
Practical and Secure Dynamic Searchable Encryption via
Oblivious Access on Distributed Data Structure

Thang Hoang
EECS, Oregon State University

Corvallis, OR, 97331
hoangmin@eecs.oregonstate.edu

Attila Altay Yavuz
EECS, Oregon State University

Corvallis, OR, 97331
attila.yavuz@oregonstate.edu

Jorge Guajardo
Robert Bosch LLC — RTC

Pittsburgh, PA, 15222
Jorge.GuajardoMerchan@us.bosch.com

ABSTRACT
Dynamic Searchable Symmetric Encryption (DSSE) allows
a client to perform keyword searches over encrypted files
via an encrypted data structure. Despite its merits, DSSE
leaks search and update patterns when the client accesses
the encrypted data structure. These leakages may create
severe privacy problems as already shown, for example, in
recent statistical attacks on DSSE. While Oblivious Random
Access Memory (ORAM) can hide such access patterns, it
incurs significant communication overhead and, therefore, it
is not yet fully practical for cloud computing systems. Hence,
there is a critical need to develop private access schemes over
the encrypted data structure that can seal the leakages of
DSSE while achieving practical search/update operations.

In this paper, we propose a new oblivious access scheme
over the encrypted data structure for searchable encryption
purposes, that we call Distributed Oblivious Data struc-
ture DSSE (DOD-DSSE). The main idea is to create a
distributed encrypted incidence matrix on two non-colluding
servers such that no arbitrary queries on these servers can
be linked to each other. This strategy prevents not only
recent statistical attacks on the encrypted data structure but
also other potential threats exploiting query linkability. Our
security analysis proves that DOD-DSSE ensures the unlink-
ability of queries and, therefore, offers much higher security
than traditional DSSE. At the same time, our performance
evaluation demonstrates that DOD-DSSE is two orders of
magnitude faster than ORAM-based techniques (e.g., Path
ORAM), since it only incurs a small-constant number of com-
munication overhead. That is, we deployed DOD-DSSE on
geographically distributed Amazon EC2 servers, and showed
that, a search/update operation on a very large dataset only
takes around one second with DOD-DSSE , while it takes 3
to 13 minutes with Path ORAM-based methods.

CCS Concepts
•Security and privacy → Privacy-preserving protocols;
Domain-specific security and privacy architectures;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC ’16, December 05-09, 2016, Los Angeles, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4771-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2991079.2991088

Keywords
Privacy enhancing technology; privacy in cloud computing;
searchable encryption; ORAM; oblivious data structure

1. INTRODUCTION
Storage-as-a-Service (SaaS) is one of the most common

cloud services which allows the clients to store data online
so that they can access them from anywhere and reduce
data management costs. Despite its merits, SaaS also brings
serious privacy issues to users. Once data are outsourced,
their privacy can be compromised by the cloud or external
attackers (e.g., malware-infected cloud). While standard
encryption can protect the content of outsourced data, it
prevents the data owner from searching and retrieving infor-
mation from the cloud and, therefore, invalidates the usability
of cloud services. To address the dilemma of user privacy
versus data utilization on the cloud, Dynamic Searchable
Symmetric Encryption (DSSE) has been proposed, that en-
ables the client to perform search or update operations on
encrypted data [4, 13]. In current DSSE approaches, the
client constructs an encrypted data structure (denoted as
I) which associates each search/update query with its corre-

matching files IDs: idi

matching files IDs: idj

(ci1 , . . . , ciq)

(ck)

...

...

Client Server

...

...

(wi, idi)

(wj , idj)

(fk0)

(fk)

...

...

search/update queries

search keyword wi

search keyword wj

update file fk

update file fk0

f1 f2 . . . fn�1 fn

1 0 . . . 1 0 w1

0 0 . . . 1 0 w2

...
...

. . .
...

...
...

1 1 . . . 1 1 wm�1

0 0 . . . 0 0 wm

dictionary; tree; multi-linked list

Collection of encrypted files

(c1, c2, . . . , cn�1, cn)

D
at

a
st

ru
ct

u
re

-a
cc

es
s

p
at

te
rn

Traditional ORAM can be used to hide file-access pattern.

(ci1 , . . . , ciq) for idi

...

...

(ck) for update fk

p
at

te
rn

fi
le

-a
cc

es
s

This paper focuses on oblivious access on encrypted data structure I:
(i) Access to I exposes keyword/file relations, leads to statistical attacks.

