
Dynamic Searchable Symmetric Encryption with
Minimal Leakage and Efficient Updates on

Commodity Hardware

Attila A. Yavuz1 and Jorge Guajardo2

1 The School of Electrical Engineering and Computer Science, Oregon State
University, Corvallis, OR 97331

attila.yavuz@oregonstate.edu,
2 Robert Bosch Research and Technology Center, Pittsburgh PA, 15203

Jorge.GuajardoMerchan@us.bosch.com

Abstract. Dynamic Searchable Symmetric Encryption (DSSE) enables
a client to perform keyword queries and update operations on the en-
crypted file collections. DSSE has several important applications such
as privacy-preserving data outsourcing for computing clouds. In this pa-
per, we developed a new DSSE scheme that achieves the highest pri-
vacy among all compared alternatives with low information leakage, ef-
ficient updates, compact client storage, low server storage for large file-
keyword pairs with an easy design and implementation. Our scheme
achieves these desirable properties with a very simple data structure
(i.e., a bit matrix supported with two hash tables) that enables efficient
yet secure search/update operations on it. We prove that our scheme is
secure and showed that it is practical with large number of file-keyword
pairs even with an implementation on simple hardware configurations.

Keywords: Dynamic Searchable Symmetric Encryption, Privacy Enhanc-
ing Technologies, Secure Data Outsourcing, Secure Computing Clouds

1 Introduction

Searchable Symmetric Encryption (SSE) [8] enables a client to encrypt
data in such a way that she can later perform keyword searches on it
via “search tokens” [19]. A prominent application of SSE is to enable
privacy-preserving keyword searches on cloud-based systems (e.g., Ama-
zon S3). A client can store a collection of encrypted files at the cloud
and yet perform keyword searches without revealing the file or query
contents [13]. Desirable properties of a SSE scheme are as follows:
•Dynamism: It should permit adding or removing new files/keywords

from the encrypted file collection securely after the system set-up.

2 Attila A. Yavuz and Jorge Guajardo

• Efficiency and Parallelization: It should offer fast search/updates,
which are parallelizable across multiple processors.
• Storage Efficiency: The SSE storage overhead of the server depends

on the encrypted data structure (i.e., encrypted index) that enables key-
word searches. The number of bits required to represent a file-keyword
pair in the encrypted index should be small. The size of encrypted in-
dex should not grow with the number of operations. The persistent
storage at the client should be minimum.
• Communication Efficiency: Non-interactive search/update a with

minimum data transmission should be possible to avoid the delays.
• Security: The information leakage must be precisely quantified

based on formal SSE security notions (e.g., dynamic CKA2 [12]).

Our Contributions. The preliminary SSEs (e.g., [8, 18]) operate on only
static data, which strictly limits their applicability. Later, Dynamic Search-
able Symmetric Encryption (DSSE) schemes (e.g., [4, 13]), which can
handle dynamic file collections, have been proposed. To date, there
is no single DSSE scheme that outperforms all other alternatives for
all metrics: privacy (e.g., info leak), performance (e.g., search, update
times) and functionality. Having this in mind, we develop a DSSE scheme
that achieves the highest privacy among all compared alternatives with
low information leakage, non-interactive and efficient updates (com-
pared to [12]), compact client storage (compared to [19]), low server
storage for large file-keyword pairs (compared to [4, 12, 19]) and con-
ceptually simple and easy to implement (compared to [12, 13, 19]). Ta-
ble 1 compares our scheme with existing DSSE schemes for various
metrics. We outline the desirable properties of our scheme as follows:
• High Security: Our scheme achieves a high-level of update secu-

rity (i.e., Level-1), forward-privacy, backward-privacy and size pattern
privacy simultaneously (see Section 5 for the details). We quantify the
information leakage via leakage functions and formally prove that our
scheme is dynamic CKA2-secure in random oracle model [3].
• Compact Client Storage: Compared to some alternatives with se-

cure updates (e.g., [19]), our scheme achieves smaller client storage
(e.g., 10-15 times with similar parameters). This is an important advan-
tage for resource constrained clients such as mobile devices.
• Compact Server Storage with Secure Updates: Our encrypted index

size is smaller than some alternatives with secure updates (i.e., [12,19]).
For instance, our scheme achieves 4 · κ smaller storage overhead than
that of the scheme in [12], which introduces a significant difference in

Searchable Encryption with Minimal Leakage on Commodity Hardware 3

Table 1: Performance Comparison of DSSE schemes.
Scheme/Property [13] Kamara 12’ [12] Kamara 13’ [19] Stefanov [4]

(∏dyn,ro
2lev

)
This Work

Size Privacy No No No No Yes
Update Privacy L5 L4 L3 L2 L1
Forward Privacy No No Yes Yes Yes
Backward Privacy No No No No Yes
Dynamic Keyword No No Yes Yes Yes
Client Storage 4κ 3κ κ log(N ′) κ · O(m′) κ · O(n+m)
Index Size (Server) z · O(m+ n) O((κ+m) · n) 13κ · O(N ′) c′′/b · O(N ′) 2 · O(m · n)
Grow with Updates No No Yes Yes No

Search Time O((r/p) · logn)O((r/p)
· log3(N ′))

O((r + dw)/p) 1/b · O(r/p) O(m
p·b)

Rounds Update 1 3 3 1 1
Update Bandwidth z · O(m′′) (2zκ)O(m logn)z·O(m′′ logN ′)z · O(m logn +

m′′)
b · O(m)

Update Time O(m′′) O((m/p)·
logn) + t

O((m′′/p)·
log2(N ′)) + t

O(m′′/p) + t b · O(m/p)

Parallelizable No Yes Yes Yes Yes

• All compared schemes are dynamic CKA2 secure in Random Oracle Model (ROM) [3], and leak
search and access patterns. The analysis is given for the worst-case (asymptotic) complexity.
•m and n are the maximum # of keywords and files, respectively. m′ and n′ are the current # of
keywords and files, respectively. We denote byN ′ = m′ ·n′ the total number of keywords and file
pairs currently stored in the database. m′′ is the # unique keywords included in an updated file
(add or delete). r is # of files that contain a specific keyword.
• Rounds refer to the number of messages exchanged between two communicating parties. A
non-interactive search and an interactive update operation require two and three messages to be
exchange, respectively. Our main scheme, the scheme in [13] and some variants in [4] also achieve
non-interactive update with only single message (i.e., an update token and an encrypted file to be
added for the file addition) to be send from the client to the server. The scheme in [19] requires a
transient client storage asO(N ′α).
• κ is the security parameter. p is the # of parallel processors. b is the block size of symmetric
encryption scheme. z is the pointer size in bits. t is the network latency introduced due to the
interactions. α is a parameter, 0 < α < 1.
• Update privacy levels L1,...,L5 are described in Section 5. In comparison with Cash et al. [4],
we took variant

∏dyn,ro
bas as basis and estimated the most efficient variant

∏dyn,ro
2lev , where dw, aw ,

and c′′ denote the total number of deletion operations, addition operations, the constant bit size
required to store a single file-keyword pair, respectively (in the client storage, the worst case of
aw = m). To simplify notation, we assume that both pointers and identifiers are of size c′′ and
that one can fit b such identifiers/pointers per block of size b (also a simplification). The hidden
constants in the asymptotic complexity of the update operation is significant as the update of [4]
requires at least six PRF operations per file-keyword pair versus this work, which requires one.
∗ Our persistent client storage is κ · O(m+ n). This can become 4κ if we store this data structure
on the server side, which would cost one additional round of interaction.

practice. Asymptotically, the scheme in [19] is more server storage ef-
ficient for small/moderate number of file-keyword pairs. However, our
scheme requires only two bits per file-keyword pair with the maximum
number of files and keywords.

