SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2015; 8:3180-3190
Published online 26 March 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.1242

RESEARCH ARTICLE

BAFi: a practical cryptographic secure audit logging
scheme for digital forensics

Panos Kampanakis'* and Attila A. Yavuz?

' Security Research and Operations, Cisco Systems, San Jose, CA, U.S.A
2 University of Pittsburgh, Pittsburgh, PA 15260, U.S.A

ABSTRACT

Audit logs provide information about historical states of computer systems. They also contain highly valuable data that
can be used by law enforcement in forensic investigations. Thus, ensuring the authenticity and integrity of audit logs is
of vital importance. An ideal security mechanism for audit logging must also satisfy security properties such as forward-
security (compromise resiliency), compactness, and computational efficiency. Unfortunately, existing secure audit logging
schemes lack the computational or storage efficiency for modern performance requirements. Indeed, the practicality of
such schemes has not been investigated in real-life systems, where logs generated in various occasions could be terabytes
of data per day.

To address this limitation, we developed an efficient, publicly verifiable, forward-secure, privacy-preserving, and aggregate
logging scheme called blind-aggregate-forward improved (BAFi). BAFi is based on BAF, with new properties and perfor-
mance improvements as follows: (i) BAFi improves the efficiency of BAF via implementation specific optimizations; (ii)
BAFi has the option to not expose sensitive information in logs to protect valuable forensic information; (iii) BAFi was
experimentally tested in real-world logs; and (iv) BAFi improves the security of BAF against log substitution. Our analysis
shows that BAFi outperforms previous alternatives with similar properties and therefore is an ideal solution for nowadays
highly intense logging systems. Copyright © 2015 John Wiley & Sons, Ltd.

KEYWORDS
secure audit logging; applied cryptography; digital forensics; forward-secure; signature aggregation

*Correspondence
Panos Kampanakis, Security Research and Operations, Cisco Systems, San Jose, CA, U.S.A.
E-mail: pkampana@cisco.com

1. INTRODUCTION

from the storage location for further examination. Logging
servers cannot be considered 100% fault-tolerant or secure.

Log auditing is the most widely used forensic analysis and In the event of a server compromise, logs can be potentially

investigation methodology in information systems. Logs
can present the previous state of a machine to provide data
about events or failures of a system. Along with other tools
at their disposal, security engineers use logs when inves-
tigating failures, security incidents, or compromises of
computer systems. Moreover, after receiving legal autho-
rization to access logs, law enforcement requests and uses
logs from service providers to investigate law violations
that are relevant to with electronic crimes.

Most logging infrastructures today leverage logging
servers that can simultaneously collect data from several
logging devices. Data are stored into a remote storage
location where it is archived. Logs are purged after the
time defined in the organization’s retention policy passes.
In case the logs need to be retrieved, they are extracted

3180

tampered with and/or modified. It is also possible that false
data are spoofed and sent to the server in order to contam-
inate the log information. Thus, the integrity and security
of stored logs are fundamental to ensure the validity of the
log analysis results.

1.1. Motivation

As discussed earlier, logs can be used for forensic analysis
and criminal investigation. Tamper-resistance is a property
that ensures that logs are trustworthy, and thus, they serve
their purpose (i.e., keep track of system events). Similarly,
log re-ordering should not be possible. Especially in crimi-
nal cases in some countries, log evidence can only be used
if a warrant is issued for their retrieval from the log holder

Copyright © 2015 John Wiley & Sons, Ltd.

P Kampanakis and A. A. Yavuz

(i.e., service provider). Personal identifiable information
(PII) is considered private and subject to privacy laws.
Immutable logging that also protects PII is more suitable
for a legislative system that protects privacy. For example,
a block of logs could be used to verify if a certain event
actually happened, but it should not be possible to use it to
see all the events that happened during that time. Another
example of an application that would benefit from such a
logging scheme is a voting system where user information
should not be retrievable.

Another vital aspect of modern logging systems is log-
ging performance. Internet service providers (ISP) are an
example of the high performance requirements of mod-
ern logging aggregation points. As described in Internet
Engineering Task Force’s behave working group Internet
draft [1], average log sizes for NATting and IPv6 tech-
nologies vary from 150 to 175 bytes. That could add up
to 1.8 petabytes of data per year and 23 Mbps of logs per
50 000 users. These numbers do not consider compres-
sion and bulk logging and may vary depending on time
of day and season, but they indicate that a log security
system must have minimal computational overhead, espe-
cially during log generation. The computational efficiency
of log verification is not as critical as that of log genera-
tion, because the verifications generally occur in an ad hoc
manner (e.g., only during an investigation).

Consequently, in this work, we aim to address all
these challenges by designing a scheme that is able to
provide immutability, tamper resistance, and protection
against truncation attacks [2] to optionally protect pri-
vate information and to be very efficient in terms of
log generation. Also, we minimize the storage overhead
that is important for the practicality of our scheme in
real-world deployments.

1.2. Related work and limitations

The research community has come up with various
schemes to address the aforementioned problems. These
schemes can be divided into symmetric and public keys.
An important limitation of these schemes is the lack of
analysis and evaluation in real systems. Some include basic
prototypes to prove their correctness, which are not enough
to ensure their practicality and applicability in real-life
applications. Another limitation of these schemes is that
they assume log privacy, which is not always practical.
Symmetric key schemes [3-7] rely on message
authentication codes (MACs), one-way hash chains, and
pseudo-random number generators in order to provide
forward-secrecy and immutability. Even though these
schemes are efficient for today’s technology, they assume
shared secrets between the logging server and the logger or
an online trusted third party (TTP) that provides the shared
keys. Shared keys pose distribution and significant storage
challenges. On the other hand, the requirement of an online
TTP is not very practical for today’s systems. Moreover,
in the event of log verification, all the shared secrets need
to be shared with the verifier, which can compromise the

Security Comm. Networks 2015; 8:3180-3190 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

BAFi: secure audit logging

security of other logs. Some of these schemes are also vul-
nerable to truncation and delayed detection attacks [2] and
introduce authentication tags on a per log basis.

Bellare and Yee defined and analyzed forward-secure
MAC:s and pseudo-random number generators [3,4]. They
also proposed a forward-secure scheme that tags and
indexes the logs. Schneier and Kelsey present schemes
that leverage one-way hash chains with public key encryp-
tion and forward-secure MACs [5,7]. The disadvantages
of these schemes have to do with computational, storage,
and communication overhead. Internet Engineering Task
Force’s request for comments 5848 [8] uses these tech-
niques to define secure logging messages. Logerypt [9],
on the other hand, secures the logs by generating MAC-
based signatures. MAC-based Logcrypt is vulnerable to
truncation attacks.

