
9

BAF and FI-BAF: Efficient and Publicly Verifiable Cryptographic
Schemes for Secure Logging in Resource-Constrained Systems

ATTILA A. YAVUZ and PENG NING, North Carolina State University
MICHAEL K. REITER, University of North Carolina at Chapel Hill

Audit logs are an integral part of modern computer systems due to their forensic value. Protecting audit logs
on a physically unprotected machine in hostile environments is a challenging task, especially in the presence
of active adversaries. It is critical for such a system to have forward security and append-only properties such
that when an adversary compromises a logging machine, she cannot forge or selectively delete the log entries
accumulated before the compromise. Existing public-key-based secure logging schemes are computationally
costly. Existing symmetric secure logging schemes are not publicly verifiable and open to certain attacks.

In this article, we develop a new forward-secure and aggregate signature scheme called Blind-Aggregate-
Forward (BAF), which is suitable for secure logging in resource-constrained systems. BAF is the only crypto-
graphic secure logging scheme that can produce publicly verifiable, forward-secure and aggregate signatures
with low computation, key/signature storage, and signature communication overheads for the loggers, with-
out requiring any online trusted third party support. A simple variant of BAF also allows a fine-grained
verification of log entries without compromising the security or computational efficiency of BAF. We prove
that our schemes are secure in Random Oracle Model (ROM). We also show that they are significantly more
efficient than all the previous publicly verifiable cryptographic secure logging schemes.

Categories and Subject Descriptors: H.2.7 [Database Management]: Database Administration—Security,
integrity, and protection; K.6.5 [Management of Computing and Information Systems]: Security and
Protection

General Terms: Security, Design

Additional Key Words and Phrases: Applied cryptography, digital signature, secure audit logging, forward
security, signature aggregation

ACM Reference Format:
Yavuz, A. A., Ning, P., and Reiter, M. K. 2012. BAF and FI-BAF: Efficient and publicly verifiable crypto-
graphic schemes for secure logging in resource-constrained systems. ACM Trans. Inf. Syst. Secur. 15, 2,
Article 9 (July 2012), 28 pages.
DOI = 10.1145/2240276.2240280 http://doi.acm.org/10.1145/2240276.2240280

A preliminary version of this article appeared in ACSAC’09 as Yavuz and Ning [2009a].
This work was supported by the U.S. National Science Foundation (NSF) under grants CAREER-0447761
and 0910767, and the U.S. Army Research Office (ARO) under grant W911NF-08-1-0105 managed by NCSU
Secure Open Systems Initiative (SOSI).
The contents for this article do not necessarily reflect the position or the policies of the U.S. Government.
Authors’ addresses: A. A. Yavuz and P. Ning, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27695-8206, email: {aayavuz, pning}@ncsu.edu; M. K. Reiter, Department of Computer
Science, University of North Carolina at Chapel Hill, FB350 F. P. Brooks Building Campus Box 3175 Chapel
Hill, NC 27599; email: reiter@cs.unc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1094-9224/2012/07-ART9 $10.00

DOI 10.1145/2240276.2240280 http://doi.acm.org/10.1145/2240276.2240280

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:2 A. A. Yavuz et al.

1. INTRODUCTION

Audit logs are a fundamental digital forensic mechanism for providing security in com-
puter systems. They are used to keep track of important events about system activities
such as program executions/crashes and data modifications. Providing information
about the current and past states of systems, audit logs are invaluable parts of system
security. The forensic value of audit logs makes them an attractive target for attackers.
For instance, an active attacker compromising a logging machine can modify log en-
tries related to the past, erasing records of the attacker’s previous break-in attempts.
It is therefore vital for any modern computer system to protect the integrity of audit
logs in the presence of active attackers.

Some naive audit-log protection techniques include using bug-free tamper-resistant
hardware (to prevent the attacker from reaching audit logs), and maintaining a con-
tinuous and secure communication channel between each logger and a remote trusted
entity (to which to upload logs in real-time before the attack occurs). However, as
pointed out by some studies (e.g., Ma and Tsudik [2008, 2009] and Crosby and Wallach
[2009]), these techniques are impractical for modern computer systems.

First, assuming the presence of tamper-resistant hardware on all platforms is im-
practical (e.g., wireless sensors [Ma and Tsudik 2007], commercial-off-the-shelf sys-
tems). Second, it is not always possible to guarantee the “bug-freeness” of such hard-
ware. For instance, recently introduced Write-Once-Read-Many (WORM) drives1 were
rapidly adopted for secure auditing purposes [Wang and Zheng 2003]; however, some
vulnerabilities of WORM drives were later identified [Hsu and Ong 2007; Oprea and
Bowers 2009].

Similarly, it is impractical to assume a reliable end-to-end real-time communication
channel between a trusted verifier and a logger in all applications (e.g., delay toler-
ant networks [Fall 2003] and non-real-time applications such as Unattended Wireless
Sensor Networks (UWSN)2 [Yavuz and Ning 2009b]).

The above problems motivate cryptographic mechanisms that can protect audit logs
without relying on such assumptions. In the setting where there is neither tamper-
resistant hardware nor continuous real-time communication, the untrusted logging
machine has to accumulate log entries when the log verifiers are not available. If the
adversary takes full control of the logging machine in this duration, no cryptographic
mechanism can prevent her from modifying the post-attack log entries (due to her
control over the system).3 However, the integrity of log entries accumulated before
the attack should be protected [Bellare and Yee 2003; Crosby and Wallach 2009; Holt
2006; Ma 2008; Ma and Tsudik 2008, 2009; Yavuz and Ning 2009a] (i.e., forward se-
curity property [Abdalla and Reyzin 2000]). Note that this protection should not only
guarantee the integrity of individual log entries but also the integrity of the log stream
as a whole. That is, no selective deletion or truncation of log entries should be possible.
This is achieved with signature aggregation (i.e., append-only property) [Ma 2008; Ma
and Tsudik 2007, 2009] in addition to forward security.

There are two groups of forward-secure and/or aggregate logging schemes.

— Symmetric Cryptography-Based Secure Logging Schemes. These schemes rely on
forward-secure Message Authentication Codes (MACs), Pseudo Random Number
Generators (PRNGs) (e.g., Bellare and Yee [1997, 2003], Schneier and Kelsey

1http://www.emc.com/products/family/emc-centera-family.htm
2http://www.darpa.mil/ipto/solicit/baa/BAA-07-46_PIP.pdf
3Post-compromise data can only be recovered/controlled if a remote online Trusted Third Party (TTP) or a
locally trusted intrusion resilient hardware periodically checks the untrusted machine (e.g., key insulated
schemes [Dodis et al. 2002]) [Ma and Tsudik 2009].

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:3

[1998]), and one-way hash chains (e.g., Schneier and Kelsey [1998, 1999] and Ma
and Tsudik [2007]). Despite their simplicity and computational efficiency, these
schemes have limitations.
(i) Due to their symmetric nature, these schemes cannot achieve public verifiability.

As a result, they either require a full symmetric key distribution (e.g., FssAgg-
MAC [Ma and Tsudik 2007]) or online TTP support. In either case, these schemes
cannot address applications that require public auditing and non-repudiation
(e.g., logging on electronic voting machines and financial bookkeeping of public
companies [Holt 2006; Ma and Tsudik 2008, 2009] in which the signing key must
not be revealed). In addition, the online TTP requirement brings architectural
difficulties, increases communication overhead, and makes the system vulnera-
ble to single-point-of-failure problems.

(ii) Many of the above schemes incur high storage and communication overheads for
the loggers, since they require storing and transmitting an authentication tag or
a cryptographic key for each log entry (or logging period) (e.g., Bellare and Yee
[1997, 2003] and Schneier and Kelsey [1998, 1999]).

(iii) Many of these schemes (e.g., Bellare and Yee [1997, 2003])4 have been shown
to be vulnerable to the truncation and delayed detection attacks [Ma and
Tsudik 2008, 2009] (The details of these attacks are discussed in Section 3 and
Section 5.)

— Public Key Cryptography (PKC)-based Secure Logging Schemes. Another group of
schemes rely on PKC to address these problems. Logcrypt extends the forward-
secure MAC strategy to the PKC domain; it is publicly verifiable and secure against
the delayed detection attack without requiring online TTP support [Holt 2006].
However, Logcrypt incurs high storage/communication overhead and also it is still
vulnerable to the truncation attack. Ma and Tsudik proposed FssAgg schemes [Ma
2008; Ma and Tsudik 2007, 2008, 2009]) which use forward-secure signatures and
aggregate signatures in an integrated way. These schemes require only a single
aggregate signature for all the accumulated log entries (due to the ability to aggre-
gate individual signatures into a single compact signature), and therefore are signa-
ture storage/transmission efficient. This approach also provides the “all-or-nothing”
property [Ma 2008].

Despite its advantages, the use of only a single aggregate signature to verify the
entire set of log entries brings some drawbacks: A verifier that is only interested in a
particular log entry has to verify the entire set of log entries associated with the single
aggregate signature. This incurs significant computational overheads for the verifiers.
Therefore, in certain cases, it is desirable to keep individual signatures along with
the aggregate signature to enable the separate verification of individual log entries.
However, keeping individual signatures along with the aggregate signature allows
the attacker to launch a truncation attack (due to the public and invertible aggre-
gation function). To prevent this, Ma and Tsudik [2009] developed immutable FssAgg
(iFssAgg) schemes, which allow a finer-grained verification of log entries via individual
signatures while preventing the truncation attack.

All these PKC-based schemes (e.g., Holt [2006], Ma and Tsudik [2007, 2008,
2009], and Ma [2008]) suffer from a common drawback: They require Expensive

4These schemes rely on a forward-secure hash chain mechanism to compute the individual MAC of each log
entry. They prevent the adversary from truncating non-tail log entries (i.e., beginning and middle entries)
from the log stream, since such a truncation requires breaking the hash chain. However, truncating tail-log
entries does not require breaking the hash chain, and therefore the adversary can truncate tail-log entries
from the log stream without being detected.

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:4 A. A. Yavuz et al.

Operations (ExpOps)5 to compute and verify the signatures, which make them compu-
tationally costly. Hence, these schemes are impractical for secure logging in resource-
constrained devices.

1.1. Our Contribution

In this article, we develop a new class of forward-secure and aggregate secure au-
dit logging schemes for resource-constrained systems, which we call Blind-Aggregate-
Forward (BAF) and Fast-Immutable BAF (FI-BAF) logging schemes.

We summarize the properties of our schemes as follows:

(1) High Logger (Signer) Efficiency. BAF is the only PKC based scheme among its
counterparts that achieve the high (i.e., ExpOp-free) signer efficiency:
— ExpOp-Free Signing and Key Update. In BAF, the computational cost of logging

a single data item is only a few cryptographic hash operations including the key
update cost. This is as efficient as existing symmetric schemes and is much more
efficient than all existing PKC-based secure logging schemes.

— Constant Key/Signature Sizes. In BAF, independent from the number of time
periods and data items to be signed, a logger only needs to store a single key
pair, and also needs to store/transmit a single and compact aggregate signa-
ture as the authentication tag. Thus, BAF is more signature storage/bandwidth
efficient than some existing schemes that require linear key and signature stor-
age/transmission.

(2) Computationally Efficient Log Verification. In BAF, the computational cost of ver-
ifying a single log entry is only a single exponentiation operation, which is more
efficient than existing PKC-based secure logging schemes.

(3) Offline TTP and Immediate Verification. Unlike some previous schemes (e.g.,
Schneier and Kelsey [1998, 1999] and Yavuz and Ning [2009b]), BAF does not need
online TTP support to enable log verification. Hence, it eliminates the overhead
that stems from the frequent communication between log verifiers and the TTP.
This also makes BAF more scalable and reliable due to the simple architectural de-
sign and being free of single points of failure. Moreover, BAF achieves immediate
verification, and therefore is secure to the delayed detection attack.(Secure audit
logging schemes that cannot achieve immediate verification property are vulnera-
ble to delayed detection attacks. Details of this attack are discussed in Section 5.)