(ii) ORAM is extremely costly on I.

DSSE encrypted data structure I

Several instantiations of I:

Therefore, it is not our focus in this paper.

Figure 1: File-access pattern and data structure-access pat-
tern in traditional DSSE.

http://dx.doi.org/10.1145/2991079.2991088

Table 1: Security and performance of DOD-DSSE , traditional DSSE and ODS with specific DSSE data structure types¶.

Scheme

Security Performance Setting
Data structure-access pattern

Update
leakage

Query
result size

Statistical
attacks

End-to-end crypto

delay†
Server1-time repetition of

an unlinkable query
Full query

linkability§

Traditional DSSE

[13],[17],[4],[26] 7 7 7 7 7 < 0.2 s 1
ODICT 3 3 7∗ 7∗ 3 192.2 s∗ 1
OMAT 3 3 3 3 3 767.5 s 1

DOD-DSSE 7‡ 3 3 3 3 1.1 s 2
¶We simulated the cost of ODS [25] with Path ORAM protocol [24] on dictionary (ODICT) and incidence matrix (OMAT) data structures.
† The delays of schemes were measured in our experiment with an average network latency of 31 ms and throughput of 30 Mbps.
‡ This leakage does not lead to any statistical attacks.
∗Due to the sublinear operation time of dictionary data structure, ODS cannot fully hide the length of search/update result without fully
padding which is very costly. To evaluate the performance of ODICT over the real network, we only simulated ODICT with average padding.
§ Full query linkability allows the adversary to perform, for example, frequency analysis [15], resulting in statistical attacks.

sponding files encrypted by standard encryption (e.g., [13,
12, 10, 4, 26]). The client then can outsource encrypted files
along with I and perform keyword searches or file updates
without revealing the keyword/file content.

1.1 Problem Statement
Several DSSE schemes have been proposed (e.g., [13, 12,

10, 4, 21, 26]), which offer a wide spectrum of performance
and privacy trade-offs (e.g., fast search/update, information
leakage). It is well-known that all DSSE schemes have one
common but critical drawback: They leak information during
search and update operations due to accesses to the collection
of encrypted files and to the encrypted data structure I [12,
21, 26] (Figure 1). Specifically,

• Accessing encrypted files leaks file-access pattern.

• Accessing the encrypted data structure I leaks data
structure-access pattern including:

(i) search pattern which reveals if a search query has
been repeated,

(ii) update pattern which reveals various statistical
relationships among keywords and files.

These leakages may violate the privacy requirements of
privacy-sensitive applications (e.g., healthcare, military) [2,
15] by exposing highly sensitive information [11, 15, 3, 27].
It is mandatory to hide both file-access and data structure-
access patterns to achieve a secure DSSE as shown in [16].
One might consider using access pattern hiding techniques
such as Oblivious Random Access Memory (ORAM) [18] to
conduct oblivious access on both encrypted data structure
I and encrypted files [16]. Unfortunately, despite recent
progress (e.g., [23, 19, 24, 25]), applying ORAM on both
I and encrypted files [16] is highly expensive in terms of
storage and communication overhead [21, 4, 16, 1].

To reduce such costs, it is recommended to separate en-
crypted files and the encrypted data structure I, and then
apply different access pattern hiding techniques to each [16].
For instance, Naveed et al. in [16] utilized Path ORAM and
Oblivious Data Structure (ODS) [25] to access encrypted
files and encrypted data structure, respectively, to reduce the
overall cost. Due to the size variation between encrypted files,
Path ORAM can be considered as the optimal solution for
file-access pattern hiding. However, ODS, an instantiation of

position-based ORAM such as Path ORAM designed for data
structure, seems not to be ideal for large data structures as
found in DSSE. It reduces the client storage but significantly
increases the communication overhead and delay (Table 1)
and, therefore, it is impractical for real-life applications.

Lack of practical oblivious access for encrypted data struc-
ture in the DSSE domain leads us to the following research
problem:

“Can we propose a protocol to obliviously access the
encrypted data structure I in DSSE which is much
more efficient than ORAM, and yet seals leakages
of traditional DSSE with only a minimal leakage?”

Sealing information leakages from data structure-access
pattern while preserving high performance is necessary to
make DSSE a feasible solution for cloud systems.

