
1

An Efficient Real-time Broadcast Authentication
Scheme for Command and Control Messages

Attila A. Yavuz, Member, IEEE

Abstract—Broadcast (multicast) authentication is crucial for
large and distributed systems such as cyber-physical infrastruc-
tures (e.g., power-grid/smart-grid) and wireless networks (e.g.,
inter-vehicle networks, military ad-hoc networks). These time-
critical systems require real-time authentication of command
and control messages in a highly efficient, secure and scalable
manner. However, existing solutions are either computationally
costly (e.g., asymmetric cryptography) or unscalable/impractical
(e.g., symmetric cryptography, one-time signatures, delayed key
disclosure methods).

In this paper, we develop a new broadcast authentication
scheme that we call Rapid Authentication (RA), which is suitable
for time-critical authentication of command and control messages
in large and distributed systems. We exploit the semi-structured
nature of command and control messages to construct special
digital signatures, which are computationally efficient both at
the signer and verifier sides. We show that RA achieves several
desirable properties that are not available in existing alternatives
simultaneously: (i) Fast signature generation and verification; (ii)
immediate verification; (iii) constant size public key; (iv) compact
authenticating tag; (v) packet loss tolerance; (vi) being free from
time synchronization requirement; (vii) provable security.

Index Terms—Secure Broadcast Authentication; Applied Cryp-
tography; Security of Networked Systems; Network Security.

I. INTRODUCTION

A broadcast (multicast) authentication scheme enables each
receiver in a large broadcast group to verify if the received
message is intact and originated from the claimed sender.
Broadcast authentication is a vital security service for many
real-life applications (e.g.,wireless networks [1]–[3]).

Secure broadcast authentication is a challenging problem,
especially for large and distributed systems with time-critical
applications [4]. For instance, cyber-physical infrastructure
such as power-grid/smart-grid requires real-time authentica-
tion of control messages in an efficient, scalable and se-
cure manner [5]. Other similar examples include vehicle-to-
vehicle/infra-structure communication [6], disaster response
systems (e.g., fire-sensors, earthquake warning) and military
networks. In all these systems, immediate and secure authenti-
cation of command and control messages is essential to prevent
adversaries from forcing catastrophic decisions by modifying
or forging the messages [7]–[9].

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Attila A. Yavuz is with the School of Electrical Engineering and Com-
puter Science, Oregon State University, Corvallis, OR 97331 USA, (e-mail:
attila.yavuz@oregonstate.edu). Work done in part while at Robert
Bosch LLC, Research and Technology Center at North America (CR/RTC3-
NA), Pittsburgh, PA.

A. Related Work

We present an overview of existing broadcast authentication
techniques and discuss their advantages and limitations.
• Traditional Symmetric and Asymmetric Cryptography

Methods: Symmetric cryptography based authentication meth-
ods rely on Message Authentication Code (MAC) [10] to
achieve computational efficiency. Despite their simplicity,
these methods are not practical to be used for broadcast
(multicast) authentication purposes in large and distributed
systems [4], [11]. That is, they require a pairwise key distri-
bution between the signer(s) and verifiers to be secure, which
makes them impractical even for moderately large systems.
Moreover, due to their symmetric nature, these schemes are
not publicly verifiable and therefore cannot achieve the non-
repudiation property.

Traditional Public Key Cryptography (PKC)-based schemes
(e.g., digital signatures) [10] rely on public key infrastructures.
Hence, they are publicly verifiable, key compromise resilient
and scalable for large systems. However, these schemes (e.g.,
RSA [12], ECDSA [13]) require Expensive Operations (Ex-
pOps)1 such as modular exponentiation. These high compu-
tational costs make PKC-based schemes impractical for real-
time (e.g., power-grid/smart-grid [7]) and resource-constrained
applications.
• Delayed Key Disclosure Methods: The objective of de-

layed disclosure methods (e.g., TESLA [3] and its vari-
ants [14], [15]) is to achieve public verifiability of symmetric
primitives while retaining their computational efficiency. Intu-
itively, a MAC is appended to every message and the key of
the MAC is disclosed in some subsequent packet. Disclosed
keys are computed based on hash chains to increase the packet
loss tolerance. Despite their advantages, these methods have
the following drawbacks:

(i) Receivers cannot verify a message until its corresponding
keying material is received (i.e., immediate verification is
not possible). Such a delay is not tolerable for time-critical
applications (e.g., power-grid/smart-grid). (ii) These schemes
require a tight time synchronization between the sender and
all receivers. Maintaining a continuous synchronization is
challenging for large and distributed systems.
• Signature Amortization Methods: These methods

(e.g., [16]–[18]) compute a digital signature over a set
of messages instead of computing a distinct signature for
each message. Hence, the cost of signature generation and
verification is amortized over multiple messages.

1For brevity, we denote an expensive cryptographic operation such as modular
exponentiation, elliptic curve scalar multiplication or cryptographic pairing as an ExpOp.

2

However, signature amortization methods do not allow ver-
ification of an individual message in a given window until all
related messages are received. Therefore, they cannot achieve
the immediate verification. These schemes are also vulnerable
to packet loss [19], since there is a correlation between
different messages. Moreover, they still require ExpOps to
compute and verify the signatures.
• One-Time Signatures (OTSs): OTSs achieve high compu-

tational efficiency and public verifiability since they rely on
one-way functions without trapdoors. Preliminary OTSs [20]
require very large private/public key and signature sizes. Later,
more efficient constructions have been proposed (e.g., [21],
[22]). One of the most efficient OTSs is the Hash-to-Obtain
Random Subset (HORS) [22], which offers a fast signature
generation/verification and relatively smaller signature size
than its precessors (e.g., BiBa [21]). Despite its elegancy,
HORS has the following limitations:

(i) A private/public key pair can be used only once without
losing the security. It is also possible to compute a (small)
limited number of signatures with the same private/public
key by sacrificing the security (e.g., [21], [22]) and per-
formance (e.g., [23], [24]). Therefore, all OTSs (including
HORS) require distribution of new public keys, which causes
heavy communication overhead. (ii) The public key/signature
size of HORS is large and the certification (or chaining) of
public keys incurs additional overhead. (iii) Various twists
on HORS have been proposed to achieve different perfor-
mance trade-offs (e.g., lower storage with the expense of very
high computational cost [8]) or security trade-offs (e.g., TV-
HORS [7]). However, these schemes inherit the drawbacks of
HORS. Moreover, they drastically decrease the efficiency of
one parameter while only slightly increasing the efficiency of
an another parameter.
• Online/offline Signatures: The online/offline signatures

shift expensive signature computations to the offline phase
(these operations can be performed without knowing the actual
message to be signed). This allows a fast signature generation
in the online phase. Traditional online/offline signatures use
OTSs as a building block. Hence, they inherit all the draw-
backs of OTSs such as large public key and signature size.
Recently, space efficient online/offline signatures have been
proposed (e.g., [25]). However, they incur high computational
overhead at the verifier side due to ExpOps.

B. Our Contributions

The above discussions indicate that a broadcast authenti-
cation scheme achieving minimum end-to-end cryptographic
delay with a constant signature and key sizes is needed.

