2484

IEEE TRANSACTIONS ON SMART GRID, VOL. 6, NO. 5, SEPTEMBER 2015

A Secure Communication Architecture for
Distributed Microgrid Control

Velin Kounev, Student Member, IEEE, David Tipper, Senior Member, IEEE, Attila Altay Yavuz, Member, IEEE,
Brandon M. Grainger, Member, IEEE, and Gregory F. Reed, Member, IEEE

Abstract—Microgrids are a key component in the evolution
of the power grid. Microgrids are required to operate in both
grid connected and standalone island mode using local sources
of power. A major challenge in implementing microgrids is the
communications and control to support transition from grid con-
nected mode and operation in island mode. Here, we propose a
secure communication architecture to support microgrid opera-
tion and control. A security model, including network, data, and
attack models, is defined and a security protocol to address the
real-time communication needs of microgrids is proposed. The
implementation of the proposed security scheme is discussed and
its performance evaluated using theoretical and co-simulation
analysis, which shows it to be superior to existing protocols.

Index Terms—Microgrids, security, versatile communications.

I. INTRODUCTION

ICROGRIDS have been proposed as a method to pro-
M vide continuity of power to key societal and commercial
locations (e.g., hospitals, military bases, etc.) and as a means
to incorporate distributed energy generation such as wind and
solar [1]-[3]. The basic building blocks of microgrids include
the ability to connect to and from the power grid, electri-
cal loads, and a back-up energy supply (e.g., renewables, fuel
cells, etc.). A fundamental requirement of microgrids is oper-
ating in stand alone (i.e., island) and grid connected modes. In
island mode, the microgrid control system provides frequency
and voltage stability for optimal power flow, and ensures min-
imal load shedding and disruption during transition from grid
connected to island mode. Furthermore, the microgrid should
have the ability to move back from island to grid-connected
mode, resulting in resynchronization with minimum impact to
sensitive loads.

Providing reliable and secure communications among the
microgrid components and between the microgrid and the
larger grid is a requirement for the microgrid to func-
tion. Of particular concern is the communications supporting
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the microgrid control systems. References [4]-[7] provide
overviews of the distributed hierarchical control layers within
microgrids, namely: primary, secondary, and tertiary control
layers. The primary control is responsible for maintaining
voltage and frequency stability of the microgrid subsequent
to changes in the system mode. The secondary control layer
should compensate for the voltage and frequency deviations
caused by the operation of the primary control layer. Finally,
the tertiary control layer manages the power flow between
the microgrid and the main grid, coordinates with adjacent
microgrids, and facilitates optimal operation.

In general, each control layer is comprised of separate
physical entities with differing computational resources. In
implementing such a control architecture, the controllers at
the top of the hierarchy take state input from lower layers and
compute parameters that maybe passed to controllers at lower
levels for their local control actions. Note that the control
layers work on different time scales with real-time delay con-
straints for information exchange within and between layers.
Hence, the communications between the control elements are
time critical in nature implying the need for efficient algo-
rithms that minimize the delay and computational resource
requirements. Furthermore, the communication and security
architectures must be versatile enough to support various
communication patterns among control components, namely:
unicast, multicast, and broadcast communications.

Here, we propose a secure communication architecture
tailored to the microgrid control system. The main contri-
butions of this paper include the following. We formally
define a microgrid communication security model. We propose
a security architecture that supports the hierarchical struc-
ture of microgrid control mechanisms and takes the resource
constraints into account while respecting the real-time commu-
nication requirements. Moreover, we design a security protocol
that supports broadcast, multicast, and unicast communica-
tions. The proposed solution provides data confidentiality
and authentication while meeting the real-time communi-
cation needs within the microgrid. The implementation of
the proposed scheme is discussed and compared with other
approaches in this paper through theoretical comparison and
a co-simulation analysis of a target microgrid. Our results
indicate that the new security scheme outperforms its coun-
terparts either in terms of computational efficiency or storage
requirements. The rest of this paper is organized as follows.
Section II presents background material on microgrids and the
challenges they present. Section III provides an overview of
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Fig. 1. Offshore production platform microgrid with offshore wind power.

related literature. Section IV presents the system, data, and
attack models. Section V outlines the new security protocol,
followed by Section VI, which provides performance results.
Finally, we draw the conclusion in Section VII.

