
HAA: Hardware-Accelerated Authentication for Internet of Things in Mission
Critical Vehicular Networks

Ankush Singla, Anand Mudgerikar, Ioannis Papapanagiotou and Attila A. Yavuz

Abstract—Modern vehicles are being equipped with ad-
vanced sensing and communication technologies, which
enable them to connect to surrounding entities. In mili-
tary vehicular networks, it is vital to prevent adversaries
from manipulating critical messages via cryptographic
protection (e.g., digital signatures) and at the same time to
minimize the impact introduced by crypto operations (e.g.,
delay). Hence, their communication must be delay-aware,
scalable and secure.

In this paper, we developed Hardware-Accelerated Au-
thentication (HAA) that enables practical realization of
delay-aware signatures for vehicular networks. Specifi-
cally, we developed a cryptographic hardware-acceleration
framework for Rapid Authentication (RA) [1], which is
a delay-aware offline-online signature scheme for com-
mand and control systems. We showed that HAA can
significantly improve the performance of offline-online
constructions under high message throughput, which is
an important property for vehicular networks. HAA-2048
(GPU) is x18, x6, and x3 times faster than the current CPU
implementation of RSA, ECDSA and RA, respectively, for
the same level of security.

Index Terms—Authentication; hardware-acceleration; dig-
ital signatures; vehicular networks.

1. Introduction

Secure vehicular networks will play a key role in
tactical military systems by providing mobile and ad-
hoc communication in battlefields [2]. To ensure re-
liable operation of such networks, the security must
be guaranteed in a real-time and scalable manner [3].
In particular, achieving the immediate authentication
of Command & Control (C&C) messages is a vital
requirement to prevent adversaries from disrupting the
network and inflicting catastrophic damage [1], [4].

• A. Singla, Anand A Mudgerikar and I. Papapanagiotou are with
the Center for Education and Research in Information Assurance
and Security, Purdue University, West Lafayette, IN, 47907.

• I. Papapanagiotou is also with the Computer and Information
Technology , Purdue University, West Lafayette, IN, 47907.
E-mail: {amudgeri,asingla,ipapapan}@purdue.edu

• A. A. Yavuz is with the School of Electrical Engineering and
Computer Science, Oregon State University, Corvallis, OR 97331.
E-mail: attila.yavuz@oregonstate.edu

Scheme End-to-end Crypto Delay (msec)
RSA-2048 (CPU) 4

ECDSA-256 (CPU) 1.18
RA-2048 (CPU) 0.69

RA-2048 (CPU on SoC) 7.1
HAA-2048 (GPU) 0.21

HAA-2048 (GPU on SoC) 2.6

TABLE 1: Average end-to-end crypto delay comparison
(signature generation plus verification time).

Implementation details are explained in detail in Section 6.

A broadcast authentication scheme permits each re-
ceiver in a large group to verify if the received message
is intact and originated from the claimed sender [5].
Hence, it is a fundamental security service to protect
C&C messages in such mission-critical vehicular net-
works [3], [6]. However, broadcast authentication is a
challenging problem, especially for large and dynamic
networks with strict delay-aware requirements [1].

Digital signatures are the most essential tools for
broadcast authentication, since they provide scalabil-
ity, public verifiability, and non-repudiation properties.
Therefore, existing vehicular communication standards
(e.g., [7], [8]) and many other critical applications
(e.g., smart-grid [9]) rely on digital signatures. How-
ever, traditional signatures (e.g., ECDSA [10]) incur
significant computation overhead, and therefore cannot
meet the delay-aware requirements of mission-critical
applications [11], [12]. Several specialized digital sig-
natures and variants have been proposed to address this
issue. They offer different computation, communication,
storage, scalability and immediate verification trade-offs
(we discuss related work in Section 2).