•Constant Update Storage Overhead: The server storage of our sche-
me does not grow with update operations, and therefore it does not

4 Attila A. Yavuz and Jorge Guajardo

require re-encrypting the whole encrypted index due to frequent up-
dates. This is more efficient than some alternatives (e.g., [19]), whose
server storage grows linearly with the number of file deletions.
• Dynamic Keyword Universe: Unlike some alternatives (e.g., [8, 12,

13]), our scheme does not assume a fixed keyword universe, which per-
mits the addition of new keywords to the system after initialization.
Hence, the file content is not restricted to a particular pre-defined key-
word but can be any token afterwards (encodings)3.
•Efficient, Non-interactive and Oblivious Updates: Our basic scheme

achieves secure updates non-interactively. Even with large file-keyword
pairs (e.g., N = 1012), it incurs low communication overhead (e.g., 120
KB for m = 106 keywords and n = 106 files) by further avoiding net-
work latencies (e.g., 25-100 ms) that affect other interactive schemes
(e.g., as considered in [4,12,16,19]). One of the variants that we explore
requires three rounds (as in other DSSE schemes), but it still requires
low communication overhead (and less transmission than that of [12]
and fewer rounds than [16]). Notice that the scheme in [16] can only
add or remove a file but cannot update the keywords of a file without
removing or adding it, while our scheme can achieve this functional-
ity intrinsically with a (standard) update or delete operation. Finally,
our updates take always the same amount of time, which does not leak
timing information depending on the update.
• Parallelization: Our scheme is parallelizable for both update and

search operations.
• Efficient Forward Privacy: Our scheme can achieve forward pri-

vacy by retrieving not the whole data structure (e.g., [19]) but only
some part of it that has already been queried.

2 Related Work

SSE was introduced in [18] and it was followed by several SSE schemes
(e.g., [6, 8, 15]). The scheme of Curtmola et al. in [8] achieves a sub-
linear and optimal search time as O(r), where r is the number of files
that contain a keyword. It also introduced the security notion for SSE
called as adaptive security against chosen-keyword attacks (CKA2). How-
ever, the static nature of those schemes limited their applicability to
applications with dynamic file collections. Kamara et al. developed a
DSSE scheme in [13] that could handle dynamic file collections via en-
crypted updates. However, it leaked significant information for updates

3 We assume the maximum number of keywords to be used in the system is pre-defined.

Searchable Encryption with Minimal Leakage on Commodity Hardware 5

and was not parallelizable. Kamara et al. in [12] proposed a DSSE scheme,
which leaked less information than that of [13] and was parallelizable.
However, it incurs an impractical server storage. Recently, a series of
new DSSE schemes (e.g., [4, 16, 17, 19]) have been proposed by achiev-
ing better performance and security. While being asymptotically bet-
ter, those schemes also have drawbacks. We give a comparison of these
schemes (i.e., [4, 16, 17, 19]) with our scheme in Section 6.

Blind Seer [17] is a private database management system, which
offers private policy enforcement on semi-honest clients, while a re-
cent version [10] can also handle malicious clients. Blind Seer focuses
on a different scenario and system model compared to traditional SSE
schemes: “The SSE setting focuses on data outsourcing rather than data
sharing. That is, in SSE the data owner is the client, and so no privacy
against the client is required” [17]. Moreover, Blind Seer requires three
parties (one of them acts as a semi-trusted party) instead of two. Our
scheme focuses on only basic keyword queries but achieves the high-
est update privacy in the traditional SSE setting. The update function-
ality of Blind Seer is not oblivious (this is explicitly noted in [17] on page
8, footnote 2). The Blind Seer solves the leakage problem due to non-
oblivious updates by periodically re-encrypting the entire index.

3 Preliminaries and Models

Operators || and |x| denote the concatenation and the bit length of vari-

able x, respectively. x $← S means variable x is randomly and uni-

formly selected from set S. For any integer l, (x0, . . . , xl)
$← S means

(x0
$← S, . . . , xl

$← S). |S| denotes the cardinality of set S. {xi}li=0 de-
notes (x0, . . . , xl). We denote by {0, 1}∗ the set of binary strings of any
finite length. bxc denotes the floor of x and dxe denotes the ceiling of
x. The set of items qi for i = 1, . . . , n is denoted by 〈q1, . . . , qn〉. Integer
κ denotes the security parameter. log x means log2 x. I[∗, j] and I[i, ∗]
mean accessing all elements in the j’th column and the i’th row of a
matrix I, respectively. I[i, ∗]T is the transpose of the i’th row of I.

An IND-CPA secure private key encryption scheme is a triplet E =
(Gen,Enc,Dec) of three algorithms as follows: k1 ← E .Gen(1κ) is a Prob-
abilistic Polynomial Time (PPT) algorithm that takes a security param-
eter κ and returns a secret key k1; c ← E .Enck1(M) takes secret key
k1 and a message M , and returns a ciphertext c; M←E .Deck1(c) is a de-
terministic algorithm that takes k1 and c, and returns M if k1 was the

6 Attila A. Yavuz and Jorge Guajardo

key under which c was produced. A Pseudo Random Function (PRF)
is a polynomial-time computable function, which is indistinguishable
from a true random function by any PPT adversary. The function F :
{0, 1}κ × {0, 1}∗ → {0, 1}κ is a keyed PRF, denoted by τ ← Fk2 (x),

which takes as input a secret key k2
$← {0, 1}κ and a string x, and re-

turns a token τ . G : {0, 1}κ × {0, 1}∗ → {0, 1}κ is a keyed PRF denoted
as r ← Gk3 (x), which takes as input k3 ← {0, 1}κ and a string x and
returns a key r. We denote by H : {0, 1}|x| → {0, 1} a Random Oracle
(RO) [3], which takes an input x and returns a bit as output.

We follow the definitions of [12,13] with some modifications: fid and
w denote a file with unique identifier id and a unique keyword that ex-
ists in a file, respectively. A keyword w is of length polynomial in κ, and
a file fid may contain any such keyword (i.e., our keyword universe is
not fixed). For practical purposes, n andm denote the maximum num-
ber of files and keywords to be processed by application, respectively.
f = (fid1 , . . . , fidn) and c = (cid1 , . . . , cidn) denote a collection of files
(with unique identifiers id1, . . . , idn) and their corresponding cipher-
text computed under k1 via Enc, respectively. Data structures δ and γ
denote the index and encrypted index, respectively.

Definition 1. A DSSE scheme is comprised of nine polynomial-time al-
gorithms, which are defined as below:

1. K←Gen(1κ): It takes as input a security parameter κ and outputs a
secret key K.

2. (γ, c)←EncK (δ, f): It takes as input a secret keyK, an index δ and files
f , from which δ was constructed. It outputs encrypted index γ and
ciphertexts c.