II. BACKGROUND

As a motivating example, we draw on our recent
work [8], [9] which proposed a medium voltage dc microgrid
system to supply power to a set of offshore production plat-
forms. The loads on an offshore platform include large motors
used for propulsion, station keeping, drilling, and pumping
product to the surface, as well as auxiliary on-site functions
(e.g., lighting; heating, ventilating, and air conditioning; etc.).
The microgrid power system architecture is shown in Fig. 1.
The main local source of electricity is provided by a group of
5 MW wind-turbines that produce ac current. Also a backup
diesel generator maybe incorporated on each platform. The
ac from the wind-farm is converted to dc through a three-
level neutral point clamped rectifier that establishes the 5 kV
dc bus voltage. Interfacing the dc bus and offshore produc-
tion platform are two bidirectional dc/dc converters. These
converters transform dc voltages within the architecture and
serve as channels for power to flow that are controller regu-
lated. The major load on a platform is a set of megawatt class
induction motor drives used to propel the drilling mechanism,
propulsion, and station keeping, and these can be modeled as
constant power loads. The primary controllers of the motors
use a decoupled dg-axis control to regulate both machine flux
and current. The primary controllers provide measurements to
the secondary controller, which controls the power supply to
the dc/dc converters. The details of the control algorithms are
given in [8].

In general, a set of offshore platforms (e.g., an oil field)
will be powered by a windfarm leading to a system of
interconnected microgrids. Fig. 2 adapted from [9] illustrates
the control and communication architectures of the system.
Inside the microgrid for the purposes of power regulation and
protection, the communication architecture provides a num-
ber of logical communication channels: primary controller to
the secondary controller; secondary controller to the dc/dc
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Fig. 2. Offshore platform microgrid control and communication architecture.

converters, backup generator, voltage regulator, and breakers.
In order to facilitate power flow in and out of the microgrid, the
secondary controller provides information and receives profiles
from the tertiary controller. A tertiary controller communicates
with the tertiary controllers of other microgrids and the main
grid as shown in Fig. 2. Note that there may be a mix of
organizations owning and operating the set of microgrids, the
main grid and wind-farm.

The communication network provides the means for the
microgrid control elements to signal among the components
in order for the microgrids to operate, coexist, and connect
to the main grid. The requirements of the communication
network to support control signaling are: real-time perfor-
mance guarantees, evaluated via worst case delay performance
analysis; security, providing confidentiality and integrity guar-
antees while respecting the real-time delay boundaries; and
high availability. Given the presence of high bandwidth com-
munication networks, most of the delay in communication is
introduced by the embedded control sub-systems that govern
the flow of control messages and the execution of con-
trol logic. Many of the elements in the control systems are
so called intelligent electrical devices (IED) such as volt-
age regulators, protective relays, and recloser controllers, that
contain low-level microprocessors with small memories and
have equipment lifetimes measured in decades. The execution
cycles of such controllers must be considered in the design of
a security architecture as they limit the type of confidentiality
and integrity methods employed.

In the general microgrid context, the time scale of the pri-
mary control operation is in millisecond. Semi-independent
primary control is needed with the controller taking into
account commands from the secondary controller at a fre-
quency in the range of tens of milliseconds or more [10].
For example, the secondary control would implement demand
response as consumption in the microgrid increases, or supply
from renewable energy decreases. The secondary controllers
are expected to operate five to ten times slower or more than
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the primary controllers. Finally, the tertiary control layer man-
ages the power flow between the microgrid and main grid
and between adjacent microgrids to facilitate optimal opera-
tion. High-level commands that involve the tertiary control are
measured in seconds, or even minutes.

