
Cuckoo Filter-Based Location-Privacy Preservation
in Database-Driven Cognitive Radio Networks

Mohamed Grissa, Attila A. Yavuz, and Bechir Hamdaoui
Oregon State University, grissam,yavuza,hamdaoub@onid.oregonstate.edu

Abstract—Cognitive Radio Networks (CRN s) enable oppor-
tunistic access to the licensed channels by allowing secondary
users (SU s) to exploit vacant channel opportunities. One effective
technique through which SU s acquire whether a channel is
vacant is using geo-location databases. Despite their usefulness,
geo-location database-driven CRN s suffer from location privacy
threats, merely because SU s have to query the database with
their exact locations in order to learn about spectrum availability.

In this paper, we propose an efficient scheme for database-
driven CRN s that preserves the location privacy of SU s while
allowing them to learn about available channels in their vicinity.
We present a tradeoff between offering an ideal location privacy
while having a high communication overhead and compromising
some of the users’ coordinates at the benefit of incurring much
lower overhead. We also study the effectiveness of the proposed
scheme under various system parameters.

Keywords—Database-driven spectrum availability, location pri-
vacy preservation, cognitive radio networks, Cuckoo Filter.

I. INTRODUCTION

Cognitive radio networks (CRN s) have emerged as a key
technology for addressing the problem of spectrum utilization
inefficiency [1]. CRN s allow unlicensed users, also referred
to as Secondary Users (SU s), to access licensed frequency
bands opportunistically, so long as doing so does not harm
licensed users, also referred to as Primary Users (PU)s. In
order to enable SU s to identify vacant frequency bands, also
called white spaces, the Federal Communications Commission
(FCC) has adopted two main approaches: spectrum sensing-
based approach and geo-location database-driven approach.

In the sensing-based approach [2], SU s themselves sense
the licensed channels to decide whether a channel is available
prior to using it so as to avoid harming PU s. In the database-
driven approach, SU s rely on a geo-location database (DB)
to obtain channel availability information. For this, SU s
are required to be equipped with GPS devices so as to be
able to query the DB on a regular basis using their exact
locations. Upon receipt of a query, the DB returns to the
SU the list of available channels in its vicinity, as well as the
transmission parameters that are to be used by the SU . This
DB -driven approach has advantages over the sensing-based
approach. First, it pushes the responsibility and complexity of
complying with spectrum policies to the DB . Second, it eases
the adoption of policy changes by limiting updates to just
a handful number of databases, as opposed to updating large
numbers of devices [3]. Companies like Google and Microsoft,

among others, were selected by FCC to administrate these
geo-location databases, following the guidelines provided by
PAWS.1

Despite their effectiveness in improving spectrum utilization
efficiency, DB -driven CRN s suffer from serious security and
privacy threats. The disclosure of location privacy of SU s has
been one of such threats to SU s when it comes to obtaining
spectrum availability from DBs. This is simply because the
users have to share their locations with the DB to learn
about spectrum availability. The fine-grained location, when
combined with publicly available information, could lead to
even greater private information leakage; it could, for example,
be used to infer private information like shopping patterns,
preferences, behavior and beliefs, etc. [4]. Being aware of such
potential privacy threats, SU s may refuse to use the DB for
spectrum availability information, thus making the need for
location-privacy preserving schemes for DB -driven spectrum
access of high importance.

In this paper, we propose a new scheme that preserves
the location privacy of SU s in database-driven CRN s. We
show that our proposed scheme preserves the location privacy
of SU s while outperforming existing approaches in terms
of the amount of overhead to be incurred in the process of
protecting users’ location privacy, thereby making it more
scalable and practical. In addition, we show that a significant
reduction in the scheme’s overhead can be further achieved by
allowing the leakage of some information that makes little to
no compromise of the users’ location, yet reduces the overhead
substantially. We also study the impact of system parameters
on the performances of our proposed scheme, and compare
them against those obtained via existing approaches.