The offline-online signatures (e.g., [13]) offload
costly signature generation operations to the offline
phase, which permits a fast signature generation during
the online phase. This is done by pre-computing and
storing K signature tokens, which can be generated
without knowing the actual message to be signed. These
tokens are then used to sign K messages without per-
forming any expensive operations. Hence, they are used
for applications that require low end-to-end crypto delay
but with small/moderate number of burst messages. Re-
cently, an offline-online signature scheme called Rapid
Authentication (RA) [1] was proposed, and was specifi-
cally designed for the authentication of C&C messages.
RA exploits already existing semi-structures in certain

Figure 1: Vehicular Network

C&C messages and achieves the lowest end-to-to-end
authentication delay among existing alternatives. Hence,
RA is an ideal candidate for delay-aware applications
but only with low/moderate message throughput.

Despite their great potential, offline-online signa-
tures and RA have performance limitations if they are
directly adapted to vehicular networks, which generally
require very high message throughput (e.g., 3000 mes-
sages per sec according to IEEE WAVE standard [7]):
If the application requires signing more than K mes-
sages per online cycle then the offline-online signature
increases the computational cost in the incoming on-
line cycle. That is, as opposed to traditional offline-
online signature settings, high throughput applications
may deplete pre-computed tokens at higher rates and
therefore offline phase impedes the performance of on-
line phase continuously. Despite considered as an ideal
primitive for real-time authentication, this limitation of
offline-online signatures must be mitigated to be used
in vehicular networks having high message throughput.
Hence, it is a challenging but important task to enable
practical realization of these methods on mission critical
vehicular networks.

In this paper, we address this problem by first
analyzing the behavior of offline-online signatures un-
der high throughput applications, and then developing
a comprehensive cryptographic hardware-acceleration
framework for RA that we call Hardware-Accelerated
Authentication (HAA). HAA offers significant per-
formance improvements over the prior realizations of
RA as well as some standard signatures (e.g., ECDSA,
RSA) for high throughput applications. We summarize
our contributions as below:
• Exploit the benefits of offline-online signatures for

high throughput applications: We investigate ways to
optimize the algorithmic computations of the offline-
online class of signature schemes towards achieving
the highest possible bandwidth. Our main focus is
to mitigate the impact of fast exhaustion of offiline
signatures, through leveraging software and hardware

optimizations. We speficically target RA, as an exem-
plar offline-online signature scheme with applications
to military vehicular networks.
• A new end-to-end hardware acceleration frame-

work for RA: We identified that cryptographic hard-
ware acceleration, with GPUs present on servers and
Systems-on-Chip (SoC) in vehicles, are ideal tools to
mitigate the aforementioned limitations of offline-online
signatures. We evaluate and validate this claim by devel-
oping a cryptographic hardware acceleration framework
for RA, which is called HAA. Table 1 demonstrates that
HAA offers significant performance improvements over
previous implementations of some standard signatures
and RA on CPUs. For example, HAA-2048 (GPU) is
approximately x18, x6, and x3 times faster than the
CPU only implementation of RSA, ECDSA and RA,
respectively, for the same level of security.
• Special Hardware-Acceleration and Optimization

Techniques: We have employed various optimization
techniques to accelerate the RA on GPUs in servers
and in SoCs. We enable parallelism via algorithms such
as Chinese Remainder Theorem and Montgomery Mul-
tiplication [14]. We leverage techniques like Constant
Length Non-zero Window Technique, On-the-fly Token
regeneration and batch processing to further accelerate
the authentication.

The rest of the paper is organized as follows. Section
2 discusses related work and its limitations. Section
3 gives the primitives used by HAA. Section 4 de-
scribes our system, threat and security models. Section
5 introduces our proposed hardware-acceleration and
optimization techniques. Section 6 presents our perfor-
mance evaluation and comparison. Finally, Section 7
concludes this paper.