III. RELATED WORK

The literature on cyber security for smart grid systems
was recently surveyed in [11] and here we highlight rel-
evant work. One major document addressing security for
time-critical smart grid communication is IEC 62351 [12].
Released to build on top of IEC 61850 [13], it attempts
to address the shortcomings of [13] in terms of cyber secu-
rity for substation automation systems (SAS). The standard
discusses data authentication via digital signatures, access con-
trol, security measures to prevent eavesdropping, prevention
of playback and spoofing and intrusion detection. IEC 62351
specifies a variant of the Rivest, Shamir, and Adleman (RSA)
algorithm, a public key infrastructure (PKI) cryptography algo-
rithm for SAS communication. According to [12], the sender
hashes the time-critical message using a secure hash algorithm
(SHA-256) and then encrypts the hash with a private key via
RSA in order to generate a signature. On the receiving end,
the device hashes the message once again, decrypts the signed
hash with the sender’s public key, compares the received hash
with the locally created one, and if the two hashed values
match, it accepts the message as valid. However, the stan-
dard fails to meet the 3 ms end-to-end delivery requirement
of IEC 61850 and thus far has little industry acceptance [14].

Recently, a number of publications [15]-[17] have focused
on time-constrained secure communication. Three types of
techniques have been proposed: 1) RSA-based approaches,
similar to IEC 62351; 2) message authentication code (MAC)
schemes, leveraging semantic security; and 3) one-time signa-
ture (OTS) protocols, making use of hash functions.

MAC-based schemes leverage a common semantic key
between a sender and receiver pair. One popular MAC-based
approach is timed efficient stream loss-tolerant authentica-
tion (TESLA) [15]. The TESLA protocol divides time into
separate periods. The sender uses different keys to sign the
messages in each epoch. Once the key has expired, the sender
releases the key to the public, thus, allowing the receivers
to verify any buffered messages. After the key is public, the
sender needs to move onto the next key. The advantage of this
protocol is the multicast, characteristic allowing a single mes-
sage to be verified by multiple recipients. However, the buffer-
ing requirements make this protocol unsuitable for microgrid
real-time communication. An alternative MAC principle-based
approach uses the incomplete-set-scheme principle [18]. For
every receiver, the transmitter has a separate short key. The
sender signs a single message with all the private keys to all
the recipients. To verify a message, each receiver uses the indi-
vidual private key to create a local MAC and compares it to the
received MAC. Since only the message sender has the full set
of private keys, no other member of the communication cluster
can fabricate the sender’s identity. This protocol suffers from
communication overhead, for n receivers we need n MACs in
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each message. However, it provides excellent computational
performance due to its use of semantic cryptography.

A number of OTS schemes have been proposed in the lit-
erature, such as [16] and [17]. At the core, they all try to
address the issues of “one-timed-ness” and the large public key
size. Wang et al. [19] have proposed TV-HORS which uses
precomputed hash chains to authenticate data. The protocol
creates a logical mapping between the data to the precom-
puted hash values. However, it requires a large number of
precomputations resulting in long bootstrap times and large
storage requirements. Furthermore, TV-HORS has a short key
lifetime, which when coupled with the bootstrap time and stor-
age requirements makes the protocol a poor fit for resource
constrained applications.

The literature mentioned above focuses on either real-time
systems security or general smart grid security. Currently,
there is little microgrid specific security research [11] outside
of [20]. This is especially true for industrial size microgrids
such as studied here. In [20], a survey of microgrid proto-
cols, architectures, equipment and security threats is given.
The authors proposed an architecture defining interfaces and
points for cyber security mechanisms by grouping microgrid
equipment into enclaves based on their functionality. They
note the crucial need to secure the microgrid control system
communications. However, the real-time nature of the commu-
nications, the resource limitations of IEDs and the distributed
hierarchical nature of the microgrid control systems are not
addressed. Here, we note that the IEDs are the bottleneck
of the electrical and communications co-system and as such
develop a security solution that limits end-device computation
and storage at the expense of communication overhead. We
follow the principles laid out by the MAC-based incomplete-
set-schemes, which make use of symmetric cryptography and
provide computational efficiency.