3. fj ← DecK (cj): It takes as input secret key K and ciphertext cj and
outputs a file fj .

4. τw←SrchToken(K,w): It takes as input a secret key K and a keyword
w. It outputs a search token τw.

5. idw ← Search(τw, γ): It takes as input a search token τw and an en-
crypted index γ. It outputs identifiers idw ⊆ c.

6. (τf , c)← AddToken(K, fid): It takes as input a secret key K and a file
fid with identifier id to be added. It outputs an addition token τf and
a ciphertext c of fid.

7. (γ′, c′)← Add(γ, c, c, τf): It takes as input an encrypted index γ, cur-
rent ciphertexts c, ciphertext c to be added and an addition token τf .
It outputs a new encrypted index γ′ and new ciphertexts c′.

Searchable Encryption with Minimal Leakage on Commodity Hardware 7

8. τ ′f ← DeleteToken(K, fid): It takes as input a secret key K and a file

fid with identifier id to be deleted. It outputs a deletion token τ ′f .
9. (γ′, c′)← Delete(γ, c, τ ′f): It takes as input an encrypted index γ, ci-

phertexts c, and a deletion token τ ′f . It outputs a new encrypted index
γ′ and new ciphertexts c′.

Definition 2. A DSSE scheme is correct if for all κ, for all keys K gener-
ated by Gen(1κ), for all f, for all (γ, c) output by EncK (δ, f), and for all
sequences of add, delete or search operations on γ, search always returns
the correct set of identifier idw.

Most known efficient SSE schemes (e.g., [4, 5, 12, 13, 16, 19]) reveal
the access and search patterns that are defined below.

Definition 3. Given search query Query = w at time t, the search pat-
tern P(δ,Query, t) is a binary vector of length t with a 1 at location i if
the search time i ≤ twas forw, 0 otherwise. The search pattern indicates
whether the same keyword has been searched in the past or not.

Definition 4. Given search query Query = wi at time t, the access pat-
tern ∆(δ, f, wi, t) is identifiers idw of files f, in which wi appears.

We consider the following leakage functions, in the line of [12] that
captures dynamic file addition/deletion in its security model as we do,
but we leak much less information compared to [12] (see Section 5).

Definition 5. Leakage functions (L1,L2) are defined as follows:

1. (m,n, idw, 〈|fid1 |, . . . , |fidn |〉)← L1(δ, f): Given the index δ and the set
of files f (including their identifiers),L1 outputs the maximum num-
ber of keywords m, the maximum number of files n, the identifiers
idw = (id1, . . . , idn) of f and the size of each file |fidj |, 1 ≤ j ≤ n
(which also implies the size of its corresponding ciphertext |cidj |).

2. (P(δ,Query, t), ∆(δ, f, wi, t))← L2(δ, f, w, t): Given the index δ, the set
of files f and a keyword w for a search operation at time t, it outputs
the search and access patterns.

Definition 6. Let A be a stateful adversary and S be a stateful simula-
tor. Consider the following probabilistic experiments:

RealA(κ): The challenger executes K ← Gen(1κ). A produces (δ, f)
and receives (γ, c)← EncK (δ, f) from the challenger.A makes a polyno-
mial number of adaptive queries Query ∈ (w, fid, fid′) to the challenger.
If Query = w then A receives a search token τw ← SrchToken(K,w)

8 Attila A. Yavuz and Jorge Guajardo

from the challenger. If Query = fid is a file addition query then A re-
ceives an addition token (τf , c)← AddToken(K, fid) from the challenger.
If Query = fid′ is a file deletion query then A receives a deletion token
τ ′f ← DeleteToken(K, fid′) from the challenger. Eventually, A returns a
bit b that is output by the experiment.

IdealA,S(κ):A produces (δ, f). Given L1(δ, f), S generates and sends
(γ, c) to A . A makes a polynomial number of adaptive queries Query ∈
(w, fid, fid′) to S . For each query, S is given L2(δ, f, w, t). If Query = w
then S returns a simulated search token τw. If Query = fid or Query =
fid′ , S returns a simulated addition token τf or deletion token τ ′f ,respec-
tively. Eventually,A returns a bit b that is output by the experiment.

A DSSE is said (L1,L2)-secure against adaptive chosen-keyword at-
tacks (CKA2-security) if for all PPT adversariesA , there exists a PPT sim-
ulator S such that

|Pr[RealA(κ) = 1]− Pr[IdealA,S(κ) = 1]| ≤ neg(κ)

Remark 1. In Definition 6, we adapt the notion of dynamic CKA2-security
from [12], which captures the file addition and deletion operations by
simulating corresponding tokens τf and τ ′f , respectively (see Section 5).

4 Our Scheme

We first discuss the intuition and data structures of our scheme. We
then outline how these data structures guarantee the correctness of
our scheme. Finally, we present our main scheme in detail (an efficient
variant of our main scheme is given in Section 6, several other variants
of our main scheme are given in the full version of this paper in [20]).
Intuition and Data Structures of Our Scheme. The intuition behind
our scheme is to rely on a very simple data structure that enables effi-
cient yet secure search and update operations on it. Our data structure
is a bit matrix I that is augmented by two static hash tables Tw and Tf .
If I[i, j] = 1 then it means keyword wi is present in file fj , else wi is not
in fj . The data structure contains both the traditional index and the
inverted index representations. We use static hash tables Tw and Tf to
uniquely associate a keyword w and a file f to a row index i and a col-
umn index j, respectively. Both matrix and hash tables also maintain
certain status bits and counters to ensure secure and correct encryp-
tion/decryption of the data structure, which guarantees a high level
of privacy (i.e., L1 as in Section 5) with dynamic CKA2-security [12].

Searchable Encryption with Minimal Leakage on Commodity Hardware 9

Search and update operations are encryption/decryption operations
on rows and columns of I, respectively.

As in other index-based schemes, our DSSE scheme has an index δ
represented by am×nmatrix, where δ[i, j] ∈ {0, 1} for i = 1, . . . ,m and
j = 1, . . . , n. Initially, all elements of δ are set to 0. I is a m × n matrix,
where I[i, j] ∈ {0, 1}2. I[i, j].v stores δ[i, j] in encrypted form depend-
ing on state and counter information. I[i, j].st stores a bit indicating
the state of I[i, j].v. Initially, all elements of I are set to 0. I[i, j].st is set
to 1 whenever its corresponding fj is updated, and it is set to 0 when-
ever its corresponding keyword wi is searched. For the sake of brevity,
we will often write I[i, j] to denote I[i, j].v. We will always be explicit
about the state bit I[i, j].st. The encrypted index γ corresponds to the
encrypted matrix I and a hash table. We also have client state infor-
mation4 in the form of two static hash tables (defined below). We map
each file fid and keyword w pair to a unique set of indices (i, j) in ma-
trices (δ, I). We use static hash tables to associate each file and keyword
to its corresponding row and column index, respectively. Static hash ta-
bles also enable to access the index information in (average)O(1) time.
Tf is a static hash table whose key-value pair is {sfj , 〈j, stj〉}, where
sfj ← Fk2(idj) for file identifier idj corresponding to file fidj , index
j ∈ {1, . . . , n} and st is a counter value. We denote access operations by
j ← Tf (sfj) and stj ← Tf [j].st. Tw is a static hash table whose key-value
pair is {swi , 〈i, sti〉}, where token swi ← Fk2(wi), index i ∈ {1, . . . , n}
and st is a counter value. We denote access operations by i ← Tw(swi)
and sti ← Tw[i].st. All counter values are initially set to 1.