(4) Fast and Immutable Logging. Our extended scheme FI-BAF addresses the need
for a BAF variant that allows the verification of a particular log entry without
compromising the security and computational efficiency of the original BAF.

(5) Public Verifiability. The BAF schemes produce publicly verifiable signatures, and
therefore, in contrast to the symmetric schemes, are suitable for applications re-
quiring public auditing and non-repudiation.

(6) Provable Security. Unlike some previous schemes [Bellare and Yee 2003; Holt
2006; Schneier and Kelsey 1998, 1999], our schemes are secure against both trun-
cation and delayed detection attacks. Moreover, instead of relying on heuristic
security arguments against truncation attacks (e.g., Ma and Tsudik [2007] and Ma
[2008] and the preliminary version of this article [Yavuz and Ning 2009a]), we for-
mally prove that our schemes are secure against truncation attacks in Random
Oracle Model (ROM) [Bellare and Rogaway 1993].

5For brevity, in this article, we refer to an expensive cryptographic operation such as modular exponentia-
tion [Stinson 2002] and pairing [Mass 2004] as an ExpOp.

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:5

Table I. Comparison of BAF Schemes with Their Counterparts in Terms of Asymptotic
Computational/Storage/Communication Overheads and Some Qualitative Properties

Criteria
PKC-based Symmetric

BAF/FI-BAF
FssAgg/iFssAgg

Logcrypt
Computational BLS BM and AR

Sig H ExpOp + H ExpOp + H H
Upd H ExpOp + H - H
Ver O(l · (ExpOp + H)) O(l · H)
Kg O(L · (ExpOp + H)) O(L · H)

Online Comm. |σ | |σ | O(l · |σ |) O(l · |H|)
Offline Comm. O(L · |K|) O(L · |K|) |K| O(L · |K|) |K|

Size of PK O(L) O(L) O(1) O(L) -

Storage
Signer |K| + |σ | |K| + |σ | O(L · (|K| + |σ |)) O(L · |H|)
Verifier O(L · |K|) O(L · |K|) O(|K|) O(L · |K|) O(|K|)

Public Ver. Y Y N
Online TTP Y Y N

Immediate Ver. Y Y N
Delayed Det. A. Y Y N

Truncation A. Y Y N N
Security Provable Heuristic (informal) N N

∗Table I demonstrates the asymptotic costs of processing data items for each compared scheme. H, |H|,
|K| and |σ | denote the cost of single hash operation, the bit length of hash output, the bit length of
private/public key and the signature bit length, respectively (|K| and |σ | slightly vary for each scheme).
Signature generation and key update costs are given for a single data item. Key generation cost is given
for the maximum number of data items (i.e., L). Signature verification cost is given for 0 < l < L data
items. Storage and communication costs are based on the cryptographic overhead introduced by the
schemes (data overheads are linear and the same for all compared schemes). Offline communication
overhead is the transmission overhead of keying material from key generation center to the verifiers.
This transmission occurs only once before the deployment in an offline manner. Online communication
overhead denotes the communication overhead that stems from the transmission of signatures, which
occurs online after the deployment.
∗∗BLS, BM and AR abbreviate FssAgg-BLS [Ma and Tsudik 2007], FssAgg-BM and FssAgg-AR in [Ma
2008], respectively. The column “Symmetric” refers symmetric cryptography based counterparts of BAF
(e.g., Schneier and Kelsey [1998, 1999] and Bellare and Yee [2003]).
†BAF schemes are the only PKC-based alternative that achieve the high signer efficiency (i.e., ExpOp-
free signing and constant signature storage/communication overhead), while retaining the verifier com-
putational efficiency. At the same time, they possess all the desirable properties of PKC schemes when
compared with the symmetric schemes.

Table I outlines these properties and compares the proposed schemes with their
counterparts.

This article, in addition to introducing the extended scheme FI-BAF, also gives a
new security model that formally captures the truncation attacks, an improved secu-
rity analysis with tighter bounds and probability analysis, and a more comprehensive
performance analysis than its preliminary version that appeared in Yavuz and Ning
[2009a].

The remainder of this article is organized as follows. Section 2 presents our no-
tation and preliminary definitions. Section 3 provides the models used in this paper.
Section 4 describe the proposed schemes in detail. Section 5 gives the security analysis
of BAF. Section 6 presents performance analysis of our schemes and compares them
with previous approaches. Section 7 briefly discusses related work, and Section 8 con-
cludes this article.

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:6 A. A. Yavuz et al.

2. PRELIMINARIES

This section provides our notation and basic definitions.

Notation. We use ||, |a| and {0, 1}∗ to denote the concatenation operation, bit length

of variable a, and the set of binary strings of any finite length, respectively. a
$← S

denotes that the value of variable a is randomly and uniformly selected from set S.

For any integer l, (a0, . . . , al)
$← S means (a0

$← S, . . . , al
$← S). AO0,...,Oi(.) denotes

algorithm A is provided with oracles O0, . . . ,Oi. For example, ASch.Sigsk (.) denotes algo-
rithm A is provided with a signing oracle of Sig of signature scheme Sch under private
key sk.

BAF schemes rely on the intractability of Discrete Logarithm Problem (DLP)
[Bellare and Rogaway 2005], which is defined here.

Definition 2.1. Given a cyclic group G of order prime q and a generator α of G, let
A be an algorithm that returns an element of Z ∗q.
Experiment ExptDL

G,α(A)

y
$← Z

∗
q, Y ← αy mod p,

y′ ← A(Y),
If αy′ mod p = Y , return 1, else, return 0.

The DL-advantage of A in this experiment is defined as

AdvDL
G,α(A) = Pr[ExptDL

G,α(A) = 1].

The DL-advantage of (G, α) in this experiment is defined as

AdvDL
G,α(t) = max

A
{AdvDL

G,α(A)},

where the maximum is over all A having time complexity t.

3. MODELS

In this section, we first describe our system model that is based on the Forward-secure
Stream Integrity (FSI) model. We then provide the generic model of Forward-secure
and Aggregate Signature (FAS) schemes, which is suitable for our system model. Last,
we introduce our security model, in which a FAS scheme is proven to be Forward-secure
Aggregate Existential Unforgeable against Chosen Message Attack (FAEU-CMA) and
secure against the truncation attack.

3.1. System Model

Before presenting our system model, we first discuss the Forward-secure Stream In-
tegrity (FSI) model, which is the basis of all existing FAS constructions.

3.1.1. FSI Model. FSI model is the classic tamper-evident audit logging model initially
introduced by Bellare and Yee [1997] in the context of symmetric key cryptography,
which was later formalized in Bellare and Yee [2003]. The basic FSI model includes
two entities: (i) Storage-limited loggers who are honest until they are compromised.
These loggers compute an authentication tag (e.g., a MAC) for each log entry in a
forward-secure way and then upload these logs and MACs to the verifiers when they
are available. (ii) A limited number of verifiers who are fully trusted (e.g., they do not
disclose the keying material) but not always readily available for the loggers. The basic
FSI model assumes a full symmetric key distribution via an authenticated channel.

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:7

Schneier and Kelsey [1999] followed a similar model in the presence of a TTP(s).
That is, a TTP provides the required symmetric keying material to the verifiers ac-
cordingly (based on a request or periodically).

Logcrypt extended the basic FSI model into the PKC domain. Later, Ma and Tsudik
[2007] followed this PKC-based FSI model by adding the sequential signature aggrega-
tion. This provides “all-or-nothing” property and compactness. These models assume
that verifiers are more resourceful than signers.

3.1.2. Our System Model. Our system model is based on PKC-based FSI model. There
are two new entities in the system: (i) Storage/computational/bandwidth limited log-
gers who are honest until they are compromised. (ii) Storage resourceful verifiers
who can be any (untrusted) entity and do not need an online TTP support for the
verification.

We assume that the key generation/distribution is performed offline before deploy-
ment as in all FSI models. According to the application requirement, each signer can
generate its own private/public keys and provide them to the verifiers (via a certifica-
tion procedure), or optionally, a Key Generation Center (KGC) generates these keys
offline before the deployment and then distributes them to the system entities (e.g.,
suitable for WSNs and RFID tags). If the latter approach is preferred, the KGC is as-
sumed to be trusted and it cannot be compromised by the adversary. For each signer,
there is a different private/public key set, and therefore the key generation algorithm
is implemented for each signer in the system once.

Our constructions behave according to the same-signer-distinct-message model sim-
ilar to the existing PKC-based FAS constructions (e.g., Ma and Tsudik [2007, 2008,
2009] and Ma [2008]). In this model, the same logger computes aggregate signatures
of distinct audit logs accumulated-so-far (i.e., similar to the condensed signatures no-
tion in Mykletun et al. [2004]). This model is an ideal option for secure audit logging
applications, since each logger is responsible for only her own audit logs.

3.2. Model of Forward-Secure and Aggregate Signature (FAS) Schemes

A FAS scheme is an integrated signature scheme that achieves both the forward-
security and the sequential signature aggregation properties simultaneously. Hence,
it has a Key Update algorithm that follows the “evolve-and-delete strategy” to achieve
the forward security similar to the forward-secure signatures (e.g., Krawczyk [2000]).
Moreover, it has Key Generation, Forward-secure and Aggregate Signature Generation
and Forward-secure and Aggregate Signature Verification algorithms. The signature
generation algorithm performs the signature aggregation as in aggregate signatures
(e.g., Boneh et al. [2003] and Boldyreva et al. [2007]) and then uses the key update
algorithm to update the private key.

Definition 3.1. A FAS scheme is a tuple of four algorithms (Kg, Upd, Sig, Ver) that
behave as follows:

(1) (sk, PK) ← FAS.Kg(1κ, L). The key generation algorithm takes the security pa-
rameter 1κ and the maximum number of key updates L as the input. It returns a
private/public key pair (sk, PK) as the output.

(2) sk j+1 ← FAS.Upd(skj, L). The key update algorithm takes the private key sk j, 0 ≤
j < L − 1, and L as the input. It returns the private key sk j+1 as the output.

(3) σ0,l← FAS.Sig(sk j,
−→
D). The forward-secure and aggregate signing algorithm takes

the private key sk j, a message
−→
D = (D j, . . . , Dl), l ≥ j, to be signed and an internal

state � = (σ0, j−1, 〈D0, . . . , D j−1〉) as the input, where � is an empty vector ini-
tially. It returns a forward-secure and aggregate signature σ0,l as the output, and

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:8 A. A. Yavuz et al.

then updates the internal state and the private key as � ← (σ0,l, 〈D0, . . . , Dl〉) and
skm+1 ← FAS.Upd(skm, L), m = j, . . . , l, respectively.

(4) b ← FAS.Ver(PK,
−→
D , σ0,l). The forward-secure and aggregate verification algo-

rithm takes PK, a message
−→
D = (D0, . . . , Dl), l ≤ L, and σ0,l as the input. It

returns a bit b , with b = 1 meaning valid, and b = 0 meaning invalid.

In BAF, the private key sk is provided to the signer as an initial key, and it is evolved
via the key update algorithm in the logging process. Therefore, private key size is
constant at the signer side. PK is a vector with 4L components (i.e., individual public
keys), which are stored by the verifiers.

3.3. Threat and Security Model

Our threat model reflects how a generic FAS scheme works in our envisioned system
model. That is, in a real FAS implementation, A can obtain a large number of forward-
secure and aggregate signatures σ0, . . . , σi of distinct audit log files

−→
D 0, . . . ,

−→
D i com-

puted under a PK. Each vector
−→
D k = (D j ′, . . . , D j), j ≥ j ′ for k = 0, . . . , i represents a

separate log file that includes a set of individual logs. A can observe these values even
before the compromise (e.g., a user can read system logs or logs/signatures are trans-
mitted to the verifiers via an insecure channel). Once A compromises the signer, she
also obtains private key(s) that have not been erased from the memory in the duration
of logging. A may attempt to modify, re-order and selectively delete any of previously
signed audit logs.