IV. SYSTEM AND ATTACK MODELS

We adopt the system scenario illustrated in Fig. 3. The
microgrid network is assumed to be behind the meter and
may have a different owner than the other networks it inter-
connects with, which are assumed in worst case fashion to be
insecure and lossy. As shown in Fig. 3, we consider a multicast
communication scenario with a single sender S and multiple
receivers R;,i = 1,2, ..., n (note—unicast and broadcast are
special cases of multicast). Table I summarizes the notation
we adopt for the system model.
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TABLE I
NOTATION TABLE

Parameter  Definition
S, Ri,n sender, i-th receiver, and total number of receivers
Time to deliver a message by the network (including S and
ta R transmission times, and intermediate network propagation
times)
ts Sender’s packetization (encryption + signing) delay
tr Receiver’s processing (decryption + verification) delay
tied Time to execute cycle of IED’s control logic application
IED’s computation speed of encryption/decryption
taes operation for the AES algorithm (in MiB/sec)
IED’s computation speed for creating AES-CMAC
temac signature (in MiB/sec)
dimsg Size of message (in bits)
tmaz Maximum end-to-end delay bound
KS Trusted microgrid key management server
ky, Symmetric bootstrap key for IED; know to KS and IED;
ks, Symmetric confidentiality key known to K'S and IED;
ke Microgrid shared confidentiality key
N; Nonce generated by IED;
N Ngnce generated by I ED; to prevent replay attacks
i (different from N;)
V(i 5) Authentication tag key between IED; and IED;
Hv(i,j) Function for creation of authentication tag

In Fig. 4, we show the end to end communication model.
Controllers and IEDs communicate by making use of the
UDP/IP protocol stack as is standard practice in real-time
systems [21]. In such environments, TCP/IP is undesirable,
since in the case of lost packet, by the time the retransmis-
sion reaches the intended receiver, the data is stale. Reliability
is achieved via periodic transmission of data. In the model of
Fig. 4, the network delivery delay is defined as 7; and includes
the propagation and transmission delays. We use zs to denote
the time it takes a device to packetize and send a message
after it has been passed down from the device’s application.
Additionally, we define tz as the time it takes to process the
incoming message and pass it to the receiver’s application. We
define 7, as the maximum end to end delay for all receivers
of a message, where for successful delivery ts+#;+1gr < fmax-
In the event, the end to end delay of a message exceeds fmax
it is discarded. In general, f,ax is determined such that the
microgrid power control can be designed to operate in a sta-
ble fashion. Note, that the end to end communication delay
depends on many factors: the computational capability of the
IEDs’ hardware; the real-time operating systems; the applica-
tion execution times; the speed of the communication links;
and the topology and congestion status of the communication
network.
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We classify the data in the microgrid network into three
types: 1) messages carrying sampled data (e.g., current, etc.);
2) safety messages facilitating emergency power operations
(e.g., opening a circuit breaker to prevent overload); and
3) control messages setting profiles for operation of the power
network. We focus on the control messages as the data
model since they pose the most demanding real-time delivery
requirements. Each message has the following properties.

1) Sender S has no prior knowledge of the message con-

tents before packet generation.

2) Each message is of broadcast or multicast nature.

3) All messages use UDP/IP and there are no retransmis-

sions.

4) Each message is timestamped by the sender S.

5) R; accepts the message if it is delivered and verified

within fpax and rejects it otherwise.

It is assumed that all IEDs involved in electrical sys-
tems protection, operate in fail-safe mode. In the absence of
communication, each protection IED would take independent
protective actions. Lastly, we assume there exists a trusted
third party that facilitates initial key exchange between devices
that are not owned by the same entities, such as one microgrid
to another, or between a microgrid and the main grid.

As an attack model, we assume an adversary has the follow-
ing goals: 1) to inject a counterfeit message or to modify an
existing message; 2) to intercept and to drop a legitimate mes-
sage; and 3) to passively collect information from messages
between S and R;. To achieve those objectives, we assume
that the adversary has the following capabilities: full access to
the microgrid network, the adversary can capture, drop, delay,
resend, or eavesdrop on some or all packets, the adversary can
gain access to S or R; and learn any key material.