We now outline how these data structures and variables work and
ensure the correctness of our scheme.
Correctness of Our Scheme. The correctness and consistency of our
scheme is achieved via state bits I[i, j].st, and counters Tw[i].st of row
i and counters Tf [j].st of column j, each maintained with hash tables
Tw and Tf , respectively.

The algorithms SrchToken and AddToken increase counters Tw[i].st
for keyword w and Tf [j].st for file fj , after each search and update op-
erations, respectively. These counters allow the derivation of a new bit,
which is used to encrypt the corresponding cell I[i, j]. This is done by
the invocation of random oracle asH(ri||j||stj) with row key ri, column
position j and the counter of column j. The row key ri used inH(.) is re-

4 It is always possible to eliminate client state by encrypting and storing it on the server side.
This comes at the cost of additional iteration, as the client would need to retrieve the en-
crypted hash tables from the server and decrypt them. Asymptotically, this does not change
the complexity of the schemes proposed here.

10 Attila A. Yavuz and Jorge Guajardo

derived based on the value of row counter sti as ri ← Gk3 (i||sti), which
is increased after each search operation. Hence, if a search is followed
by an update, algorithm AddToken derives a fresh key ri ← Gk3 (i||sti),
which was not released during the previous search as a token. This en-
sures that AddToken algorithm securely and correctly encrypts the new
column of added/deleted file. Algorithm Add then replaces new col-
umn j with the old one, increments column counter and sets state bits
I[∗, j] to 1 (indicating cells are updated) for the consistency.

The rest is to show that SrchToken and Search produce correct search
results. If keyword w is searched for the first time, SrchToken derives
only ri, since there were no past search increasing the counter value.
Otherwise, it derives ri with the current counter value sti and ri with
the previous counter value sti − 1, which will be used to decrypt re-
cently updated and non-updated (after the last search) cells of I[i, ∗],
respectively. That is, given search token τw, the algorithm Search step 1
checks if τw includes only one key (i.e., the first search) or correspond-
ing cell value I[i, j] was updated (i.e., I[i, j].st = 1). If one of these con-
ditions holds, the algorithm Search decrypts I[i, j] with bit H(ri||j||stj)
that was used for encryption by algorithm Enc (i.e., the first search)
or AddToken. Otherwise, it decrypts I[i, j] with bit H(ri||j||stj). Hence,
the algorithm Search produces the correct search result by properly de-
crypting row i. The algorithm Search also ensures the consistency by
setting all state bits I[i, ∗].st to zero (i.e., indicating cells are searched)
and re-encrypting I[i, ∗] by using the last row key ri.
Detailed Description. We now describe our main scheme in detail.

K←Gen(1κ): The client generates k1←E .Gen(1κ), (k2, k3)
$← {0, 1}κ and

K ← (k1, k2, k3).

(γ, c)←EncK (δ, f): The client generates (γ, c):

1. Extract unique keywords (w1, . . . , wm′) from files f = (fid1 , . . . , fidn′),
where n′ ≤ n and m′ ≤ m. Initially, set all the elements of δ to 0.

2. Construct δ for j = 1, . . . , n′ and i = 1, . . . ,m′:
(a) swi ← Fk2 (wi),xi ← Tw(swi), sfj ← Fk2 (idj) and yj ← Tf (sfj).
(b) If wi appears in fj set δ[xi, yj]← 1.

3. Encrypt δ for j = 1, . . . , n and i = 1, . . . ,m:
(a) Tw[i].st← 1, Tf [j].st← 1 and I[i, j].st← 0.
(b) ri ← Gk3 (i||sti), where sti ← Tw[i].st.
(c) I[i, j]← δ[i, j]⊕H(ri||j||stj), where stj ← Tf [j].st.

4. cj ← E .Enck1(fidj) for j = 1, . . . , n′ and c← {〈c1, y1〉, . . . , 〈cn′ , yn′〉}.

Searchable Encryption with Minimal Leakage on Commodity Hardware 11

5. Output (γ, c), where γ ← (I, Tf). The client gives (γ, c) to the
server, and keeps (K,Tw, Tf).

fj←DecK (cj): The client obtains the file as fj ← E .Deck1(cj).

τw←SrchToken(K,w): The client generates a token τw for w:
1. swi ← Fk2 (w), i← Tw(swi), sti ← Tw[i].st and ri ← Gk3 (i||sti).
2. If sti = 1 then τw ← (i, ri) . Else (if sti > 1), ri ← Gk3 (i||sti − 1)

and τw ← (i, ri, ri).
3. Tw[i].st← sti+1. The client outputs τw and sends it to the server.

idw←Search(τw, γ): The server finds indexes of ciphertexts for τw:
1. If ((τw = (i, ri) ∨ I[i, j].st) = 1) hold then I ′[i, j] ← I[i, j] ⊕
H(ri||j||stj), else set I ′[i, j] ← I[i, j]⊕ H(ri||j||stj), where stj ←
Tf [j].st for j = 1, . . . , n.

2. Set I[i, ∗].st ← 0, l′ ← 1 and for each j satisfies I ′[i, j] = 1, set
yl′ ← j and l′ ← l′ + 1.

3. Output idw ← (y1, . . . ,yl). The server returns (cy1 , . . . , cyl) to the
client, where l← l′ − 1.

4. After the search is completed, the server re-encrypts row I ′[i, ∗]
with ri as I[i, j] ← I ′[i, j] ⊕ H(ri||j||stj) for j = 1, . . . , n, where
stj ← Tf [j].st and sets γ ← (I, Tw).

(τf , c)← AddToken(K, fidj): The client generates τf for a file fidj :

1. sfj ← Fk2 (idj), j ← Tf (sfj), Tf [j].st← Tf [j].st+1, stj ← Tf [j].st.
2. ri ← Gk3 (i||sti), where sti ← Tw[i].st for i = 1, . . . ,m.
3. Extract (w1, . . . , wt) from fidj and compute swi ← Fk2 (wi) and
xi ← Tw(swi) for i = 1, . . . , t.

4. Set I[xi] ← 1 for i = 1, . . . , t and rest of the elements as {I[i] ←
0}mi=1,i/∈{x1,...,xt}. Also set I ′[i]← I[i]⊕H(ri||j||stj) for i = 1, . . . ,m.

5. Set c ← E .Enck1(fidj) and output (τf ← (I ′, j), c). The client
sends (τf , c) to the server.

(γ′, c′)←Add(γ, c,c, τf): The server performs file addition:

1. I[∗, j]← (I ′)T , I[∗, j].st← 1 and Tf [j].st← Tf [j].st+ 1.
2. Output (γ′, c′), where γ′ ← (I, Tf) and c′ is (c, j) added to c.

τ ′f←DeleteToken(K, f): The client generates τ ′f for f :

1. Execute steps (1-2) ofAddToken algorithm, which produce (j, ri, stj).

12 Attila A. Yavuz and Jorge Guajardo

2. I ′[i]← H(ri||j|stj) for i = 1, . . . ,m 5.
3. Output τ ′f ← (I ′, j). The client sends τ ′f to the server.

(γ′, c′)←Delete(γ, c,τ ′f): The server performs file deletion:

1. I[∗, j]← (I ′)T , I[∗, j].st← 1 and Tf [j].st← Tf [j].st+ 1.
2. Output (γ′, c′), where γ′ ← (I, Tf), c′ is (c, j) removed from c.