1.2 Our contributions
In this paper, we propose a new oblivious access scheme

over the encrypted data structure in DSSE that we call
Distributed Oblivious Data structure (DOD-DSSE). Our
intuition is to leverage two non-colluding servers and exploit
the properties of an incidence matrix to seal information leak-
ages in DSSE, while incurring only a small-constant overhead.
DOD-DSSE achieves the following desirable properties:

• Significantly higher security than traditional DSSE:
DOD-DSSE seals leakages from search and update opera-
tions on the encrypted data structure and, therefore, it offers
much higher security than traditional DSSE schemes. Specif-
ically, DOD-DSSE breaks the linkability between access
operations on the encrypted data structure I, hides search (i)
and update (ii) patterns as shown in Section 1.1. This allows
DOD-DSSE to prevent a server from learning whether or not
the same query is continuously repeated as well as the rela-
tionship between keywords and files. Therefore, DOD-DSSE
is secure against statistical attacks to which all traditional
DSSE schemes are vulnerable due to leakages from data
structure-access patterns. Table 1 summaries the security of
DOD-DSSE , compared with traditional DSSEs.

• Significantly higher efficiency than ORAM-based methods:
DOD-DSSE offers much lower bandwidth overhead and de-
lay than applying ORAM-based techniques (e.g., ODS [25])
to the encrypted data structure I. Our experimental results

�

repeat for each search/update operation∗ opi, i = 1, . . . , q

data fetched from S0, S1

data uploaded to S0, S1

download

upload

decrypt

assign new address

...

...

...

.

...

...

...

Server S0

Client

Server S1I want to search wi

located at u8 ∈ S0

re-encrypt

swap

(1) (1)

(2)

(3)

(4)

(5)

...

...

...

...

...

...

...

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

0

0 0

0

00

1

1 1

11

1

1

1

1

u1

u10

u20

uNuN

u35

u8

u1 . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...

...

...

...

...

...

...

...

...

...

...

...

0 0

00

0

0 0

0

1

1

1

11

1 1

1

keyword/file generates different queries to each server. Multiple repetitions of the same*This strategy provides the unlinkability between queries as the same

operation cannot be observed if S0 and S1 are non-colluding. Hence, it prevents leakage from search & update patterns and invalidates statistical attacks.

uk: row index

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

Encrypted data structure I(1)Encrypted data structure I(0)

I′
u8

, I′
v5

Îu8 , Îv5

fetch row Iu8 , column Iv5

request row u8, column v5 request row u10, column v40

fetch row Iu10 , column Iv40

I′
u10

, I′
v40

Îu10 , Îv40

Îu35 , Îv23Îu20 , Îv12

write to row u20, column v12write to row u35, column v23

v1 v12 v40 vN

Iu 0

Îv12
Iv40

Iu8

Îu35

Îv23
Iv5

v1 v5 v23 vN

vj : column index I′
vj

: decrypted data in column vj

I′
uk

: decrypted data in row uk

Îuk
: re-encrypted data in row uk

Îvj : re-encrypted data in column vj

Iuk
: encrypted data in row uk

Ivj : encrypted data in column vj

Îu 0

Figure 2: Illustration of a search/update operation on the DSSE encrypted data structure in DOD-DSSE scheme.

indicate that DOD-DSSE is much faster than using ODS
with Path ORAM protocol on dictionary1 and incidence ma-
trix2 data structures, respectively, in terms of end-to-end
delay (Table 1). DOD-DSSE only takes around one second
to perform an access operation on a very large data structure
(see Section 5 for a detailed comparison).

• Formal security analysis and full-fledged implementation:
We fully analyze the security and information leakages of
DOD-DSSE (Section 4.3). We provide a detailed implemen-
tation of DOD-DSSE on two virtual Amazon EC2 servers
and strictly evaluated the performance of DOD-DSSE on
real network settings (Section 5). We also released the im-
plementation of DOD-DSSE for public use3.

These properties make DOD-DSSE an ideal alternative
for privacy-critical cloud applications. We briefly describe
the main idea of DOD-DSSE as follows:

Main idea. Existing DSSE schemes rely on a deterministic
association between the (address) token of a query and its
corresponding encrypted result in the DSSE data structure.
In other words, each query x is represented by a determin-
istic address token-data tuple (ux, Iux) in the encrypted
data structure I. Despite permitting consistent and fast
search/update operations, these deterministic relations leak
data structure-access pattern as discussed in Section 1.1.

1Dictionary is a 〈key, value〉 structure such that given a keyword
key, its corresponding value is a list of file IDs in which key appears.
This data structure offers sublinear search time, but leaks information
due to its size depending on the file IDs associated with key.

