, and dig-
ital forensics.
Dr. Peng Ning is a Professor of Computer
Science at NC State University, located in
Raleigh, NC, USA, where he also serves as the
Technical Director for Secure Open Systems
Initiative (SOSI) in College of Engineering at
NC State University. He joined NC State Uni-
versity in August 2001 after he graduated
from George Mason University with a PhD
degree in Information Technology. Peng Ning
received a BS degree in Information Science
and an ME degree in Communication and
Electronic System in 1994 and 1997, respec-

tively, both from University of Science and Technology of China.
Peng Ning’s research interests are mainly in computer and network
security. He is a recipient of NSF CAREER award. His research has been

supported by the National Science Foundation (NSF), the Army Research
Office (ARO), the Advanced Research and Development Activity (ARDA),
IBM Open Collaboration Research (OCR) program, SRI International, and
the NCSU/Duke Center for Advanced Computing and Communication
(CACC). He was elected the Secretary/Treasurer of the ACM Special
Interest Group on Security, Auditing and Control (SIGSAC) in 2009. He
served/or is serving on the editorial boards of ACM Transactions on Sensor
Networks, Journal of Computer Security, Ad-Hoc Networks, Ad-Hoc &
Sensor Networks: an International Journal, International Journal of
Security and Networks, and IET Proceedings Information Security. Peng
Ning served as the Program Chairs or Co-Chairs of ESORICS ’09, ACM SASN
’05 and ICICS ’06, the General Chair of ACM CCS ’07 and CCS ’08, and
Program Vice Chair for ICDCS ’09 & ’10-Security and Privacy Track. He is a
Steering Committee member of ACM CCS and a founding Steering Com-
mittee member of ACM WiSec. He has served on the organizing com-
mittees or program committees for over fifty technical conferences or
workshops related to computer and network security. Peng Ning is a
senior member of the ACM, the ACM SIGSAC, and a member of the IEEE
and the IEEE Computer Society.

http://www.shamus.ie/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

	Self-sustaining, efficient and forward-secure cryptographic constructions for Unattended Wireless Sensor Networks
	1 Introduction
	2 Related work
	2.1 Forward secure and/or aggregate signatures
	2.2 Timed-Release Encryption (TRE)
	2.3 TESLA
	2.4 Self-healing techniques

	3 Preliminaries
	4 Models
	4.1 Threat model and security model
	4.1.1 HaSAFSS security objectives

	4.2 Data model

	5 Proposed schemes
	5.1 Overview
	5.1.1 HaSAFSS instruments and strategies

	5.2 Sym-HaSAFSS
	5.3 ECC-HaSAFSS
	5.4 SU-HaSAFSS
	5.4.1 SU-HaSAFSS strategy
	5.4.2 Detailed description

	5.5 Fine-grained verification with HaSAFSS

	6 Security analysis
	6.1 Discussion
	6.1.1 Truncation attack
	6.1.2 Lack of immediate verification

	7 Performance analysis
	7.1 Computational overhead
	7.1.1 Comparison

	7.2 Storage and communication overhead
	7.2.1 Comparison

	7.3 Sustainability, applicability and flexibility
	7.3.1 Public verifiability
	7.3.2 Unbounded time period and flexible data delivery schedule
	7.3.3 Forward-secure confidentiality
	7.3.4 Immediate verification

	8 Conclusion
	Acknowledgements
	References