One may obverse that a signer efficient and compact RSA-
based signature scheme is a suitable solution. That is, given
that RSA is already verifier efficient (e.g., for public key
e = 3), such a signer efficient RSA-based signature achieves
a low end-to-end cryptographic delay. However, as discussed
in Section I-A, existing methods such as RSA (or Rabin [29])
based online/offline signatures incur large signature and key
sizes. Similarly, RSA does not offer a natural way to pre-
compute tokens that could permit fast signature generation (in

contrast to some DLP-based alternatives such as ECDSA [13]
that allow pre-computed tokens [26]).

In this paper, we develop a new signature scheme called
Rapid Authentication (RA), which exploits already existing
structures in command and control messages to enable pre-
computation for signature schemes like RSA. Examples of
such semi-structured command and control messages can be
found in tactical networks (e.g., military or disaster recover
networks [30]) and proprietary communication protocols (e.g.,
local energy distribution systems).

The main idea of RA is to leverage the fact that the number
of possible sub-messages in a command and control message
are limited. Hence, it is possible to pre-compute and store a
RSA signature on each of those sub-messages during the of-
fline phase. When a message to be signed in the online phase,
the signer combines individual RSA signatures of relevant
sub-messages via Condensed-RSA [31], which requires only a
few modular multiplications. The verification of this signature
is also efficient, as it requires a standard RSA signature
verification plus a few modular multiplications. Moreover, we
introduce a signature masking technique to protect individual
signatures combined via Condensed-RSA. We show that RA is
secure (in Random Oracle Model (ROM) [28]) and is also
more efficient than its counterparts.

C. Desirable Properties

We summarize the desirable properties of RA and compare
it with the existing alternatives below:

• High Signer and Verifier Computational Efficiency: RA does
not require any ExpOp in its online phase. That is, the total
end-to-end computational overhead of RA is just a small
number of multiplications and hash operations.
- The computational efficiency of RA is at least an order

of magnitude greater than traditional PKC-based signature
schemes (e.g., [12], [13], [29], [32]).

- RA is also more computationally efficient and much more
scalable than HORS variants (e.g., [7], [8], [33]) without
requiring a security and performance trade-off.

• High Scalability and Communication Efficiency: OTS
schemes (e.g., HORS [22] and other alternatives such as [7],
[8], [21], [22], [33]) require pre-distribution and retransmis-
sion of large size public keys. This also brings related prob-
lems such as certification or chaining of such public keys.
Similar to the traditional PKC-based signatres, RA uses a
single public key to verify (practically) unbounded number
of signatures, which makes it much more communication ef-
ficient. This communication efficiency also makes RA more
scalable than those alternatives.

• Compact Public Key and Signature: The public key and
signature size of our scheme is nearly the same with its
building block scheme RSA [12]. Hence, it is much more
compact than OTS schemes, which have large public key
and signature sizes (e.g., [7], [20]–[22]).

• Immediate Verification and being Free from the Time Syn-
chronization Requirement: RA does not rely on delayed key
disclosure or message buffering. Therefore, unlike TESLA

3

TABLE I
HIGH-LEVEL COMPARISON OF RA AND THE STATE-OF-ART SCHEMES WITH RESPECT TO VARIOUS PROPERTIES

RA PKC OTS Online/Offline [25] TESLA Symmetric
RSA/ECDSA Amortized HORSTV-HORS (pairwise)

1. Practical for Time-Critical Applications Yes No No Yes Yes No No Yes
2. Scalability for Large and Distributed Systems High High High Low Moderate High High Very Low
3. Free from Public Key Re-Distribution Problem Yes Yes Yes No Partial Yes Yes Yes
4. Free from Synchronization Need Yes Yes No Yes No Yes No Yes
5. Immediate Ver. (no buffering/delayed disclosure) Yes Yes No Yes Yes Yes No Yes
6. Free from Time-Bounded Security Yes Yes Yes Yes No Yes No Yes
7. Non-repudiation Yes Yes Yes Yes Yes Yes Yes No
8. Packet Loss Tolerance Full Full Partial Full Partial Full Partial Full
9. Real-Time (end-to-end) Computational Efficiency High Very Low Low High Moderate Very Low High High
10. Communication Efficiency (tag size) High High High Low High Low High Low
11. Verifier Storage Efficiency High High High Low Moderate High High High
12. Signer Storage Efficiency Low Varies Varies Low Moderate Moderate High Moderate

Quantitative properties (row 9-12) such as computation, storage and communication efficiency are evaluated according to the analytical/experimental results given in Section V.
Qualitative properties (row 1-8) are justified based on the discussions provided in Section I-A. For instance, PKC-based schemes are not practical for time-critical applications due
to their high (end-to-end) computational overhead. Symmetric schemes have linear tag size (with the pairwise setting) that makes them communication inefficient and unscalable
for large and distributed systems. The signer storage efficiency of ECDSA (and its amortized version) varies depending on its implementation. For example, tokenized
ECDSA [26] eliminates ExpOps from the signer side with the expense of a linear storage overhead. HORS is unscalable due to its public key re-distribution requirement and
storage/communication inefficiency. TV-HORS offers a security-performance trade-off and therefore it has a moderate/partial performance for certain properties. We provide a
more detailed discussion in Section V.

TABLE II
NOTATION USED IN OUR PAPER

||, |x|, {0, 1}∗: Concatenation operation, bit lengths of variable x, the set of binary strings of any finite length, respectively.

|S| denotes the cardinality of set S, x $← S denotes that variable x is randomly and uniformly selected from set S.
Z∗n denotes a multiplicative group, where n is a large integer.

For any integer l, (x0, . . . , xl)
$← S means (x0

$← S, . . . , xl
$← S).

Full Domain Hash (FDH) (e.g., [27]) function H is defined as H : {0, 1}∗ → Z∗n.

This table summarizes notations used in our scheme. Large integer n is a RSA public key as defined in Definition 1. In our scheme, FDH H is modeled as an ideal hash function
(i.e., a Random Oracle as defined in [28]).

variants (e.g., [3], [15]) and signature amortization tech-
niques (e.g., [19]), it can address real-time applications.

• Individual Message Authentication and High Robustness: In
RA, receivers can verify each individual message received.
Hence, RA is much more resilient against the packet loss
than signature amortization techniques (e.g., [16], [19]).

Table I summarizes the high-level comparison of RA with
its counterparts. A detailed performance analysis and compar-
ison is given in Section V.

Limitations: RA requires that the broadcast entity is re-
sourceful in order to store pre-computed message-signature
tables. This requirement is reasonable for our envisioned
applications, in which the signers are generally resourceful
entities such laptops, command centers or base stations.

Note that RA leverages the semi-structured nature of com-
mand and control messages to achieve its desirable properties.
Hence, RA is not suitable for the applications, in which the
message content is randomized and non-structured.

The remainder of this paper is organized as follows. Section
II gives the definitions and RA system and security models.
Section III describes RA in detail. Section IV gives a detailed
security analysis of RA. Section V presents performance
analysis and compares RA with previous approaches. Section
VI concludes this paper.

II. DEFINITIONS AND MODELS

In this section, we first give definitions used by RA. We
then provide the system and threat and security models of
RA, respectively.

We summarize basic notations used in our paper in Table
II.

A. Definitions

RA is based on RSA [12] and condensed-RSA [31], which
are defined below:

Definition 1 RSA signature scheme is a tuple of three algo-
rithms (Kg ,Sig ,Ver) defined as follows:
- (sk ,PK) ← RSA.Kg(1κ): The key generation algorithm

takes the security parameter 1κ as the input. It randomly
generates two large primes (p, q) and computes n = p · q.
The public and secret exponents (e, d) ∈ Z∗n satisfies e ·d ≡
1 mod φ(n), where φ(n) = (p − 1)(q − 1). It returns a
private/public key pair sk ← d and PK ← (n, e) as the
output.