A FAS scheme is proven to be ForWard-secure Aggregate Existentially Unforgeable
against Chosen Message Attack (FAEU-CMA) based on the experiment defined in Def-
inition 3.2. Moreover, we provide a formal treatment for the truncation attacks via
the truncation experiment (TRUNC) defined in Definition 3.3 based on the signature
extraction argument [Boneh et al. 2003; Coron and Naccache 2003]. In both experi-
ments, A is provided with three oracles that behave as follows:

(i) Random Oracle. A is given to access a random oracle RO(.) from which she can
request the hash of any message D of her choice up to L′ messages. Note that in
our proofs (see Section 5), cryptographic hash function H used in our schemes is
modeled as a random oracle [Bellare and Rogaway 1993] via RO(.).

(ii) Signing Oracle. A is provided with a signing oracle FAS.Sigsk(.). For each
batch query i, A can query the FAS.Sigsk(.) oracle on a set of messages

−→
D i =

(D j ′ || . . . ||D j), j ≥ j ′, of her choice. FAS.Sigsk(.)returns a forward-secure and
aggregate signature σ0,i under sk on (

−→
D 0|| . . . ||−→D i) (i.e., σ0,i is on all previous mes-

sages that A queried up to now). A can query FAS.Sigsk(.)up to L individual mes-
sages in total as described, until she decides to “break-in”.

(iii) Break-In Oracle. A can invoke the Break-in oracle, which returns the current pri-
vate key to A. That is, if A queried l ≤ L individual messages to FAS.Sigsk(.), then
Break-in oracle returns (l + 1)-th private key to A (if l = L, then Break-in oracle
rejects the query, since all private keys were used).

Definition 3.2. FAEU-CMAexperiment is defined as follows:
Experiment ExptFAEU-CMA

FAS (A)

(sk, PK)← FAS.Kg(1κ, L),
(
−→
D ∗, σ ∗)← ARO(.),FAS.Sigsk(.),Break-in(PK),

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:9

If FAS.Ver(PK,
−→
D ∗, σ ∗) = 1 and ∃n ∈ {0, . . . , l} :

−→
D ∗[n] /∈ −→D holds, then return 1, else

return 0. Here,
−→
D = (

−→
D 0|| . . . ||−→D i) denotes i batch queries (including l ≤ L individual

messages in total) asked to the FAS.Sigsk(.) oracle, each
−→
D m, 0 ≤ m ≤ i, denotes mth

batch query (a vector), and
−→
D ∗[n] denotes the nth individual data item in the forgery

data item vector
−→
D ∗.

FAEU-CMA-advantage of A is defined as

AdvFAEU-CMA
FAS (A) = Pr[ExptFAEU-CMA

FAS (A) = 1]

FAEU-CMA-advantage of FAS is defined as

AdvFAEU-CMA
FAS (t, L′, L) = max

A
{AdvFAEU-CMA

FAS (A)}

where the maximum is over all A having time complexity t, making at most L′ queries
to RO(.) and at most L queries to FAS.Sigsk(.).

Definition 3.3. TRUNC experiment is defined as follows:
Experiment ExptTRUNC

FAS (A)

(sk, PK)← FAS.Kg(1κ, L),

(
−→
D ∗, σ ∗)← ARO(.),FAS.Sigsk(.),Break-in(PK),

If (FAS.Ver(PK,
−→
D ∗, σ ∗) = 1) ∧ ¬(∃I ⊆ {0, . . . , i} :

−→
D ∗ = ||m∈I

−→
D m) holds, then return 1,

else, return 0, where
−→
D m denotes mth batch query (a vector) in

−→
D = (

−→
D 0|| · · · ||−→D i).

TRUNC-advantage of A is defined as

AdvTRUNC
FAS (A) = Pr[ExptTRUNC

FAS (A) = 1]

TRUNC-advantage of FAS is defined as

AdvTRUNC
FAS (t, L′, L) = max

A
{AdvTRUNC

FAS (A)}

where the maximum is over all A having time complexity t, making at most L′ queries
to RO(.) and at most L queries to FAS.Sigsk(.).

Note that the nontriviality condition of the above experiment captures the trunca-
tion attacks. The nontriviality condition requires that A must output a forgery that
is not comprised of a combination of batch queries she made to the signature oracle.
That is, in order to win the truncation experiment, A must split an aggregate signa-
ture that she queried to the signature oracle without querying its subaggregate (com-
plementary) signatures. We explain this condition based on the signature extraction
argument in following discussion.

3.4. Discussion on Our Security Model

To justify our security model, we give a discussion on the batch queries, modeling of
truncation attacks and some approaches that are alternative to ours.

— Batch Queries vs. Individual Queries. The previous FAS constructions (i.e., Ma and
Tsudik [2007, 2008, 2009], Ma [2008], and Yavuz and Ning [2009a]) implement the
signing oracle based on individual signature queries. Such an implementation still
captures a forgery on an individual data modification. However, we prefer batch
queries for two reasons:

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:10 A. A. Yavuz et al.

(i) Batch queries reflect the FAS mechanism better than individual queries. In all
FAS construction, the aggregation function is public and easily invertible on a
given aggregate signature σ0, j, if its individual components are known. For ex-
ample, for given σ0, j and σ0, j ′ , j ′ ≤ j, it is easy to compute σ j ′+1, j. Hence, for a
given set of messages, if an “all-or-nothing” property is needed, a FAS scheme
is required to delete all intermediate aggregate signatures (e.g., individual sig-
natures) during the signing process, and only keep the final aggregate signature
as the authentication tag [Ma 2008; Ma and Tsudik 2007, 2009]. Note that our
batch query approach reflects this behavior while the individual query approach
cannot capture it.

(ii) None of the previous FAS constructions provide a formal reduction in the case of
a tail-truncation attack. Recall that the tail-truncation attack is a special type
of deletion attack, in which A deletes a continuous subset of entries at the end
of the log. Since this type of deletion does not cause an order change, plain indi-
vidual query model is not sufficient to capture this case. In contrast, our batch
query approach captures this attack based on the aggregate signature extraction
argument.

— Aggregate Signature Extraction and Truncation Attack. The truncation attack can
be modeled based on the aggregate signature extraction argument [Boneh et al.
2003; Coron and Naccache 2003]). Difficulty of aggregate signature extraction im-
plies that for a given aggregate signature σ0,k computed from k individual signa-
tures, it is difficult to extract these individual signatures σ0, . . . , σk (provided that
only σ0,k is known to the extractor). In fact, it should be difficult to separate any
proper aggregate signature subset σ ′ from the given aggregate signature of σ0,k.
Note that a truncation attack implies a signature extraction [Ma and Tsudik 2007,
2009]. For instance, the extraction of an individual signature σk from the given
aggregate signature σ0,k without knowing its complementary aggregate signature
σ0,k−1 is equivalent to a tail-truncation attack (i.e., A can trivially truncate the cor-
responding data item Dk (i.e., the tail log entry) of σk without being detected, since
the aggregation function is public and invertible).
In our security analysis, we prove the resilience of BAF against the truncation at-
tacks based on the difficult of the aggregate signature extraction. In particular, we
make a reduction to DLP for a single signature extraction case. That is, for a given
valid aggregate signature σ ′ on two individual public keys, if A can split it into two
valid individual signatures on their corresponding public keys, then it is possible to
break the DLP.

— Alternative Approaches. An alternative approach to avoid a truncation attack is
to use auxiliary signatures on aggregate signatures or indexes. For instance, in
addition to the aggregate signature, one can compute a forward-secure signature on
a counter that is increased once for each accumulated log entry. This prevents A to
modify the number of data items in the log. However, this approach increases the
computational and storage costs of FAS construction due to the use of a secondary
forward-secure signature.

4. BLIND-AGGREGATE-FORWARD (BAF) SCHEMES

In this section, we first present our main BAF scheme, and then its extension FI-BAF.

4.1. Overview

All previous PKC-based FAS constructions are directly derived from existing aggregate
or forward-secure signature schemes. For instance, FssAgg-BLS [Ma and Tsudik 2007]

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:11

is derived from the aggregate signature scheme given in Boneh et al. [2003]. Similarly,
FssAgg-BM and FssAgg-AR in Ma [2008] and Ma and Tsudik [2008, 2009] are derived
from the forward secure signatures given in Bellare and Miner [1999] and Abdalla
and Reyzin [2000], respectively. Hence, they inherit the high computational/storage
costs of these signature primitives as well as incurring extra overheads to achieve the
additional aggregation or forward security property.

— BAF Strategy. BAF uses a new strategy called “Blind-Aggregate-Forward”. Such
a strategy enables signers to log a large number of log entries with little computa-
tional, storage, and communication costs in a publicly verifiable way:

(1) Individual Signature Generation. BAF computes the individual signature of each
accumulated data item with a simple and efficient blinding operation. Blinding is
applied to the hash of a data item via first a multiplication and then an addition
operation modulo a large prime q by using a pair of secret blinding keys (referred
as the blinding key pair). The result of this blinding operation is a random output
(i.e., the one-time individual signature), which cannot be forged without knowing
its associated private keys.

(2) Key Update. BAF updates the blinding key pair via two hash operations after
each individual signature generation, and then deletes the previous key pair from
memory.

(3) Signature Aggregation. BAF aggregates the individual signature of each accu-
mulated data item into the existing aggregate signature with a single addition
operation modulo q.

In this construction, the individual signature computation binds the hash of a
signed data item to its index, a random number and the corresponding blinding key
pair in a specific algebraic form. The signature aggregation maintains this form in-
crementally and also preserves the indistinguishability of each individual signature.
Hence, the resulting aggregate signature can be verified by a set of public key securely.
BAF enables this verification by embedding each blinding private key pair into a pub-
lic key pair via a modular exponentiation in the key generation phase in an offline
manner. Using the corresponding public keys, the verifiers follow the BAF signature
verification equation by performing a modular exponentiation for each received data
item.

4.2. Description of BAF

The proposed BAF scheme is.

(1) (sk, PK)← BAF.Kg(1κ, L). Given the security parameter 1κ , generate large primes
(p, q) such that p > q and q|(p − 1). Also generate a generator α of the
subgroup G of order q in Z ∗p. H is a cryptographic hash function, that is,
H : {0, 1}∗ → Z ∗q.

(a) Generate the initial key pair as (a0, b0)
$← Z ∗q, and then generate two hash

chains from (a0, b0) as aj+1 ← H(aj) and b j+1 ← H(b j) for j = 0, . . . , L − 1.

(b) Generate two master seeds (x, x′)
$← Z ∗q. Also generate rj ← H(x|| j) and k j ←

H(x′|| j), respectively, for j = 0, . . . , L − 1. Compute the corresponding tokens
as uj ← k j + rj mod q for j = 0, . . . , L − 1 and uj

′ ← k j−1 + H(k j) mod q for
j = 1, . . . , L − 1.

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:12 A. A. Yavuz et al.

(c) Compute {A j← αaj mod p, B j← αb j mod p}L−1
j=0 .

(d) Private/public key of the signer is as follows:
sk← (0, 〈a0, b0〉, x, x′) and PK ← ({A j, B j, uj}L−1

j=0 , {u′j}L−1
j=1 , p, q, α, L).

(2) sk j+1 ← BAF.Upd(sk j, L). Given sk j = (j, 〈aj, b j〉, x, x′), if j ≥ L − 1, then re-
turn ⊥ (i.e., invalid input). Otherwise, update the private key as sk j+1 ← (j +
1, 〈aj+1, b j+1〉, x, x′), where (aj+1 ← H(aj), b j+1 ← H(b j)), and then securely erase
(aj, b j) from the memory.6

(3) σ0,l← BAF.Sig(sk j,
−→
D). Given the private key sk j = (j, 〈aj, b j〉, x, x′), data to be

signed
−→
D = 〈D j, . . . , Dl〉 and the internal state � = (σ0, j−1, 〈D0, . . . , D j−1〉) (initially

� is empty), compute the forward-secure and aggregate signature σ0,l as follows:

(a) Compute sj,l ←
∑l

m= j(amH(Dm||rm||m) + bm) mod q, where rm = H(x||m) and
(m + 1, 〈am+1, bm+1〉, x, x′)← BAF.Upd(〈m, 〈am, bm〉, x, x′〉, L) for m = j, . . . , l.