The rest of this paper is organized as follows: we present
the related work in Section II. In Section III, we provide our
system model and a brief overview of the Cuckoo filter. In
Section IV, we present our proposed scheme. We evaluate and
analyze the performance of the proposed scheme in Section V,
and conclude in Section VI.

II. RELATED WORK

Despite the importance of protecting the location privacy
of users, little attention was drawn to cope with it in the
literature. While some works focused on addressing this issue

1PAWS (Protocol to Access White-Space) is a protocol introduced to enable
interoperability between devices and databases [3].978-1-4799-9907-1/15/$31.00 c©2015 IEEE

Fig. 1: Database-driven CRN

in the context of collaborative spectrum sensing [5]–[7], others
addressed it in the context of dynamic spectrum auction [8].
However, these works are skipped here since they are not
within the scope of the paper.

In the context of DB -driven CRN s, Gao et al. [9] identified
a new attack that can compromise the location privacy of SU s
that have to communicate with DB through a base station.
The area controlled by the base station is viewed as a grid
containing multiple cells, where the location of each SU is
determined by the cell in which the SU is located in. In this
attack, DB , which is assumed to know the content of the
communication between users and the base station, can infer
the location of SU s based on their channel utilization pattern.
Basically, since a SU cannot use a channel unless it is outside
the coverage area of any PU currently using the channel and
given that a SU has to keep switching from one channel to
another to avoid interfering with PU s, this allows the DB to
narrow down the location of users by finding the intersection
area of the complements of PU s’ coverage areas over time. To
thwart this attack, they propose a Private Information Retrieval
(PIR)-based scheme, termed PriSpectrum , that, despite its
merits, has several limitations: (i) It assumes that the users are
static over time; (ii) It does not offer ideal location privacy; and
(iii) PIR-based approaches are known to be expensive in terms
of communication and computation overhead. Troja et al. [10]
proposed another approach that allows users to communicate
in a peer-to-peer manner to share their spectrum availability
information that they obtained from previous queries. This
reduces the number of executions of the PIR protocol used by
the users to privately retrieve spectrum information from DB .
This scheme, just like the previous one, is designed for limited
areas and has also the drawbacks of PIR-based approaches.

III. SYSTEM MODEL AND CUCKOO FILTER

In this section, we first begin by stating our system model.
Then, for completeness, we overview the Cuckoo filter ap-
proach, which is used in our privacy-preserving scheme that
we present in the next section.

Fig. 2: Cuckoo Filter: 2 hashes per item, 8 buckets each
containing 4 entries

A. Database-driven CRN Model

We consider a CRN that consists of a set of SU s and a geo-
location database (DB). SU s are assumed to be enabled with
GPS capability, and to have access to the DB for obtaining
spectrum availability information, as shown in Figure 1. To
obtain spectrum availability information, a SU queries the
database by including its location and its device characteristics.
DB responds with a list of available channels at the specified
location and a set of parameters for transmission over those
channels. The user then selects and uses one of the returned
channels, and while using the channel, needs to recheck
the channel’s availability on a daily basis or whenever it
changes its location by 100 meters as mandated by the PAWS
protocol [3]. For more information about the requirements and
policies of database-driven CRN s, readers are referred to [3].

B. Cuckoo Filter

The novelty of our proposed privacy-preserving scheme, to
be presented in the next section, lies in the use of the Cuckoo
Filter technique. Therefore, for completeness, we provide in
this section a quick overview of this filter.

Essentially, Cuckoo Filter is a new data structure proposed
in [11] to replace Bloom Filter as a method for testing set
membership; i.e., for testing whether an element is a member
of a set. It uses Cuckoo Hashing [12] and was designed
to serve applications that need to store a large number of
items while targeting low false positive rates and requiring
storage space smaller than that required by Bloom Filters. A
false positive occurs when the membership test returns that
an item exists in the Cuckoo Filter (i.e., belongs to the set)
while it actually does not. A false negative, on the other
hand, occurs when the membership test returns that an item
does not exist while it actually exists. In Cuckoo filters, false
positives are possible, but false negatives are not, and the target
false positive rate, denoted throughout this paper by ε, can be
controlled and has a direct impact on the size of the filter.