2. Related Work

Delay-Aware Broadcast Authentication: Message
Authentication Code (MAC)s [14] rely on symmetric
cryptography and are computationally efficient. How-
ever, they are not practical for large and distributed
systems [15] due to key management issues (e.g., key
distribution requirement). Standard digital signatures
(e.g., [10], [16], [17]) achieve scalability and therefore
are the security backbone of various vehicular commu-
nication standards (e.g., [7]). However, these schemes
require expensive operations such as modular exponen-
tiation or cryptographic pairing. Therefore, they are not
suitable for time-critical authentication. Indeed, it has
been shown that they introduce significant delay, which
creates safety problems [11], [12].

Delayed key disclosure methods (e.g., [18]) achieve
computationally efficiency and small tag sizes by intro-
ducing an asymmetry between signer and verifier via
a time factor. However, these methods require packet
buffering, and therefore cannot achieve immediate veri-
fication (which is vital for delay-aware authentication).
One-Time Signatures (OTSs) (e.g., [3], [19]) offer very

fast signature generation and verification. However,
they incur extremely large signature and public key
sizes, and also public keys must be renewed frequently.
Hence, OTSs are impractical for vehicular networks.
Various customizations of traditional signatures (along
with crypto pairing [17]) and OTSs for vehicular net-
works have been studied (e.g., [20]). However, these
schemes suffer from computationally inefficiency (due
to expensive pairing operations) and public key distri-
bution issues (OTS-based approaches). The advantages
and limitations of offline-online signatures (e.g., [13])
and RA [1] have been discussed in Section 1. While
some drawbacks of TESLA have been discussed in
[18], it requires use of a digital signature for multi-
ple packages, and hence requires PKC unlike original
TESLA would need. Also, since multiple packets are
signed together, this still requires packet buffering and
introduces packet loss risks. Therefore, TESLA is not
ideal for time-critical applications, as it requires time
sync., packet buffering and vulnerable to packet loss,
despite use of hash chains up to certain degree.

Cryptographic Hardware Acceleration: Symmet-
ric ciphers and RSA for SSL have been implemented,
accelerated and benchmarked using GPUs [21], [22].
AES related GPU based acceleration techniques have
been investigated in the CUDA framework [23]. GPUs
require significant power and their size is relatively big
for vehicular applications. Evidently, this is one of the
reasons that development is moving towards integrating
GPUs in SoCs like the Tegra K1 in modern vehicles like
Audi and Tesla. To the best of our knowledge, there has
been no prior work done on hardware acceleration of
cryptographic methods in SoCs.

3. Preliminaries

We now present cryptographic primitives and
hardware-acceleration methods that are used by our
proposed methods.

3.1. Cryptographic Primitives

Notation: Operators || and |x| denote the concate-
nation operation and the bit length of variable x, re-
spectively. x $← S denotes that variable x is randomly
and uniformly selected from set S. |S| denotes the
cardinality of set S. {xi}li=0 denotes (x0, . . . , xl).

Rapid Authentication: Our proposed methods fo-
cus on RA, which is described in [1]. Due to space
constraints, we only give a brief definition of RA algo-
rithms and refer curios reader to [1] for the details.

1) (sk ,PK)← RA.Kg(1κ): Given the security param-
eter 1κ, first generate a RSA private/public key pair as
(sk ′,PK ′). That is, randomly generate two large primes
(p, q) and compute n ← p · q. The public and secret
exponents (e, d) ∈ Z∗n satisfy e · d ≡ 1 mod φ(n),
where φ(n) = (p − 1)(q − 1). Set sk ′ ← (p, q, d)

and PK ′ ← (e, n). Also generate global randomness
r

$← {0, 1}κ. Set RA private/public key pair as sk=sk′
and PK ← (PK ′, r), respectively.
2) sk ← RA.Offline-Sig(sk ,