V. MICROGRID SECURITY ARCHITECTURE

The goal of the proposed security architecture is to allow
a sender S to send authenticated and confidential messages to
one or more R; over the microgrid and associated networks.
This means, that within #n.x, €ach R; can decrypt and ver-
ify every received message using the computational resources
at its disposal. If an adversary injects, replays or modifies a
message, each R; should recognize the faulty message and
discard it. The proposed architecture is simple by design as
microgrid communications systems should be easily deployed
and require little management. The architecture requires a stan-
dalone key management server (KS) in each microgrid. Since
both confidentiality and authentication/integrity are provided
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there are two types of keys used in communications. The con-
fidentiality key is shared among a group, so that every group
member can read the messages. The authentication keys are
point-to-point between S and R;s. In order to achieve multi-
cast communication S has a separate authentication key for
each R;. For purposes of clarity, any key used for a confiden-
tiality encryption operation is referred to as k and any key
used for creating an authentication tag is indicated by v.

A. Key Bootstrapping

For communication bootstrapping, the protocol adopts a
modified version of the Needham-Schroeder protocol [22].
The modified version is safe against replay attacks, due to the
use of an additional nonce N’. Each IED comes with factory
printed bootstrap key kp, [e.g., 192-bit advanced encryption
standard (AES) key]. At the time of installation, the techni-
cian enters the IEDs bootstrap key into the microgrid’s KS.
Once connected to the network, the IED; sends a kj,; encrypted
join request to the microgrid’s KS. In response, KS send back
the microgrid’s shared confidentiality communication key k.
and the IEDs individual confidentiality key ks;,. These steps
are illustrated below

IED; — KS : {IED;, Ni}, (1)
KS — IED; : {IED;, Ni, ke, ks, |, - )

In order to communicate with other IEDs on the network,
the IED; sends a session bootstrap request to the IED;.
IED; responds with a nonce encrypted under their personal
confidentiality key ks

IED; — IED; : {IED;}, 3)
IED; — IED; : [IEDZ-,Njf}kk . &)
S
The original IED forwards to the key server the two devices’
IDs, a nonce and the token received from the other IED. The
KS generates an authentication tag key v j for the new ses-
sion, updates the token from IED; to contain the key, and sends
back to IED; the encrypted message

IED; — KS : {IED,-,IED,-,N,-, {IEDi,zvjf}k } (5)
ks]-

c

KS — IED; : {IEDJ-,Ni,v(,-J),{IEDi,N;,v(,-,j)}k } . (6)
ksj ks,

In the final step, the encrypted session information is for-
warded back to IED;. The authentication session key is
confirmed by doing a simple arithmetic operation on the nonce
between the two peers

IED; — IED; : {{IED,;N}, V(i,j)} } (7
' kij ke

IED; — IED; : {N" {Nj}V(i,/) }k ®

IED; — IED; : {N; — 1, {N; - 1}V<i,j)}k ' ©

IEEE TRANSACTIONS ON SMART GRID, VOL. 6, NO. 5, SEPTEMBER 2015

B. Communication

The communication protocol follows the principle of
encrypt-then-MAC [23]. This is done for two reasons: there is
no need to encrypt the authentication tag, thus, avoiding unnec-
essary encryption for S; and second, R; can verify the message
without decryption of the data and discard any fake messages.
We present the steps for unicast and multicast communications
in turn below.

1) Unicast Communications: Unicast communications is
the normal mode for communications between IEDs and the
primary controllers

IED; encrypts the message with k. (10)
{m}x, = Ek.(m)

IED; creates individual authentication tag (11
{m}ij) = Hy,,, (Imh,)

IED; — IED; : [{m}kc||{m}(,-,j)] (12)

IED; creates digest from the received message  (13)

{m}/(i,j) = Hy,, (tmlk.)
IED; compares the local and the received digest (14)
IF({m}(i,j) = {m}/(,-,j))

IED; accepts the message
ELSE

IED; rejects the message
END

15)

2) Multicast/Broadcast Communication: As discussed ear-
lier, some portion of the communication is multicast or broad-
cast in nature. Here, multicast communication is achieved at
the expense of overhead. For multicast communication S emu-
lates a multicast protocol by creating individual authentication
digests for each IED; within the microgrid. The creation of
each authentication tag requires separate pair-wise keys. This
is done for two primary reasons: first, each IED; can verify
the origin of a message; and second, in the event of an IED;
security breach, only the key material for that particular device
is compromised and not for the entire microgrid. The protocol
goes as follows:

Same as unicast communication (10) (16)
FOR EACH R; 17)
IED; creates message authentication tag
(m}i.x) = Hug (tme,)
END FOR
IED; — Microgrid : [{m} [{m} j)..|[{m}in] (18)
EACH R; (19-21)

Same as unicast communication (13)—(15).