Figure 2 shows an example of a Cuckoo filter that uses two
hashes per item and contains 8 buckets each with 4 entries. A
Cuckoo Filter has mainly two functions: An Insert function
that stores items in the filter, and a Lookup function that
checks whether an item exists in the filter. We describe the
operations of these two functions in Algorithms 1 & 2 [11].

For the Insert operation, explained in Algorithm 1, Cuckoo
Filters store a fingerprint f of each item x, as opposed to

storing the item itself. For this, each item is first hashed into
a constant-sized fingerprint (step 1). This fingerprint is then
stored in the filter as follows. The algorithm checks if there is
an empty entry in one of the two buckets indexed by i1 and
i2 (steps 2 to 5). If an empty entry is found, then f is added
to the bucket. Otherwise, one of the two buckets is picked
randomly (step 6), and f is swapped with one of the items in
the bucket while the victim item (being swapped with f) is
relocated to its alternate location, as shown in Algorithm 1.
The space cost, in bits, of storing one item in the Cuckoo
Filter using the Insert function depends on the target false
positive rate ε and is given by (log2(1/ε) + 2)/α where α is
the load factor of the filter which defines the maximum filter
capacity. Once the maximum feasible, α, is reached, insertions
are (non-trivially and increasingly) likely to fail, and hence,
the filter must expand in order to store more items [11].

Algorithm 1 Insert(x)

1: f = fingerprint(x);
2: i1 = hash(x);
3: i2 = i1 ⊕ hash(f);
4: if bucket[i1] or bucket[i2] has an empty entry then
5: add f to that bucket;

return Done
// must relocate existing items if no empty entries;

6: i = randomly pick i1 or i2;
7: for n = 0;n < MaxNumKicks;n++ do
8: randomly select an entry e from bucket[i];
9: swap f and the fingerprint stored in entry e;

10: i = i⊕ hash(f);
11: if bucket[i] has an empty entry then
12: add f to bucket[i];

return Done
// Hashtable is considered full;

return Failure;

The Lookup operations are highlighted in Algorithm 2. In
order to check whether an item x belong to the filter, we
only need to compute its fingerprint and its potential locations
i1 and i2 and then check whether bucket[i1] or bucket[i2]
contains the fingerprint of x.

Algorithm 2 Lookup(x)

1: f = fingerprint(x);
2: i1 = hash(x);
3: i2 = i1 ⊕ hash(f);
4: if bucket[i1] or bucket[i2] has f then

return True
return False;

In this paper, Cuckoo Filter is used to construct a represen-
tation of the spectrum geo-location database as explained in
Section IV. What motivated the use of the Cuckoo Filter is
that it offers the highest space efficiency among all existing
approaches, and is much more efficient than Bloom Filters,

especially for very large sets, which is the case of geo-
location databases that contain entries corresponding to spec-
trum availability with a location resolution that can go up to
50 meters. Cuckoo Filter enjoys extremely fast Lookup and
Insert operations, thus reducing the computation overhead
of our proposed scheme substantially as will be seen later.
Cuckoo Filter is the building block of our scheme that we
present next in Section IV.

IV. LOCATION-PRIVACY PRESERVATION: THE PROPOSED
CUCKOO FILTER-BASED SCHEME

Protecting the location privacy of SU s in database-driven
CRN s is a very challenging task, since the users need to
provide their locations to the database to be able to learn about
spectrum opportunities in their vicinities. There have been
some proposed techniques that do protect such privacy in these
database-driven CRN s, but not without incurring substantial
overhead in terms of communication and/or computation (e.g.,
[9]). One straightforward and trivial approach, which provides
ideal location privacy preservation of the users, is to simply
send the whole database to the user, and let the user search the
database itself to figure out whether spectrum is available in its
vicinity. This is of course very costly and unpractical and just
mentioned here to show the tradeoffs between having ideal
privacy and incurring lots of overhead. Other more efficient
approaches, such as the one proposed in [9], do reduce the
amount of overhead while still providing a high level of
location privacy.