−→
M): It takes a set of mes-

sage components
−→
M ← {M0, . . . ,ML−1} and sk as

the input. Each message component M0≤i≤L−1 is com-
prised of a set of sub-messages mi,j for i = 1, . . . , L−1
and j = 0, . . . , |Mi| − 1. The sub-messages of com-
ponent M0 are dedicated to time-stamp. The rest of
components may include sub-messages such as C&C
messages in M1, receiver IPs in M2 and so on. Given
(sk ,
−→
M), the offline phase outputs a signature-message

table sk = (Γ,
−→
β) as follows:

i) Given mi,j ∈ Mi, compute a signature on mi,j

as s′i,j ← [H(mi,j ||i)]d mod n for i = 0, . . . , L−
1 and j = 0, . . . , |Mi| − 1. The corresponding
signature table of Mi is βi = {s′i,j}

L−1,|Mi|−1
i=0,j=0 .

ii) Compute γj ← [H(rj ||r)]d mod n, where rj
$←

{0, 1}κ for j = 0, . . . , l′. The random num-
ber/signature pair table is Γ = {rj , γj}l

′

j=0.

iii) The private key of the online phase is sk ←
(Γ,
−→
β), where

−→
β ← (β0, β1, . . . , βL−1).

3) σ ← RA.Online-Sig(sk ,−→m): Given an online mes-
sage −→m = (m0, . . . ,ml) ∈

−→
M (0 < l < L − 1),

fetch the corresponding signatures of sub-messages
(m0, . . . ,ml) from β0, . . . , βl as (s′0, . . . , s

′
l). Ran-

domly fetch a pair (r, γ) from Γ and erase the selected
pair from Γ. The signature on −→m is computed as:

s← γ · (
l∏
i=0

s′i) , σ ← (r, s)

4) c← RA.Ver(PK ,−→m,σ): Given (−→m,σ), the verifier
computes m′ ← [H(r||r) ·

∏l
i=1H(mi||i)] mod n and

c← σe mod n. If |r| = κ and c = m′ hold then return
1, else return 0.

Chinese Remainder Theorem (CRT): We leverage
CRT [14] to accelerate RA on GPUs. We split a k-bit
signature σ into two k/2 bit signatures σ1 and σ2.

σ1 = Md mod p−1 mod p, σ2 = Md mod q−1 mod q

, where M is the message and (p, q) are the primes
used in RSA. Later, we use the mixed radix conversion
algorithm [24] to combine the two parts and recover
the signature σ as σ = σ2 + [(σ1− σ2).(q−1 mod p)].q
These two parts are processed on separate threads in
the GPU, which is significantly faster than the k-bit
modular exponentiation.

Montgomery Multiplication: Modular multiplica-
tion is inefficient in the GPU implementations since it
requires a trial division to determine the result and is not
parallelizable. Montgomery multiplication algorithm is
suitable for implementation in a GPU, since it does
not require trial division and can be implemented in

Figure 2: GPU architecture

parallel on separate words of the message. That is,
given a · b mod n, we first find two integers r−1 and
n′ using the Extended Euclidean Algorithm such that
rr−1−nn′ = 1. We then transform a = ar mod n and
b = br mod n. Later, we compute a · b mod n by using
montgomery reduction [14].

3.2. Hardware-Acceleration

Car manufacturers like Audi, Volkswagen, and
BMW have already started rolling out car models with
Graphics Processing Unit (GPU) enabled SoC capa-
bilities. The most noted SoCs being used for provid-
ing automotive solutions are the Nvidia Jetson (with
Nvidia Tegra GPU) and Qualcomm Snapdragon (with
Adreno GPU). These are currently being used for var-
ious services like interactive HUD displays, navigation
map services, entertainment services etc. These SoCs
are leveraged for execution of the described offline-
online authentication algorithm. These SoCs have added
benefits of being energy efficient, having a small form
factor and quite sturdy.