(b) Fold sj,l into s0, j−1 as s0,l← s0, j−1 + sj,l mod q, where l > 0 and s0,0 = s0.
(c) Erase (σ0, j−1, sj,l, rj, . . . , rl) from memory (note that (aj, b j) were erased by

BAF.Upd algorithm). Update the state as � ← (σ0,l, 〈D0, . . . , Dl〉) and return
the signature σ0,l← 〈s0,l, kl〉, where kl = H(x′||l).

(4) b ← BAF.Ver
(
PK,
−→
D , σ0,l

)
. Recall that PK =

({
A j, B j, uj

}L−1
j=0 ,

{
u′j

}L−1
j=1 , p, q, α, L

)
.

Given
−→
D = (D0, . . . , Dl), if this equality holds, BAF.Ver returns 1, else,

returns 0.

αs0,l mod p ≡
l∏

j=0

(A H(D j||rj|| j)
j · B j) mod p,

where k j−1 ← uj
′ − H(k j) mod q for j = l, . . . , 1, rj ← uj − k j mod q for j = l, . . . , 0

and σ0,l = 〈s0,l, kl〉.

Correctness. Recall that the signature is σ0,l = 〈s0,l, kl〉, where s0,l ≡
∑l

j=0(aj

H(D j||rj|| j) + b j) mod q and kl = H(x′||l), which are computed via the BAF.Sig algo-
rithm. In the BAF verification equation, the verifier computes the left-side of the equa-
tion via s0,l as αs0,l mod p. At the right-side of the equation, the verifier checks whether
the data items D0, . . . , Dl (along with random numbers r0, . . . , rl and indexes), when
exponentiated over the public values {A j = αaj mod p, B j = αb j mod p}lj=0, correctly
constructs s0,l on the exponent. The correctness of the BAF follows as:

αs0,l mod p ≡ α
∑l

j=0(ajH(D j||rj|| j)+b j) mod p

≡ ((αa0)H(D0||r0||0)αb0)((αa1)H(D1||r1||1)αb1) · · · ((αal)H(Dl||rl||l)αbl) mod p

≡
l∏

j=0

(A H(D j||rj|| j)
j · B j) mod p

Remark. Different from our preliminary version [Yavuz and Ning 2009a], the cur-
rent BAF algorithm uses a random number rj for each signature sj computed on D j.
We introduce these random numbers to achieve a correct behavior for the simulators

6Note that, in contrast to the private keys (aj, b j), the master seeds (x, x′) do not need to be forward-secure,
and therefore they are not evolved (they are given as the input to BAF.Upd for the completeness of the
interface).

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:13

constructed in FAEU-CMA and TRUNC experiments. That is, they enable the sim-
ulator F (i.e., the DLP attacker) to simulate A ’s (i.e., the BAF attacker’s) RO(.) and
FAS.Sigsk(.) queries without causing A to abort with a non-negligible probability (in
terms of κ). The details are given in Section 5.

We use master seeds (x, x′), tokens (u, u′) and masking keys k j as the auxiliary com-
ponents to integrate these random numbers to the BAF without degrading its optimal
signer efficiency. In the key generation, each random number rj and the previous
key k j−1 are masked via the key k j as uj ← k j + rj mod q for j = 0, . . . , L − 1 and
uj
′ ← k j−1 + H(k j) mod q for j = 1, . . . , L − 1, respectively. These tokens are given to

the verifiers as a part of the public key.
Once the signer releases the signature σ0,l = 〈s0,l, kl〉, verifiers can recover all the

previous random numbers r0, . . . , rl from (ul, u′l) via kl in a computationally efficient
way. Note that the release of these random numbers does not hurt the security, since
they are required to be a part of private key only before the signature generation. After
being signed, random numbers just become a part of the signature and therefore can
be publicized. Similarly, the signer can derive all random numbers and masking keys
from the master seeds (x, x′) with only two hash operations (these seeds and random
numbers do not need to be forward-secure).

Notice that, instead of using the above strategies, the signer could simply generate
a new random number for each data item. However, such an approach requires stor-
ing and then transmitting these random numbers to the verifiers, which destroy the
constant-size key/signature storage and transmission properties (i.e., the aggregation
property) at the signer side. Hence, seed and token mechanisms offload the storage
of random numbers to the verifiers while keeping them secret until they need to be
publicized. Based on the above strategies, the signer avoids storing/transmitting a
random number for each data item (i.e., linear storage), and she also does not perform
any ExpOp as required. The verifier computational efficiency is also preserved, but
the verifier storage overhead is doubled.

4.3. Fast-Immutable BAF (FI-BAF)

All existing FAS constructions including BAF keep only the single-final aggregate sig-
nature for the entire signing process. There are two reasons behind this strategy:
(i) The aggregation function of all PKC-based FAS constructions is public and easy
to invert if its individual signature components are known. Therefore, all individual
signatures are securely erased immediately after they are aggregated in the sign-
ing process to prevent truncation attacks. (ii) This also offers the signature stor-
age/transmission efficiency (i.e., the constant signature size).

However, this strategy also has certain drawbacks [Ma and Tsudik 2009]: (i) The
verification of a particular log entry requires the verification of all log entries, which
forces verifiers to perform a large number of ExpOps. (ii) If the verification of the
aggregate signature fails, it is not possible to detect which log entry(ies) is (are) re-
sponsible for the failure.

It is therefore desirable to enable a fine-grained verification of individual data items,
while still being secure against the truncation attack.

The problem of deriving “valid” aggregate signatures from existing aggregate and/or
individual signatures (either via truncation or partial aggregation) was first addressed
by Mykletun et al. [2004] with immutable aggregate signatures. Immutable aggregate
signatures prevent such derivations by introducing additional protection mechanisms
for individual signatures according to the underlying aggregate signature scheme.
Mykletun et al. [2004] suggest two main types of immutable signature mechanisms:
(i) Zero-knowledge proof techniques (one is interactive and the other is non-interactive)

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:14 A. A. Yavuz et al.

for condensed-RSA schemes; (ii) Umbrella signature technique for the BLS-based ag-
gregate signature schemes (e.g., Boneh et al. [2003]). These constructions are designed
for the generic distinct-signer-distinct-message model.7

To prevent the truncation attacks against FssAgg signatures [Ma 2008; Ma and
Tsudik 2007], when individual signatures are kept, Ma and Tsudik [2009] adopt the
umbrella signature technique in Mykletun et al. [2004] in their schemes as the im-
mutable signature mechanism. Unfortunately, the direct adaptation of this technique,
which is particularly useful for distinct-signer-distinct-messages model, increases the
computational overhead of already costly FssAgg schemes.

4.3.1. Fast-Immutable BAF (FI-BAF). To address the above problem, we give a sim-
ple variant of BAF called Fast-Immutable BAF (FI-BAF). FI-BAF leverages the fact
that all existing FAS constructions behave according the same-signer-distinct-message
model (see Section 3.1.2), and therefore the signer can easily compute two indepen-
dent signature sets to achieve both the “all-or-nothing” and the individual signature
verification properties. This simple strategy is more efficient than the direct use of im-
mutable signatures [Mykletun et al. 2004], which are designed for the distinct-signer-
distinct-message model.

In FI-BAF, the “all-or-nothing” property is achieved by using BAF as a sub-routine.
To enable the fine-grained verification, FI-BAF computes a second set of forward-
secure signatures along with the execution of BAF. These signatures are computed
as in BAF with the exception that they are kept in individual form instead of being ag-
gregated. Furthermore, these individual signatures are accompanied with a random
number n, which is signed along with an index j incrementally, and is specific to each
signer.

The individual signatures and the aggregate signature are computed with distinct
private key sets. Hence, these individual signatures cannot be used to launch a trun-
cation attack (any such attempt is equivalent to produce a forgery on the aggregate
signature). Similarly, individual signatures are identified with the use of a distin-
guishing index n, which prevents them to be used in an aggregated form. That is, any
signature computed with n is considered as an individual signature, and if it is used in
an aggregate form, the verifiers will reject the associated signature. Therefore, A ei-
ther has to remove n from the individual signature (i.e., explicitly forge it), or keep it
intact in individual form.

Note that since the computation of second (individual) signature set does not require
any ExpOp as in BAF, FI-BAF is practically as computation-efficient as the original
BAF at the signer side. At the same time, different from iFssAgg schemes [Ma and
Tsudik 2009], FI-BAF does not combine individual and aggregate signatures to form
the single-final aggregate signature. (Such combination is redundant in the same-
signer-distinct-message model.). Hence, FI-BAF is also as computation-efficient as the
original BAF at the verifier side.

The storage overhead of FI-BAF is linear with the number of individual signa-
tures as in all immutable aggregate signature schemes. Similarly, FI-BAF doubles
the storage overhead of its base scheme at the verifier side. However, FI-BAF is more
computation-efficient than iFssAgg schemes, which also doubles the computational
overhead of their base schemes both at the signer and verifier sides.

7In distinct-signer-distinct-message model, each signer in the system computes a signature on a (distinct)
message, and these signatures can be aggregated by any entity (e.g., secure routing applications [Boldyreva
et al. 2007; Boneh et al. 2003; Mu et al. 2007]). However, all existing forward-secure and aggregate secure
logging schemes follow the same-signer-distinct-message model, in which the same logger computes aggre-
gate signatures of distinct audit logs accumulated-so-far (i.e., similar to the condensed signatures notion
in Mykletun et al. [2004]).

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:15

5. SECURITY ANALYSIS

In the random oracle model [Bellare and Rogaway 1993], we prove that BAF is a
FAEU-CMA signature scheme in Theorem 5.1. Note that in our proofs, we ignore
terms that are negligible in terms of κ .

THEOREM 5.1.

AdvFAEU-CMA
BAF(p,q,α) (t, L′, L) ≤ L · AdvDL

G,α(t′),

where O(t′) = O(t + L · κ2 + L′ ·RNG) (in the random oracle model).

PROOF. Let A be a BAF attacker and recall that (y
$← Z

∗
q, Y ← αy mod p) as defined

in DL-experiment (i.e., Definition 2.1). We construct a DL-attacker F that uses A as a
sub-routine as follows:

Algorithm F(Y)

Setup. F randomly chooses a target forgery/signature extraction index w
$←

[0, L − 1], for which A is supposed to output her forgery. F generates BAF pri-
vate/public keys, and then embeds the target discrete-log value Y into the w-th
BAF public values (i.e., (Aw, Bw)) via a simulation, hoping that A produces a
successful forgery on them. If this occurs then F extracts y from Y with a non-
negligible probability.
— (sk, PK) ← BAF.Kg(1κ , L), where sk = (0, 〈a0, b0〉, x, x′), PK ← ({A j,

B j}0≤ j≤L−1, j�=w, {uj}L−1
j=0 , {u′j}L−1

j=1 , p, q, α, L).
— (j, 〈aj, b j〉, x, x′)← BAF.Upd((j− 1, 〈aj−1, b j−1〉, x, x′), L), j = 1, . . . , L − 1.
— Simulation: Simulate public keys (Aw, Bw), an individual signature γ , and its

corresponding random oracle answer z on (Aw, Bw) as follows:
— Aw ← Y ,

— (z, γ)
$← Z

∗
q,

— Bw ← (Y z)−1αγ mod p,
— Initialize the counters as l← 0, j ′ ← 0, i← 0, l′ ← 0,
Execute ARO(.),FAS.Sigsk(.),Break-in(PK). F maintains three lists HL, LD, and LS to
keep track the query results during the experiment, all initially empty. HL is a
hash list in a form of tuples (D j, hj), where D j and hj denote the jth data item
queried to RO(.) and its corresponding RO(.) answer, respectively. HL[j, 0] and
HL[j, 1] denote the access to the element D j and hj, respectively. LD is a data list,
in which each of its elements LD[i] is also a data vector

−→
D (i.e., a batch query).