In this paper, we propose an approach that strikes a good
balance between achieving high location privacy level and
incurring little overhead. The novelty of our proposed scheme,
referred to as Location Privacy in DataBase-driven CRN s
(LPDB), lies in the use of the Cuckoo Filter technique,
explained in the previous section, to construct a compact
(space efficient) representation of the database that can be
sent to the SU to figure out about spectrum availability.
Our reliance on the Cuckoo filter to represent the spectrum
availability reduces the amount of communication overhead
substantially without needing to compromise the location
privacy of users. In our proposed LPDB , instead of sending
its location, a user sends its characteristics (e.g., its device
type, its antenna type, etc.), as specified by PAWS [3], to the
DB which then uses them to retrieve the corresponding entries
in all possible locations. The DB then puts these entries in a
Cuckoo Filter and sends it back to the user. Upon receiving
the new representation of the database (i.e., the Cuckoo Filter
representation), the user constructs a query that includes its
characteristic information, its location, and one of the possible
channels with its associated parameters, and then looks up
the received Cuckoo Filter using this constructed query to see
whether that channel is available in its current location. As
will be shown later, this method does incur substantially small
amounts of overhead, thanks to the Cuckoo Filter technique.

An example of parameters that could be included in the
response of DB in addition to the time stamp, the location,
and the available channels is the transmission power to be

considered when using those channels. User characteristics
and DB parameters could be agreed upon beforehand between
DB and SU s to make sure that the user queries the Cuckoo
Filter with the right parameters.

We provide a simple structure of the geo-location database
that we follow in the description of our scheme as shown
in Table I. Each row corresponds to a different combination
of location pairs (locX ,locY) and channel chn . One location
may contain several available channels at the same time. The

TABLE I: Simplistic structure of DB

locX locY ts chn avl par1 · · · parn

row1 locX 1 locY 1 t chn1 0 par11 · · · parn1
row2 locX 1 locY 1 t chn2 1 par12 · · · parn2

...
...

...
...

...
...

...
...

...
row i locX 2 locY 2 t chn1 1 par1i · · · parni

...
...

...
...

...
...

...
...

...
rowr locX r locY r t chn1 0 par1r · · · parnr

avl = 1 means channel is available and avl = 0 means a channel is being used by
the primary user

different steps of the proposed approach are illustrated in
Algorithm 3 and are briefly explained as follows: Each user
SU i starts by constructing the query query i that it will send
to DB by including a set of characteristics that are specific
to the device querying DB and a time stamp ts . DB then
retrieves the entries that correspond to query i and constructs
Cuckoo Filter (which could be done offline). Since DB con-
tains availability status for each channel in each location, the
number of entries satisfying query i will still be huge and one
way to further reduce it is to retrieve only the information
about available channels and ignore the other ones. DB then
concatenates the different data in each row to construct xj as
illustrated in Step 7 and inserts it to Cuckoo Filter. DB then
sends Cuckoo Filter to SU which constructs a string y by
concatenating its location coordinates with a combination of
one channel and its possible transmission parameters and tries
to find if y exists in the filter by using the Lookup operation
of the Cuckoo Filter. The user keeps changing the channel
and the associated parameters until it finds the string y in
the filter or until the user tries all the channels. If the user
finds y in the filter, it can conclude that the channel used to
construct y is free and thus can use it. Note that, depending on
the false positive rate ε of Cuckoo Filter, even if the Lookup
operation returns True it doesn’t necessarily mean that the
specified channel is available. Setting ε to be very small makes
the probability of having such a scenario very small, as well
and limiting the risk of using a busy channel, but this cannot
be done without increasing the size of Cuckoo Filter. If after
trying out all possible combinations, SU does not find y in
Cuckoo Filter, this certainly means that no channel is available
in the specified location as the Cuckoo Filter does not incur
any false negatives.