2Incidence matrix is a data structure which represents the relation-
ship between keywords (indexing rows) and files (indexing columns)
via its cell value. For example, if matrix entry I[i, j] is set to 1, it
means the keyword indexing the ith row appears in the file indexing
the jth column. Similarly, the I[i, j] entry is set to 0 if the keyword
indexing the ith row does not appear in the file indexing column j.

3Available at https://github.com/thanghoang/DOD-DSSE/

The research challenge is to devise cryptographic methods
that can create a random uniform address token-data tuple
(ux, Iux) for each query x in an oblivious way with just a
small number of communication rounds and processing time.
DOD-DSSE achieves this by using a “fetch–reencrypt–swap”
strategy between two servers as follows:

First, the client creates two encrypted data structures,
each including address-data tuples (ux, Iux) of all possible
search and update queries, and then sends them to two non-
colluding servers (S0, S1), respectively. To perform a search
or update operation, the client sends a search query and
an update query to each server. One query is for the real
operation while the other three are randomly selected (fake)
queries (Figure 2, step (1)). Each server sends back to the
client the corresponding address-data tuples that have been
queried. After that, the client decrypts the received data
to obtain the result (step (2)), and then re-encrypts them
(step (3)). The client creates new address-data tuple for
each performed query by assigning re-encrypted data to a
random address (step (4)). Finally, the client swaps such
address-data tuples and writes them back to the other server
(step (5)). That means the new address-data tuple of the
query being read from server S0 will be written to server S1

and vice versa. This strategy makes each server observe a
randomized data structure-access pattern with only one-time
repetition of a unlinkable query that has been performed on
the other server, provided that the two servers do not collude.
Section 4 presents detailed constructions of DOD-DSSE .

Limitations. (i) We assume that the two servers storing the
encrypted data structures are non-colluding; (ii) DOD-DSSE
leaks to each server Sb (b = 0, 1) a one-time repetition of
a query that was previously performed on the other server.
This query cannot be linked to any other queries performed
on Sb and it never repeats on Sb again.

We note that the performance and security benefits of

https://github.com/thanghoang/DOD-DSSE/

DOD-DSSE well-justifies these limitations. Furthermore,
(i) two practical non-colluding servers can be found in real
world as competitive cloud providers such as Amazon, Mi-
crosoft and Google are very unlikely to collude against their
client. (ii) Indeed, we show that with minimal information
leakage (i.e., one-time repetition of an unknown and un-
linkable query on the other server), DOD-DSSE seals all
search/update patterns, prevents statistical attacks which
are main objectives of a secure DSSE. At the same time, it
achieves extremely efficient performance compared to using
ORAM-based techniques. Therefore, DOD-DSSE offers an
ideal security-performance trade-off for DSSE.

2. PRELIMINARIES
Notation. Given a bit b, ¬b means the complement of

b. || denotes a concatenation operation. x
$← S means

variable x is randomly and uniformly selected from set S.
S \ {x} denotes x ∈ S is removed from S, and |S| denotes
cardinality of set S. {xi}li=1 denotes (x1, . . . , xl). κ is a se-
curity parameter. E = (Enc,Dec,Gen) is an IND-CPA secure
symmetric encryption scheme [14], which is comprised of
three algorithms: key generation k ← E .Gen(1κ); encryption
with secret key k on message M as c← E .Enck(M); decryp-
tion as M ← E .Deck(c). We denote c ← E .Enck(M,a) and
M ← E .Deck(c, a) as IND-CPA encryption and decryption

with a counter a, respectively. H : {0, 1}∗ → {0, 1}|H| is an
ideal cryptographic hash function, where |H| is the length
of hash output. τ ← KDF(x) is a key derivation function
which takes as input an arbitrary string x ∈ {0, 1}∗ and
outputs a key τ . f and w denote a file and a keyword, respec-
tively. m and n denote the maximum number of files and
keywords in the dataset, respectively. f = (fid1 , . . . , fidm)
denotes the collection of files. If I is a matrix then Iu denotes
the row indexed by u (i.e., Iu = I[u, ∗]). We abuse this
notation to also indicate a whole column indexed by u (i.e.,
Iu = I[∗, u]). This abuse of notation simplifies somewhat the
presentation of our algorithms as well as our security analysis.
Iu[j] means accessing the jth element of Iu. read(u, data) (or
data← Read(u)) and write(u, data) are read and write oper-
ations on data at address u, respectively and u← pos(data)
returns the address u where data is located.