Public key schemes are based on public key cryptogra-
phy. They rely on signatures to provide public verifiability,
and their advantage is that they can be verified without
compromising the log security by revealing shared keys to
the verifier.

Ma et al. proposed a set of comprehensive secure audit
logging schemes [2] based on their BM-forward-secure
sequential aggregate authentication (FssAgg), AR-FssAgg,
and BLS-FssAgg schemes [6,10]. These provide storage
efficiency but introduce considerable processing load to
the logging server that can prove to be impractical for
the log rates of certain modern log aggregating appli-
cations. Identity-based encryption Logcrypt [9] uses ID-
based elliptic-curve cryptography (ECC) signatures but
lacks performance because of costly ECC extract opera-
tions. Yavuz and Ning, on the other hand, present BAF that
leverages ECC aggregate signatures to provide an efficient
forward-secure scheme [11]. BAF is the scheme that we
adjusted for this work in order to produce practical and
more efficient BAFi that can provide secure logging for
today’s infrastructures.

1.3. Our contributions

In order to address the aforementioned limitations, we
develop BAFi. BAFi achieves the desirable properties
found in the succeeding text.

® We improve BAF’s verification performance by
avoiding one elliptic-curve (EC) point addition per
log. That provides an advantage if the auditor needs
to verify a large amount of log entries simultaneously.

® We improve BAF’s security against log substitution
and known-plaintext attack by introducing truncation
of the log hashes and proposing a new key.

® We provide a full-fledged implementation and experi-
mental results, which prove that BAFi is efficient and
could provide logging security for real-world systems.

® We provide real-world analysis of byte count over-
head and show the advantages of BAFi for today’s and
future security requirements.

® We demonstrate BAFi log structure in detail, which
can guide engineers to implement BAFi properly.

3181

BAFi: secure audit logging

® BAFi can be used for forensic analysis in situa-
tions where PII must remain private. We show how
a forensic analyst would verify the occurrence of the
event without being able to retrieve any other events
protected by BAFi.

Blind-aggregate-forward improved also maintains all
the desirable properties of BAF [11] as follows:

(1) Efficient log signing

(2) Logger storage/bandwidth efficiency

(3) Efficient log verification

(4) Public verifiability

(5) Off-line TTP and immediate verification

The rest of this paper is organized as follows: Section
2 provides the preliminary concepts for the scheme.
Section 3 presents the updates introduced by BAFi. Section
4 presents performance analysis and compares BAFi with
previous approaches. Section 5 discusses the experimen-
tal implementation results of BAFi compared with other
schemes. Section 6 concludes this paper.

2. PRELIMINARIES
2.1. System model

In a modern logging system, multiple logging devices
(aka loggers) send logs to a central entity (e.g., log server)
that is responsible for aggregating and storing the logged
data usually to a storage location. Logs are stored accord-
ing to the data retention policy and in case of an inves-
tigation or event analysis they are available in order to
provide information regarding event history. Given that the
logging server (and potentially other devices) has write
access to the log storage, a compromise of the logging
server or bogus data spoofing could jeopardize the log
validity and thus the investigation results. Our scheme is
leveraging an off-line TTP that communicates with the
logging server to provide keying materials. Communica-
tion between the TTP and the logger can then stop until
key refreshes are necessary. Figure 1 shows the BAFi log
infrastructure. In a BAFi infrastructure, in the event of a

BAFi log
storage

v

Logging Server / Logger

BAFi Logs are
stored in repository
devices

@//’ 7
E’ TP

Figure 1. Blind-aggregate-forward improved (BAFi) infrastruc-
ture with logging server/aggregator, trusted third party (TTP) and
multiple logging devices.

Logging

3182

P Kampanakis and A. A. Yavuz

logging server compromise, subsequent stored data can be
spoofed or tampered with, but all existing logs are secure
thus trustworthy.

2.2. Notation

In the scheme of this paper, x <}i F) denotes that x is
selected uniformly from prime field), where p is a large
prime number. G is a generator of group G defined on
an EC E(Fp) of F). q is the order of G. kG denotes a
scalar multiplication, where k € [1,q — 1]. Additionally,
H; and H, are two distinct full-domain hash functions
[12], which are defined as H; : {0,1}¥ — (0,1} and

H, : {0, 1}* — {0, l}lql, respectively, where sk <5 Fy.
Operators |l and Ixl denote the concatenation operation and
the bit length of variable x, respectively. |x|y piss depicts
the truncation of x to its rightmost y-bits.

Our scheme depends on the following semantic security
properties [13]: Hj/H, are strong collision-resistant and
secure full-domain hashes [12], producing indistinguish-
able outputs from the random uniform distribution (i.e.,
behaves as a random oracle [14]). EC discrete logarithm
problem [15] is intractable with appropriate parameters.
That is, for a given random point Q € E(F)), it is com-
putationally infeasible to determine an integer k such that
Q = kG, where G € G.

2.3. Blind-aggregate-forward|[11]

In the succeeding text, we outline our base scheme,
BAF [11]. BAF operates in blocks of logs. For this work,
we will assume that the blocks are of L logs. For each
block, BAF generates an aggregate signature that can be
verified if and only if all the logs that participated in the
signature have not been tampered with. BAF consists of a
four-step algorithm summarized in the succeeding text:

o BAF.Kg(L, IDs;): BAF.Kg is the key generation algo-
rithm, which takes the maximum number of key
updates L per block and identity /Dg; of signer si as
the input and returns L public keys, initial secret keys,

and index n <R— Fp for IDg; as the output. BAF.Kg is
run by the TTP off-line and practically generates the
keys that will be provided to the logging server si in
order to secure the logs and to the verifier to verify
them. The parameter block size L determines the max-
imum number of key update operations that a signer
can execute, which should be decided according to the
application requirements. The identity of the server
(IDy;) is necessary for the TTP to be able to track keys
generated for different servers. The steps are

(1) The TTP picks two random numbers as

R
(ag,by) < Fg4, which are the initial blinding
keys of the block of logs. Also pick a random

. R L
index number as n < Fjp, which is used to

Security Comm. Networks 2015; 8:3180-3190 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

P Kampanakis and A. A. Yavuz

preserve the order (sequentiality) of individual
signatures.