When the size of the database is not too large (e.g., when
the location resolution is not too small and the area covered

Algorithm 3 LPDB Algorithm

1: SU constructs query query ← f(char , ts);
2: SU queries DB with query ;
3: DB retrieves resp containing all possible r entries satis-

fying query each having c columns;
4: DB constructs the Cuckoo Filter CuckooF ilter;
5: for j = 1, . . . , r do
6: if avl j = 1 then
7: x j ← (locX j‖locY j‖ts‖ . . . ‖row j(c));
8: DB inserts x j into CuckooF ilter:
CuckooF ilter.Insert(x j);

9: DB sends CuckooF ilter to SU ;
10: SU initializes decision ← Channel is busy
11: for all possible combinations of par do
12: SU constructs y ← (locX ‖locY ‖ts‖ . . . ‖parn);
13: if CuckooF ilter.Lookup(y) then
14: decision ← Channel is free; break;

return decision

by the database is not too large), then this proposed scheme
works well (as will be shown later in the evaluation section)
by providing ideal privacy with reasonably small amounts
of overhead. However, a serious scalability issue may arise
when the location resolution is very small (resolution used
in the database could be as small as 50 meters) and/or the
area covered by the DB is large. In this case, the number
of locations, and thus the number of entries in the database,
can be very large, and then even after relying on the Cuckoo
Filter, the size of the data to be transmitted may still be
unpractical/huge. This depends on the desired resolution as
well as on the area the DB covers.

In this work, we address this scalability issue through the
following observation. When the covered area is very large
and/or the location resolution is very small, allowing the DB to
learn one of the coordinates of the user can drastically reduce
the number of entries that DB retrieves and thus considerably
reduce the size of the Cuckoo Filter to be transmitted, thus
making the approach scalable. Interestingly, in the case of
large areas, revealing one coordinate of the user does not
make it any easier for the DB to infer the user’s location.
To illustrate, let’s for example assume that the DB covers the
entire United States, as shown in Figure 3. Allowing the DB to
learn about one coordinate (say the latitude only) means that
all what the DB learns is that SU is located somewhere on
the blue line that spans the latitude of the whole country. But
since the DB does not know the longitude of the SU , then
knowing the latitude only is as if nothing is known about the
SU ’s location. Throughout, we refer to this proposed scheme
as LPDB with leakage.

It is worth reiterating that when the covered area is not very
large, then the size of the Cuckoo Filter is practical and there
is no need to reveal one coordinate of the user. In this case,
our scheme, LPDB , provides ideal privacy without incurring
much overhead.

The system regulator can decide about which approach
to follow depending on the system constraints; that is,
LPDB (for small areas) or LPDB with leakage (for large
areas).

V. EVALUATION AND ANALYSIS

In this section, we evaluate the performance of our proposed
scheme and compare it to that of PriSpectrum [9] in terms
of: (i) location privacy, (ii) computation overhead, and (iii)
communication overhead. But before starting our evaluation
analysis, we begin by briefly describing PriSpectrum .
PriSpectrum was proposed by Gao et al. [9] to thwart a

newly identified attack. In this scheme, the area controlled by
the database is modeled as a grid containing multiple cells,
and the user’s location is determined by the cell in which the
user is located. In the identified attack, DB , which is assumed
to know the content of the communication between users and
the database, can infer the location of SU s from their channel
utilization patterns. The observation the authors made is that
a SU cannot use a channel unless it is situated outside the
coverage area of PU that transmits over that channel, since
otherwise SU will interfere with the primary transmission.
Now by looking at the different PU channels used by a user
over some time period, the DB can narrow down a user’s
location by intersecting the complements of PU s coverage
areas. PriSpectrum was designed to prevent this attack and
preserve the privacy of the location information contained in
the query of SU s. It uses a blinding factor to hide the indices
of the cell that contains the user within the location grid. Now
instead of sending indices i and j of the cell in their queries,
SU sends two vectors containing i and j with blinding factors
that only the user can remove.