Security Definition. The security notion for DSSE is
Dynamic adaptive security against Chosen-Keyword Attacks
(CKA2) security [13, 12, 21, 26]), which captures information
leakage via leakage functions characterizing the information
leakage due to search and update operations (see [12, 21,
26] for the details). All existing DSSE schemes (e.g. [10,
5, 4, 21, 17, 26] with Dynamic CKA2 security leak data
structure-access pattern which can be defined [23] as follows:

Definition 1. Data structure-access pattern is a data

request sequence −→σb = {op(b)
i , u

(b)
i , data

(b)
i }

q
i=1 of length q over

the encrypted data structure I on server Sb during search

and update operations, where op
(b)
i ∈ {read(u

(b)
i , data

(b)
i),

write(u
(b)
i , data

(b)
i)}, u(b)

i is the address identifier on Sb to be

read or written and data
(b)
i is the data located at u

(b)
i to be

read or written on Sb.

Data structure-access pattern leaks search patterns and
update patterns which can be defined as follows:

• Search pattern indicates if the same keyword has been
previously searched. Given a query on w at time t, the
search pattern is a binary vector of length t with 1 at
location i if the search i ≤ t was for w, 0 otherwise.
• Update pattern indicates information being leaked dur-

ing an update operation with different levels, in that
level 1 (as defined in [26]) leaks least information which
is similar to search pattern. We refer readers to [26]
for a detailed description.

The ORAM security definition [23] on server Sb is as follows:

Definition 2. Let APb(
−→σb) denote an (possibly ran-

domized) access pattern to Sb given the sequence of data
requests −→σb as defined in Definition 1. The ORAM scheme
is secure if for any two −→σb and −→σb ′ of the same length, their
access patterns APb(

−→σb) and APb(
−→σb ′) are computationally

indistinguishable by anyone but the client.

3. OUR MODELS
System Model. Our system model comprises a client and
two servers S = (S0, S1), each storing an instance of an
encrypted data structure created from the same file collection.

Assumption 1. Servers communicate with the client
via private channels. (i) (S0, S1) are honest-but-curious,
meaning that they show interest in learning information but
follow the protocol faithfully; they do not inject malicious
inputs to the system. (ii) S0 and S1 do not collude.

Security Model. In DOD-DSSE , data request sequences
(−→σ0, −→σ1) of length q in Definition 1 are independently ob-
served by servers (S0, S1), respectively. We assume that
the encrypted data structure can store up to N distinct
data items, each corresponding with either a search or an
update query. Each item is represented by a unique address-
data tuple (u, data) in the data structure. The security of
DOD-DSSE scheme relies on the fact that any access opera-

tions op
(b)
i ∈

−→σb observed by server Sb, for all 1 ≤ i ≤ q are
guaranteed to be unlinkable. This achievement enables us to
protect the data structure-access pattern in each server as
defined in Definition 1. We define the unlinkability property
of access operations on the encrypted data structure in DSSE
as follows:

Definition 3. Let (u
(b)
i , data

(b)
i), (u

(b)
j , data

(b)
j) be address-

data tuples requested by access operations (op
(b)
i , op

(b)
j) ∈ −→σb

observed by server Sb, respectively. op
(b)
i is called unlinkable

to op
(b)
j if the probability that 〈(u(b)

i , data
(b)
i), (u

(b)
j , data

(b)
j)〉

represent the same item being accessed is 1
N

, where N is the
number of distinct items stored in Sb.

Note that this is the upper bound of linkability probability
that one can infer from two arbitrary tuples. The unlinkabil-
ity in Definition 3 implies the DOD-DSSE security definition,
which is comparable to that of ORAM as follows:

Definition 4. DOD-DSSE on the server Sb leaks no
information beyond ORAM (Definition 2) with the exception
of one-time repetition of an unknown and unlinkable query
on the other server S¬b, to which Sb does not have access.

We will give a detailed security analysis in Section 4.3 after
presenting the construction of DOD-DSSE in the following
section.

4. THE PROPOSED SCHEME
We first describe the encrypted data structure used in

DOD-DSSE , followed by several newly proposed algorithms.