- σ ← RSA.Sig(sk ,m): The signature generation algorithm
takes sk and a message m ∈ {0, 1}∗ as the input. It returns a
signature σ ← [H(m)]d mod n as the output (also denoted
as σ ← RSA.Sigsk (m)).

4

- c ← RSA.Ver(PK ,m, σ): The signature verification algo-
rithm takes PK , m and σ as the input (also denoted as
c← RSA.VerPK (m,σ)). If σe = H(m) mod n it returns
bit c = 1 meaning valid. Otherwise, it returns c = 0 meaning
invalid .

Definition 2 Condensed-RSA scheme (denoted as C -RSA) is
a tuple of three algorithms (Kg ,Sig ,Ver) defined as follows:
- (sk ,PK) ← C -RSA.Kg(1κ): Execute RSA.Kg(1κ) in

Definition 1.
- σ ← C -RSA.Sig(sk ,−→m): The signature generation algo-

rithm takes sk and a set of messages −→m = (m0, . . . ,ml) as
the input. It returns a signature σ ←

∏l
j=0 σ

′
j mod n as the

output, where σ′j ← [H(mj)]
d mod n for j = 0, . . . , l (also

denoted as σ ← C -RSA.Sigsk (−→m)).
- c ← C -RSA.Ver(PK ,−→m,σ): The signature verification

algorithm takes PK , −→m and σ as the input (also denoted as
c ← C -RSA.VerPK (−→m,σ)). If σe =

∏l
j=0H(mj) mod n

it returns bit c = 1 meaning valid. Otherwise, it returns
c = 0 meaning invalid .
We give the cryptographic interfaces of RA below, which

are used in our security model (i.e., Definition 4). The detailed
description of RA algorithms is given in Section III.

Definition 3 RA is a tuple of four algorithms,
(Kg ,Offline-Sig , Online-Sig ,Ver) defined as follows:
- (sk ,PK) ← RA.Kg(1κ): The key generation algorithm

takes the security parameter 1κ as the input. It returns a
private/public key pair (sk ,PK) as the output.

- sk ← RA.Offline-Sig(sk ,
−→
M): The offline signature gen-

eration algorithm is executed offline before the system
deployment. It takes the private key sk and a vector of
pre-defined message sets

−→
M = (M0, . . . ,Ml) as the input,

where each Mj is a set for j = 0, . . . , l. It returns a
cryptographic token sk = (Γ,

−→
β) as the output, where Γ and−→

β denote pre-computed signature and message sets (defined
in Section III).

- σ ← RA.Online-Sig(sk,−→m): The online signature genera-
tion algorithm takes the cryptographic token sk (i.e., the
private key of the online phase) and an online message
−→m = (m0, . . . ,ml) as the input. It returns a signature
σ = (r, s) as the output, which is comprised of a random
number r and a condensed-RSA signature s.

- c ← RA.Ver(PK ,−→m,σ): The signature verification algo-
rithm takes PK , a message set −→m to be verified and its
corresponding signature σ as the input. It outputs a bit c,
with c = 1 meaning valid and c = 0 meaning invalid.

B. System Model

Our system model relies on the PKC-based broadcast au-
thentication model (e.g., [21], [22]), which includes two types
of entities:

(i) A resourceful broadcast entity (i.e., the signer), which
broadcasts message-signature pairs to the receivers. The signer
is assumed to be trusted and it cannot be compromised by the
adversary. This is compatible with our envisioned applications,
in which the signer is storage capable and trusted such as a

command center, base station or a satellite. (ii) Computational,
storage and bandwidth limited receivers (e.g., verifiers). A
verifier can be any (untrusted) entity (e.g., a sensor) and it
might be compromised by adversary.

We assume that the signer executes the key generation
and initial offline signature generation before the deployment.
After the deployment, the signer can execute the offline
signature generation either on-demand or periodically. Note
that the offline phase must be performed independently from
the online phase to achieve a high real-time computational
efficiency.

C. Threat and Security Model
Our threat model reflects how a PKC-based broadcast

authentication scheme works. That is, adversary A can
observe message-signature pairs computed under sk . A also
can actively intercept, modify, inject and replay messages
transmitted over the network.

A standard security notion that captures our threat model
is Existential Unforgeability under Chosen Message Attack
(EU -CMA) [34].

RA is proven to be a EU -CMA signature scheme based
on the experiment defined in Definition 4. In this experiment,
A is provided with a signing oracle RA.Online-Sigsk (.).
A can adaptively query RA.Online-Sigsk (.) on any message
−→m she wants up to L queries in total. The signing oracle
returns the corresponding RA signature of −→m under sk . Fi-
nally, A outputs a forgery (−→m∗, σ∗) under PK . If this forgery
is valid and non-trivial (i.e., A did not query σ∗ before),
A wins the EU -CMA experiment. Otherwise, A loses in the
EU -CMA experiment.

Definition 4 EU -CMA experiment for RA is as follows:
(sk ,PK)← RA.Kg(1κ),
(−→m∗, σ∗)← ARA.Online-Sigsk (·)(PK),
If RA.Ver(PK ,−→m∗, σ∗) = 1 and −→m∗ was not queried to the
signing oracle, return 1, else it return 0.
A’s advantage is AdvEU -CMA

RA (A) =
Pr[ExptEU -CMA

RA (A) = 1]. AdvEU -CMA
RA (t, L, µ) =

maxA{AdvEU -CMA
RA (A)} denotes the probability advantage

of RA, where the maximum is over all A having time
complexity t, making at most L oracle queries, and the sum
of lengths of these queries being at most µ bits.

In Section IV, we prove that RA is EU -CMA based on
the fact that C -RSA is EU -CMA, which was proven in [31].
EU -CMA experiment for C -RSA is given below.

Definition 5 EU -CMA experiment for C -RSA is as follows:
(sk ,PK)← C -RSA(1κ),
(−→m∗, σ∗)← AC -RSA.Sigsk (·)(PK),
If C -RSA.Ver(PK ,−→m∗, σ∗) = 1 and −→m∗ was not queried
to the signing oracle, return 1, else it return 0.
A’s advantage is AdvEU -CMA

C -RSA (A) = Pr[ExptEU -CMA
C -RSA (A) =

1]. AdvEU -CMA
C -RSA (t, L, µ) = maxA{AdvEU -CMA

C -RSA (A)} denotes
the probability advantage of C -RSA, where the maximum is
over all A having time complexity t, making at most L oracle
queries, and the sum of lengths of these queries being at most
µ bits.

5

Fig. 1. A representative example of semi-structured messages and its corresponding pre-computed signature table for RA.

III. DESCRIPTION OF OUR SCHEME

In this section, we present our proposed scheme RA. We
first give an overview of RA and then provide its detailed
description.

A. Overview

We summarize the intuition behind of our scheme below:
a) Semi-Structured Nature of Command and Control Mes-

sages: We observe that the content of a command and control
message is generally structured in many real-life applications.
That is, such a command and control message is semantically
fragmented into subsections.