Keyword update for existing files: Some existing schemes (e.g., [16])
only permit adding or deleting a file, but do not permit updating key-
words in an existing file. Our scheme enables keyword update in an
existing file. To update an existing file f by adding new keywords or
removing existing keywords, the client prepares a new column I[i] ←
bi, i = 1, . . . ,m, where bi = 1 if wi is added and bi = 0 otherwise (as in
AddToken, step 4). The rest of the algorithm is similar to AddToken.

5 Security Analysis

We prove that our main scheme achieves dynamic adaptive security
against chosen-keyword attacks (CKA2) as below. It is straightforward
to extend the proof for our variant schemes. Note that our scheme is
secure in the Random Oracle Model (ROM) [3]. That is, A is given ac-
cess to a random oracle RO(.) from which she can request the hash of
any message of her choice. In our proof, cryptographic functionH used
in our scheme is modeled as a random oracle via function RO(.).

Theorem 1. If Enc is IND-CPA secure, (F,G) are PRFs and H is a RO
then our DSSE scheme is (L1,L2)-secure in ROM according to Definition
6 (CKA-2 security with update operations).

Proof. We construct a simulatorS that interacts with an adversaryA in
an execution of an IdealA,S(κ) experiment as described in Definition 6.

In this experiment, S maintains lists LR, LK and LH to keep track
the query results, states and history information, initially all lists empty.
LR is a list of key-value pairs and is used to keep track RO(.) queries.
We denote value ← LR(key) and ⊥ ← LR(key) if key does not exist
in LR. LK is used to keep track random values generated during the
simulation and it follows the same notation that of LR. LH is used to
keep track search and update queries, S ’s replies to those queries and
their leakage output from (L1,L2).

5 This step is only meant to keep data structure consistency during a search operation.

Searchable Encryption with Minimal Leakage on Commodity Hardware 13

S executes the simulation as follows:

I. Handle RO(.) Queries: b ← RO (x) takes an input x and returns a

bit b as output. Given x, if ⊥ = LR(x) set b $← {0, 1}, insert (x, b) into
LR and return b as the output. Else, return b← LR(x) as the output.

II. Simulate (γ, c): Given (m,n, 〈id1, . . . , idn′〉, 〈|cid1 |, . . . , |cidn′ |〉) ←
L1(δ, f), S simulates (γ, c) as follows:

1. sfj
$← {0, 1}κ, yj ← Tf (sfj), insert (idj , sfj , yj) into LH and encrypt

cyj ← E .Enck({0}
|cidj |), where k $← {0, 1}κ for j = 1, . . . , n′.

2. For j = 1, . . . , n and i = 1, . . . ,m
(a) Tw[i].st← 1 and Tf [j].st← 1.

(b) zi,j
$← {0, 1}2κ, I[i, j]← RO (zi,j) and I[i, j].st← 0.

3. Output (γ, c), where γ ← (I, Tf) and c← {〈c1, y1〉, . . . , 〈cn′ , yn′〉}.

Correctness and Indistinguishability of the Simulation: c has the cor-
rect size and distribution, since L1 leaks 〈|cid1 |, . . . , |cidn′ |〉 and Enc is a
IND-CPA secure scheme, respectively. I and Tf have the correct size
since L1 leaks (m,n). Each I[i, j] for j = 1, . . . , n and i = 1, . . . ,m has
random uniform distribution as required, since RO(.) is invoked with
a separate random number zi,j . Tf has the correct distribution, since
each sfj has random uniform distribution, for j = 1, . . . , n′. Hence,
A does not abort due to A ’s simulation of (γ, c). The probability that
A queries RO(.) on any zi,j before S provides I to A is negligible (i.e.,
1

22κ
). Hence, S also does not abort.

III. Simulate τw: Simulator S receives a search query w on time t.
S is given (P(δ,Query, t), ∆(δ, f, wi, t)) ← L2(δ, f, w, t). S adds these to
LH. S then simulates τw and updates lists (LR,LK) as follows:

1. If w in list LH then fetch corresponding swi . Else, swi
$← {0, 1}κ,

i← Tw(swi), sti ← Tw[i].st and insert (w,L1(δ, f), swi) into LH.
2. If⊥ = LK(i, sti) then ri ← {0, 1}κ and insert (ri, i, sti) into LK. Else,
ri ← LK(i, sti).

3. If sti > 1 then ri ← LK(i||sti − 1), τw ← (i, ri, ri). Else, τw ← (i, ri).
4. Tw[i].st← sti + 1.
5. GivenL2(δ, f, w, t),S knows identifiers idw = (y1, . . . , yl). Set I ′[i, yj]←

1, j = 1, . . . , l, and rest of the elements as {I ′[i, j]← 0}j=1,j /∈{y1,...,yl}.
6. If ((τw = (i, ri)∨I[i, j].st) = 1) then V [i, j]← I[i, j]′⊕I[i, j] and insert

tuple (ri||j||stj , V [i, j]) intoLR for j = 1, . . . , n, where stj ← Tf [j].st.
7. I[i, ∗].st← 0.

14 Attila A. Yavuz and Jorge Guajardo

8. I[i, j]← I ′[i, j]⊕RO (ri||j||stj), where stj ← Tf [j].st for j = 1, . . . , n.
9. Output τw and insert (w, τw) into LH.

Correctness and Indistinguishability of the Simulation: Given any
∆(δ, f, wi, t), S simulates the output of RO(.) such that τw always pro-
duces the correct search result for idw ← Search(τw, γ). S needs to
simulate the output of RO(.) for two conditions (as in III-Step 6): (i)
The first search of wi (i.e., τw = (i, ri)), since S did not know δ during
the simulation of (γ, c). (ii) If any file fidj containing wi has been up-
dated after the last search on wi (i.e., I[i, j].st = 1), since S does not
know the content of update. S sets the output of RO(.) for those cases
by inserting tuple (ri||j||stj , V [i, j]) into LR (as in III-Step 6). In other
cases, S just invokes RO(.) with (ri||j||stj), which consistently returns
previously inserted bit from LR (as in III-Step 8).

During the first search onwi, eachRO(.)outputV [i, j] = RO (ri||j|stj)
has the correct distribution, since I[i, ∗] of γ has random uniform distri-
bution (see II-Correctness and Indistinguishability argument). Let J =
(j1, . . . , jl) be the indexes of files containingwi, which are updated after
the last search on wi. If wi is searched then each RO(.) output V [i, j] =
RO (ri||j|stj) has the correct distribution, since τf ← (I ′, j) for indexes
j ∈ J has random uniform distribution (see IV-Correctness and Indis-
tinguishability argument). Given that S ’s τw always produces correct
idw for given ∆(δ, f, wi, t), and relevant values and RO(.) outputs have
the correct distribution as shown,A does not abort during the simula-
tion due to S ’s search token. The probability that A queries RO(.) on
any (ri||j|stj) before him queries S on τw is negligible (i.e., 1

2κ), and
therefore S does not abort due toA ’s search query.