4.1 DOD-DSSE Encrypted Data Structure
An encrypted data structure enables encrypted search and

update operations for a keyword w or a file fid. In this paper,
we adopt a keyword-file incidence matrix to be the DSSE data
structure I due to its security and performance advantages,
compared with other typical types such as multi-linked list
[13], dictionary [17], and tree [12]. For the sake of simplicity,
we assume that keywords are assigned to row indices while
file IDs are assigned to column indices. We assume our file
collection f consists of m′ ≤ N unique keywords and n′ ≤ N
file IDs, where N is the maximum number of unique keywords
and files that our I can support. We construct the encrypted
index I(0) for server S0 and I(1) for S1 as follows:

First, we assign each item x, where x is a keyword or file

ID, to a unique random address in I(b) as u
(b)
x

$← Lb for each
b ∈ {0, 1}, where Lb is the set of unassigned row or column

indices in I(b). For security reasons which will be analyzed
in Section 4.3, |L|= 2N . In other words, I is a square matrix
of size 2N × 2N to cover N keywords and files.

We represent the relationship between a keyword and a
file by a cell value in I(b). I(b)[i, j] = 1 means the keyword
w assigned to row i appears in the file assigned to column
j in server Sb and I(k)[i, j] = 0 otherwise. We can consider

the data I
(b)
ux of item x as a row or column data which is

a binary string of length 2N representing the relationship
between x and its object in server Sb. A search or update
query of x will correspond with retrieving a whole row or
column respectively.

Finally, we encrypt every cell in I(b) using bit-by-bit IND-
CPA encryption scheme with a counter and a key as I(b)[i, j]←
E .Enc

τ
(b)
i

(I(b)[i, j], c
(b)
j), where c

(b)
j is a counter derived from

column index j and a value a
(b)
j in server Sb and τ

(b)
i is a row

key derived from the row index i and a secret key generated

for server Sb. We store the information of a
(b)
j in global

counter arrays C(b) of length 2N which can be retrieved as

a
(b)
j ← C(b)[j], for each b ∈ {0, 1}. We describe detailed

constructions of I(0), I(1) in Algorithm 2. Figure 3 depicts
the structure and content of I(0) and I(1).

We create data structures Tw, Tf stored on the client-side
for keywords and files, respectively which are defined as:

T : (H(x), 〈u(0)
x , u(1)

x , bx〉).

(Tw, Tf) are used to keep track of the assigned addresses

(u
(0)
x , u

(1)
x) of each item x on servers (S0, S1), respectively,

as well as the server ID (i.e., bx ∈ {0, 1}) where it was last
accessed. We define functions for T as follows:

• T.insert(key, value): insert hash of x (i.e., H(x)) as

key and x’s information 〈u(0)
x , u

(1)
x , bx〉 as value into

T . It can accept null as key, in which the value (i.e,

〈u(0)
null, u

(1)
null, bnull〉) will be inserted into empty slots in T .

• jx ← T.get(H(x)): find the index jx of x in T using its
hash value H(x).

• jx ← T.lookup(u
(b)
x , b): find the index jx of x in T using

its address ux on the server Sb.

2N

2N 1

0

11

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...

...

...

...

...

...

...

...

. . .

. . .

. . .

. . .
...

...
...

...
...

. . .

. . .

encrypted bit generated by bit-by-bit encryption [26].
actual (i.e., un-encrypted) bit that shows the relation
between keyword and file.

1

0

0

0 0

0 0

0

0

0 0 0

0

0

0

0

0

0 0

0 0

0

0

0 0

1
1

1
1

1111

1 1 1 1
1 1

11 11

1

111 11

1

1

1 1 1

1

1

1

1

1

1

(1) (1) (1)

(1) (1)

(1)(1)

(1) (1)

(1)

(1)(1)
1

1
(0)(0)

(0)

(0)(0)

(0) (0)

(0)

(0)
1

21 22 23 242

3

4

5

41

42

43
wi1

wi2

wi3

fid3fid2fid1 fid4 fid2 fid1 fid4

wi1

wi2

wi3

uwuw

ufuf 2N

2N

1

1

1

2

3

4

5 6

(0)

1

0

00

0

Encrypted data structure I(0) Encrypted data structure I(1)

(
i

wk

)
: keyword wk assigned to row i.

: dummy row/column.

j
fidk

)
: file fidk

assigned to column j.

.

...

...

...

...

...

...

.

(

0

0

0

0

Figure 3: Two encrypted instances of an incidence matrix
data structure generated from the same file collection f.

Information about x can be retrieved via its index jx in T

as (H(x), 〈u(0)
x , u

(1)
x , bx〉)← T [jx].