3) Communication Outside the Microgrid: There exist
instances, when an IED within the microgrid needs to com-
municate with an outside IED. For example, when a breaker
must inform another breaker on the other side of the power
exchange bus. The outside breaker IED could be owned by
different organization and as such the session set up would
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involve two KSs. In order to meet the real-time communi-
cation requirement, the two KSs would be involved only in
the key negotiation. Note, that a microgrid’s internal confi-
dentiality key k. should not be shared with outside devices.
As such, any IED that needs to communicate with the out-
side would have to maintain separate confidentiality keys and
encrypt messages with both.

VI. PERFORMANCE ANALYSIS

In order to evaluate the proposed security protocol, we con-
sider specific algorithms for its implementation and contrast it
with RSA (PKI), the digital signature algorithm (DSA) (which
is also used in PKI), and TV-HORS (OTS).

A. Bootstrapping and Key Size

The parameters used to calculate the performance are listed
in Table IT and are based on a 600 MHz microprocessor widely
used in embedded systems such as power grid IEDs. We adopt
the National Institut of Standards and Technology (NIST) rec-
ommendation to limit the key lifetime by requiring that at
least 2*3 message operations prior to a single message collision
occurring. For the proposed scheme we use the AES algorithm
for message confidentiality and the AES-based cipher-based
message authentication code (CMAC) algorithm for message
authentication [24]. A 192-bit AES key is recommended for
data confidentiality and CMAC-based authentication, ensuring
that the probability of forgery is quite low and the lifetime of
the keys exceeds the lifetime of IED equipment. In the pro-
posed algorithm, the bootstrap procedure is individual between
each peer, thus, it is linear to the number of IEDs in the micro-
grid. In comparison for a PKI system to achieve the minimum
required key lifetime, RSA needs at least 2048-bit key and
DSA a 256-bit key [25]. Also, in PKI the sender bootstraps
once for all receivers. The OTS protocol used for compari-
son is TV-HORS, due to its superior performance over other
OTS algorithms [26]. In order to achieve the NIST specified
key lifetime security level, TV-HORS requires a key of at
least 500 KBytes [19]. In the target offshore platform micro-
grid system each primary controller sends one message every
80 ms, or 13 messages/s. Following [19], one can show the
minimal time to bootstrap the key for TV-HORS is 120 s and
the lifetime of the key is only 840 s. Thus, for every 14 min
of operation each IED would have to pause sending data and
bootstrap again the keys for 2 min. Of course, it is possible
to increase the length of the key chains and therefore increase
the lifetime of the keys, however, the storage requirements and
bootstrap times increase as well. Lu et al. [27] stated similar
findings in regards to using TV-HORS for substation commu-
nication security. Hence, TV-HORS is not a practical security
solution for the target microgrid environment.

B. Theoretical Comparative Performance

While there is no benchmark standard for f,x in micro-
grids, we assume it to be 3 ms in accordance with IEC 61850.
A comparative analysis is presented in Table III. The second
column in Table III lists the number of keys an IED needs to
store for the various security methods. If there are n devices in
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TABLE II
SECURITY ALGORITHMS TIME PERFORMANCE STATISTICS [28]

OpenSSL performance statistics for VIA Eden 600Mhz

Microgrid message payload (dmsg) [9] 42 bytes
Time for 192-AES encryption/decryption 0.008 msec
Time for 192-AES CMAC auth. tag 0.008 msec
Time for SHA-256 digest 0.007 msec
Time for RSA 2048 signature 312.5 msec
Time for RSA 2048 signature verification 9.1 msec
Time for DSA signature 91.7 msec
Time for DSA signature verification 111.1 msec

the microgrid, then for the proposed scheme each IED would
be required to store k., two KS update keys, and 2(n — 1)
individual session keys (i.e., (n — 1) authentication keys and
(n — 1) session keys). Note, that in the proposed scheme the
KS needs to store one cluster k. and n(n — 1) session keys.