IV. Simulate (τf ,τ ′f):S receives an update requestQuery = (〈Add, |cidj |〉,
Delete) at time t. S simulates update tokens (τf , τ ′f) as follows:

1. If idj in LH then fetch its corresponding (sfj , j) from LH, else set

sfj
$← {0, 1}κ, j ← Tf (sfj) and insert (sfj , j, fidj) into LH.

2. Tf [j].st← Tf [j].st+ 1, stj ← Tf [j].st.
3. If ⊥ = LK(i, sti) then ri ← {0, 1}κ and insert (ri, i, sti) into LK,

where sti ← Tw[i].st for i = 1, . . . ,m.

4. I ′[i]← RO (zi), where zi
$← {0, 1}2κ for i = 1, . . . ,m.

5. I[∗, j]← (I ′)T and I[∗, j].st← 1.
6. If Query = 〈Add, |cidj |〉, simulate cj ← E .Enck({0}|cid|), add cj into c,

set τf ← (I ′, j) output (τf , j). Else set τ ′f ← (I ′, j), remove cj from
c and output τ ′f .

Searchable Encryption with Minimal Leakage on Commodity Hardware 15

Correctness and Indistinguishability of the Simulation: Given any
access pattern (τf , τ

′
f) for a file fidj ,A checks the correctness of update

by searching all keywords W = (wi1 , . . . , wil) included fidj . Since S is
given access pattern∆(δ, f, wi, t) for a search query (which captures the
last update before the search), the search operation always produces a
correct result after an update (see III-Correctness and Indistinguisha-
bility argument). Hence, S ’s update tokens are correct and consistent.

It remains to show that (τf , τ ′f) have the correct probability distri-
bution. In real algorithm, stj of file fidj is increased for each update as
simulated in IV-Step 2. If fidj is updated after wi is searched, a new ri
is generated for wi as simulated in IV-Step 3 (ri remains the same for
consecutive updates but stj is increased). Hence, the real algorithm in-
vokesH(.) with a different input (ri||j||stj) for i = 1, . . . ,m. S simulates
this step by invoking RO(.) with zi and I ′[i] ← RO (zi), for i = 1, . . . ,m.
(τf , τ

′
f) have random uniform distribution, since I ′ has random uni-

form distribution and update operations are correct and consistent as
shown. cj has the correct distribution, since Enc is an IND-CPA cipher.
Hence, A does not abort during the simulation due to S ’s update to-
kens. The probability thatA queries RO(.) on any zi before him queries
S on (τf , τ

′
f) is negligible (i.e., 1

22·κ), and therefore S also does not abort
due toA ’s update query.

V. Final Indistinguishability Argument: (swi , sfj , ri) for i = 1, . . . ,m
and j = 1, . . . , n are indistinguishable from real tokens and keys, since
they are generated by PRFs that are indistinguishable from random
functions. Enc is a IND-CPA scheme, the answers returned by S to
A for RO(.) queries are consistent and appropriately distributed, and
all query replies of S toA during the simulation are correct and indis-
tinguishable as discussed in I-IV Correctness and Indistinguishability
arguments. Hence, for all PPT adversaries, the outputs of RealA(κ) and
that of an IdealA,S(κ) experiment are negligibly close:

|Pr[RealA(κ) = 1]− Pr[IdealA,S(κ) = 1]| ≤ neg(κ)

�

Remark 2. Extending the proof to Variant-I presented in Section 6 is
straightforward6. In particular, (i) interaction is required because even
if we need to update a single entry (column) corresponding to a sin-
gle file, the client needs to re-encrypt the whole b-bit block in which

6 This variant encrypts/decrypts b-bit blocks instead of single bits and it requires interaction for
add/delete/update operations.

16 Attila A. Yavuz and Jorge Guajardo

the column resides to keep consistency. This, however, is achieved by
retrieving the encrypted b-bit block from the server, decrypting on the
client side and re-encrypting using AES-CTR mode. Given that we use
ROs and a IND-CPA encryption scheme (AES in CTR mode) the secu-
rity of the DSSE scheme is not affected in our model, and, in partic-
ular, there is no additional leakage. (ii) The price that is paid for this
performance improvement is that we need interaction in the new vari-
ant. Since the messages (the columns/rows of our matrix) exchanged
between client and server are encrypted with an IND-CPA encryption
scheme there is no additional leakage either due to this operation.

Discussions on Privacy Levels. The leakage definition and formal secu-
rity model described in Section 3 imply various levels of privacy for dif-
ferent DSSE schemes. We summarize some important privacy notions
(based on the various leakage characteristics discussed in [4,12,16,19])
with different levels of privacy as follows:
• Size pattern: The number of file-keyword pairs in the system.
• Forward privacy: A search on a keyword w does not leak the iden-

tifiers of files matching this keyword for (pre-defined) future files.
•Backward privacy: A search on a keywordw does not leak the iden-

tifiers of files matching this keywords that were previously added but
then deleted (leaked via additional info kept for deletion operations).
• Update privacy: Update operation may leak different levels of in-

formation depending on the construction:

– Level-1 (L1) leaks only the time t of the update operation and an
index number. L1 does not leak the type of update due to the type
operations performed on encrypted index γ. Hence, it is possible to
hide the type of update via batch/fake file addition/deletion7. How-
ever, if the update is addition and added file is sent to the server
along with the update information on γ, then the type of update
and the size of added file are leaked.

– Level-2 (L2) leaks L1 plus the identifier of the file being updated and
the number of keywords in the updated file (e.g., as in [19]).

– Level-3 (L3) leaks L2 plus when/if that identifier has had the same
keywords added or deleted before, and also when/if the same key-
word have been searched before (e.g., as in [4]8).

7 In our scheme, the client may delete file fidj from γ but still may send a fake file f ′idj to the

server as a fake file addition operation.
8 Remark that despite the scheme in [4] leaks more information than that of ours and [19] as

discussed, it does not leak the (pseudonymous) index of file to be updated.

Searchable Encryption with Minimal Leakage on Commodity Hardware 17

– Level-4 (L4) leaks L3 plus the information whether the same key-
word added or deleted from two files (e.g., as in [12]).

– Level-5 (L5) leaks significant information such as the pattern of all
intersections of everything is added or deleted, whether or not the
keywords were search-ed for (e.g., as in [13]).

Note that our scheme achieves the highest level of L1 update pri-
vacy, forward-privacy, backward-privacy and size pattern privacy. Hence,
it achieves the highest level of privacy among its counterparts.