(2) It generates two hash chains from the ini-
tial secret blinding keys (ag,bg) as a1 =
Hy(aj) mod g and bj1 = Hy(bj) mod g for
j=0,...,L-2. Also generate a public key for
each element of these hash chains as (A; = ¢;G
andBj = bjG) forj=0,...,L-1.

(3) The TTP, when needed, provides required keys
to the signer <— f{ag,bg} and verifiers <
{IDy; : Ao, Bg, ..., Ar-1,Br1,n}.

Note that depending on the application, keying mate-
rials can be provided to the signer for multiple blocks
at a time.

BAF.Upd(q,, b;): BAF.Upd is the key update algo-
rithm, which takes the current secret key as input and
returns the next secret key as the output. This algo-
rithm is run by the logger L times for every block
of logs, after each BAF.ASig operation. The keys
are updated as follows: a;y1 = Hj(a;) mod ¢ and
bi+1 = Hi(b;) mod q. BAF.Upd then deletes (ay;, b;)
from memory.

BAF.ASig(00 1. Dy, a;, b)): BAF.ASig is the aggre-
gate signature generation algorithm, which takes the
secret keys aj,b; from BAF.Upd(a;_1,b;_1), where
[€ [0,L-1],adataitem D; € {0, 1 }* to be signed, and
an aggregate signature o _j (for previously accumu-
lated data items) as input and returns an aggregate
signature o(; by folding the individual signature of
the data item into the aggregate signature. This algo-
rithm is run by the log server in order to secure each
log as follows:

(1) Compute the individual signature o; as o7 =
ar*d; + by mod ¢, where [€ [0,L—1], d; =
Hy(Dyll(n + 1)).

(2) Fold oy into 0¢ 1 as ¢ = 0¢,-1 +0; mod g,
where [€ (0,L— 1] and 0 ¢ = 0yp.

(3) Delete o0 -1 from memory and invoke
BAF.Upd(ay, by).

BAF.AVer(n, Dy, ...,Dy_1,001-1,1Ds;): BAF.AVer
is the aggregate signature verification algorithm,
which takes (Dy,...,D;) € {0,1}7, its associ-
ated aggregate signature o(71, index, public keys
(Ag,-.. A1), (Bg,...,Br_1) of IDg;, and index n
as the input. If the signature is successfully verified,
BAF .AVer returns success. Otherwise, it returns fail-
ure. This algorithm is run by the forensic analyst
every time he or she needs to verify the validity of a
block of BAF signed logs. The signature is verified
using the following equation:

L-1

?
00,.-1G = E (djAj + Bj) (2.1)
J=0

Security Comm. Networks 2015; 8:3180-3190 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

BAFi: secure audit logging

where dj = Hy(Djli(n + j)).

The security model and a proof sketch of BAF are
presented in [11].

3. PROPOSED UPDATES:
BLIND-AGGREGATE-FORWARD
IMPROVED

Blind-aggregate-forward improved introduces changes
that further optimize BAF’s performance and makes its use
in real-world systems more practical. BAFi also satisfies
the properties described in Section 1. Following the syntax
given in Section 1.3 in the succeeding text, we only present
the updates that BAFi contains compared with BAF that
was presented in Section 2.3.

o BAFi.Kg(L, IDy)):

(1) BAFi.Kg does not generate random index num-
ber n. Blinding keys ag, by are still generated.

(2) After generating each By,....Br 1,
the TTP only keeps an aggregate key
By = Zfz() Bj, which in the end is aggregated
to By 1= ZJI’:_OI Bj for the block of logs.
By,-1, along with the Ag,...,A;_, are the
only public keys needed for the signature veri-
fication. By, ..., By are deleted in the interest
of storage space at the TTP.

(3) After providing keys ag, bg for the block to the
signer, in order to minimize storage overhead,
the TTP can optionally only store ag,Bg |-
ap is enough to regenerate the public keys
Ag,...,Ar 1 and along with Bg ;| make them
available to the verifier. The overhead of this
scenario is that for every log verification the
TTP needs to recalculate Aj = qG, Vje[0,L-
1]. If there is a concern of the TTP being com-
promised, the TTP could instead only store
Ag,...,Ar1,Bo 1. The storage overhead for
that scenario would be the extra Ay,...,Ar_|
key storage.

The TTP, when needed, provides required
keys to the Signer < {ag,bg} and Verifiers
<~ {IDy; : Ag,...,AL-1,Bo,L-1}-

* BAFi.ASig(0¢ 1, Dy, a1, by):

(1) The logger generates a timestamp ts for the first
log Dyg. One ts is stored for each block of logs.
ts is used in place of n in BAF, to preserve the
order (sequentiality) of individual signatures. It
also adds time context to the stored log block
and ensures that hashes are not vulnerable to
rainbow-table types of attacks. A new block
of L logs is not expected to fall in the same

3183

BAFi: secure audit logging

3184

timestamp as the previous block in a real-world
system. Thus, the granularity of the timestamp
ts should be enough to provide distinct times-
tamps for the minimum time of generating L
logs during a busy period. In the event of
time moving backwards in a real-world system,
timestamps in a block cannot be changed, but
the time difference can be accounted for when
verifying a block of logs within a time interval.

In BAF, a malicious attacker that compro-
mised the logging server could be substituting
log D; with its congruent modulo ¢ Dl* (Dl* =
D; mod g). Then, o; would stay intact, keeping
the aggregate signature for the block the same,
which would make the scheme susceptible to
log substitution going undetected. For that rea-
son, in BAFi, d; = Hy(Dll(ts + 1)) is truncated
to lgl — 1-bits, which would prevent a collision
modulo g of two hashes. As seen later in this
section, in practical scenarios |Hp(..)l ~ Igl >
Hy(...)/2, which makes the truncation secure
against birthday attacks.

The individual signature o; is now computed
by the logging server as 07 = a;*d; + b; mod g,
where [€ [0,L - 1] and d; = [Hy(Djll(ts +
D)]igi-1 bis- The aggregate signature is com-
puted the same way as in BAF.