We implemented RA on the Nvidia Tesla K40c
GPU with 2880 computing cores with 12 GB of
GDDR5 device memory and memory bandwidth
288GB/sec. Our base system is equipped with Intel
i7-5930K CPU/Clock Speed 3.5Ghz and 16GB DDR4
2400 MT/s (PC4-19200). This infrastructure represents
a powerful command center setting. We also imple-
mented the RA on an Nvidia Tegra K1 SoC [25], which
has a 4-Plus-1 quad-core ARM Cortex A15 CPU with
clock rate of 2.3 Ghz and an embedded GPU with 192
computing cores. This represents the remote vehicular
environment. We specifically used the Tegra K1 as it is
a common SoC in several commercial vehicles. A basic
architecture diagram of an NVIDIA GPU is shown in
Figure 2 [26].

4. Models

System Model: In our system model, there two
types of entities: (i) Central entities such as static
C&C centers or satellites, which are resourceful and

equipped with GPUs. (ii) Mobile entities such as vehi-
cles, which are equipped with SoC. The C&C messages
can be broadcasted from central entities to vehicles (i.e.,
infrastructure-to-vehicle setting) or from one vehicle
to other surrounding vehicles (i.e., vehicle-to-vehicle
setting). In the first setting, the signature generation
and verification phases are accelerated with server GPU
and SoC-GPU, respectively. In the second setting, both
phases are accelerated with SoC-GPUs.

Threat Model and Security Model: We assume the
traditional PKC-based broadcast authentication threat
and security model as considered in RA [1] as well
as in many other signature schemes (e.g., [27]).

Threat Model: We assume a resourceful but Prob-
abilistic Polynomial Time (PPT) bounded adversary A
with the following properties: (i) passive attacks against
output of cryptographic operations, (ii) active attacks
including packet interception/modification. (iii) A aims
to produce an existential forgery against the digital
signatures broadcasted by the sender.

Security Model: Our methods boost the performance
of RA via hardware-acceleration without modifying
its security properties. Hence, they achieve the same
level of security with RA, which is a strong security
notation called Existential Unforgeability under Chosen
Message Attack (EU -CMA) [28]). EU -CMA security
notation captures the threat model described above. As
in prior work, we assume a public key infrastructure
and certificates of public keys are all in place.

5. HAA Optimization Techniques

To accelerate the RA, we leveraged the parallel
processing and optimization capabilities of GPUs both
on server and embedded in the SoCs. We have made
several optimizations to parallelize the individual steps
of RA algorithms. We also used optimizations specific
to the architecture of the GPU to realize the full poten-
tial of the available cores.
On-the-fly Token regeneration: HAA addresses the
problem of exhaustion of pre-computed tokens by gen-
erating them in batches in real-time via GPU acceler-
ation. When the pre-computed tokens are about to be
exhausted, the offline stage of the RA is run on the
GPU to the replenish them. This significantly improves
the performance of the RA, especially for vehicular
networks that have very high message throughput.
Batch Processing: Message components are processed
in batches. That is, the crypto operations for multiple
messages are performed concurrently in the GPU. This
requires that a batch of messages be passed to the GPU,
instead of a single message, for signing or verification.
Breakup of components into words: To optimize the
throughput on the GPU, each message component is
divided into words of size 32/64 bit, depending on
the GPU capabilities. Each operation being run on
a single thread is run over words rather than entire
message components. We use standard multi-precision

algorithms [29] to represent and perform operations
between large integers.
GPU warp size utilization: Warps are set of threads
(generally 32) that are considered as one single exe-
cution unit inside a CUDA block. To gain maximum
throughput from the GPU, it is necessary to attain
the maximum number of active warps per streaming
multiprocessor which is 64 in our case. We achieve
this by adjusting the number of threads per block to
the optimal value.
Memory latency vs GPU Occupancy: The size of the
shared memory can limit the number of active warps
on the GPU at a particular point in time by reducing
the occupancy of the Streaming Multiprocessors (SM).
The other limiting factor in the performance output is
the number of reads and writes on the global memory
on the device. We attain an optimum balance between
the SM occupancy and the Global memory read/write
latency through testing various permutations of memory
allocations among the shared and global memory.
Constant Length Non-zero Window Technique: We
scan the bits of the exponent from the least significant to
the most significant. At each step, we compute a zero
window or a non-zero window [30]. With the binary
square-and-multiply method, we can process these win-
dows and reduce the number of modular multiplications,
making the exponentiation algorithm faster.