6 Evaluation and Discussion

We have implemented our scheme in a stand-alone environment us-
ing C/C++. By stand-alone, we mean we run on a single machine, as
we are only interested in the performance of the operations and not
the effects of latency, which will be present (but are largely indepen-
dent of the implementation9.) For cryptographic primitives, we chose
to use the libtomcrypt cryptographic toolkit version 1.17 [9] and as an
API. We modified the low level routines to be able to call and take ad-
vantage of AES hardware acceleration instructions natively present in
our hardware platform, using the corresponding freely available Intel
reference implementations [11]. We performed all our experiments on
an Intel dual core i5-3320M 64-bit CPU at 2.6 GHz running Ubuntu
3.11.0-14 generic build with 4GB of RAM. We use 128-bit CCM and AES-
128 CMAC for file and data structure encryption, respectively. Key gen-
eration was implemented using the expand-then-extract key genera-
tion paradigm analyzed in [14]. However, instead of using a standard
hash function, we used AES-128 CMAC for performance reasons. No-
tice that this key derivation function has been formally analyzed and
is standardized. Our use of CMAC as the PRF for the key derivation
function is also standardized [7]. Our random oracles were all imple-
mented via 128-bit AES CMAC. For hash tables, we use Google’s C++
sparse hash map implementation [2] but instead of using the standard
hash function implementation, we called our CMAC-based random or-
acles truncated to 80 bits. Our implementation results are summarized
in Table 2.
Experiments. We performed our experiments on the Enron dataset [1]
as in [13]. Table 2 summarizes results for three types of experiments:

9 As it can be seen from Table 1, our scheme is optimal in terms of the number of rounds re-
quired to perform any operation. Thus, latency will not affect the performance of the imple-
mentation anymore than any other competing scheme. This replicates the methodology of
Kamara et al. [13].

18 Attila A. Yavuz and Jorge Guajardo

Table 2: Execution times of our DSSE scheme. w.: # of words, f.: # of files

Operation Time (msec)
w. f. w. f. w. f.

2 · 105 5 · 104 2000 2 · 106 1 · 106 5000

Building searchable representation (offline, one-time cost at initialization)

Keyword-file mapping, extraction 6.03 sec 52 min. 352 msec
Encrypt searchable representation 493 msec 461 msec 823 msec

Search and Update Operations (online, after initialization)

Search for single key word 0.3 msec 10 msec 0.02 msec

Add file to database 472 msec 8.83 msec 2.77 sec

Delete file from database 329 msec 8.77 msec 2.36 sec

(i) Large number of files and large number of keywords, (ii) large num-
ber of files but comparatively small number of keywords and (iii) large
number of keywords but small number of files. In all cases, the com-
bined number of keyword/file pairs is between 109 and 1010, which sur-
pass the experiments in [13] by about two orders of magnitude and are
comparable to the experiments in [19]. One key observation is that in
contrast to [19] (and especially to [4] with very high-end servers), we
do not use server-level hardware but a rather standard commodity In-
tel platform with limited RAM memory. From our results, it is clear that
for large databases the process of generating the encrypted represen-
tation is relatively expensive, however, this is a one-time only cost. The
cost per keyword search depends linearly asO(n)/128on the number of
files in the database and it is not cost-prohibiting (even for the large test
case of 1010 keyword/file pairs, searching takes only a few msec). We
observe that despite this linear cost, our search operation is extremely
fast comparable to the work in [13]. The costs for adding and deleting
files (updates) is similarly due to the obliviousness of these operations
in our case. Except for the cost of creating the index data structure, all
performance data extrapolates to any other type of data, as our data
structure is not data dependant and it is conceptually very simple.
Comparison with Existing Alternatives. Compared to Kamara et al.
in [13], which achieves optimal O(r) search time but leaks significant
information for updates, our scheme has linear search time (for # of
files) but achieves completely oblivious updates. Moreover, the [13] can
not be parallelized, whereas our scheme can. Kamara et al. [12] relies on
red-black trees as the main data structure, achieves parallel search and
oblivious updates. However, it incurs impractical server storage over-

Searchable Encryption with Minimal Leakage on Commodity Hardware 19

head due to its very large encrypted index size. The scheme of Stefanov
et al. [19] requires high client storage (e.g., 210 MB for moderate size
file-keyword pairs), where the client fetches non-negligible amount of
data from the server and performs an oblivious sort on it. We only re-
quire one hash table and four symmetric secret keys storage. The scheme
in [19] also requires significant amount of data storage (e.g., 1600 bits)
for per keyword-file pair at the server side versus 2 bits per file-keyword
pair in our scheme (and a hash table10). The scheme in [4] leaks more
information compared to [19] also incurring in non-negligible server
storage. The data structure in [4] grows linearly with the number of
deletion operations, which requires re-encrypting the data structure
eventually. Our scheme does not require re-encryption (but we assume
an upper bound on the maximum number of files), and our storage is
constant regardless of the number of updates. The scheme in [16] re-
lies on a primitive called “Blind-Storage”, where the server acts only as
a storage entity. This scheme requires higher interaction than its coun-
terparts, which may introduce response delays for distributed client-
server architectures. This scheme leaks less information than that of [4],
but only support single keyword queries. It can add/remove a file but
cannot update the content of a file in contrast to our scheme.

We now present an efficient variant of our scheme:
Variant-I: Trade-off between computation and interaction overhead.
In the main scheme, H is invoked for each column of I once, which
requires O(n) invocations in total. We propose a variant scheme that
offers significant computational improvement at the cost of a plausible
communication overhead.

We use counter (CTR) mode with a block size b for E . We interpret
columns of I as d =

⌈
n
b

⌉
blocks with size of b bits each, and encrypt

each blockBl, l = 0, . . . , d−1, separately with E by using a unique block
counter stl. Each block counter stl is located at its corresponding index
al (block offset ofBl) in Tf , where al ← (l ·b)+1. The uniqueness of each
block counter is achieved with a global counter gc, which is initialized
to 1 and incremented by 1 for each update. A state bit Tf [al].b is stored
to keep track the update status of its corresponding block. The update
status is maintained only for each block but not for each bit of I[i, j].
Hence, I is a binary matrix (unlike the main scheme, in which I[i, j] ∈

10 The size of the hash table depends on its occupancy factor, the number of entries and the
size of each entry. Assuming 80-bits per entry and a 50% occupancy factor, our scheme still
requires about 2 × 80 + 2 = 162 bits per entry, which is about a factor 10 better than [19].
Observe that for fixed m-words, we need a hash table with approximately 2m entries, even if
each entry was represented by 80-bits.

20 Attila A. Yavuz and Jorge Guajardo

{0, 1}2). AddToken and Add algorithms for the aforementioned variant
are as follows (DeleteToken and Delete follow the similar principles):

(τf , c)← AddToken(K, fidj): The client generates τf for fidj as follows:

1. sfj ← Fk2 (fidj), j ← Tf (sfj), l ←
⌊
j
b

⌋
, al ← (l · b) + 1 and

stl ← Tf [al].st. Extract (w1, . . . , wt) from fidj and compute swi ←
Fk2 (wi) and xi ← Tw(swi) for i = 1, . . . , t. For i = 1, . . . ,m:
(a) ri ← Gk3 (i||sti), where sti ← Tw[i].st

11.
(b) The client requests l’th block, which contains index j of fid

from the server. The server then returns the corresponding
block (I[i, al], . . . , I[i, al+1 − 1]), where al+1 ← b(l + 1) + 1.

(c) (I[i, al], . . . , I[i, al+1−1])← E .Decri(I[i, al], . . . , I[i, al+1−1], stl).
2. Set I[xi, j]← 1 for i = 1, . . . , t and {I[i, j]← 0}mi=1,i/∈{x1,...,xt}.
3. gc← gc+ 1, Tf [al].st← gc, stl ← Tf [al].st and Tf [al].b← 1.
4. (I ′[i, al], . . . , I

′[i, al+1−1])← E .Encri(I[i, al], . . . , I[i, al+1−1], stl)
for i = 1, . . . ,m. Finally, c← E .Enck1(fidj).