A. Location Privacy

We start by evaluating LPDB in terms of location privacy.
Our goal in this work is to preserve the location privacy of
SU s as stated previously. This means that this information
has to be hidden from DB , which usually gets the location
from the query sent by the user, or any other entity that
can intercept the query and retrieve the location from it.
LPDB can achieve an optimal and ideal location privacy since
SU s, through this scheme, do not have to include their location
in their queries in order to learn about spectrum availability.
Furthermore, DB sends to the user all available channels in
different locations that comply with the query sent by the
user. This prevents it from learning which entry SU picks
up and thus its location is unconditionally unknown to DB .
This allows our scheme to have better location privacy than
PriSpectrum which cannot reach an ideal privacy for SU s
since a small number of users may have their location exposed
under PriSpectrum [9].

As discussed previously, one way to further reduce the size
of the Cuckoo Filter is to allow SU s to reveal one of their
coordinates. This, as shown in Section V-B, will drastically
reduce the size of the filter transmitted by DB at the cost
of loosing the ideal location privacy of the users. However,

when the coverage area of DB is very large, even revealing
one of the coordinates still achieves high location privacy
of SU s. Indeed, since our scheme is designed for locating
spectrum availability in database-driven CRN s and databases
(like those managed by Microsoft and Google) cover an entire
nation of the size of the United States, the leaked information
is not sufficient to localize the user, yet reduces the lookup
complexity substantially. As discussed in the previous section,
the example of the United States in Figure 3 shows that
our scheme can offer high privacy even when one of the
coordinates is revealed. We can see, through this Figure, that
all what DB can learn is that SU is located somewhere on
the blue line that spans the latitude of the whole country when
the latitude coordinate is leaked to the DB .

Fig. 3: Location Leakage

B. Communication and Computation Overhead

Now we evaluate the overhead incurred by our scheme. We
provide the notations that we use in the rest of this section in
the table below:

m number of cells of DB coverage area
% percentage of DB entries with available channels
ε target false positive rate in Cuckoo F ilter
α load factor (0 ≤ α ≤ 1) in Cuckoo F ilter
s number of tv channels
p large prime used in the blinding factor of PriSpectrum

Here we consider the same setup used in [9] where DB ’s
covered area is modeled as a

√
m ×

√
m grid that contains

m cells each represented by one location pair (locX ,locY) in
the database. We use a large prime p of size 2048 bits for
PriSpectrum as in [9]. We use the efficient Cuckoo Filter
implementation provided in [13] for our performance analysis
with a very small false positive rate ε = 10−8 and a load factor
α = 0.95. In addition, since personal/portable TVBD devices
of SU s can only transmit on available channels in the fre-
quency bands 512-608 MHz (TV channels 21-36) and 614-
698 MHz (TV channels 38-51), this means that users can
only access 31 white-space TV band channels in a dynamic
spectrum access manner [14]. Therefore, in our evaluation we
set s to be equal to 31.

We also ran an experiment to learn what a realistic value of
% might be, where again % represents the percentage (averaged
over time and space) of channels that are available. We used

TABLE II: Communication and computation overhead of proposed and existent schemes

Scheme Communication Computation
DB SU

LPDB w/ leakage query + % · s ·
√
m · (log2(1/ε) + 2)/α % · s ·

√
m · insert s · lookup

LPDB w/o leakage query + % · s ·m · (log2(1/ε) + 2)/α % · s ·m · insert s · lookup
PriSpectrum (2

√
m + 3)dlog pe O(m) 4

√
m ·Mulp

Variables: insert and lookup denote the cost of one Insert and lookup operations in the Cuckoo Filter. Mulp is a modular multiplication operation over modulus p.

the Microsoft online white spaces database application [15] to
identify and measure the percentage of available channels by
monitoring 8 different US locations (Portland, San Faransico,
Houston, Miami, Seattle, Boston, New York and Salt Lake
City) for two days with an interval between successive mea-
surements of 3 hours. Our measurements show that % is about
6.8%.