For instance, consider a local energy distribution system
(e.g., a smart-town grid system, or a mobile tactical network
for disaster recovery), where the control center adjusts the
energy parameters of peripheral devices by broadcasting (pre-
defined) control messages. A possible structure of such a
message is comprised of sender and receiver IP addresses,
a command (e.g., reduce voltage, increase frequency), some
optional parameters (e.g., constants) and a timestamp with
randomizing values to enhance the security (see Figure 1).

b) Pre-computation of Verifier Efficient Signatures (Offline
Phase): RA exploits already existing structures in command
and control messages to enable pre-computation for a verifier
efficient scheme such as RSA [12]. In certain cases, the
number of possible sub-messages in a given command and
control message (i.e., commands and receiver groups) are
limited. Hence, it is practical to pre-compute and store a RSA
signature on each of those sub-message components. RA pre-
computes sub-message/RSA-signature tables (i.e.,

−→
β) during

its offline phase (i.e., step 2-b of RA.Offline-Sig in Section
III-B), which eliminates ExpOps from the online phase.

c) Efficient and Secure Combination (Online Phase):
Assume that the signer needs to multicast a message
−→m={on time t; a fixed signer IP (hence just a single pre-
computed condensed-RSA signature of it); receiver IP ad-
dresses y1.y2.y3.y4 (e.g., a group of receiver); with j-th
command; k-th parameter} during the online phase (as in
Figure 1). Firstly, the signer fetches the corresponding pre-
computed signatures (sigt, sigSourceIP , sigDestIP , sigj , sigk)

from sub-message/signature table
−→
β . The signer then com-

bines these signatures into a single and compact RSA signature
by multiplying them under modulo n, which produces a valid
Condensed-RSA [35] signature on message −→m. Note that the
online phase of RA is very efficient, since it requires only
a few modular multiplications. However, this combination
strategy requires further improvements as discussed below:

(i) Freshness and Dynamic Timestamping: Each message
must be timestamped to prevent replay attacks. The signature

of time stamp is generated via an another time value/signature
table (similar to the sub-message/signature table). This pre-
vents the signer from computing a costly online signature for
the timestamp (i.e., step 2-b of RA.Offline-Sig in Section
III-B). The optimization described in Remark 2 reduces the
storage/computation overhead of these operations.

(ii) One-time Masking: Condensed-RSA is multiplicative
homomorphic and mutable2 signature scheme [31]. Thus, if an
adversary A observes sufficient number of message/signature
pairs {mj , sj}lj=0, she can recover the individual signatures
stored in table

−→
β by solving multiplicative modular equations

revealed via (s0, . . . , sl). A then can create a valid condensed-
RSA signature on any message. There are immutable signature
techniques (e.g., [35]), which aim to prevent such an attack.
However, these techniques are either interactive or computa-
tionally costly (e.g., [35]), which make them impractical.

We address this problem by developing a one-time signature
masking technique, which does not require any ExpOp in the
online phase. That is, the signer pre-computes a set of RSA
signatures γj on random numbers rj ||r. The signer stores these
values in a table as Γ = (rj , γj) for j = 0, . . . , l′, where
l′ is the total number of random numbers (i.e., step 2-c of
RA.Offline-Sig in Section III-B). In the online phase, the
signer randomly picks a (r, γ) pair from Γ and masks the
condensed RSA signature of −→m by multiplying it with γ as
σ ← γ · (s) (i.e., Equation 1 in RA.Online-Sig in Section
III-B). Since γ is a random number in Z∗n, this operation one-
time masks the individual signature components of

−→
β . This

solves the aforementioned problem.
d) Scalable and Efficient Verification: The signature ver-

ification of RA is equivalent to a condensed-RSA signa-
ture verification of the signature component s on message
m̃ = (r,−→m). Therefore, RA signature verification is as
efficient as a condensed-RSA signature verification, which
is very fast for properly selected parameters (e.g., e = 3).
Similarly, RA uses a single permanent public key PK to verify
signatures. Therefore, it is much more scalable and practical
than OTSs (e.g., HORS) requiring public key re-distribution.

Remark 1 One may consider that a system with large number
of senders/receivers significantly increases the storage over-
head, since the pre-computed signatures of their IP addresses
must be stored in

−→
β . We create two sub pre-computed tables

for sender and receiver IP addresses. As exemplified in Figure
1, this allows representing all IP addresses with a constant and
small set of pre-computed signatures.

2Mutability refers that given a set of valid signatures, it is easy to derive new and
valid aggregated signatures, which have not been queried before [35].

6

B. Detailed Description

We give the detailed description of RA below.

1) (sk ,PK)← RA.Kg(1κ): Generate r
$← {0, 1}κ and a

RSA private/public key pair as (sk ′,PK ′) ← RSA.Kg(1κ).
Set RA private/public key pair as sk←sk′ and PK ←
(PK ′, r), respectively.
2) sk ← RA.Offline-Sig(sk ,

−→
M): The offline signature gen-

eration algorithm takes a set of message components
−→
M and

sk as the input. It outputs a signature-message table sk =

(Γ,
−→
β) as follows:

a) Message Components:
−→
M ← {M0, . . . ,ML−1} denotes

the message components, where L is the total number of
message components.
The first component M0 = (T0|| . . . ||Tk−1) denotes the
time stamp, where k is the total number of time stamp
components in M0. Each T0≤i≤k−1 is also comprised of
a set of time values (ti,j ||i||0) for i = 0, . . . , k − 1 and
j = 0, . . . , |Ti| − 1. For instance, given a time format
“yyyy||mm||dd||hh||mm||ss||ms”, we set k = 7 (i.e.,
there are seven time fields in M0), |T1| = 12 (i.e., the
total number of months in T1) 3.
Each remaining message component M1≤i≤L−1 is com-
prised of a set of messages mi,j for i = 1, . . . , L − 1
and j = 0, . . . , |Mi| − 1. For instance, M1 is the set of
commands and M2 is the set of receivers (e.g., m2,0 is the
first receiver in M2).

b) Compute Message-Signature Tables: Given M0, compute a
signature on each time value ti,j as si,j ← RSA.Sigsk(ti,j
||i||0) for i = 0, . . . , k−1 and j = 0, . . . , |Ti|−1. The cor-
responding signature table of M0 is β = {si,j}k−1,|Ti|−1

i=0,j=0 .
Given mi,j ∈ Mi, compute a signature on mi,j as s′i,j ←
RSA.Sigsk(mi,j ||i) for i = 1, . . . , L − 1 and j = 0, . . . ,
|Mi|− 1. The corresponding signature table of Mi is βi =

{s′i,j}
L−1,|Mi|−1
i=1,j=0 .

c) Compute Random Number-Signature Table: Compute one-
time masking signatures as rj

$← {0, 1}κ and γj ←
RSA.Sigsk (rj ||r) for j = 0, . . . , l′. The corresponding
random number/signature pair table is Γ = {rj , γj}l

′

j=0.

d) Assign the private key of online phase sk ← (Γ,
−→
β), where−→

β ← (β0 = β, β1, . . . , βL−1).

3) σ ← RA.Online-Sig(sk ,−→m): During the online phase, as-
sume that the signer needs to sign a message −→m ∈

−→
M , where

−→m = (m0, . . . ,ml) and m0 is the current time (0 < l < L−1).
Compute the online signature σ as follows:

Fetch the corresponding signatures of time components
m0 = (t0|| . . . ||tk−1) from β0 as (s0, . . . , sk−1). Fetch
the corresponding signatures of remaining message values
(m1, . . . ,ml) from β1, . . . , βl as (s′1, . . . , s

′
l). Last, randomly

select a pair (r, γ) from Γ and erase the selected pair from Γ.