For the calculation of IEDs packetization latency tg, we only
consider encryption and authentication tag creation delays.
On the receiver side, fg, we only consider the time it takes
to verify a message. For both metrics, TV-HORS has the
fastest performance due to precomputation. In the proposed
scheme, 5 increases linearly with the number of receivers,
however, receiver verification consists of one authentication
tag and one decryption operation. In the RSA and DSA cases,
both the packetization and verification delays exceed the 3 ms
end-to-end delay requirement. Hence, PKI algorithms are not
be suitable candidates for microgrids.

The main drawback of the proposed scheme is the commu-
nication overhead introduced by the need to transmit separate
point-to-point authentication tags in multicast communica-
tions. Toward minimizing the overhead, we make use of
AES-CMAC-96 [29] with truncated 96-bit output authenti-
cation tags (while still using 192-bit keys for tag creation).
Compared to the RSA approach, which has flat communica-
tion overhead of 2048-bit per message, our proposed protocol,
has overhead that is linear to n in the broadcast case. However,
for up to n = 20 the new scheme has less communication
overhead than RSA. Finally, TV-HORS has flat overhead of a
preconfigured number of SHA-256 messages digests per single
authentication tag. For the data rates in question, the minimum
feasible message digests per signature is 11 [17].

In the microgrid of Fig. 2, the communication network con-
nects the following IEDs: ten primary controllers (assuming
4 MW drilling platform and 400 kW dc induction motors);
secondary and tertiary controllers; the voltage regulator and
the dc generator controllers; two dc/dc converters; 27 circuit
breakers and a KS. This results in less than 50 IEDs. We
define the application execution time of an IED as fieq, the
primary controller time as #,;, the secondary controller as
tsec, the tertiary controller as tir, the dc/dc converter as fcony,
and the voltage regulator as freg. A control loop execution
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TABLE III
COMPARISON OF MICROGRID SECURITY SCHEMES

Security Algorithm (type)  Storage per I ED ts (msec) tr (msec)  Packet Size (bits) Max R;s Clock Sync Required
Proposed (Symmetric) 83+ (2n—1))-192 bits =~ n-0.008 = 0.016 dmsg +(n—1)-96 > 300 No
RSA (PKI) 2048 bits ~ 312.5 ~ 9.1 dmsg + 2048 0 No
DSA (PKI) 256 bits ~91.7 ~ 111.1 dmsg + 160 0 No
TV-HORS (OTS) > 500K B =~ 0.0015 =~ 0.0015 dmsg + 11 - 256 Unlimited  Yes (resolution in ms)
Communictatiozi is used the control loop delay is Tpri—sec ~ 1805 ms, which
network . . . .
G |ts . data exchange | is just under the 2 s latency threshold given in [30] to ensure
‘!--‘1--} § stable operation of the microgrid’s power network.
\ f " 3 2) Tertiary—Secondary Control Loop: In a fashion simi-
fl = I S : lar to the above analysis, we evaluate the tertiary—secondary
Vo8 3 Induction R
nty 3 mraching control loop delay Tier—sec. The loop latency is expressed as
3

Measured torque and rotor speed

Fig. 5. Microgrid’s primary—secondary distributed control loop.

time is defined as the time between when a measurement
is emitted from the sensing IED until an adjustment com-
mand is delivered to the acting IED. Here, we focus on
the primary—secondary and tertiary—secondary control loops.
Since the data rates of IED equipment within the microgrid
network are low (10-100 kb/s) in comparison to the link band-
widths (0.1-10 Gb/s), we assume the communication network
is congestion free and ignore any intermediate router/switch
buffering delays.

1) Primary-Secondary Control Loop: The primary con-
troller at each motor provides torque and rotor speed mea-
surements to the secondary controller every #,; seconds. The
secondary controller collects all the measured data, then cal-
culates the appropriate duty cycles for each of the two dc/dc
converters to alter the power flow to the machine loads. The
latency between the measured torque and motor speed values
and the adjustment of the power supplied by the dc/dc convert-
ers constitutes the primary—secondary control communication
loop delay Tpri—sec. This is illustrated in Fig. 5. The primary
controllers, as well as the two dc/dc converters, execute in par-
allel. However, the secondary controller has to process all the
incoming data from the primary controllers before it can act,
therefore, occurring an additional delay of np,; - g (Where np;
is the number of primary controllers in the microgrid). Hence,
the controller loop latency Tpi—sec is