LS is a signature list that is used to record answers given by FAS.Sigsk(.).
— Queries. A queries the FAS.Sigsk(.) oracle on up to L messages of her choice,

and then queries the Break-in oracle once. A also queries the RO(.) oracle on
up to L′ messages of her choice. These queries are handled as follows:
— How to Respond to Queries to RO(.) Oracle. F executes the function

H-Sim(δ) that works as follows: If ∃k : δ ∈ HL[k, 0] then return HL[k, 1].

Otherwise, return h
$← Z

∗
q as the answer, insert the new tuple (δ, h) to HL as

(HL[l′, 0] ← δ,HL[l′, 1] ← h), and then update l′ ← l′ + 1. That is, crypto-
graphic hash function H used in BAF is modeled a random oracle.

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:16 A. A. Yavuz et al.

— How to Respond to ith FAS.Sig(Dj ′ , . . . , Dj) Query.
— If ((j < w) ∨ (j ′ > w)), then compute sj ′, j←

∑ j
m= j ′ (amhm + bm) mod q as in

the real system, where hm← H-Sim(Dm||rm||m) and rm← H-Sim(x||m).8
Otherwise, if (Dw||rw||w) ∈ HL, then abort and return 0 (an abort prob-
ability analysis is given in the following parts). Otherwise, compute
sj ′, j← [

∑
j ′≤m≤ j,m�=w(amhm+bm)]+γ mod q, where hm← H-Sim(Dm||rm||m).

Insert (Dw||rw||w, z) into HL.
— s0, j← s0, j ′−1 + sj ′, j mod q (for initial j ′ = 0, s0, j ′−1 = 0), and σ0, j← 〈s0, j, k j〉,

where k j = H-Sim(x′|| j).
— Respond ith batch query as σ0, j, and then insert

−→
D i and σ0, j into LD and

LS, respectively.
— Update j ′ ← j + 1, l← j ′, i← i + 1 and continue to respond A ’s queries.

— How to Respond to Queries to the Break-In Oracle. Assume that
FAS.Sigsk(.) oracle was queried l individual messages up to now. If l = L,
then reject the query (all private keys were used) and proceed to the Forgery
phase. Otherwise, if l ≤ w, then abort and return 0. Otherwise, give
ξ ← 〈{m, am, bm}L−1

m=l+1, x, x′〉) to A .
— Forgery. Finally, A outputs a forgery for PK as (

−→
D ∗, σ ∗ = 〈s∗0,e, k∗〉).

By Definition 3.2, A wins if BAF.Ver(PK,
−→
D ∗, σ ∗) = 1 and ∃n ∈ {0, · · · , l} :

−→
D ∗[n] /∈

(LD[0]|| · · · ||LD[i]) holds (recall that each LD[m], 0 ≤ m ≤ i, is a batch query (a data
vector), and

−→
D ∗[n] is the nth individual data item in the forgery data vector

−→
D ∗).

If A loses in the FAEU-CMA experiment, then F also loses in the DL-experiment,
and therefore F aborts and returns 0. Otherwise, F proceeds as follows:

Extraction. If ((e < w) ∨ (
−→
D ∗[w] = Dw)), then F aborts and return 0, where e = |−→D ∗|

(i.e., A ’s forgery is valid but it is not on the values (Aw, Bw)). Otherwise, F proceeds
for the discrete log extraction as follows:

The forged aggregate signature s∗0,e is valid on PK, and F knows all the cor-
responding private keys of PK except (aw = y, bw), which are included in the
forged individual signature γ ∗. Hence, F first isolates γ ∗ from s∗0,e as γ ∗ ← s∗0,e −∑

0≤v≤e,v �=w(avH-Sim(
−→
D ∗[v]||rv||v) + b v) mod q.

Recall that Bw ≡ (Az
w)−1αγ mod p holds due to the simulation. Moreover, since

BAF.Ver(PK,
−→
D ∗, σ ∗) = 1 holds, αγ ∗ ≡ (Aw)h∗w Bw mod p also holds, where (Aw, Bw) ∈

PK and h∗w ← H-Sim(
−→
D ∗[w]|| rw||w). Therefore, we write the following equations:

αγ ≡ (αy)zαbw mod p,

αγ ∗ ≡ (αy)h∗wαbw mod p,

F then extracts y by solving these modular linear equations (note that only un-
knowns are y′ and bw):

γ ≡ y · z + bw mod q,

γ ∗ ≡ y · h∗w + bw mod q,

Note that Y ≡ αy mod p holds, since A ’s forgery is valid and nontrivial on Y . There-
fore, by Definition 2.1, F wins the DL-experiment.

8Recall that BAF.Kg algorithm already computed {rm, km}L−1
m=0 from seeds (x, x′), respectively, during the key

generation and inserted these results into HL.

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:17

The success probability and execution time analysis of this experiment, and the
indistinguishability argument are as follows:

— Success Probability Analysis. We analyze the events that are needed for F to win
the DL experiment as follows:
— Abort1. F does not abort as a result of A ’s queries.
— Forge. A wins the FAEU-CMA experiment.
— Abort2. F does not abort in the extraction.
— Win. F wins the DL experiment

F succeeds if all of these events happen, and hence the probability AdvDL
G,α(t′) decom-

poses as,

Pr[Win] = Pr[Abort1] · Pr[Forge|Abort1] · Pr[Abort2|Abort1 ∧ Forge]

— The Probability of Event Abort1 Occurs. F may abort in the duration of FAS.Sigsk(.)
queries, if one the following events occurs:
(i) Before obtaining kw from FAS.Sigsk(.), if A queries the data item Dw||rw||w to

the RO(.) oracle and then requests its signature from the FAS.Sigsk(.) oracle,
then F aborts. This occurs if A randomly guesses rw or the master seeds (x, x′),
from which rw and its masking key kw are derived. The probability that this
occurs is 3/(q− 1), which is negligible in terms of κ .

(ii) A queries the FAS.Sigsk(.) oracle on 0 ≤ l ≤ L−1 data items and then queries the
Break-in oracle. If l ≤ w, then F aborts (i.e., F does not know the corresponding
private key of Aw = Y , and therefore cannot answer this query). The probability
that F does not abort (i.e., the index w falls into the safe range [0, l]) is l/L.

Omitting the negligible terms, the probability is Pr[Abort1] = (1 − 3/(q − 1))
(l/L) ∼= l

L .
— The Probability of Event Forge Occurs. If event Abort1 occurs, then A also does not

abort, since A ’s view is statistically indistinguishable from her view in a real-system
(see the indistinguishability argument). Hence, this occurs with Pr[Forge|Abort1] =
AdvFAEU-CMA

BAF(p,q,α) (t, L′, L).
— The Probability of Event Abort2 Occurs. If A ’s forgery is on (Aw, Bw) then F does

not abort in the extraction. Since w ≤ |−→D ∗| = e ≤ l, this occurs with a probability
at least Pr[Abort2|Abort1 ∧ Forge] ≥ 1/l. Note that the probability that A wins on
a data item D∗w without querying it to the RO(.) oracle is negligible in terms of κ ,
and therefore H-Sim always returns an existing answer from HL in the extraction.
Hence, after the extraction, the probability that Y �≡ αy mod p is also negligible.

Therefore, the upper bound on FAEU-CMA-advantage of BAF is as follows:

AdvFAEU-CMA
BAF(p,q,α) (t, L′, L) ≤ L · AdvDL

G,α(t′)

— Execution Time Analysis. The running time of F is that of A plus the time it takes
to respond up to L′ RO(.) queries and L FAS.Sigsk(.) queries. Each new RO(.) query
requires drawing a random number from Z

∗
q, whose cost is denoted as RNG. Each

FAS.Sigsk(.) query requires at least two modular additions and one modular multi-
plication, whose costs are denoted as O(κ2). Hence, the approximate running time
of F is O(t′) = O(t + L · κ2 + L′ · RNG).

— Indistinguishability Argument. The real-view of A is comprised of the public key
PK = ({A j, B j, uj}L−1

j=0 , {u′j}L−1
j=1 , p, q, α, L) and the answers of FAS.Sigsk(.), RO(.) and

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:18 A. A. Yavuz et al.

Break-in oracles given as LS, HL = {hm}l′m=0, and ξ = 〈{am, bm}L−1
m=l+1, x, x′〉, respec-

tively. That is,
−→
A real = 〈PK,LS,HL, ξ〉, where all values are generated/computed by

BAF algorithms as in the real system.

In
−→
A real, all variables in PK are computed from values denoted as ϒ =

({aj, b j}L−1
j=0 , x, x′). Similarly, all variables in LS are computed from the variables in

HL and ϒ. That is, the joint probability distribution of all other variables in
−→
A real are

binary probabilities, which are decided by the joint probability distribution of (ϒ,HL).
Note that all variables in (ϒ,HL) are random values in Z ∗q, where |HL| = l′ and

|ϒ| = 2L + 2. Hence, the joint probability distribution of
−→
A real is,

Pr[
−→
A real = −→a] = Pr[ϒ = ϒ|HL = HL]

= Pr[x′ = x′|x = x ∧ a0 = a0∧, . . . ,∧b0 = b0∧, . . . ,∧HL = HL]

= Pr[x′ = x′|x = x ∧ a0 = a0∧, . . . ,∧h0 = h0∧, . . . ,∧hl′ = hl′]

=
1

(q− 1)2(L+1)+l′

The simulated-view of A is
−→
A sim, and it is equivalent to

−→
A real except that in the

simulation, the original decider variables (aw, hw, bw) are replaced with the decider

variables (y, z, c), where (y, z, γ)
$← Z

∗
q and c = γ − y · z mod q. That is, all 2(L + 1) + l′

deciders are random variables in Z ∗q as in the real system. Furthermore, (y, z, c) are
used identically as (aw, hw, bw) are used in the real-system to compute required values
(i.e., γ = sw). Therefore, the joint probability distributions Pr[

−→
A real = −→a] = Pr[

−→
A sim =−→a] (i.e., perfectly indistinguishable).

We prove that BAF is secure against the truncation attacks in Theorem 5.2 (in the
random oracle model).

THEOREM 5.2.

AdvTRUNC
BAF(p,q,α)(t, L′, L) ≤ L2

L − 1
· AdvDL

G,α(t′),

where O(t′) = O(t + Lκ2 + L′ ·RNG) (in the random oracle model).

PROOF. Let A be a BAF attacker and recall that (y
$← Z

∗
q, Y ← αy mod p) as defined

in DL-experiment (i.e., Definition 2.1). We construct a DL attacker F that uses A as a
sub-routine as follows:

Algorithm F(Y)

Setup. F randomly chooses a target forgery/signature extraction index w
$←

[0, L − 1], for which A is supposed to output her forgery. F generates BAF public
private/public keys, and then embeds the target discrete-log value Y into the wth
and (w + 1)-th BAF public values (i.e., (Aw, Bw+1)) via a simulation using a batch
(aggregate) signature s′, hoping that A produces a successful forgery on them.
That is, if A splits s′ into two valid individual signatures without querying these
individual signatures to the signature oracle, then F can extract y from Y with a
nonnegligible probability.

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:19

— (sk, PK) ← BAF.Kg(1κ , L), where sk = (0, 〈a0, b0〉, x, x′), PK ← ({A j
}0≤ j≤L−1, j�=w,

{B j}0≤ j≤L−1, j�=w+1, {uj}L−1
j=0 , {u′j}L−1

j=1 , p, q, α, L).
— (j, 〈aj, b j〉, x, x′)← BAF.Upd((j− 1, 〈aj−1, b j−1〉, x, x′), L), j = 1, . . . , L − 1.
— Simulation. Simulate public keys (Aw, Bw+1), a batch signature s′, and its

corresponding random oracle answers (z0, z1) on (〈Aw, Bw〉, 〈Aw+1, Bw+1〉) as
follows:
— Aw ← Y , s′

$← Z
∗
q,

— (z0, z1)
$← Z

∗
q, Bw+1 ← αs′ (Az0

w Bw Az1
w+1)−1 mod p,

— Initialize the counters as l← 0, j ′ ← 0, i← 0, l′ ← 0.
Execute ARO(.),FAS.Sigsk(.),Break-in(PK). F maintains HL, LD, and LS to keep track
the query results in the duration of the experiment as in Theorem 5.1.
— Queries. F handles A ’s queries as follows:

— How to Respond to Queries to RO(.) Oracle. F executes the function H-Sim(.)
that is defined in Theorem 5.1.