3The time stamp M0 is the first component of
−→
M . Therefore, we concatenate 0 to

each time value as (ti,j ||i||0) to enforce 0’th position of these values in
−→
M . Index i

in (ti,j ||i||0) is used to enforce the order of time values within the time stamp M0.

The signature on −→m is:

s← γ · (
k−1∏
j=0

sj ·
l∏
i=1

s′i) , σ ← (r, s) (1)

Individual signatures (i.e., s and s′) of
−→
β =

{β0, β1, . . . , βL−1} are never released. That is, they are
protected by being masked by one-time signature γ.
4) c← RA.Ver(PK ,−→m,σ): Assume that the verifier receives
(−→m, σ) on time t′ from the signer. The verifier checks whether
time stamp m0 matches with t′ and |r| = κ hold. If these
conditions do not hold, the verifier rejects the signature (i.e.,
the signature is obsolete or the signature component r is not
in the required range). Otherwise, given m0 = (t0|| . . . ||tk−1)
and PK = (PK ′, r), the verifier verifies σ = (r, s) as follows:

m′ ← H(r||r) · (
k−1∏
j=0

H(tj ||j||0) ·
l∏
i=1

H(mi||i)) (2)

c ← RSA.VerPK ′(m′, s) (3)

Remark 2 Random number/signature table Γ can be renewed
either on-demand or periodically (without disrupting online
phase). Periodically renewing Γ enables a lower storage
overhead and higher signature generation efficiency. That is,
assume that the signer computes a new Γ every day. In this
case, all the preceding time components (i.e., years, month)
and the given day can be authenticated via the masking
signatures as γ ← RSA.Sigsk (r||r||t0||t1||t2). Hence, the
signer stores a smaller number of time stamp signatures (e.g.,
only for hours, minutes, sec and ms).

Remark 3 RA.Online-Sig algorithm is equivalent to com-
pute a condensed-RSA signature s on a message m̃ = (r,−→m).
Similarly, one may verify that RA.Ver algorithm is equivalent
to verify a condensed-RSA signature s on m̃ = (r,−→m).

Remark 4 TESLA [3] and its variants (e.g., [15]) rely on
time factor to introduce an asymmetric between the signer and
verifiers. Hence, they require time synchronization by design.
RA, as in traditional signature schemes (e.g., [13]), does not
require time synchronization to provide authentication. Notice
that if replay attacks are a concern, any digital signature
scheme can be coupled with time stamps, which requires a
loose time synchronization. However, it is not a requirement
of the signature scheme itself, but a requirement of the
application (if replay attacks are a concern).

IV. SECURITY ANALYSIS

We prove that RA is an EU -CMA signature scheme in
Theorem 1 below. Note that in our proof, we omit terms that
are negligible in terms of κ.

Theorem 1 AdvEU -CMA
RA (t, L, µ) is bounded as follows,

AdvEU -CMA
RA (t, L, µ) ≤ AdvEU -CMA

C -RSA (t′, L′, µ′),

where t′ = O(t) +L · (RNG + CSIG), µ′ = µ+L · (2κ) and
L′ = L.

7

Proof: Let simulator A be an RA attacker. We construct a
C -RSA attacker F that uses A as a sub-routine. That is, we
set (sk ′,PK ′) ← C -RSA.Kg(1κ) as defined in Definition 5
(i.e., EU -CMA experiment for C -RSA) and run the simulator
F as follows:

I Algorithm FC -RSA.Sigsk′ (·)(PK ′):

• Setup: F generates r ← {0, 1}κ and sets the public key
for RA as PK ← (PK ′, r) as in RA.Kg . Note that F does
not know the private key sk corresponding to PK . However,
F has an access to C -RSA oracle under sk ′ = sk and
therefore he can simulate RA signatures via this oracle as
follows:

• Execute ARA.Online-Sig(.)(·)(PK): F replies A ’s queries
and then check the result of her forgery as below.
- Queries: A adaptively queries data items −→mj =

(m0, . . . ,ml) of her choice to F for j = 0, . . . , L − 1.
For each query −→mj , F generates a random number
rj

$← {0, 1}κ and creates a message m̃j ← (rj ||r,−→mj).
F then queries C -RSA oracle on m̃j and obtains the
corresponding signature as sj ← C -RSAsk ′(m̃j). F sets
the signature on −→mj as σj ← (rj , sj) and returns σj to
A as the query answer.
F also maintains lists LD and LR to keep track the
query results during the experiment. For each query j,
F inserts −→mj and rj into LD and LR, respectively.

- Forgery of A : After the query phase, A outputs a
forgery for PK as (−→m∗, 〈σ∗ = (r∗, s∗)〉). By Definition
4, A wins if conditions RA.Ver(PK ,−→m∗, σ∗) = 1 ∧
−→m∗ /∈ LD hold. If these conditions hold, A wins the
EU -CMA experiment for RA and returns 1. Otherwise,
A loses in the experiment and returns 0.

I Forgery of F : If A loses in the EU -CMA experiment
for RA then F also loses in the EU -CMA experiment for
C -RSA, and therefore F aborts and returns 0. Otherwise,
F proceeds as follows:

Given that A ’s forgery is (−→m∗, 〈σ∗ = (r∗, s∗)〉), F sets
m̃∗ ← (r∗,−→m∗) and returns the forgery on PK ′ as
(m̃∗, s∗). By Definition 5, F wins the EU -CMA ex-
periment for C -RSA if the following conditions hold:
C -RSA(PK ′, m̃∗, s∗) = 1 ∧ [(−→m∗ /∈ LD) ∨ (r∗ /∈ LR)]. If
these conditions hold, F wins the EU -CMA experiment (i.e.,
the forgery is valid and non-trivial) and returns 1. Otherwise,
F loses the experiment and returns 0.

The success probability, execution time analysis and indis-
tinguishability argument are as follows:

Success Probability Analysis: The following events are re-
quired for F to succeed in the EU -CMA experiment:

- Abort1 : F does not abort due to A ’s queries.
F simulates A ’s queries by expanding each RA query with
a 2κ-bit randomness (i.e., r||r) and requesting the signature
of m̃← (r||r,−→m) from C -RSA oracle. Therefore, F aborts
if and only if he cannot obtain a valid signature from
C -RSA oracle, whose probability is negligible. Therefore,
we conclude Pr [Abort1] = 1.

- Forge: A wins the EU -CMA experiment for RA.

If F does not abort then A also does not abort, since
A ’s view in this experiment is perfectly indistinguishable
from her view in a real-system (see the indistinguishability
argument below). Therefore, the probability that F does not
abort and A wins the experiment is Pr [Forge|Abort1] =
AdvEU -CMA

RA (t, L, µ).
- Abort2 : F does not abort during his forgery phase.

The probability that A wins the experiment without query-
ing F is negligible as it requires a random guess or finding
a collision on H . This guarantees that, by Definition 5 and
Remark 3, the forgery (m̃∗, s∗) is valid and non-trivial.
Therefore, we conclude Pr [Abort2 |Abort1 ∧ Forge] = 1.

- Win: F wins the EU -CMA experiment
for C -RSA, whose probability is denoted as
Pr [Win] = AdvEU -CMA

C -RSA (t′, L′, µ′).