6. Analysis and Comparison

We compare our scheme with some standard signa-
ture schemes such as RSA (2048-bit with e = 216 + 1)
and ECDSA (256-bit ECC-based signature) in terms of
the end-to-end crypto delay in Table 1. According to
BSI standards [31], 2048-bit RSA provides the same
level of security as 256-bit ECDSA. We assume that
we can pre-compute and store 4096 signatures. If the
number of messages exceed 4096 then the offline tokens
are replenished. This is a fair assumption in vehicular
networks which have an average message throughput of
3000 messages per sec. For the processing of 8192 mes-
sages, RSA incurs an end-to-end delay of 4 msec/msg
while ECDSA with pre-computation incurs an end-to-
end delay of 1.18 msec/msg [32]. HAA outperforms
both these schemes, x18 times better than RSA and x6
times better than ECDSA, respectively, with an end-to-
end delay of 0.21 msec/msg seconds.

We focus on comparing the delay and throughputs
between HAA and RA, as we find that RA is the best
scheme among the existing alternatives in terms of end-
to-end delay (0.69 msec/msg). Each component size is
fixed to be 512 bytes for our experiments. We have
used two configurations for our experiments, server and
SoC settings. We have shown the evaluation results by
comparing the GPU results to their CPU counterparts
for the offline sign, online sign and verify stages of
RA. We present the results in Figures: 3 - 8 both on

Figure 3: Server - Sign Offline

Figure 4: SoC - Sign Offline

the server and the SoC configuration with parameters
a = 32, e = 216 + 1 and |n| = 2048.

Performance analysis on Command Server: In
the offline sign stage, for 8160 messages, we achieve
x3 times more throughput with our GPU optimizations
compared to CPU only implementations. In the online
sign stage, we achieve high throughput gains upto x7
times. In the verify stage, the gain is around x1.3
times. These results are outlined in Figures: 3, 5 and
7, respectively.

In terms of execution time, the GPU can process

Figure 5: Server - Sign Online

Figure 6: SoC - Sign Online

Figure 7: Server - Verify

a message in 0.337, 0.021, 0.024 milliseconds for the
offline, online and verify stages of the algorithm respec-
tively. This is approximately x2.91, x7.67, x1.28 times
faster than the corresponding CPU execution times. The
GPU gives a worse performance than the CPU if we
are processing a very small number of messages. This
is mainly due to the low clock speeds of the GPU cores
as compared to the CPU and also due to the time taken
to copy the data to the GPU memory from the CPU
memory and back. We find that all the three stages
Online, Offline and verify perform faster in GPU than

Figure 8: SoC - Verify

CPU for message batches greater than 32, 224 and 900
respectively.

Performance analysis on SoC: In the offline sign
stage, for 8160 messages, we achieve x3.1 times more
throughput with our GPU optimizations compared to
CPU only implementations. In the online sign stage, we
achieve high throughput gains upto x4.1 times. In the
verify stage, the throughput of the GPU implementation
hovers around the CPU throughput albeit a little less
than it. The reason is explained later in the section.
These results are outlined in Figures: 4, 6 and 8.

In terms of execution time, the Tegra GPU can
process a message in 3.40, 0.33, 0.53 milliseconds for
the offline, online and verify stages of the algorithm
respectively. This is approximately x3.09, x4.16, x0.86
times the corresponding CPU execution times. We find
the stages Online sign and Offline sign perform faster in
GPU than CPU for message batches greater than 96 and
32 respectively. The GPU verify stage performs worse
than the CPU on the Tegra for all message batch sizes.
The reason for the lower gains in the verify stage for
the GPU optimizations are as follows.