In cases where the set of pre-images of the
log is small, D; can still be guessed by a persis-
tent attacker that obtained access to a block of
log hashes dj, . . .,dy_1, timestamp ts, and sig-
nature. Even though some logging applications
generate logs that contain highly fluctuating
information in them, like time, addresses, or
names, others give a limited number of out-
puts. To avoid such known-plaintext attack in
that case, BAFi can incorporate an extra secret
key from the TTP used in the hashes. That key
could be used in place of the timestamp s in the
d; calculations. That key would also need to be
provided to the verifier by the TTP when ver-
ifying the logs. Log storage would still need a
timestamp per block of logs, which would serve
for looking up the right block of logs when
verifying BAFi signatures.

To protect PII, BAFi allows for the data items
to no longer be stored as they are (in cleartext).
Instead, the signer can store d; = |Hy(Djll(ts +
D)]igi-1 bits and delete D;. One more advantage
of such an approach is that, for applications that
log more bytes than the actual size of H, func-
tion’s output, BAFi reduces storage. Of course,
the drawback is that the log D; cannot be recon-
structed back from its hash d;. If the logs are
encrypted for privacy, the encrypted logs should
be stored as they are (Encrypted(Dy)) where [€
[0, L —1]). d; does not need to be stored.

P Kampanakis and A. A. Yavuz

® BAFi.AVer(ts,dy,...,d; 1,00-1,IDs;): When the
verifier wants to verify one or more logs in a block,
he or she receives data items dy,...,d;_1 given in a
time interval of two timestamps (#s;, s;+1) and their
associated aggregate signature og s from the log-
ger. The verifier first ensures that Vi € [0,L) : d; <
g, which prevents log substitution. Alternatively, the
verifier might only have access to the cleartext logs
Dy, ...,Dj_1. Then, he or she can easily generate
do, .. .,dp 1 asdp = [Hy(Dll(ts; + D) |1gi-1 pirs-
Then, after receiving public keys (4;) for j =
0,...,L—1and By from the TTP, he or she can
verify 0 ;1 via the BAFi’s verification equation

L-1

?
00,.-1G=Bo1+ Zdei (3.1
j=0

If the equation holds, BAFi.AVer returns true. Other-
wise it returns false.

e BAFi.LVer(Dy,dy,...,d;_1): If the cleartext logs
Dy, ...,Dy_1 of a block that was generated within
times (fs;, tsj+1) are not stored to protect PII, BAFi
introduces one more algorithm for a verifier to be able
to check if a log Dy exists in a block dy,...,d |
in the time interval with associated aggregate signa-
ture oq ;1. After checking, BAFi.AVer returns true,
the verifier can be certain that the log content and
sequence stored in d, . ..,dr_1 have not been tam-
pered with. Then, the verifier can confirm the exis-
tence of one specific log Dy in the block using
Algorithm 1.

Algorithm 1 Verify log D) exists in L data items
do,...,dr_1 in a block of logs that happened within the
expected time interval between timestamps £s;, £s;41.

j<0
while (j < L) do
k<0
while (k < L) do
if (LHo(Dyll(ts; + 7)) ig-1 birs == di) then
return True
end if
k++
end while
Jj++
end while
return False

Figure 2 illustrates the BAF algorithms described
earlier.

Blind-aggregate-forward improved for real-world
forensic auditing: For a modern day logging system, the
cryptographic algorithms used in BAFi must ensure that
today’s and future technological advancements will not
be able to pose a threat to the scheme’s security. At the
same time, performance needs to be maximized. Accord-

Security Comm. Networks 2015; 8:3180-3190 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

P Kampanakis and A. A. Yavuz

BAFi: secure audit logging

protected log: dy_y = |Ha(Dy _4l||(¢s+ L — 1))J\q\ 1 bits
3.(L-1).2) Individual Signature
OL-1=a[_1*dL_1+bi_1 modg
3.(1.-1).3) Key Update BAFi.Upd: delete (ar_1,br_1)
3.(L-1).4) Signature Aggregation:
Ony_1=007_2+0r_1modgq

Aggregate Signature: 0o 1, —1

BAFi.ASig Aggregate Signature calculation
Logger has a block of logs to secure Dg, Dy, ...,Df,_;
1) He retrieves blinding private keys (ag,bg) for the block
from TTP.
2) Timestamp for block: ts
D, - .
0*3.0.1) Log Dp can be deleted for privacy after storing
protected log: dp = IH'Z(DU;'{S)VJQ_] bits
3.0.2) Individual Signature: ¢g =ag *dp + bp mod q
T §amas Hy mod
3.0.3) Key Update BAFi.Upd: ap '3 ?ay,
Hy mod ¢
by = by
delete (ag. by)
3.0.4) Signature Aggregation: g g = 0y (ay.by.0,0) _l
Di—{31.1) Log D; can be deleted for privacy after storing
protected log: dy = |Ha(D1|(ts 4 1))]j1-1 bits
3.1.2) Individual Signature: oy =ay »d; + b mod g i
g = Hy mod
3.1.3) Key Update BAFi.Upd: a7 =" ?as, a
Hy mod
by b,
delete (ay.by)
3.1.4) Signature Aggregation: @g3 = 0,0 + 71 mod g
(as.B.0p4)
v
IDr.—1+»{3.(L-1).1) Log Dy,_; can be deleted for privacy after storing

BAFi.Kg

Key generation for i-th block of logs

Random blinding private keys for a log block iz

(ap,bo) < Fg

s to be provided for verification for a block

are:

| Ao, AL, Ay and By sy

Himodg Himodg Himedg
= e = .. = a

where

ag
by b
Ay =a0G Ay =G, ..., A;
By =bgG. By =G,....,B_1=b,1G
By -1 = Yo B

2.j=0 D1

L-1
br—1
1 =a,1G

Hymodg, Hymedg Hymodg
- P = .. =

and

BAFi.AVer Log Verification

Verifier wants to verify if log D, happened in a time interval

1) She retrieves
do,dy,....dL_1 or
within the time interval, from the logger
from the TTP Ag,A1,...,Ar_1 and Bor -1

ts, the

logs

timestamp
unprotecied

protected logs
Do.Ds,...,Dr 1

and public keys

2) She ensures that Vi € [0,L) : d; < g , or else exits and
relurns False

3) Verify Aggregate Signature
a0,.1G Boi-1 + Y50 did;,
d; = |Ha(Dil|(tsi + 1)]jg/—1 bits

where

4) If the Aggregate Signature was correct, check if D,
happened within the block using Alorithm 1.