This occurs if all of the above events happen.
That is, Pr [Win] = Pr [Abort1]Pr [Forge|Abort1]
Pr [Abort2 |Abort1 ∧ Forge]. This equality implies that
the EU -CMA advantage of RA is bounded by the
EU -CMA advantage of C -RSA as follows:

AdvEU -CMA
RA (t, L, µ) ≤ AdvEU -CMA

C -RSA (t′, L′, µ′)

Execution Time Analysis: The running time of F is that of
A plus the time it takes to respond L (in total) RA queries.
Each RA query requires drawing a random number and
requesting a condensed-RSA signature from C -RSA oracle,
whose costs are denoted as RNG and CSIG , respectively.
Hence, the approximate running time of F is t′ = O(t) +L ·
(RNG + CSIG).

Note that during the query phase, F directs each query of
A to C -RSA oracle by expanding it with a 2κ-bit randomness
rj ||r. Therefore, the total number of queries that A and
F make are equal as L′ = L and the length of F ’s query is
µ′ = µ+ L · (2κ).

Indistinguishability Argument: The real-view of A is a
vector

−→
A real = {PK , σj}Lj=0, where the public key and

signatures are computed by RA.Kg and RA.Online-Sig al-
gorithms. The simulated view of A is also a vector

−→
A simand

it is identical to
−→
A real , where the public key and signatures

are computed as follows:
(i) Given PK = (PK ′, r), F directly takes the RSA

public key PK ′ as input and then randomly generates r as
in RA.Kg algorithm. (ii) During the simulation, F obtains a
condensed-RSA signature s on (r,−→m) from C -RSA oracle
and replies A ’s signature query with σ = (r, s). The
actual RA.Online-Sig and RA.Ver algorithms are equivalent
to generate and to verify a condensed-RSA signature s on
m̃ = (r,−→m) (Remark 3). Hence, the answers of F for
A ’s RA queries are valid and perfectly indistinguishable.

The above statements show that all variables in
−→
A real and−→

A sim are computed identically. Hence, the joint probability
distributions of

−→
A real and

−→
A sim are equal as Pr [

−→
A real = a] =

Pr [
−→
A sim = a] (i.e., perfectly indistinguishable). �

V. PERFORMANCE ANALYSIS

In this section, we present the performance analysis of
RA and compare it with previous schemes using the fol-

8

TABLE III
ANALYTICAL ONLINE (I.E., REAL-TIME) COMPUTATIONAL COST COMPARISON OF RA AND PREVIOUS SCHEMES

RA Traditional PKC Online/Offline [25] (K pre-computed private/public key pairs)
RSA ECDSA (K pre-computed tokens) HORS TV-HORS

Signer a ·Muln Expn H + 2Mul 0.1 ·Muln H H
Verifier (a+ e)Muln+ a ·H e ·Muln ≈ 1.3 · EMul Expn+Muln u ·H α ·H

End-to-end (2a+ e)Muln+ a ·H ≈ Expn ≈ 1.3 · EMul ≈ Expn (u+ 1) ·H (α+ 1) ·H

Expn denotes a modular exponentiation over modulus n. Mul, Muln and EMul denote a modular multiplication over modulus q′ (see
Table IV-notes), modular multiplication over modulus n and ECC scalar multiplication over q′, respectively. e denotes the public key of
RSA/condensed-RSA, which is also used as a part of the public key of RA. u, α and a denote the constant parameters used in HORS,
TV-HORS and RA, respectively. End-to-end computational overhead is the sum of signer and verifier computational overhead, in which
we omit the low-cost operations if there are ExpOps in the sum (e.g., Expn). Similarly, small and constant number of additions (e.g., as in
ECDSA) are omitted. ECDSA is implemented with tokens [26] at the signer to achieve an ExpOp-free signing. ECDSA signature
verification is performed with the double-point scalar multiplication.

TABLE IV
AVERAGE ONLINE EXECUTION TIME (IN µS) COMPARISON OF RA AND PREVIOUS SCHEMES (SAMPLED OVER K = 104 MESSAGES)

RA∗ Traditional PKC Online/Offline [25] (K pre-computed private/public key pairs)
RSA ECDSA (K pre-computed tokens) HORS∗ TV-HORS (with a low κ = 54)

Signer 100 3766 26 2 1 1
Verifier 116 26 1550 1774 20 685

End-to-end 226 3792 1576 1776 21 686

RA∗ and HORS∗ are the most computationally efficient schemes among these alternatives. Note that despite being efficient, HORS is
impractical as it requires distributing a large public key (e.g., 3KB-5KB) for each message. Table I and Section I-C present a qualitative
comparison of RA and HORS. Section V-B presents a storage and communication overhead comparison of RA and HORS.
Parameters: TV-HORS is efficient only with a small κ, since it relies on a security/performance trade-off. Some suggested parameters for
TV-HORS [7] are as follows: κ = 54, packet loss rate pl = 0.2 and α = 685. We select standard κ = 80 for all other schemes with the
exception of TV-HORS. Suggested parameters/bit lengths to achieve 80-bit security for other compared schemes are as follows: Composite
modulus |n| = 1024 for RA, RSA and online/offline construction in [25]. The coefficient e = 3 for RA and RSA. Primes |q′| = 160 and
|p′| = 512 for ECDSA. Parameter u = 20 for HORS. We select a = 10 for RA by following a simplified version of the example given in
Figure 1. Sub-fields are as follows: (sec,msec) for timestamp, the fixed signer IP (hence only a single condensed-RSA signature), four
sub-fields of receiver IPs, commands, parameters and random masking signatures. The total number of pre-computed signatures for those
sub-fields is denoted as c, which is c = 2213 (60+1000+1+1024+64+64) for this example.

TABLE V
ANALYTICAL (ASYMPTOTIC) STORAGE AND COMMUNICATION OVERHEAD COMPARISON OF RA AND PREVIOUS SCHEMES

Traditional PKC Online/Offline [25] (K pre-computed private/public key pairs)
RA RSA ECDSA (K pre-computed tokens) HORS TV-HORS

Storage (sign/verify Signer |n|c+ (|n|+ κ)O(K) |n| (|p′|+ |q′|)O(K) 2|n|O(K) t|H|O(K) t′|H ′|O(K)/v
K = 104 messages) Verifier |n|+ 2κ |n| |p′|+ |q′| 2|n| t|H|O(K) t′|H ′|O(K)/v

Communication (per message) |n|+ κ |n| |p′|+ |q′| 2|n| u|H| t′|H ′|

Suggested parameters/bit length for TV-HORS [7] are (t′ = 12, v = 5, |H ′| = 48) with κ = 54, where |H ′| is the truncated hash output.
Suggested parameters for HORS [22] are (t = 256, u = 20), where |H| = 80. Bit lengths of |n|, |p′| and |q′| are given as in Table IV.

TABLE VI
NUMERICAL STORAGE AND COMMUNICATION OVERHEAD COMPARISON OF RA AND PREVIOUS SCHEMES FOR K = 104 MESSAGES

Traditional PKC Online/Offline [25] (K pre-computed private/public key pairs)
RA RSA∗ ECDSA (K pre-computed tokens) HORS TV-HORS

Storage (sign/verify Signer 1562 KB 128 byte 101 KB 250 KB 2500 KB 70KB
K = 104 messages) Verifier 138 byte 128 byte 84 byte 256 byte 2500 KB 70KB
Communication (per message) 138 byte 128 byte 84 byte 256 byte 192 byte 76 byte

After keys for K = 104 messages depletes, HORS/TV-HORS require distributing K new public keys. Other schemes do not require such a
public key re-distribution. To achieve the minimum end-to-end delay, all compared schemes (with the exception of plain RSA) are used in
pre-computation/pre-distribution setting. That is, all tokens/public keys are pre-computed and distributed before the system deployment.
Hence, ECDSA with tokens achieves a higher computational efficiency with the cost of a higher signer storage. A similar principle also
applies to HORS and TV-HORS. In RA, c = 2213 plus K = 104 masking signatures create approximately 1526 KB signer storage
overhead.