— How to Respond to ith FAS.Sig(Dj ′ , . . . , Dj) Query.
— If ((j < w)∨(w+1 < j ′)), then compute sj ′, j←

∑ j
m= j ′ (amhm+bm) mod q as in

the real-system, where hm← H-Sim(Dm||rm||m) and rm← H-Sim(x||m).
Otherwise, if ((j = w) ∨ (Dw||rw||w ∈ HL) ∨ (Dw+1||rw+1||(w + 1)) ∈ HL),
then abort and return 0 (an abort probability analysis is given in the
following parts). Otherwise, compute sj ′, j ← [

∑
j ′≤m≤ j,m�=w,m�=w+1(amhm

+bm)] + s′ mod q, where hm ← H-Sim(Dm||rm||m). Insert tuples {(Dw||rw

||w, z0), (Dw+1||rw+1||(w + 1), z1)} into HL.
— s0, j← s0, j ′−1 + sj ′, j mod q (for initial j ′ = 0, s0, j ′−1 = 0), and σ0, j← 〈s0, j, k j〉,

where k j← H-Sim(x′|| j).
— Respond with σ0, j, and then insert

−→
D i and σ0, j into LD and LS, respec-

tively.
— Update j ′ ← j + 1, l← j ′, i← i + 1 and continue to respond her queries.

— How to Respond to Queries to the Break-In Oracle. A queried FAS.Sigsk(.) or-
acle on l individual messages up to now. If l = L, then reject the query (all
private keys were used) and proceed to the Forgery phase. Otherwise, if
l ≤ w + 1, then abort. Otherwise, give ξ ← 〈{am, bm}L−1

m=l+1, x, x′〉 to A .

— Forgery. Finally, A outputs a forgery for PK as
(−→

D ∗, σ ∗ = 〈s∗0,e, k∗〉
)
.

By Definition 3.3, A wins if (FAS.Ver(PK,
−→
D ∗, σ ∗) = 1) ∧ ¬(∃I ⊆ {0, . . . , i} :

−→
D ∗ =

||m∈ILD[m]) holds. Recall that i denotes the total number of batch queries A made to
FAS.Sigsk(.) oracle, and LD[m], 0 ≤ m≤ i, denotes kth batch query.

If A loses in the TRUNC experiment, then F also loses in the DL-experiment, and
therefore F aborts and returns 0. Otherwise, F proceeds as follows:

Extraction. This occurs if A performs a tail-truncation attack on the simulated val-
ues (i.e., individual public keys) (Aw, Bw+1). Note that, due to the indexing mechanism,
any non-tail-truncation attack (see Section 3.4 for a discussion on aggregate signature
extraction and truncation attacks) results in a traditional forgery (i.e., A has to modify
index and/or random seeds), which was analyzed in Theorem 5.1. Therefore, we only
analyze the tail-truncation case as follows:

A queried the FAS.Sigsk(.) oracle on l ≤ L − 1 data items and then queried the
Break-in oracle. Hence, the final signature that A obtained from FAS.Sigsk(.) is σ0,l =
〈s0,l, kl〉. A tail-truncation attack occurs if A extracts a valid aggregate signature s∗0,e =

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:20 A. A. Yavuz et al.

s0,e from s0,l without querying s0,e or se+1,l to FAS.Sigsk(.), where e = |D∗| and s0,l ≡
s0,e + se+1,l mod q (0 < e < l and for e + 1 = l, sl,l = sl). Notice that, different from
the traditional forgery case (analyzed in Theorem 5.1), in a tail-truncation attack,
A does not modify the data items corresponding to the truncated signature s∗0,e. That
is, s∗0,e = s0,e is valid on

−→
D ∗ = (D0, . . . , De) as denoted in the winning condition.

Recall that F embedded Y into Aw and then setup the simulation as Bw+1 ←
αs′(Az0

w Bw Az1
w+1)−1 mod p, which implies the below equality holds,

s′ ≡ y · z0 + bw︸ ︷︷ ︸
s′0

+ aw+1 · z1 + bw+1︸ ︷︷ ︸
s′1

mod q,

where (y, bw+1) are the unknowns (and so the individual signatures s′0 and s′1 are also
unknown). Therefore, F checks if e = w and

−→
D ∗[w] = Dw. That is, whether A splits

the batch signature s′ that F embedded into A ’s FAS.Sigsk(.) query on the values
〈Aw, Bw〉, 〈Aw+1, Bw+1〉. If this is not the case, F aborts and return 0. Otherwise, F pro-
ceeds for the discrete-log extraction as follows:

Due to the validity condition, the forged (extracted) aggregate signature s∗0,w is valid
on PK, and F knows all the corresponding private keys of PK except aw = y, which
is included in the individual signature s′0 as shown in this equation. Hence, F first
isolates s′0 from s∗0,w

as s′0 ← s∗0,w
−∑w−1

v=0 (avH-Sim(
−→
D ∗[v]||rv||v) + b v) mod q (note that

e = w). Note that since s∗0,w
is valid on PK, s′0 is also valid on (Aw, Bw). Hence, the

equation αs′0 ≡ Az0
w Bw mod p holds. F knows (z0, bw) and therefore he can extract y by

solving the following equation,

y ≡ (s′0 − bw) · z−1
0 mod q

If F does not abort, then Y ≡ αy mod p holds, since A ’s forgery is valid and non-
trivial on Y . Therefore, by Definition 2.1, F wins the DL-experiment.

The success probability and the execution time analysis of this experiment, and the
indistinguishability argument are as follows:

— Success Probability Analysis. The probability AdvDL
G,α(t′) is as follows:

— Abort1. F does not abort as a result of A ’s queries.
— Forge. A wins the TRUNC experiment.
— Abort2. F does not abort in the extraction.
— Win. F wins the DL-experiment

F succeeds if all of these events happen, and hence the probability AdvDL
G,α(t′) decom-

poses as,

Pr[Win] = Pr[Abort1] · Pr[Forge|Abort1] · Pr[Abort2|Abort1 ∧ Forge]

— The Probability of Event Abort1 Occurs. F may abort in the duration of
FAS.Sigsk(.)queries, if one the following events occurs:
(i) A queries the FAS.Sigsk(.) oracle on l ≤ L − 1 data items and then queries the

Break-in oracle. If l ≤ w + 1, then F aborts (i.e., F does not know the correspond-
ing private key of (Aw = Y, Bw+1), and therefore cannot answer this query). The
probability that F does not abort (i.e., the index w falls into the safe range [0, l])
is l/L.

(ii) A makes a batch query
−→
D i = {D j ′, . . . , D j}, j≥ j ′ for j = w. F cannot answer this

query, since F does not know the individual signature corresponding (Aw, Bw)

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:21

that he simulated on Y . Since the target forgery index is chosen as w
$← [0, L−1],

this occurs with a probability 1/L.
(iii) Before obtaining (kw−1, kw) from the FAS.Sigsk(.), A first queries data items

(Dw||rw||w, Dw+1||rw+1||w + 1) to the RO(.) oracle, and then requests their cor-
responding signature from the FAS.Sigsk(.) oracle. This happens if A randomly
guesses one of these values (rw, rw+1, x, x′), whose probability is 4/(q− 1).

Omitting the negligible terms, the probability is Pr[Abort1] = (1 − 1/L)(1 − 4/(q −
1))(l/L) � (L−1)l

L2 .
— The Probability of Event Forge Occurs. If event Abort1 occurs, then A also does

not abort, since A ’s view is statistically indistinguishable from her view in a real
system (see the indistinguishability argument that follows). Hence, this occurs with
Pr[Forge|Abort1] = AdvTRUNC

BAF(p,q,α)(t, L′, L).
— The Probability of Event Abort2 Occurs. If A ’s forgery is on (Aw, Bw), then F does

not abort in the extraction. Given that w ≤ |−→D ∗| = t≤ l, this occurs with a probabil-
ity at least Pr[Abort2|Abort1 ∧ Forge] ≥ 1/l.

Therefore, the upper bound on TRUNC-advantage of BAF is as follows:

AdvTRUNC
BAF(p,q,α)(t, L′, L) ≤ L2

L − 1
· AdvDL

G,α(t′).

— Execution Time Analysis. It is as in the Theorem 5.1.

— Indistinguishability Argument. Recall that
−→
A real = 〈PK,LS,HL, ξ〉 and Pr[

−→
A real =

−→a] = 1
(q−1)2(L+1)+l′ as given in Theorem 5.1.

The simulated-view of A is
−→
A sim, and it is equivalent to

−→
A real except that in the sim-

ulation, the original decider variables (aw, hw, hw+1, bw+1) are replaced with the decider

variables (y, z0, z1, c), where (y, z0, z1, s′)
$← Z

∗
q and c← s′ − y · z0− bw − aw+1 · z1 mod q

(note that (bw, aw+1)
$← Z

∗
q as in the real system). That is, all 2(L + 1) + l′ deciders

are random variables in Z ∗q as in the real system. Furthermore, (y, z0, z1, c) are used
identically as (aw, hw, hw+1, bw+1) are used in the real-system to compute required val-
ues (i.e., s′ = sw,w+1). Therefore, the joint probability distributions Pr[

−→
A real = −→a] =

Pr[
−→
A sim = −→a] (i.e., perfectly indistinguishable) as in Theorem 5.1.

Another security concern in audit logging is the delayed detection attack identified in
Ma and Tsudik [2008, 2009]. Delayed detection attack targets the audit logging mech-
anisms requiring online TTP support to enable the log verification. In these mecha-
nisms, the verifiers cannot detect whether the log entries are modified before a TTP
provides the required keying information. Due to the lack of immediate verification,
these mechanisms cannot fulfill the requirement of applications in which the log en-
tries should be processed in real-time. Ma and Tsudik [2009] shows that many exist-
ing schemes are vulnerable to these attacks (e.g., Bellare and Yee [1997, 2003] and
Schneier and Kelsey [1998, 1999]).

Remark that BAF schemes are also secure against the delayed detection attack:
In BAF schemes, the verifiers are provided with all the required public keys before
deployment. Hence, both schemes achieve the immediate verification property, and
therefore are secure against the delayed detection attack.

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:22 A. A. Yavuz et al.

Table II. Notation for Performance Analysis and Comparison

Muln: Mul. mod n, where n is a Blum-Williams integer [Ma 2008] R: # of verifiers

Mulp/Mulq: Mul. mod p and mod q, respectively Addq: Addition mod q
Exp: Exponentiation mod p Sqr: Squaring mod n PR: Pairing operation

GSig/GVer: Generic signing and verification, respectively H: Hash operation
x: FssAgg-BM/AR security parameter L: max. # of key updates l: # of data items

Suggested bit lengths to achieve a 80-bit security for the above parameters are as follows for
each compared scheme (based on the parameter sizes suggested in Ma and Tsudik [2007] and
Ma [2008]): Large primes (|p| = 512, |q| = 160) for BAF/FI-BAF, Logcrypt and FssAgg-BLS, all
were implemented in EC. (|n| = 1024, x = 160) for FssAgg-AR and FssAgg-BM.

6. PERFORMANCE ANALYSIS AND COMPARISON

In this section, we present the performance analysis of our schemes. We also com-
pare BAF and FI-BAF with the previous schemes using the following criteria: (i) The
computational overhead of signature generation/verification operations (including the
key update cost); (ii) signature/key storage and communication overheads depending
on the size of signing key and the size of signature; (iii) desirable properties such as
public verifiability, offline TTP and immediate verification, and (iv) security proper-
ties such being resilient to the truncation and delayed detection attacks and provable
security.

We list the notation used in our performance analysis and comparison in Table II.
Based on this notation, for each of the above categories, we first provide the analysis of
BAF and FI-BAF, and then present their comparison with the previous schemes both
analytically and numerically.