Double the copy operations in verify stage: In the
verify stage, two GPU kernels (units of execution in
GPU) are being executed, modular multiplication and
modular exponentiation, as opposed to the online and
offline stages where there is only a single GPU kernel
being executed. Due to two GPU kernel being executed
one after the other, there is a waiting time between
memory copy operations from host memory to device
memory and then back. This adversely impacts the
overall execution time of the verify stage in GPU.

Modular exponentiation with public key exponent:
RSA public key exponent is generally selected small
(e.g., e = 216 + 1) to enable fast signature verification.
In this case, since e << d, the optimizations made in
GPUs for speeding up modular exponentiation are less
significant.

7. Conclusion

In this paper, we have introduced HAA, Hardware-
Accelerated Authentication for mission critical vehic-
ular networks. HAA exploits the limitations of prior
offline-online signature schemes and reduces their end-
to-end cryptographic delay by leveraging various opti-
mization techniques realized on commercially available
embedded hardware. That is, HAA harnesses the power
of the thousands of cores available in GPUs, both at
the C&C as well of smaller GPUs available in SoCs, to
accelerate the performance of RA. Our experimental re-
sults demonstrates the potential of HAA, as it provides
a speedup of x18, x6 and x3 than the corresponding
CPU implementations of RSA, ECDSA and RA, re-
spectively. Hence, HAA is a suitable choice for delay-
aware authentication in military vehicular networks. In
the future, we plan to explore the potential of HAA in

other application domains that may have similar delay-
aware authentication needs such as smart-grids and
drone swarms as a part of Internet of Things.

Acknowledgment

We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Tesla K40 GPU
and Tesla K1 used for this research.

References

[1] A. A. Yavuz, “An efficient real-time broadcast authentication
scheme for command and control messages,” IEEE Transactions
on Information Forensics and Security, vol. 9, no. 10, pp. 1733–
1742, Oct 2014.

[2] C. Wilson, “Network centric operations: Background and
oversight issues for congress, march 2007,” http://www.
globalsecurity.org/military/systems/ground/win-t.htm.

[3] Q. Wang, H. Khurana, Y. Huang, and K. Nahrstedt, “Time valid
one-time signature for time-critical multicast data authentica-
tion,” in INFOCOM 2009, IEEE, April 2009.

[4] J. Petit and Z. Mammeri, “Analysis of authentication overhead
in vehicular networks,” in Wireless and Mobile Networking
Conference (WMNC), 2010 Third Joint IFIP, Oct 2010, pp. 1–6.

[5] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient authen-
tication and signing of multicast streams over lossy channels,”
in Proceedings of the IEEE Symposium on Security and Privacy,
May 2000.

[6] H. Guo, Y. Wu, F. Bao, H. Chen, and M. Ma, “UBAPV2G:
A unique batch authentication protocol for vehicle-to-grid com-
munications,” IEEE Transactions on Smart Grid, vol. 2, no. 4,
pp. 707 –714, December 2011.

[7] “IEEE guide for wireless access in vehicular environments
(WAVE) - architecture,” IEEE Std 1609.0-2013, pp. 1–78, March
2014.

[8] “IEEE standard for wireless access in vehicular environments
security services for applications and management messages,”
IEEE Std 1609.2-2013 (Revision of IEEE Std 1609.2-2006), pp.
1–289, April 2013.

[9] Z. Lu, X. Lu, W. Wang, and C. Wang, “Review and evalua-
tion of security threats on the communication networks in the
smart grid,” in Military Communication Conference (MILCOM),
November 2010.

[10] ANSI X9.62-1998: Public Key Cryptography for the Financial
Services Industry: The Elliptic Curve Digital Signature Algo-
rithm (ECDSA), American Bankers Association, 1999.

[11] J. Petit and Z. Mammeri, “Authentication and consensus over-
head in vehicular ad hoc networks,” Telecommunication Sys-
tems, vol. 52, no. 4, pp. 2699–2712, 2013.