9

lowing criteria: (i) The computational overhead of signature
generation and verification; (ii) storage and communication
overhead depending on the size of signature and the size of
public key. For each of these criteria, we first analyze RA and
then provide a comparison of it with previous schemes. We
also discuss some qualitative criteria such scalability and
applicability based on the criteria (i)-(ii).

In computational overhead analysis, we focus on online end-
to-end computational efficiency to evaluate the practicality of
compared schemes for real-time applications. In storage and
communication overhead analysis, we assume that public keys
are generated and distributed before the system deployment.

We select a representative scheme(s) from each main group
of schemes discussed in Section I-A. We select RSA [12] and
ECDSA [13] as the verifier efficient and signer efficient PKC-
based schemes, respectively. We select HORS [22] and TV-
HORS [7] as OTS schemes, since HORS is one of the fastest
OTSs. We select online/offline signature in [25], which is more
scalable than previous online/offline schemes (e.g., [36]).

A. Computational Overhead

Offline (non-real-time) Overhead: The key generation cost
of RA is a random number generation plus a single execution
of RSA.Kg . The RA.Offline-Sig requires c · (RSA.Sig)

computations to prepare message-signature table
−→
β , where c

denotes the total number of pre-computed signatures in
−→
β .

RA pre-computes a random number-signature table Γ, which
requires K ·(RSA.Sig +RNG) computations for K messages
(Γ is computed as in Remark 2).

Online (real-time) Overhead: The essential computational
overhead criteria for all compared schemes is the online (real-
time) computational overhead. In RA, the signature generation
cost is a · (Muln) for a message with a = (k + l) sub-
message components, where k and l are the number of sub-
message components for timestamp and for −→m, respectively
(as in Equation 1). The signature verification requires a hash
computations and a modular multiplications plus a condensed-
RSA signature verification (with e = 3). That is, the signature
verification cost is (a+ e)Muln+ a ·H .

Comparison: To achieve the fastest real-time response, for
each compared scheme, we shift the ExpOp(s) of signature
generation to the offline phase (if the scheme enables this
property). That is, we implement an improved version of
ECDSA [26], which allows pre-computing and storing cryp-
tographic tokens. These tokens enable ExpOp-free signature
generation in the online phase. In HORS and TV-HORS, we
generate K one-time private/public key pairs in the offline
phase. These private/public keys are stored at the signer and
verifier sides, respectively (for immediate use in the online
phase). Online/offline signatures (e.g., [25]) by nature realize
such a pre-computation at the signer side. Note that, different
from its DLP-based counterparts (e.g., ECDSA), such a pre-
computation is not known for RSA.

Table III summarizes the analytical comparison of RA with
its counterparts. We also prototype all compared schemes on
a computer with an Intel(R) Core(TM) i7 Q720 at 1.60GHz
CPU and 2GB RAM running Ubuntu 10.10. We measure the

execution times using MIRACL [37] library. Table IV provides
an average (online) execution time comparison.

Given the example described in Table IV with (a = 10, e =
3), end-to-end delay of RA is as low as 226 µs (without any
modular arithmetic optimization). RA is approximately 17, 8,
7 and 3 times faster than RSA, online/offline scheme [25],
ECDSA and TV-HORS (which has a much lower security),
respectively. However, RA is less efficient than HORS).

B. Storage and Communication Overhead

In RA, the signer storage overhead is comprised of pre-
computed tables (

−→
β ,Γ). The size of (

−→
β ,Γ) is |n|c + (|n| +

κ)O(K), where c denotes the total number of pre-computed
signatures4 stored in

−→
β . With optimizations in Remark 2,

the signer pre-computes a new Γ from time to time. The
size of Γ is (|n| + κ)O(K) for K messages to be signed
during the designated time interval. Unlike OTS schemes (e.g.,
HORS [22]), RA does not require distributing public keys once
these random numbers deplete. The signer just computes a new
Γ in an offline manner. The verifier storage overhead of RA is
a constant size public key PK , which is comprised of public
key pk′ and a κ-bit random number r.

The communication overhead of RA is |n| + |κ| (i.e., the
size of signature σ).

Comparison: Table V summarizes the analytical stor-
age/communication overhead comparison of RA with its coun-
terparts. Table VI provides numerical values for K = 104 mes-
sages, with parameters in the pre-computation/pre-distribution
setting. That is, all keys/tokens [26] are pre-computed and
stored for ECDSA, HORS and TV-HORS. RA and on-
line/offline scheme [25] already operate in this setting.

At the verifier side, RA is much more efficient than
HORS and TV-HORS and more efficient than online/offline
scheme [25]. However, since RA requires storing pre-
computed signature tables, it is less efficient than other com-
pared schemes at the signer side, with the exception of HORS.

VI. CONCLUSION

In this paper, we developed a new broadcast authentication
scheme for command and control messages, which we refer
to as Rapid Authentication (RA). RA simultaneously achieves
several desirable properties including fast signature genera-
tion and verification, immediate verification without message
buffering, small public key and signature size, high scalability,
high packet loss tolerance, provable security and being free
from synchronization requirement. Our comparison with the
existing alternatives shows that RA is an ideal choice for
broadcast authentication of command and control messages in
large and distributed systems with time-critical applications.

RA achieves its desirable properties by leveraging already
existing structures in command and control messages that
exist in many real-life applications. However, RA currently
cannot provide authentication for command and control mes-
sages without pre-defined structures. In future work, we aim
designing schemes that can address this limitation of RA.

4Sub-message components (e.g., commands and receiver IDs) are already stored as a
requirement of the application and therefore their overhead is excluded here.

10

REFERENCES

[1] K. Ren, W. Lou, K. Zeng, and P. Moran, “On broadcast authentication
in wireless sensor networks,” IEEE Transactions on Wireless Commu-
nications, vol. 6, no. 11, pp. 4136 –4144, November 2007.

[2] A. Perrig and J. Tygar, Secure broadcast communication in wired
and wireless networks. Kluwer Academic Publishers, 2003. [Online].
Available: http://books.google.com/books?id=h5qXzbliKNIC

[3] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient authentication
and signing of multicast streams over lossy channels,” in Proceedings
of the IEEE Symposium on Security and Privacy, May 2000.

[4] M. Luk, A. Perrig, and B. Whillock, “Seven cardinal properties of sensor
network broadcast authentication,” in Proceedings of 4th ACM workshop
on security of ad hoc and sensor networks, ser. SASN ’06. New York,
NY, USA: ACM, 2006, pp. 147–156.

[5] Y. Liu, M. K. Reiter, and P. Ning, “False data injection attacks against
state estimation in electric power grids,” in ACM Conference on Com-
puter and Communications Security, 2009, pp. 21–32.

[6] H. Guo, Y. Wu, F. Bao, H. Chen, and M. Ma, “UBAPV2G: A unique
batch authentication protocol for vehicle-to-grid communications,” IEEE
Transactions on Smart Grid, vol. 2, no. 4, pp. 707 –714, December 2011.