Figure 2. Blind-aggregate-forward improved (BAFi). TTP, trusted third party.

ing to National Institute of Standards and Technology’s
SP800-131A [16], 128-bit level of security is required for
today’s systems. Additionally, National Security Agency’s
Suite B [17] algorithms state that secure hash algorithm
(SHA)-256 and elliptic curve Diffie-Hellman (ECDH)
over P-256 curves can be used to secure SECRET level
data. SHA-384 and ECDH over P-384 curves can be
used to secure TOP SECRET level data [18]. Given that
the curves over F), that are defined in [19] to be used in
ECDH types of schemes have order g, where lgl ~ Ipl,
choosing H{ and Hj hash functions to be SHA-256 or
SHA-384 provides levels of security adequate for today’s
and future processing capabilities. Optionally, the recently
selected SHA-3 algorithm, Keccak [20], could be used
for BAFi’s hash functions as well. The curves to be used
that will provide same levels of security for the ECDH
part of our scheme (A; = a;G, B; = b;G) are the P-256 or
P-384 curves [19]. The ts timestamp that is added in every
block of BAFi logs should be at least sec_level [21] where
sec_level is the assumed security level. So, for today’s and
future applications timestamps of Itsl = 256 will be more
than sufficient.

As far as the log size in the applications, where BAFi
is used, is concerned, it could vary. The logs could be a
few hundred bytes long, or they could grow bigger. For
example, the size of just a four-tuple (source and destina-
tion address and ports) log in a network application would
be 12 and 36 bytes for IPv4 and IPv6, respectively. Such

Security Comm. Networks 2015; 8:3180-3190 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

applications could be ISP logs that contain information of
customer Internet activity. It is evident that such logs would
also contain information like Hypertext Transfer Protocol
(HTTP) URLSs, Domain Name System (DNS) requests, or
Simple Mail Transfer Protocol (SMTP) fields that could
vary from 10 bytes to a few hundred bytes. Other cases
that involve heavy ISP logging could be Carrier Grade Nat
(CGN) logs [1]. The log sizes of such applications are 150—
200 bytes long. The rates can be 33 000 per second per
subscriber [1] or even higher with the proliferation of more
and more smart devices (log compression and bulk logging
are not considered for these numbers). Other logging appli-
cation examples are NAT64 where high-speed [22] logs are
of similar size as in CGN.

Rocket-fast system for log processing’s [23] author
states that experience has shown that the average log size
is 60-80 bytes with routinely 200 000 messages per sec-
ond [24]. Other billing applications produce heavier logs
of size (0.5-1.5 kB) with rates of 150 000 messages per
second. From the examples earlier, it is evident that log
sizes vary and depend on the applications that will be
leveraging BAFi. Most applications generate logs that
are a few hundred bytes long, and some of them can
have very high generation rates (close to millions per
second in some cases). The higher the average log size,
the less the storage overhead BAFi introduces, which
comes with a slight performance drop because of the hash
calculations.

3185

BAFi: secure audit logging

Figure 3 shows the format of the data that is stored by
the signer and by the TTP. The reader should note that the
cleartext logs Dy, ...,Dy_1 of a block can be deleted by
the signer after og ;1 has been stored. That will ensure
that private information in the logs is no longer retrievable.

4. PERFORMANCE ANALYSIS FOR
REAL-WORLD APPLICATIONS

With the real-world information on curves and hash algo-
rithms provided in Section 3, it is critical to evaluate the
computational load and storage overhead BAFi introduces
and to compare it with other publicly verifiable schemes.
We compare BAFi with FssAgg-BLS [6], FssAgg-BM
[2,10], FssAgg-AR [2,10], and Identity-based encryption
Logcerypt [9]. Notice that we do not compare BAFi with
FssAgg-MAC [6] or any other symmetric key schemes
because they are not publicly verifiable and introduce key
management problems as discussed before. Our goal is to
provide a publicly verifiable technique without the need of
secret shared keys being provided to verifiers.

Table II summarizes the storage and computational
overhead that each scheme introduces. Table I provides the

Timestamp for

P Kampanakis and A. A. Yavuz

notation for Table II. In the computational overhead, we are
not calculating modular and scalar addition because it can
be considered negligible for today’s computation speeds.
As seen in Table II, the key and operation size of FssAgg-
BM and FssAgg-AR are very large, which increases the
key and signature sizes. Thus, the computational and stor-
age overhead of BAFi is much less compared with those
schemes. FssAgg-BLS, on the other hand, has less key
storage overhead depending on the curves chosen, but the
M1P and PR operations make FssAgg-BLS extremely inef-
ficient compared with BAFi. Thus, it is clear that BAFi
introduces a relatively low storage and computational over-
head that can serve successfully to secure today’s logging
infrastructures.

It is also important to note that in most modern day log-
ging systems, the log signature speed is more important
than the signature verification because the verification will
usually happen ad hoc by the forensic analyst. Thus, the
higher computational cost of signature verification and the
extra O(Lz) search Algorithm 1 for log verification (when
only d; is stored) is not a critical limitation for BAFi. Using
a dictionary, bloom filter search tree with the log hashes
could reduce Algorithm 1’s complexity to O(L), if the
overhead introduced with these structures is not a concern
for the logging application.

Aggregate Signature

Aggregate Signature
for (i + 1)-th block

ap Bo,r.—1

s

Qg Bo,r-1

|9 | Bou)

tsi _ i-th block
do
Do . | L data items
D, of i-th block
N L logs in
[~ i-th block .
diy | ois-t | }4) for i-th block
. tSit1 T_lmestamp for
Di-1] do — (i + 1)-th block
Dy dy
Dy B | L data items
. | Llogsin of (i + 1)-th block
(i + 1)-th block
'
Dpr-1] -
(a) Logs (b) BAFi log blocks

F

2 stored keys
for 1%° block
2 stored keys
for 2" block

2 stored keys
for i** block

(c) 2 keys per block stored at TTP to verify

signatures when needed

Figure 3. Data stored and used by blind-aggregate-forward improved (BAFi). (a) logs, (b) BAFi log blocks, and (c) two keys per block

stored at trusted third party to verify signatures when needed.

Table I. Notation for Table II.

Mulx: modular multiplication mod x
Exp: modular exponentiation mod p

Sqr: modular squaring mod n

H: hash operation

EMul: ECC scalar multiplication over F),
MtP: ECC map-to-point operation
PR: ECC pairing operation

GSig: generic signature generation

I: number of data item to be processed
L: maximum number of key updates

x: number of bits in FssAgg keys

ECC, elliptic-curve cryptography; FssAgg, forward-secure sequential aggregate.