6.1. Computational Overhead

We implement our schemes on an Elliptic Curve (EC) [Menezes et al. 1996], which
offers small key/signature sizes and computational efficiency [Hankerson et al. 2004].

In BAF, signature computation and key update require (Mulq + 2(Addq + H)) and
2H, respectively. Hence, BAF requires (Mulq + 4H + 2Addq) in total to sign a single
log entry. In FI-BAF, the cost of signing a single log entry is the twice of that of BAF.
Note that since the overhead of modular addition is negligible, the total cost of signing
a single log entry is dominated by hash and modular multiplication operations.

By following the BAF signature verification equation, verifying a single log entry
requires Exp + Mulp + 2(H + Addq). Note that it is possible to avoid performing one
Mulp for per log entry by using an optimization: In the key generation phase, we can
compute and release B′j = α

∑ j
i=0 b j mod p instead of B j = αb j mod p for j = 0, . . . , L − 1

to speed up the signature verification. In this way, verifiers can perform the signature
verification with only one Mulp regardless of the value of l. Hence, the signature
verification cost of BAF for l received log entries is (l + 1) · (Exp + 2H). The signature
verification cost of FI-BAF is the same with that of BAF.

Comparison. The closest counterparts of our schemes are FssAgg schemes
[Ma 2008; Ma and Tsudik 2007, 2008, 2009]. The signature generation of FssAgg-BLS
[Ma and Tsudik 2007] is expensive due to Exp, while its signature verification is highly
expensive due to PR. Different from FssAgg-BLS, FssAgg-BM and FssAgg-AR [Ma
2008] rely on more efficient operations such as Sqr and Muln. However, these schemes
are also computationally costly, since they require heavy use of such operations. For
instance, FssAgg-BM requires x · Sqr + (1 + x/2)Muln (e.g., x = 160 [Ma 2008])
for the signature generation (key update plus the signing cost), and it requires
L · Sqr + (l + x · l/2)Muln for the signature verification. Similarly, FssAgg-AR requires

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:23

Table III. Computation Involved in BAF, FI-BAF, and Previous Schemes

Sig Upd Ver
BAF Mulq + 2H 2H (l + 1)(Exp + 2H)

FI-BAF 2 · BAF.Sig 2 · BAF.Upd BAF.Ver
PKC- FssAgg-BLS H + Exp + Mulp H l(Mulp + H + PR)
based FssAgg-BM (1 + x

2)Muln x · Sqr L · Sqr + (l + l·x
2)Muln

FssAgg-AR x · Sqr + (2 + x
2)Muln (2x)Sqr x(L + l)Sqr + (2l + l · x)Muln

iFssAgg 2 · FssAgg.Sig 2 · FssAgg.Upd 2 · FssAgg.Ver
Logcrypt GSig - l · GVer

Symmetric 2H H l · H
Signature generation and key update costs are given for a single data item. Signature verification
cost is given for 0 < l < L data items.

Table IV. Average Execution Times (in μs) of BAF, FI-BAF and Previous Schemes for a Single Log
Entry (Sampled over l = 10000 Entries)

PKC-based

BAF FI-BAF
FssAgg Schemes

Logcrypt
Symmetric

BLS/iBLS BM/iBM AR/iAR

Sig 10 20 1830/3660 3600/7200 7710/15420 1020 6

Ver 740 760 24500/49000 1700/3400 5300/10600 1230 6

(3x)Sqr+(2+ x/2)Muln for the signature generation, and it requires x(L + l)Sqr+(2l+ l ·
x)Muln for the signature verification. iFssAgg schemes [Ma and Tsudik 2009] double
the signing (FssAgg.Sig) and verifying (FssAgg.Ver) costs of their base FssAgg schemes
to completely eliminate the truncation attack.

Logcrypt uses a digital signature scheme to sign and verify each log entry sepa-
rately without signature aggregation [Holt 2006], and thus has standard signature
costs (e.g., we use ECDSA [American Bankers Association 1999] for Logcrypt in our
comparison). The symmetric schemes [Bellare and Yee 2003; Ma and Tsudik 2007;
Schneier and Kelsey 1998, 1999] are in general efficient, since they only need symmet-
ric cryptographic operations.

Table III summarizes the analytical comparison of all these schemes for their
computational costs using the notation given in Table II.

In addition to the analytical comparison, we also measure the execution times (in
μs) of all the compared schemes on a computer with an Intel(R) Xeon(R)-E5450 3GHz
CPU and 2GB RAM running Ubuntu 9.04. The execution times of BAF, FI-BAF,
FssAgg-BLS, Logcrypt, and the symmetric schemes [Ma and Tsudik 2007; Schneier
and Kelsey 1998, 1999; Bellare and Yee 2003] were measured using implementations
based on the MIRACL library.9 The execution times of FssAgg-AR/BM were com-
puted using implementations based on the NTL library.10 Table IV shows the sign-
ing/verifying costs of a single log entry in each scheme.

Both BAF and FI-BAF are at least hundred times faster than their PKC-based
counterparts. Similarly, both BAF and FI-BAF signature verifications are also more
efficient than other PKC based schemes (from 1.6 times up to 33 times faster).
This computational efficiency makes BAF/FI-BAF the best alternative among existing
schemes for secure logging with public verifiability in resource-constrained devices.
(See Table IV.)

9http://www.shamus.ie/
10http://www.shoup.net/ntl/

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:24 A. A. Yavuz et al.

Table V. Signature/Key Storage and Communication Overheads of BAF, FI-BAF, and Previous Schemes

Criteria BAF FI-BAF
FssAgg Schemes

Logcrypt Sym.
BLS BM AR MAC iFssAgg

Key Size 4|q| 2 · BAF |q| x|n| 2|n| |H| 2 · FssAgg |q| |H|
Sig. Size 2|q| 2 · BAF |p| |n| 2|n| |H| 2 · FssAgg 2|q| |H|
Storage 6|q| O(2l|q|) |p| + |q| x|n| 4|n| O(R|H|) O(2l·FssAgg) O(l|q|) O(l|H|)
Comm. 2|q| O(2l|q|) |p| |n| |n| |H| O(2l·FssAgg) O(2l|q|) O(l|H|)

When compared with the signature generation of previous symmetric logging
schemes (e.g., Ma and Tsudik [2007], Schneier and Kelsey [1998, 1999], and Bellare
and Yee [1997, 2003]), BAF and FI-BAF signature generation is comparable efficient
even though they are PKC-based schemes. However, signature verification of the sym-
metric logging schemes is more efficient than all the existing PKC-based schemes,
including BAF and FI-BAF. Note that these symmetric schemes sacrifice the public
verifiability and certain security properties (e.g., truncation and delayed detection at-
tacks) to achieve this verifier efficiency.

6.2. Storage and Communication Overheads

In BAF, the size of signing key is 4|q| (e.g., |q|=160), and the size of authentication tag
is 2|q|. Since BAF allows the signature aggregation, independent of the number of data
items to be signed, the size of resulting authentication tag is always constant (i.e., 2|q|).
Furthermore, BAF derives the current signing key from the previous one, and then
deletes the previous signing key from the memory (i.e., evolve-delete strategy [Yavuz
and Ning 2009b]). That is, the size of signing key is also constant (i.e., 4|q|). Therefore,
both the signature storage and communication overheads of BAF are constant (i.e.,
6|q| and 2|q|, respectively) at the signer side.

In FI-BAF, the size of signing key is two times of that of BAF. Since it uses BAF
as a sub-routine, its aggregate signature is small-constant as 2|q|. However, to enable
a fine-grained verification of log entries, FI-BAF keeps their corresponding individual
signatures, and therefore its signature storage and communication overheads are both
O(2l|q|) for l log entries.

Comparison. The storage and communication overheads are measured according
to the size of a single signing key, the size of a single authentication tag, and the
growth rate of these two parameters with respect to the number of data items to be
processed, that is, whether they grow linearly, or remain constant for an increasing
number of data items to be processed. Table V summarizes the comparison. Note that
storage and communication overheads that stem from the data items are independent
from cryptographic technique and are the same for all compared schemes (i.e., linear).
They are therefore omitted in the comparison.

The symmetric schemes (e.g., Bellare and Yee [1997, 2003], and Schneier and Kelsey
[1998, 1999], and FssAgg-MAC in Ma and Tsudik [2007]) all use a MAC function to
compute an authentication tag for each log entry with a different key, where the sizes
of the key and the resulting tag are both |H| (e.g., 160 bit for SHA-1). Instead of using
MACs, Logcrypt uses a digital signature such as ECDSA, where the size of signing key
is |q| (e.g., 160 bit) and the size of signature is 2|q|, respectively.

These schemes cannot achieve the signature aggregation, and therefore they require
storing/transmitting an authentication tag for each log entry. That is, the signature
storage and communication overheads of these symmetric schemes and Logcrypt are
all linear as O(l|H|) and O(l|q|), respectively. Different from these schemes, FssAgg-
MAC achieves the signature aggregation, and its signature communication overhead

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:25

is only |H|. However, since FssAgg-MAC requires symmetric key distribution, its key
storage overhead is also linear (i.e., O(R|H|)).

The PKC-based FssAgg-BLS [Ma and Tsudik 2007], FssAgg-BM and FssAgg-AR
[Ma 2008] achieve the signature aggregation in a publicly verifiable way, and therefore
their signature storage/communication overheads are constant. Table V shows that
they are efficient in terms of both the storage and communication overheads. iFssAgg
schemes [Ma and Tsudik 2009] demand linear signature storage and communication
when compared with their base schemes due to the need of storing and transmitting
individual signatures (denoted as O(2l · FssAgg) in Table V).

BAF has constant signature storage and communication overheads (with respect to
the number of data items to be signed), and is more efficient than all the schemes that
incur linear signature (or key) storage and communication overheads (e.g., Bellare
and Yee [1997, 2003], Schneier and Kelsey [1998, 1999], Ma and Tsudik [2007], and
Holt [2006]). BAF is also more efficient than FssAgg-AR/BM [Ma 2008], but less ef-
ficient than FssAgg-BLS [Ma and Tsudik 2007], as shown in Table V. Similar to its
immutable counterpart iFssAgg [Ma and Tsudik 2009] schemes, FI-BAF also demands
linear signature storage and communication overheads.

Note that achieving constant signature storage/communication overhead is espe-
cially important for the resource constrained devices. In these type of devices, the size
audit logs are generally smaller, which makes the benefit of this property more appar-
ent. However, if the size of individual log entries are very large (e.g., order of MBs),
due to high linear storage and communication overhead of log entries, the benefit of
signature aggregation becomes less important.

6.3. Scalability and Security

BAF and FI-BAF are publicly verifiable, and they do not need an online TTP support
for the signature verification. Furthermore, BAF and FI-BAF do not rely on a time
factor to be publicly verifiable, and therefore they achieve the immediate verification
property (in contrast to HaSAFSS schemes [Yavuz and Ning 2009b]). Finally, they are
proven to be resilient against the truncation attacks in ROM, whereas all the previous
cryptographic secure audit logging schemes only rely on heuristic security arguments
about the truncation attacks. Note that our schemes are also resilient against the
delayed detection attacks as in all PKC-based schemes.

The bottom part of Table I summarizes the comparison of BAF and FI-BAF with
the previous schemes in terms of their scalability and security properties. The sym-
metric schemes cannot achieve the public verifiability and require online TTP support
to enable the log verification. The lack of public verifiability and the requirement for
an online TTP limit their applicability to large distributed systems. Furthermore, they
are vulnerable to both truncation and delayed detection attacks. FssAgg-MAC [Ma and
Tsudik 2007] does not need an online TTP and is secure against the aforementioned
attacks. However, it is not publicly verifiable. PKC-based FssAgg schemes, iFssAgg
schemes and Logcrypt are publicly verifiable. They do not need online TTP support,
and can achieve the immediate verification.