[7] Q. Wang, H. Khurana, Y. Huang, and K. Nahrstedt, “Time valid one-time
signature for time-critical multicast data authentication,” in INFOCOM
2009, IEEE, April 2009.

[8] Q. Li and G. Cao, “Multicast authentication in the smart grid with one-
time signature,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp.
686 –696, December 2011.

[9] Z. Lu, X. Lu, W. Wang, and C. Wang, “Review and evaluation of security
threats on the communication networks in the smart grid,” in Military
Communication Conference (MILCOM), November 2010.

[10] A. Menezes, P. C. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. CRC Press, 1996, ISBN: 0-8493-8523-7.

[11] D. Boneh, G. Durfee, and M. K. Franklin, “Lower bounds for
multicast message authentication,” in Proceedings of the International
Conference on the Theory and Application of Cryptographic Techniques:
Advances in Cryptology, ser. EUROCRYPT ’01. London, UK,
UK: Springer-Verlag, 2001, pp. 437–452. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=647086.715684

[12] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[13] ANSI X9.62-1998: Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA),
American Bankers Association, 1999.

[14] D. Liu, P. Ning, S. Zhu, and S. Jajodia, “Practical broadcast authentica-
tion in sensor networks,” in Mobile and Ubiquitous Systems: Networking
and Services (MobiQuitous), July 2005, pp. 118 – 129.

[15] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS:
Security protocols for sensor networks,” Wireless Networks, vol. 8, no. 5,
pp. 521–534, Sep. 2002.

[16] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos, “Multicast authen-
tication in fully adversarial networks,” in IEEE Symposium on Security
and Privacy, May 2004, pp. 241 –253.

[17] C. K. Wong and S. S. Lam, “Digital signatures for flows and multicasts,”
IEEE Transaction on Networks, vol. 7, no. 4, pp. 502–513, August 1999.

[18] S. Miner and J. Staddon, “Graph-based authentication of digital
streams,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2001, pp. 232–246.

[19] J. M. Park, E. Chong, and H. Siegel, “Efficient multicast packet
authentication using signature amortization,” in IEEE Symposium on
Security and Privacy, May 2002, pp. 227 – 240.

[20] L. Lamport, “Constructing digital signatures from a one-way function,”
Tech. Rep. CSL-98, October 1979.

[21] A. Perrig, “The BiBa: One-time signature and broadcast authentication
protocol,” in Proceedings of the ACM Conference on Computer and
Communications Security, November 2001, pp. 28–37.

[22] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signatures
with fast signing and verifying,” in Proceedings of the 7th Australian
Conference on Information Security and Privacy (ACIPS ’02). Springer-
Verlag, 2002, pp. 144–153.

[23] J. Pieprzyk, H. Wang, and C. Xing, “Multiple-time signature schemes
against adaptive chosen message attacks,” in Selected Areas in Cryptog-
raphy (SAC), 2003, pp. 88–100.

[24] W. Neumann, “HORSE: An extension of an r-time signature scheme
with fast signing and verification,” in Information Technology: Coding
and Computing, 2004. Proceedings. ITCC 2004. International Confer-
ence on, vol. 1, april 2004, pp. 129 – 134 Vol.1.

[25] A. Shamir and Y. Tauman, “Improved online/offline signature schemes,”
in Proceedings of the 21st Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’01. London, UK: Springer-
Verlag, 2001, pp. 355–367.

[26] D. Naccache, D. M’Raı̈hi, S. Vaudenay, and D. Raphaeli, “Can D.S.A.
be improved? Complexity trade-offs with the digital signature standard,”
in Proceedings of the 13th International Conference on the Theory and
Application of Cryptographic Techniques (EUROCRYPT ’94), 1994, pp.
77–85.

[27] M. Bellare and P. Rogaway, “The exact security of digital signatures:
How to sign with RSA and Rabin,” in Proceedings of the 15th Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT ’96). Springer-Verlag, 1996, pp. 399–416.

[28] ——, “Random oracles are practical: A paradigm for designing efficient
protocols,” in Proceedings of the 1st ACM conference on Computer and
Communications Security (CCS ’93). NY, USA: ACM, 1993, pp. 62–
73.

[29] M. O. Rabin, “Digitalized signatures and public-key functions as
intractable as factorization,” Cambridge, MA, USA, Tech. Rep.
MIT/LCS/TR-212, 1979.

[30] A. A. Yavuz, F. Alagöz, and E. Anarim, “HIMUTSIS: Hierarchical
multi-tier adaptive ad-hoc network security protocol based on sign-
cryption type key exchange schemes,” in Proceedings of the 21th
International Symposium Computer and Information Sciences (ISCIS
’06), ser. Lecture Notes in Computer Science, vol. 4263. Springer-
Verlag, 2006, pp. 434–444.

[31] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and in-
tegrity in outsourced databases,” Transaction on Storage (TOS), vol. 2,
no. 2, pp. 107–138, 2006.

[32] National Institute of Standards and Technology, “Federal information
processing standard 186: Digital signature standard,” http://csrc.nist.gov/
publications/, 1993.

[33] S. Chang, W. W. Shieh, S., and C. Hsieh, “An efficient broadcast
authentication scheme in wireless sensor networks,” in Proceedings of
the ACM Symposium on Information, computer and communications
security, ser. ASIACCS ’06. New York, NY, USA: ACM, 2006, pp.
311–320.

[34] M. Bellare and P. Rogaway, “Introduction to modern cryptography,”
in UCSD CSE Course, 1st ed., 2005, p. 207, http://www.cs.ucsd.edu/
∼mihir/cse207/classnotes.html.

[35] E. Mykletun, M. Narasimha, and G. Tsudik, “Signature bouquets: Im-
mutability for aggregated/condensed signatures,” in Proceedings of the
9th European Symposium on Research in Computer Security (ESORICS
’04). Springer-Verlag, September 2004, pp. 160–176.

[36] S. Even, O. Goldreich, and S. Micali, “Online/offline digital signatures,”
in Proceedings on Advances in Cryptology (CRYPTO ’89). Springer-
Verlag, 1989, pp. 263–275.

[37] Shamus, “Multiprecision integer and rational arithmetic c/c++ li-
brary (MIRACL),” http://www.certivox.com/miracl/miracl-download/,
Last Accessed on 09/02/2014.

Attila Altay Yavuz received a BS degree in Com-
puter Engineering from Yildiz Technical University
(2004) and a MS degree in Computer Science from
Bogazici University (2006), both in Istanbul, Turkey.
He received his PhD degree in Computer Science
from North Carolina State University in August
2011. Between December 2011 and July 2014, he
was a member of the security and privacy research
group at the Robert Bosch Research and Technology
Center North America. Since August 2014, he has
been an Assistant Professor in the School of Elec-

trical Engineering and Computer Science, Oregon State University, Corvallis,
USA. He is also an adjunct faculty at the University of Pittsburgh’s School
of Information Sciences since January 2013.

Attila Altay Yavuz is interested in design, analysis and application of
cryptographic tools and protocols to enhance the security of computer
networks and systems. His current research focuses on the following topics:
Privacy enhancing technologies (e.g., searchable encryption), security in cloud
computing, authentication and integrity mechanisms for resource-constrained
devices and large-distributed systems, efficient cryptographic protocols for
wireless sensor networks.