We can see that I is a 2N × 2N matrix storing the rela-
tionship between N unique keywords and N files. There are
at least N empty rows and N empty columns in I. We also
include in Tw, Tf sets of such “dummy” addresses in I(0), I(1),
denoted as Tw.L0, Tw.L1, for keywords and Tf .L0, Tf .L1

for files respectively. This is to achieve the consistency of
DOD-DSSE data structure and security (see Section 4.3).

4.2 Proposed DOD-DSSE Algorithms
We present detailed implementations of DOD-DSSE in

three main algorithms with four subroutines. We provide
in Subroutine 3 the decryption procedure for a row/column
data of I. The encryption procedure DOD-DSSE .Enc() is
not explicitly defined and it works similarly to Subroutine 3
by substituting in lines 4 and 8 E .Dec() for E .Enc().

The main operation of DOD-DSSE is presented in Algo-
rithm 3. First, the client generates for each server one search
and one update queries including two row indices (one is
dummy) and two column indices (one is dummy) using Sub-
routine 2 (step 1). The client reads data in such addresses
from the servers and decrypts only data in non-dummy ad-
dresses (steps 2 – 7). After that, the client can perform an
actual search or update operation over the decrypted data
(steps 8–11). Finally, the decrypted data are re-encrypted
with new counters and written back to addresses in the server
from where they were read as well as the dummy addresses
in the other server (steps 17–21). Notice that such data need
to be updated before re-encryption to preserve keyword-file
relations (steps 15–16), and their new addresses in the other
server are updated in hash tables (steps 12–16) so that they
can be retrieved correctly in subsequent operations.

Algorithm 1 K ← DOD-DSSE .Gen(1κ)

Generate keys to encrypt two data structures

1: k0 ← E .Gen(1κ), k1 ← E .Gen(1κ)
2: return K ← (k0, k1)

Algorithm 2 (K,Tw, Tf , I
(0), I(1))← DOD-DSSE .Init(κ, f)

1: Initialization: Set Tw, Tf to be empty

I′
(b)

[i, j]← 0 and C(b)[j]← 1, for all 1 ≤ i ≤ 2N , 1 ≤ j ≤ 2N and for each b ∈ {0, 1}
Tx.Lb ← {1, 2, . . . , 2N} for each x ∈ {w, f} and b ∈ {0, 1}

2: K ← DOD-DSSE .Gen(1κ)
3: Extract unique keywords w = (w1, . . . , wm′) from files f = (fid1 , . . . , fidn′)

Create unecnrypted data structure I′
(0)

for server S0, I′
(1)

for server S1

4: for each wi ∈ {w1, . . . , wm′} do

5: (u
(0)
i , u

(1)
i , Tw)← DOD-DSSE .Assign(H(wi), Tw)

6: for each idj ∈ {id1, . . . , idn′} do

7: (v
(0)
j , v

(1)
j , Tf)← DOD-DSSE .Assign(H(idj), Tf)

8: if wi appears in fidj then

9: I′
(0)

[u
(0)
i , v

(0)
j]← 1, I′

(1)
[u

(1)
i , v

(1)
j]← 1

Reserve row and column indices for new keywords and files being added in the future

10: Call DOD-DSSE .Assign(null, Tx) multiple times until all values in all N slots in Tx are filled, for each x ∈ {w, f}

Encrypt every row of data structures I′
(0)

and I′
(1)

11: for each server Sb ∈ {S0, S1} do

12: I(b)[i, ∗]← DOD-DSSE .Enc(I′
(b)

[i, ∗], i, b,K) for each row i ∈ {1, . . . , 2N}
13: return (K,Tw, Tf , I

(0), I(1)) # The client sends I(0) to S0, I(1) to S1 and keeps (K,Tw, Tf) secret

Algorithm 3 id← DOD-DSSE .Access(op, x,S,K, Tw, Tf)

Generate search and update queries

1: ({u(b)
j , ũ

(b)
j }j∈{w,f},b∈{0,1}, β)← DOD-DSSE .CreateQueries(H(x))

2: for each j ∈ {w, f} do
Retrieve from each server 2 columns or 2 rows depending on index j

3: for each server Sb ∈ {S0, S1} do

4: I
(b)
uj ← Read(u

(b)
j) from Sb

5: I
(b)
ũj
← Read(ũ

(b)
j) from Sb

Decrypt retrieved row and column

6: I′
(b)
uj
← DOD-DSSE .Dec(I

(β)
uj , u

(β)
j , β,K)

7: I′
(¬b)
ũj
← DOD-DSSE .Dec(I

(¬β)
ũj

, ũ
(¬β)
j ,¬β,K)