Tprifsec = Tpri + tsec +teony +2 s+ 2 1g + (npri +1) - tg.
(22)

Utilizing Table II and assuming 100 Mb/s communication
links, the one-hop propagation delay 7, is approximately equal
to 0.05 ms. Further, taking values from the literature we set
tsec = 500 ms, fcony = 500 ms [7], and 7 = 80 ms [10]. For
the proposed security architecture, the resulting control loop
delay is Tpri—sec ~ 1080 ms. By comparison, if RSA (PKI)

Tier—sec = Iter + fsec + feonv + 2. s + 2. tq + 2. IR. (23)

Assuming broadcast communications, with #er = 500 ms [10],
the proposed protocol’s delay is Tier—sec & 1580 ms. However,
if RSA is used instead, the loop delay is Tier—sec &~ 2144 ms,
which exceeds the stable operation threshold.

C. Microgrid Co-Simulation Performance

A co-simulation of the offshore platform microgrid was
developed in order to more accurately evaluate the micro-
grid’s power control and communication network interaction.
The power system simulation [8] was developed in MATLAB
and exported as generated code. The microgrid communi-
cation network was simulated using the Omnet++ simula-
tion tool. The communication network was modeled as a
UDP/IP/Ethernet network with 100 Mb/s links. The interface
between the two simulators was developed using a cus-
tom adaptive scheduler in a discrete event system simulator
framework [31]. Note, that the interaction between the two
networks occurs due to the decision and action of the IEDs
and controllers. Hence, the co-simulation scheduler takes into
account each IEDs individual computation speed, execution
cycle sub-routines, and internal/external events, in order to
determine the co-simulation synchronization points.

The simulation results reported here were produced by run-
ning a power control test scenario and varying the number of
multicast receivers. In the scenario each primary controller and
induction motor starts at 1 s intervals. The secondary controller
sends duty cycle commands to the dc converters in order to
compensate for the disturbance introduced by the starting of
the induction machines. After the microgrid power network is
fully operational, the microgrid transitions from island to grid
connected mode.

Fig. 6 shows the maximum observed end-to-end delay
(i.e., ts + t4 + tg) during a simulation run versus the number
of multicast receivers for the proposed security scheme (either
using CMAC-192 or the truncated CMAC-96). Once can see
that the end-to-end delay is consistent with the theoretical
analysis and well below the 3 ms target.

Next we studied the primary—secondary control loop delay
Tpri—sec for the case of all of the IEDs active. The maximum
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Fig. 6. Maximum end-to-end delay versus number of multicast receivers.

TABLE IV
MAXIMUM DISTRIBUTED CONTROL LOOP DELAY

Protocol Distributed control loop delay

[Theoretical / Simulation]

CMAC-192 & CMAC-96 1080 / 1128.5 msec

RSA 1805 /7 2093.7 msec unstable

DSA 2485 / 4424.3 msec unstable

observed Tpi—sec Over the set of simulation runs is given in
Table IV. The observed delay is larger than the theoretical
model, due to the simulation incorporating the delay from
intermediate nodes within the communication network, and
the fact that the secondary controller has to process all the
received primary controller messages prior to emitting any.
We also include results for RSA and DSA, which are sim-
ilar to the proposed scheme in that the simulation delay is
larger than the delay predicted by the theoretical model. More
importantly the RSA, DSA schemes result in unstable power
system behavior, since the Tpy_gsec delay is too large. Note
TV-HORS was not included as it results in the power system
being unstable due to the long bootstrap time which must be
repeated frequently given the limited key lifetime.

VII. CONCLUSION

This paper presented a security architecture for the commu-
nication network that is needed to facilitate microgrid power
control operations. A security model, including network, data,
and attack models, was formally defined. Based on the secu-
rity model, we presented a new security protocol to address
the real-time communication needs of microgrids. The imple-
mentation of the proposed security scheme was discussed and
its performance was compared to well accepted security pro-
tocols. It was shown that existing schemes are either too slow
or require too much memory for application in microgrids.
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