3186

Security Comm. Networks 2015; 8:3180-3190 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

P Kampanakis and A. A. Yavuz

BAFi: secure audit logging

Table Il. Computational and storage overhead.

BAFi FssAgg-BLS [6] FssAgg-BM [2,10] FssAgg-AR [2,10] Logcrypt [9] *
Computation per log
KeyUpd 2H ¥ H (x+ 1)Sqr 2x)Sqr —
Sig H + Mulg MtP + EMul + Mulp (1+ 3)Muln x-Sqr+ (2 + 5)Muln GSig
Ver (+1)- EMul /- (EMulPR + PR) L- Sgr+(+)Muln ML+ DSqr+ I- GVer
21(1 + £)Muln
Storage cost (in bits)
Key size 2gl+18 Il G+ Dl 2lnl Il
Sig size Iql g+ 17 Inl Inl gl +1
Extra storage 3lgl+ 1 ¥ 2lgl+1 (x+2)Inl 3lnl O(L)*1ql
Bit sizes for schemes (128-bit security level)
lgl ~ Ipl = 256 lgl = 160, Ipl = 197 Inl = 2048 Inl = 2048 Igl = 256

(BN curves [25])

BAFi, blind-aggregate-forward improved; FssAgg, forward-secure sequential aggregate.

* |dentity-based Logcrypt without signature aggregation.

* Extra cost of (2 - Emul) (can be generated off-line) for the trusted third party.
§ Bo,1-1's size is Igl + 1 using point compression.

il Elleptic curve point size using point compression.

T (L+2)-Iglif public keys Ao, . ..,Ar-1,Bo,-1 are stored.

5. EXPERIMENTAL RESULTS

We now provide experimental results that will substanti-
ate the theoretical performance analysis and comparison
given in Section 4. For our experiments, we implemented
BAFi using the Multiprecision Integer and Rational Arith-
metic C Library (MIRACL) library [26]. Our experiments
were run on 32-bit Ubuntu 11.04 Linux VM running in
Oracle VirtualBox. The host machine had 64-bit Pentium
4 with 4 GB or RAM.

In our implementation, we stored the logs in files, which
were read sequentially in blocks. Then, BAFi log hashes
and aggregate signatures were stored in a new file. Verify-
ing the signatures in the new file required to sequentially
parse the BAFi file. Moreover, we used the Comba opti-
mization for modular multiplication [27] and optionally
used pre-computations for EC point multiplication. We
aimed to provide 128-bit and 192-bit security level and
thus used National Institute of Standards and Technology’s
SECP256R1 and SECP384R1 curve parameters [19]. Our
implementation can easily be ported to various systems
using the MIRACL library.

The logs we used for our experiments were of 32-
byte, 128-byte, 256-byte, and 512-byte lengths that span
various logging application log sizes. The results were
measured with Comba optimization for modular multipli-
cation enabled and without using precomputations for EC
point multiplication. The reason is that precomputation

Security Comm. Networks 2015; 8:3180-3190 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

significantly increases the time to prepare for the point
multiplication, and as public keys change, the benefit of
precomputation is lost during the precomputations for mul-
tiple public keys. Table III shows the average execution
times for key update, signature generation, and verifica-
tion per log for different log sizes and 256-bit and 384-bit
curves. The reader should note that the aggregate log
verification times include the file reads from the BAFi
file. The key update time in the range of microsecond is
average, and therefore, its overhead is insignificant for
the logger. Similarly, the signature generation is extremely
fast, especially compared with other publicly verifiable
alternatives.

As discussed in Section 3, CGN logs can be generated
at rates of 33 000 per second, and rocket-fast system for log
processing has commonly observed 200 000 per second.
That implies that the key update and signature generation
times per log entry should not exceed 0.030 and 0.005 ms,
respectively. Running BAFi in a regular user computer (for
our tests) renders a total of 0.017 + 0.0025 = 0.0195 ms
(for 128-byte logs and 256-bit curve). Thus, BAFi can meet
the efficiency requirements of even highly demanding real-
world applications.

The reader should notice that BAFi signature verifi-
cation is more computationally demanding; however, as
discussed before, in most cases, log verification by forensic
analysts is not required to be real-time or nearly as efficient
as log generation (especially because only rarely do logs
need to be investigated).

3187

BAFi: secure audit logging P Kampanakis and A. A. Yavuz

Table lll. Blind-aggregate-forward improved experimental results.
Average time per log 32-byte log 128-byte log 256-byte log 512-byte log
KeyUpd (ms) 0.0024 0.0025 0.0024 0.0025
Signature (ms) 0.009 0.017 0.029 0.043
Sig Verification (ms) * 6.35 6.35 6.35 6.35

SECP384R1

KeyUpd (ms) 0.0028 0.0028 0.0028 0.0029
Signature (ms) 0.012 0.029 0.034 0.05
Sig Verification (ms) 16.4 16.4 16.4 16.4

* After running experiments in a more powerful host computer (Intel i5 2.6 GHz processor, 8 GB RAM),

we obtained fourfold improvements in the average signature verification times.

Table IV. Blind-aggregate-forward improved
average search time per log.

Log-size (bytes) Search time (ms)

128 0.134
256 0.155
512 0.215

In BAFi, if the log hashes d; are chosen to be stored
to protect PII, then Algorithm 1 adds one more step in the
log verification process. In order to estimate the processing
time required for matching a log in a BAFi log block whose
aggregate signature has been verified, we implemented the
algorithm in MIRACL [26]. We run various tests, and the
results are included in Table IV. The table shows the times
for both SECP256R1 and SECP384R1 curve parameters
because the curve does not affect the algorithm process-
ing. The times include the file read time. We can see that
depending on the log-size, the average times range from
135 to 215 ps per log, which is very efficient especially
because only rarely do logs need to be investigated. After
running experiments in a more powerful host computer
(Intel 15 2.6 GHz processor, 8 GB RAM), we obtained
sixfold improvement in average log search time per
log entry.

We now compare BAFi with existing alternatives using
extensive experiments. We compare BAFi with FssAgg-
BM and FssAgg-AR, which are publicly verifiable and

80 80

compromise resilient (forward-secure) alternatives. Even
though our tests showed that the BAFi average sig-
nature time per log is slightly lower than MAC-based
Logcrypt’s and the average signature time 30 times more
than Logcrypt’s, we do not present experiments with sym-
metric schemes because our goal is to provide a publicly
verifiable technique without the need of secret shared keys
provided to verifiers.