Communication Overhead: We first study the communica-
tion overhead of our scheme and we compare it again against
PriSpectrum . We provide the overhead of both schemes in
Table II. For LPDB we provide two expressions of the
overhead with respect to two scenarios: first, when one of
the coordinates is leaked by the user and second, when there
is no leakage. In both scenarios the data transmitted consists
basically of the query sent by an SU , query , and the response
of DB to that query. The size of the response generated
by DB depends on the number of entries in the database
that satisfy query and on the space needed to store each of
these entities in the Cuckoo Filter. The number of entries for
LPDB is given by % ·s ·m and reduces to % ·s ·

√
m when one

of the coordinates is revealed by the user. s · m and s ·
√
m

provide the number of entries in DB that satisfy the query of
SU for both scenarios. % gives the percentage of those entries
with available channels.

Computational Overhead: We also investigate the effi-
ciency of our proposed scheme in terms of its computational
overhead. We evaluate the computation required at DB and
SU sides separately, as shown in Table II. Again we provide
two estimated costs for both scenarios of LPDB . The compu-
tation of DB is given in terms of the number of insertions it
has to perform into Cuckoo Filter. This depends on the number
of DB entries that comply with query considering only the
available channels. When there is no leakage, this number is
equal to % · s · m and when there is leakage of one of the
coordinates, the number becomes % · s ·

√
m .

For the computation cost in the SU side, LPDB ’s overhead
depends solely on the number of possible channels, s , and the
cost of one Lookup operation, lookup, for both scenarios,
as shown in Table II. One of the reasons that motivated our
use of the Cuckoo filter, as we mentioned earlier, is that it is
characterized by an extremely fast Lookup operation. This
allows the users to check whether a specific combination,
y , exists in the filter, i.e. whether channel is available, very
efficiently. LPDB ’s overhead does not depend on the size of
the database since any lookup query to Cuckoo Filter always
reads a fixed number of buckets (at most two) [11], which
makes our scheme more scalable than PriSpectrum in terms

(a) Communication overhead

(b) Computational Overhead

Fig. 4: Performance Comparison

of computation when the size of DB increases.
1) Impact of varying %: We also study the impact of % on

the overhead incurred by our scheme for both scenarios:
with and without leakage. For this, we plot in Figure 4
the communication and the end-to-end (from SU to DB)
computation overheads, using the expressions established in
Table II, as a function of the number of cells m .

As shown in the Figure, both overheads behave simi-
larly in the way that decreasing % when one of the co-
ordinates is revealed doesn’t impact much our scheme.
LPDBs w/ Leakage have the smallest overhead compared
to the case where no leakage is allowed. In the other hand,
decreasing this parameter drastically reduces the overhead of
LPDB and even makes it comparable to LPDBs w/ Leakage
in terms of communication and computation. This means that
in the case where only 1% or less of DB entries have available
channels, there is no need to reveal one of the coordinates to
reduce the overhead.

Number of cells
0 2500 5000 7500 10000C

om
m

un
ic

at
io

n
O

ve
rh

ea
d

(K
B

)

0

20

40

60
Proposed Scheme
PriSpectrum

Fig. 5: DB Computational Overhead

2) Comparison with PriSpectrum: We now compare the
performance of our scheme to that of PriSpectrum . We first
compare the communication overhead incurred by the different
schemes. For this, we plot in Figure 5 the expressions in
Table II as a function of the number of cells m .