5. Output τf ← (I ′, j). The client sends (τf , c) to the server.

(γ′, c′)← Add(γ, c, c, τf): The server performs file addition as follows:
1. Replace (I[∗, al], . . . , I[∗, al+1 − 1]) with I ′.
2. gc← gc+ 1, Tf [al].st← gc and Tf [al].b← 1.
3. Output (γ′, c′), where γ′ ← (I, Tf) and c′ is (c, j) added to c.

Gen and Dec algorithms of the variant scheme are identical to that
of main scheme. The modifications of SrchToken and Search algorithms
are straightforward (in the line of AddToken and Add) and therefore will
not be repeated. In this variant, the search operation requires the de-
cryption of b-bit blocks for l = 0, . . . , d − 1. Hence, E is invoked only
O(n/b) times during the search operation (in contrast to O(n) invoca-
tion of H as in our main scheme). That is, the search operation be-
comes b times faster compared to our main scheme. The block size b
can be selected according to the application requirements (e.g., b = 64,
b = 128 or b = 256 based on the preferred encryption function). For in-
stance, b = 128 yields highly efficient schemes if the underlying cipher
is AES by taking advantage of AES specialized instructions in current
PC platforms. Moreover, CTR mode can be parallelizable and therefore
the search time can be reduced toO(n/(b ·p)), where p is the number of
processors in the system. This variant requires transmitting 2 · b ·O(m)

11 In this variant, G should generate a cryptographic key suitable for the underlying encryption
function E (e.g., the output of KDF is b = 128 for AES with CTR mode).

Searchable Encryption with Minimal Leakage on Commodity Hardware 21

bits for each update compared toO(m) non-interactive transmission in
our main scheme. However, one may notice that this approach offers a
trade-off, which is useful for some practical applications. That is, the
search speed is increased by a factor of b (e.g., b = 128) with the cost of
transmitting just 2 · b ·m bits (e.g., less than 2MB for b = 128,m = 105).
However, a network delay t is introduced due to interaction.

Remark 3. The b-bit block is re-encrypted via an IND-CPA encryption
scheme on the client side at the cost of one round of interaction. Hence,
encrypting multiple columns does not leak additional information dur-
ing updates over our main scheme.

We discuss other variants of our main scheme in the full version of
this paper in [20].

References

1. The enron email dataaset. http://www.cs.cmu.edu/˜enron/.
2. sparsehash: An extemely memory efficient hash map implementation. Available

at https://code.google.com/p/sparsehash/, February 2012.
3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing

efficient protocols. In Proceedings of the 1st ACM conference on Computer and
Communications Security (CCS ’93), pages 62–73, NY, USA, 1993. ACM.

4. David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawcyk,
Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in
very-large databases: Data structures and implementation. In 21th Annual Net-
work and Distributed System Security Symposium — NDSS 2014. The Internet So-
ciety, February 23-26, 2014.

5. David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. Highly-scalable searchable symmetric encryption with
support for boolean queries. In Advances in Cryptology, CRYPTO 2013, volume
8042 of Lecture Notes in Computer Science, pages 353–373. Springer Berlin Heidel-
berg, 2013.

6. Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword
searches on remote encrypted data. In Proceedings of the Third International Con-
ference on Applied Cryptography and Network Security (ACNS), volume 3531 of Lec-
ture Notes in Computer Science, pages 442–455, Berlin, Heidelberg, 2005. Springer-
Verlag.

7. Lily Chen. Nist special publication 800-108: Recomendation for key derivation
using pseudorandom functions (revised). Technical Report NIST-SP800-108, Na-
tional Institute of Standards and Technology. Computer Security Division, Octo-
ber 2009. Available at http://csrc.nist.gov/publications/nistpubs/
800-108/sp800-108.pdf.

8. Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable sym-
metric encryption: improved definitions and efficient constructions. In Proceed-
ings of the 13th ACM conference on Computer and communications security, CCS
’06, pages 79–88, New York, NY, USA, 2006. ACM.

http://www.cs.cmu.edu/~enron/
https://code.google.com/p/sparsehash/
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

22 Attila A. Yavuz and Jorge Guajardo

9. Tom St Denis. LibTomCrypt library. Available at http://libtom.org/?page=
features&newsitems=5&whatfile=crypt, Released May 12th, 2007.

10. Ben Fisch, Binh Vo, Fernando Krell, Abishek Kumarasubramanian, Vladimir
Kolesnikov, Tal Malkin, and Steven M. Bellovin. Malicious-client security in blind
seer: A scalable private DBMS. In 2015 IEEE Symposium on Security and Privacy,
SP 2015. IEEE Computer Society, May 18-20, 2015.

11. Shay Gueron. White Paper: Intel Advanced Encryption Standard (AES) New In-
structions Set. Available at https://software.intel.com/sites/default/
files/article/165683/aes-wp-2012-09-22-v01.pdf. Software Li-
brary available at https://software.intel.com/sites/default/files/
article/181731/intel-aesni-sample-library-v1.2.zip, Document
Revision 3.01, September 2012.

12. Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable
symmetric encryption. In Financial Cryptography and Data Security (FC), volume
7859 of Lecture Notes in Computer Science, pages 258–274. Springer Berlin Heidel-
berg, 2013.

13. Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable
symmetric encryption. In Proceedings of the 2012 ACM conference on Computer
and communications security, CCS ’12, pages 965–976, New York, NY, USA, 2012.
ACM.

14. Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
In Advances in Cryptology - CRYPTO 2010, volume 6223 of LNCS, pages 631–648.
Springer, August 15-19 2010.

15. Kaoru Kurosawa and Yasuhiro Ohtaki. UC-secure searchable symmetric encryp-
tion. In Financial Cryptography and Data Security (FC), volume 7397 of Lecture
Notes in Computer Science, pages 285–298. Springer Berlin Heidelberg, 2012.

16. Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. Dynamic search-
able encryption via blind storage. In 35th IEEE Symposium on Security and Pri-
vacy, pages 48–62, May 2014.

17. Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-
ung Geol Choi, Wesley George, Angelos D. Keromytis, and Steve Bellovin. Blind
seer: A scalable private DBMS. In 2014 IEEE Symposium on Security and Privacy,
SP 2014, pages 359–374. IEEE Computer Society, May 18-21, 2014.

18. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In Proceedings of the 2000 IEEE Symposium on Secu-
rity and Privacy, SP ’00, pages 44–55, Washington, DC, USA, 2000. IEEE Computer
Society.

19. Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic
searchable encryption with small leakage. In 21st Annual Network and Distributed
System Security Symposium — NDSS 2014. The Internet Society, February 23-26,
2014.

20. Attila Altay Yavuz and Jorge Guajardo. Dynamic searchable symmetric encryption
with minimal leakage and efficient updates on commodity hardware. IACR Cryp-
tology ePrint Archive, 2015:107, March 2015.

http://libtom.org/?page=features&newsitems=5&whatfile=crypt
http://libtom.org/?page=features&newsitems=5&whatfile=crypt
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/181731/intel-aesni-sample-library-v1.2.zip
https://software.intel.com/sites/default/files/article/181731/intel-aesni-sample-library-v1.2.zip

	Dynamic Searchable Symmetric Encryption with Minimal Leakage and Efficient Updates on Commodity Hardware