FssAgg-BM and FssAgg-AR were implemented using
number theory library. In order to compare the perfor-
mance of these schemes with BAFi, we wanted to pro-
vide the same security level (128-bit) with BAFi using
SECP256R1 curve; thus, we used prime field of 2048 bits.
We also wanted to compare BAFi with FssAgg-BLS [6]
that is based on ECC. In order to be able to obtain a per-
formance estimate for FssAgg-BLS and because there was
no existing implementation of the scheme that we were
aware of, we implemented the operations used in FssAgg-
BLS, FssAgg.Upd, FssAgg.ASig, and FssAgg.AVer steps
in MIRACL, and we were able to obtain the average per-
formance times for each step. In order to provide 128-bit
security, we used Barreto Naehrig (BN) curves with k =
12 [25]. For 80-bit security level (even though it is less
secure), supersignular curves [28] of k = 2 were tested in
order to see if they performed better compared with BN
curves. All the tests were run on the same 32-bit Ubuntu
11.04 Linux VM running in Oracle VirtualBox that also
runs the BAFi experiments. The host machine had 64-bit
Pentium 4 with 4 GB or RAM.

80

s — PRLBA" —
60 60 -BLS-BN ¢ 60 CBLe-BN ¢
o 50 o 50 o 50
2 40 8 40 8 2
E 30 € 50 2
20 20 20
10 10 ‘ ‘ 10
0 0 | i 0
42% % //6,‘9
¢
A,

(a) 128-byte logs

(b) 256-byte logs

(c¢) 512-byte logs

Figure 4. Blind-aggregate-forward improved (BAFi) versus forward-secure sequential aggregate (FssAgg)-BM, FssAgg-AR [2,10], and
FssAgg-BLS [6]. (a) 128-byte, (b) 256-byte, and (c) 512-byte logs.

3188

Security Comm. Networks 2015; 8:3180-3190 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

P Kampanakis and A. A. Yavuz

BAFi: secure audit logging

Table V. Key.Upd in BAFi versus FssAgg-BLS.

Average Key.Upd time per log (us) FssAgg-BLS FssAgg-BLS
BAFi (SS-512 curve) (BN curve)
128-bit logs 1.1 1.2
256-bit logs 1.3 1.2
512-bit logs 1.2 1.2

BAFi, Blind-aggregate-forward improved; FssAgg, forward-secure sequential aggregate.

Figure 4 shows the experimental results and the com-
parison between BAFi and FssAgg-BM, FssAgg-AR, and
FssAgg-BLS. Someone might notice that the Key.Upd
steps of ECC-based schemes (BAFi and FssAgg-BLS)
times are near zero. Key.Upd for these schemes is in the
range of microsecond, which is far less than the scheme
signature and verification times. Table V shows the actual
Key.Upd performance of BAFi compared with FssAgg-
BLS. In Figure 4, we can also see that BAFi has signif-
icantly better signature times compared with all FssAgg
variants. Regardless of the log size, the BAFi average time
per log is in the range of microsecond where the FssAgg
schemes range from 10 to 50 ms. As far as the FssAgg
schemes themselves, the optimal seems to be FssAgg-BLS
using BN curves. As for aggregate signature verification,
as it is clear in Figure 4, BAFi offers much better perfor-
mance of around 5 ms where the FssAgg schemes range
from 19 to 75 ms. The FssAgg schemes themselves seem
to have FssAgg-BM as optimal for signature verification.
We can also observe that the log size does not significantly
affect the times, which is because the signature calcula-
tions are greatly higher than calculating the message hash
going in the calculations. From the analysis earlier, it is
obvious that BAFi is significantly more efficient in terms of
key update, signature, and signature verification compared
with FssAgg-BM, FssAgg-AR, and FssAgg-BLS with key
sizes that offer the same security level. For key updates,
BAFi and FssAgg-BLS have comparable performance of
range in microsecond.

6. CONCLUSION

In this paper, we developed a secure audit logging
scheme, BAFi, which improves BAF schemes [11,29].
BAFi improves BAF’s security, the privacy of audit logs,
and implements cryptospecific optimizations. In contrast
to previous alternatives just providing basic prototypes,
BAFi has been extensively experimented in real-life log
scenarios. Our analysis indicates that it is much more
computational and storage efficient than previous alterna-
tives (with a signing and verification overhead just in a
few microseconds and milliseconds, respectively). More-
over, BAFi preserves desirable properties of BAF schemes
such as forward-security, signature aggregation, and pub-
lic verifiability. Proven with theoretical and experimental
analysis, BAFi is an ideal choice to meet the cryptographic
secure logging requirements of task intensive real-life
applications.

Security Comm. Networks 2015; 8:3180-3190 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

ACKNOWLEDGEMENT

We would like thank Dr. Di Ma for providing us with the
FssAgg [6,10].

REFERENCES

1. Donley C, Grundemann C, Sarawat V, Sundare-
san K, Vautrin O. Deterministic address mapping
to reduce logging in carrier grade NAT deploy-
ments, RFC-ID 2013. http://datatracker.ietf.org/doc/
draft-donley-behave-deterministic-cgn/.

2. Ma D, Tsudik G. A new approach to secure log-
ging, Proceedings of the 22nd annual IFIP WG 11.3
working conference on data and applications security
(dbsec ’08), London, 2008; 48-63.

3. Bellare M, Yee BS. Forward Integrity for Secure Audit
Logs. University of California at San Diego: San
Diego, CA, USA, 1997.

4. Bellare M, Yee BS. Forward-security in private-key
cryptography, Proceedings of the the cryptographers
track at the rsa conference (ct-rsa ’03), San Francisco,
2003; 1-18.

5. Schneier B, Kelsey J. Cryptographic support for secure
logs on untrusted machines, Proceedings of the 7th
conference on USENIX security symposium, USENIX
Association, New Orleans, 1998.

6. Ma D, Tsudik G. Forward-secure sequential aggregate
authentication, Proceedings of the 28th IEEE sympo-
sium on security and privacy (S&P ’07), Oakland,
2007; 86-91.

7. Schneier B, Kelsey J. Secure audit logs to support
computer forensics. ACM Transaction on Information
System Security 1999; 2(2): 159-176.