As shown in the Figure and as expected, LPDB is clearly
more expensive than PriSpectrum in terms of communication
even when %, determined experimentally, is equal to 6.8%.
However, revealing one of the coordinates brings a huge gain
and makes our scheme even better than PriSpectrum , yet
without compromising the location privacy.

We also compare the computation overhead incurred at
SU and DB sides for the different schemes as shown in Fig-
ure 6. Our scheme is much more efficient than PriSpectrum in
both scenarios even for % = 6.8% and at both DB and
SU sides as in Figure 6(a) & 6(b). The gap keeps increasing
considerably as the number of cells (i.e., the size of DB)
increases. This is due to the fact that PriSpectrum’s cost is
dominated by an increasing number of modular multiplications
which are very expensive compared to the Insert and Lookup
operations of the Cuckoo filter.

VI. CONCLUSION

In this paper, we proposed an efficient scheme, called
LPDB , that aims to preserve the location privacy of SU s in
database-driven CRN s. It uses the concept of Cuckoo Filter
to transmit the content of the geo-location database to the user
that can query the filter to check whether a specific channel is
available in its vicinity. This technique offers an ideal or very
high location privacy to SU s and is very efficient especially
in terms of computational overhead.

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation under NSF award CNS-1162296. [16]

REFERENCES

[1] “Spectrum policy task force report,” Federal Communications Commis-
sion, Tech. Rep. ET Docket No.02-135, 2002.

[2] W. Wang and Q. Zhang, Location Privacy Preservation in Cognitive
Radio Networks. Springer, 2014.

(a) DB Computational Overhead

(b) SU Computational Overhead

Fig. 6: Computation Comparison

[3] L. Zhu, V. Chen, J. Malyar, S. Das, and P. McCann, “Protocol to access
white-space (paws) databases,” 2015.

[4] S. B. Wicker, “The loss of location privacy in the cellular age,”
Communications of the ACM, vol. 55, no. 8, pp. 60–68, 2012.

[5] S. Li, H. Zhu, Z. Gao, X. Guan, K. Xing, and X. Shen, “Location
privacy preservation in collaborative spectrum sensing,” in INFOCOM,
2012 Proceedings IEEE. IEEE, 2012, pp. 729–737.

[6] M. Grissa, A. A. Yavuz, and B. Hamdaoui, “Lpos: Location privacy for
optimal sensing in cognitive radio networks,” in Global Communications
Conference (GLOBECOM), 2015 IEEE. IEEE, 2015, to be published.

[7] W. Wang and Q. Zhang, “Privacy-preserving collaborative spectrum
sensing with multipleservice providers,” Wireless Communications,
IEEE Transactions on, 2015.

[8] S. Liu, H. Zhu, R. Du, C. Chen, and X. Guan, “Location privacy
preserving dynamic spectrum auction in cognitive radio network,” in
Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International
Conference on. IEEE, 2013, pp. 256–265.

[9] Z. Gao, H. Zhu, Y. Liu, M. Li, and Z. Cao, “Location privacy in
database-driven cognitive radio networks: Attacks and countermeasures,”
in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 2751–2759.

[10] E. Troja and S. Bakiras, “Leveraging p2p interactions for efficient
location privacy in database-driven dynamic spectrum access,” in Pro-
ceedings of the 22nd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. ACM, 2014.

[11] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies. ACM, 2014, pp. 75–88.

[12] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[13] “Cuckoo filter implementation,” https://github.com/efficient/cuckoofilter.
[14] F. C. Commission, “Electronic code of federal regulations title 47,

chapter 1, subchapter a: Part 15-television band devices,” 2015.

[15] “Microsoft white spaces database,” http://whitespaces-demo.cloudapp.
net.

[16] M. Grissa, A. A. Yavuz, and B. Hamdaoui, “How to preserve the
location privacy of secondary users in cooperative spectrum sensing
?” Information Forensics and Security, IEEE Transactions on, 2015,
submitted.