[12] A. Vinel, C. Campolo, J. Petit, and Y. Koucheryavy, “Trustwor-
thy broadcasting in IEEE 802.11p/WAVE vehicular networks:
Delay analysis,” Communications Letters, IEEE, vol. 15, no. 9,
pp. 1010–1012, September 2011.

[13] A. Shamir and Y. Tauman, “Improved online/offline signature
schemes,” in Proceedings of the 21st Annual International Cryp-
tology Conference on Advances in Cryptology, ser. CRYPTO
’01. London, UK: Springer-Verlag, 2001, pp. 355–367.

[14] A. Menezes, P. C. van Oorschot, and S. Vanstone, Handbook
of Applied Cryptography. CRC Press, 1996, ISBN: 0-8493-
8523-7.

[15] M. Luk, A. Perrig, and B. Whillock, “Seven cardinal properties
of sensor network broadcast authentication,” in Proceedings of
4th ACM workshop on security of ad hoc and sensor networks,
ser. SASN ’06. New York, NY, USA: ACM, 2006, pp. 147–
156.

[16] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communica-
tions of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[17] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from
the Weil pairing,” Journal of Cryptology, vol. 14, no. 4, pp.
297–319, 2004.

[18] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient and
secure source authentication for multicast,” in Proceedings of
Network and Distributed System Security Symposium, February
2001.

[19] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time
signatures with fast signing and verifying,” in Proceedings of the
7th Australian Conference on Information Security and Privacy
(ACIPS ’02). Springer-Verlag, 2002, pp. 144–153.

[20] X. Fan and G. Gong, “Accelerating signature-based broadcast
authentication for wireless sensor networks,” Ad Hoc Networks,
vol. 10, no. 4, pp. 723–736, June 2012.

[21] J. Gilger, J. Barnickel, and U. Meyer, “GPU-acceleration of
block ciphers in the OpenSSL cryptographic library,” in Infor-
mation Security. Springer, 2012, pp. 338–353.

[22] K. Jang, S. Han, S. Han, S. Moon, and K. Park, “Sslshader:
Cheap SSL acceleration with commodity processors.”

[23] Q. Li, C. Zhong, K. Zhao, X. Mei, and X. Chu, “Implemen-
tation and analysis of AES encryption on GPU,” in IEEE 14th
International Conference on High Performance Computing and
Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems (HPCC-ICESS), 2012. IEEE,
2012, pp. 843–848.

[24] C. K. Koc, “High-speed rsa implementation,” Technical Report,
RSA Laboratories, Tech. Rep., 1994.

[25] “NVIDIA Jetson TK1 development kit,” https://developer.
nvidia.com/jetson-tk1, accessed: January 2015.

[26] M. Wolfe, “The pgi accelerator programming model on
nvidia gpus,” Tech. Rep., Jun. 2009. [Online]. Available:
https://www.pgroup.com/lit/articles/insider/v1n1a1.htm

[27] A. A. Yavuz and P. Ning, “Self-sustaining, efficient and forward-
secure cryptographic constructions for unattended wireless sen-
sor networks,” Ad Hoc Networks, vol. 10, no. 7, pp. 1204–1220,
2012.

[28] J. Katz and Y. Lindell, Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security
Series). Chapman & Hall/CRC, 2007.

[29] E. K. Donald, “The art of computer programming,” Sorting and
searching, vol. 3, pp. 426–458, 1999.

[30] C. K. Koç, “Analysis of sliding window techniques for exponen-
tiation,” Computers & Mathematics with Applications, vol. 30,
no. 10, pp. 17–24, 1995.

[31] I. ECRYPT, “Yearly report on algorithms and keysizes. euro-
pean network of excellence in cryptology ii,” ICT-2007-216676.
Available at http://www. ecrypt. eu. org/documents/D. SPA. 17.
pdf, Tech. Rep.

[32] Shamus, “Multiprecision integer and rational arithmetic
c/c++ library(MIRACL),” http://www.certivox.com/miracl/
miracl-download/, 2014, [Online; accessed September 2014].