6.4. Limitations

In BAF schemes, the size of public key is linear with respect to the number time
periods. This may incur high storage overhead for the verifiers. However, for our
envisioned applications, the signer computational/storage/communication efficiency is
more important than the verifier storage efficiency alone (as assumed in all PKC-based
FSI models (see Section 3)). For example, the signer computational/storage efficiency
is critically important for secure logging in resource-constrained devices such as RFID

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:26 A. A. Yavuz et al.

tags [Batina et al. 2007] and wireless sensors [Ma and Tsudik 2007], whereas the
verifiers (e.g., laptops) can tolerate the storage overhead.

Some generic forward-secure signature constructions (e.g., the storage efficient con-
struction in Malkin et al. [2002]) offer sub-linear public key sizes. However, such con-
structions also require several online ExpOps at the signer side, and therefore they
are not practical for resource-constrained applications. They also do not provide the
“all-or-nothing” property.

7. RELATED WORK

The pioneering studies addressing the forward secure stream integrity for audit log-
ging were presented in Bellare and Yee [1997, 2003]. The main focus of these schemes
is to formally define and analyze forward-secure MACs and PRNGs. Based on their
forward-secure MAC construction, they also presented a secure logging scheme, in
which log entries are tagged and indexed according to the evolving time periods.
Schneier and Kelsey [1998] proposed secure logging schemes that use one-way hash
chains together with forward-secure MACs to avoid using tags and indexes along with
an online TTP support, and also consults symmetric encryption to achieve confiden-
tiality. Holt [2006] extended the idea given in Schneier and Kelsey [1998] to the PKC
domain by replacing MACs with digital signatures and ID-based cryptography. Fi-
nally, Ma and Tsudik proposed a set of comprehensive secure audit logging schemes
in Ma and Tsudik [2008, 2009] based on their forward-secure and aggregate signature
schemes given in Ma and Tsudik [2007] and Ma [2008]. The detailed analysis and
comparison of all these schemes with ours were given in Section 6.

Apart from these schemes, there are complementary works to ours: Chong and Peng
[2003] extended the scheme in Schneier and Kelsey [1998] by strengthening it via
tamper-resistant hardware. Waters et al. [2004] proposed an audit logging scheme that
enables encrypted search on audit logs via Identity-Based Encryption (IBE) [Boneh
and Franklin 2003]. Davis et al. [2004] proposed time-scoped search techniques on en-
crypted audit logs. These schemes can be coupled with BAF to provide confidentiality.
Yavuz and Ning [2009b] proposed a hash-based FAS construction for Unattended Wire-
less Sensor Networks. Moreover, there is a line of work that rely on authenticated data
structures to protect audit logs in distributed systems [Anagnostopoulos et al. 2001;
Maniatis and Baker 2003; Papamanthou et al. 2008]. While being computationally
efficient, these approaches do not provide forward-security. Furthermore, any authen-
ticated data structure can be strengthened with a forward-secure signature [Crosby
and Wallach 2009]. Therefore, our schemes can serve these authenticated data struc-
tures as an ideal forward-secure and aggregate digital signature primitive.

8. CONCLUSION

In this paper, we developed a new class of forward-secure and aggregate audit logging
schemes, which we refer to as Blind-Aggregate-Forward (BAF) and Fast-Immutable
BAF (FI-BAF) logging schemes. BAF simultaneously achieves several desirable prop-
erties for secure audit logging, including minimal logger computational overhead,
small-constant signature storage/communication overheads, public verifiability (with-
out online TTP support), immediate log verification, and high verifier computational
efficiency. Our extended scheme FI-BAF enables the selective verification of individual
log entries via their corresponding individual signatures while preserving the security
and performance advantages of the original BAF. Our comparison with the previous al-
ternatives show that our schemes are ideal choices for secure audit logging in resource-
constrained devices.

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

BAF and FI-BAF 9:27

ACKNOWLEDGMENTS

We would like to thank Dr. Di Ma who kindly provided her implementation of FssAgg schemes [Ma 2008;
Ma and Tsudik 2007, 2009]. We also would like to thank anonymous reviewers for their useful comments.

REFERENCES
ABDALLA, M. AND REYZIN, L. 2000. A new forward-secure digital signature scheme. In Proceedings of the

Advances in Crpytology (ASIACRYPT’00). Springer-Verlag, 116–129.
AMERICAN BANKERS ASSOCIATION. 1999. ANSI X9.62-1998: Public Key Cryptography for the Finan-

cial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). American Bankers
Association.

ANAGNOSTOPOULOS, A., GOODRICH, M. T., AND TAMASSIA, R. 2001. Persistent authenticated dictionaries
and their applications. In Proceedings of the Information Security Conference (ISC’01). Springer-Verlag,
379–393.

BATINA, L., GUAJARDO, J., KERINS, T., MENTENS, N., TUYLS, P., AND VERBAUWHEDE, I. 2007. Public-
key cryptography for RFID-Tags. In Proceedings of the 5th IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOMM’07). IEEE Computer Society, 217–222.

BELLARE, M. AND MINER, S. 1999. A forward-secure digital signature scheme. In Proceedings of the
Advances in Crpytology (CRYPTO’99). Springer-Verlag, 431–448.

BELLARE, M. AND ROGAWAY, P. 1993. Random oracles are practical: A paradigm for designing efficient pro-
tocols. In Proceedings of the 1st ACM Conference on Computer and Communications Security (CCS’93).
ACM, 62–73.

BELLARE, M. AND ROGAWAY, P. 2005. Introduction to Modern Cryptography 1st Ed.
BELLARE, M. AND YEE, B. S. 1997. Forward integrity for secure audit logs. Tech. rep., San Diego, CA, USA.
BELLARE, M. AND YEE, B. S. 2003. Forward-security in private-key cryptography. In Proceedings of the

Cryptographers Track at the RSA Conference (CT-RSA’03). 1–18.
BOLDYREVA, A., GENTRY, C., O’NEILL, A., AND YUM, D. 2007. Ordered multisignatures and identity-based

sequential aggregate signatures, with applications to secure routing. In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS’07). ACM, 276–285.

BONEH, D. AND FRANKLIN, M. 2003. Identity-based encryption from the weil pairing. SIAM J. Comput. 32,
586–615.

BONEH, D., GENTRY, C., LYNN, B., AND SHACHAM, H. 2003. Aggregate and verifiably encrypted signatures
from bilinear maps. In Proceedings of the 22th International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT’03). Springer-Verlag, 416–432.

CHONG, C. N. AND PENG, Z. 2003. Secure audit logging with tamper-resistant hardware. In Proceedings of
the 18th IFIP International Information Security Conference. Kluwer Academic Publishers, 73–84.

CORON, J. AND NACCACHE, D. 2003. Boneh et al.’s k-element aggregate extraction assumption is equivalent
to the diffie-hellman assumption. In Proceedings of the 9th International Conference on the Theory and
Application of Cryptology (ASIACRYPT’03). 392–397.

CROSBY, S. AND WALLACH, D. S. 2009. Efficient data structures for tamper evident logging. In Proceedings
of the 18th Conference on USENIX Security Symposium.

DAVIS, D., MONROSE, F., AND REITER, M. 2004. Time-scoped searching of encrypted audit logs. In
Proceedings of the 6th International Conference on Information and Communications Security
(ICICS’04). 532–545.

DODIS, Y., KATZ, J., XU, S., AND YUNG, M. 2002. Key-insulated public key cryptosystems. In Proceed-
ings of the 21th International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT’02). 65–82.

FALL, K. 2003. A delay-tolerant network architecture for challenged internets. In Proceedings of the 9th
Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM’03). ACM, 27–34.

HANKERSON, D., MENEZES, A., AND VANSTONE, S. 2004. Guide to Elliptic Curve Cryptography. Springer.
HOLT, J. E. 2006. Logcrypt: Forward security and public verification for secure audit logs. In Proceedings of

the 4th Australasian Workshops on Grid Computing and e-Research (ACSW’06). 203–211.
HSU, W. W. AND ONG, S. 2007. Technical forum: WORM storage is not enough. IBM Syst. J. 46, 2, 363–369.
KRAWCZYK, H. 2000. Simple forward-secure signatures from any signature scheme. In Proceedings of the

7th ACM Conference on Computer and Communications Security (CCS’00). ACM, 108–115.

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

9:28 A. A. Yavuz et al.

MA, D. 2008. Practical forward secure sequential aggregate signatures. In Proceedings of the 3rd ACM
Symposium on Information, Computer and Communications Security (ASIACCS’08). ACM, 341–352.

MA, D. AND TSUDIK, G. 2007. Forward-secure sequential aggregate authentication. In Proceedings of the
28th IEEE Symposium on Security and Privacy (S&P’07). 86–91.

MA, D. AND TSUDIK, G. 2008. A new approach to secure logging. In Proceedings of the 22nd Annual IFIP
WG 11.3 Working Conference on Data and Applications Security (DBSEC’08). 48–63.

MA, D. AND TSUDIK, G. 2009. A new approach to secure logging. ACM Trans. Storage (TOS) 5, 1, 1–21.
MALKIN, T., MICCIANCIO, D., AND MINER, S. K. 2002. Efficient generic forward-secure signatures with an

unbounded number of time periods. In Proceedings of the 21th International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT’02). Springer-Verlag, 400–417.

MANIATIS, P. AND BAKER, M. 2003. Authenticated append-only skip lists. Acta Math. 137, 151–169.
MASS, M. 2004. Pairing-based cryptography. M.S. dissertation. Technische Universiteit Eindhoven.
MENEZES, A., VAN OORSCHOT, P. C., AND VANSTONE, S. 1996. Handbook of Applied Cryptography. CRC

Press. ISBN: 0-8493-8523-7.
MU, Y., SUSILO, W., AND ZHU, H. 2007. Compact sequential aggregate signatures. In Proceedings of the

22nd ACM Symposium on Applied Computing (SAC’07). ACM, 249–253.
MYKLETUN, E., NARASIMHA, M., AND TSUDIK, G. 2004. Signature bouquets: Immutability for aggre-

gated/condensed signatures. In Proceedings of the 9th European Symposium on Research in Computer
Security (ESORICS’04). Springer-Verlag, 160–176.

OPREA, A. AND BOWERS, K. D. 2009. Authentic time-stamps for archival storage. In Proceedings of the
14th European Symposium on Research in Computer Security (ESORICS’09). Springer-Verlag, Berlin,
Heidelberg, 136–151.

PAPAMANTHOU, C., TAMASSIA, R., AND TRIANDOPOULOS, N. 2008. Authenticated hash tables. In Proceed-
ings of the 15th ACM Conference on Computer and Communications Security (CCS’08). ACM, New York,
437–448.

SCHNEIER, B. AND KELSEY, J. 1998. Cryptographic support for secure logs on untrusted machines. In
Proceedings of the 7th Conference on USENIX Security Symposium. USENIX Association.

SCHNEIER, B. AND KELSEY, J. 1999. Secure audit logs to support computer forensics. ACM Trans. Inf. Syst.
Secur. 2, 2, 159–176.

STINSON, D. 2002. Cryptography: Theory and Practice 2nd Ed. CRC/C&H.
WANG, Y. AND ZHENG, Y. 2003. Fast and secure magnetic worm storage systems. In Proceedings of the 2nd

IEEE International Security in Storage Workshop (SISW’03). 11–25.
WATERS, B., D., DURFEE, G., AND SMETTERS, D. 2004. Building an encrypted and searchable audit log. In

Proceedings of the Network and Distributed System Security Symposium (NDSS’04).
YAVUZ, A. A. AND NING, P. 2009a. BAF: An efficient publicly verifiable secure audit logging scheme

for distributed systems. In Proceedings of 25th Annual Computer Security Applications Conference
(ACSAC’09). 219–228.

YAVUZ, A. A. AND NING, P. 2009b. Hash-based sequential aggregate and forward secure signature for
unattended wireless sensor networks. In Proceedings of the 6th Annual International Conference on
Mobile and Ubiquitous Systems (MobiQuitous’09).

Received November 2011; accepted February 2012

ACM Transactions on Information and System Security, Vol. 15, No. 2, Article 9, Publication date: July 2012.