8. Kesley S, Clemm A, Callas J. Signed syslog messages.
IETF RFC 5848 2010.

9. Holt JE. Logcrypt: forward security and public ver-
ification for secure audit logs, Proceedings of the
4th Australasian workshops on grid computing and
e-research (ACSW ’06), Tasmania, Australia, 2006;
203-211.

10. Ma D. Practical forward secure sequential aggregate
signatures, Proceedings of the 3rd ACM symposium on

3189

http://datatracker.ietf.org/doc/draft-donley-behave-deterministic-cgn/
http://datatracker.ietf.org/doc/draft-donley-behave-deterministic-cgn/

BAFi: secure audit logging

11.

12.

13.

14.

15.

16.

17.

18.

19.

information, computer and communications security
(ASIACCS '08), ACM: NY, USA, 2008; 341-352.
Yavuz AA, Ning P. BAF: an efficient publicly
verifiable secure audit logging scheme for distributed
systems, Proceedings of 25th annual computer secu-
rity applications conference (ACSAC ’09), Hawaii,
2009; 219-228.

Bellare M, Rogaway P. The exact security of digital
signatures: how to sign with RSA and Rabin, Springer-
Verlag: 1996; 399-416.

Goldreich O. Foundations of Cryptography. Cam-
bridge University Press: Cambridge, 2001.

Bellare M, Rogaway P. Random oracles are practical:
a paradigm for designing efficient protocols, Proceed-
ings of the Ist ACM conference on computer and
communications security (CCS ’93), ACM: NY, USA,
1993; 62-73.

Boneh D. The decision Diffie—-Hellman problem, Pro-
ceedings of the third algorithmic number theory sym-
posium, LNCS, Uppsala, Sweden, 1998; 48-63.
National Institute of Standards and Technology
(NIST). Transitions:
tioning the use of cryptographic algorithms and
key lengths, 2011. http://csrc.nist.gov/publications/
nistpubs/800-131A/sp800-131A.pdf.

National Security Agency (NSA). NSA Suite B
Cryptography, 2009. http://www.nsa.gov/ia/programs/
suiteb_cryptography/index.shtml.

Committee on National Security Systems. National
information assurance policy on the use of public stan-

recommendation for transi-

dards for the secure sharing of information among
national security systems, 2012. http://www.cnss.gov/
Assets/pdf/CNSSP_No.pdf.

NIST. Recommended elliptic curves for federal gov-
ernment use, 1999.

3190

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

P Kampanakis and A. A. Yavuz

National Institute of Standards and Technology
(NIST). NIST selects winner of secure hash algo-
rithm (SHA-3) competition, 2012. http://www.nist.gov/
itl/csd/sha-100212.cfm.

National Institute of Standards and Technology
(NIST). Recommendation for password-based key
derivation, 2010. http://csrc.nist.gov/publications/
nistpubs/800-132/nist-sp800-132.pdf.

Cisco Systems. High-speed logging for
NAT64, 2012. http://www.cisco.com/en/US/
docs/ios-xml/ios/ipaddr_nat/configuration/
xe-3s/asr1000/iadnat- stateful-nat64.html#
GUID-83AD4883-15EA-4E03-BF57-00F2E592AED6.
rsyslog, 2013. http://www.rsyslog.com/ rsyslog log
processing.

IETF rsyslog discussion, 2013. http://www.ietf.org/
mail-archive/web/behave/current/msg10719.html.
Pereira GCCF, Naehrig M, Simplicio MA, Jr, Bar-
reto PSLM. A family of implementation-friendly BN
elliptic curves. Journal of Systems and Software 2011;
24(8).

Certivox. Multiprecision integer and rational arith-
metic c¢/c++ library (MIRACL), 2013. https://certivox.
com/solutions/miracl-crypto-sdk/.

Comba PG. Exponentiation cryptosystems on the IBM
PC. IBM Systems Journal 1990; 29(4): 526-538.
Galbraith SD. Supersingular curves in cryptography,
Springer-Verlag: 2001; 495-513.

Yavuz AA, Ning P, Reiter MK. BAF and FI-BAF:
efficient and publicly verifiable cryptographic schemes
for secure logging in resource-constrained systems.
ACM Transaction on Information System Security
2012; 15(2).

Security Comm. Networks 2015; 8:3180-3190 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://www.nsa.gov/ia/programs/suiteb_{c}ryptography/index.shtml
http://www.nsa.gov/ia/programs/suiteb_{c}ryptography/index.shtml
http://www.cnss.gov/Assets/pdf/CNSSP_{N}o.pdf
http://www.cnss.gov/Assets/pdf/CNSSP_{N}o.pdf
 http://www.nist.gov/itl/csd/sha-100212.cfm
 http://www.nist.gov/itl/csd/sha-100212.cfm
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://www.cisco.com/en/US/docs/ios-xml/ios/ipaddr_nat/configuration/xe-3s/asr1000/iadnat-stateful-nat64.html#GUID-83AD4883-15EA-4E03-BF57-00F2E592AED6
http://www.cisco.com/en/US/docs/ios-xml/ios/ipaddr_nat/configuration/xe-3s/asr1000/iadnat-stateful-nat64.html#GUID-83AD4883-15EA-4E03-BF57-00F2E592AED6
http://www.cisco.com/en/US/docs/ios-xml/ios/ipaddr_nat/configuration/xe-3s/asr1000/iadnat-stateful-nat64.html#GUID-83AD4883-15EA-4E03-BF57-00F2E592AED6
http://www.cisco.com/en/US/docs/ios-xml/ios/ipaddr_nat/configuration/xe-3s/asr1000/iadnat-stateful-nat64.html#GUID-83AD4883-15EA-4E03-BF57-00F2E592AED6
http://www.rsyslog.com/
http://www.ietf.org/mail-archive/web/behave/current/msg10719.html
http://www.ietf.org/mail-archive/web/behave/current/msg10719.html
https://certivox.com/solutions/miracl-crypto-sdk/
https://certivox.com/solutions/miracl-crypto-sdk/

	BAFi: a practical cryptographic secure audit logging scheme for digital forensics
	Introduction
	Motivation
	Related work and limitations
	Our contributions

	Preliminaries
	System model
	Notation
	Blind-aggregate-forwardBAFYavuzNing09

	Proposed Updates: Blind-Aggregate-Forward improved
	Performance Analysis for real-world applications
	Experimental Results
	Conclusion