8: if op = search then

9: Extract column index from I′
(β)
uw

as id← (y1, . . . , yl), where I′
(β)
uw

[yk] = 1 for each yk ∈ {1, . . . , 2N} \ Tf .Lβ , 1 ≤ k ≤ l
10: else
11: Update list of keywords in I′

(β)
uf

and key in Tf , Tw corresponding with the file being updated

12: for each j ∈ {w, f} do
Update new address of non-dummy column and row data in the other server

13: Tj ← DOD-DSSE .UpdateT(Tj , u
(β)
j , β, u

(¬β)
j)

14: Tj ← DOD-DSSE .UpdateT(Tj , ũ
(¬β)
j ,¬β, ũ(β)

j)

15: Update cell values in I′
(β)
uj

and I′
(¬β)
ũj

to preserve keyword-file relations with changes at steps 13, 14

16: Create (I′
(¬β)
uj

, I′
(¬β)
uj

) based on I′
(β)
uj

, (I′
(¬β)
ũj

) respectively to preserve keyword-file relation consistency in both servers

Increase all counter values in global counter arrays

17: C(b)[i]← C(b)[i] + 1 for each b ∈ {0, 1} and i ∈ {1, . . . , 2N}
18: for each j ∈ {w, f} do
19: for each server Sb ∈ {S0, S1} do

Re-encrypt retrieved data with newly updated counters

20: Î
(b)
uj ← DOD-DSSE .Enc(I′

(b)
uj
, u

(b)
j , b,K), Î

(b)
ũj
← DOD-DSSE .Enc(I′

(b)
ũj
, ũ

(b)
j , b,K)

Write re-encrypted data back to corresponding server Sb
21: Write(u

(b)
j , Î

(b)
uj), Write(ũ

(b)
j , Î

(b)
ũj

) to Sb

22: return id

Subroutine 1 (u
(0)
x , u

(1)
x , T)← DOD-DSSE .Assign(x, T)

Assign hash x of an item to a random address in each server, and
store assigned addresses in the hash table T :

Pick a random address from dummy set in each server
1: for each b ∈ {0, 1} do
2: u

(b)
x

$← T.Lb
3: T.Lb ← T.Lb \ {u

(b)
x }

Randomly assign server ID for x

4: bx
$← {0, 1}

Store assigned info of x in hash table

5: T.insert
(
x, 〈u(0)

x , u
(1)
x , bx〉

)
6: return (u

(0)
x , u

(1)
x , T)

Subroutine 2 (U , β)← CreateQueries(x)

Generate search and update queries given an actual item x to be
accessed, where x can be a keyword w or file f :

Get hash table entry for x and its info
1: jx ← Tx.get(x)
2: β ← Tx[jx].bx

3: u
(β)
x ← Tx[jx].u

(β)
x

Select a random non-dummy row/column index u
(β)
x̄ .

If x is w then x̄ is f and vice-versa

4: u
(β)
x̄

$← {1, . . . , 2N} \ Tx̄.Lβ
5: for each j ∈ {w, f} do

Select a random non-dummy index from server S¬β

6: u
(¬β)
j

$← {1, . . . ,2N} \ Tj.L¬β
Randomly select dummy row & column indices in S0, S1

7: for each b ∈ {0,1} do
8: ũ

(b)
j

$← Tj.Lb
9: return (U,β), where U = {u(b)

j , ũ
(b)
j }j∈{w,f},b∈{0,1}

Subroutine 3 I′u ← DOD-DSSE .Dec(Iu, u, b,K)

Decrypt a row/column Iu using its address u, server ID b, and
master key K = (k0, k1):

1: if u is a row index then
2: τ

(b)
u ← KDF(kb||u)

3: for j = 1 . . . , 2N do
4: I′u[j]← E.Dec

τ
(b)
u

(Iu[j], j||C(b)[j])

5: else # if u is a column index
6: for i = 1 . . . , 2N do

7: τ
(b)
i ← KDF(kb||i)

8: I′u[i]← E.Dec
τ
(b)
i

(Iu[i], u||C(b)[u])

9: return I′

Subroutine 4 T ← DOD-DSSE .UpdateT(T, qIdx , b,nIdx)

Update item’s address on server S¬b by nIdx using its address
qidx on server Sb for hash table lookup:

Get hash table entry for qIdx in Sb
1: jx ← T.lookup(qIdx, b)

Update hash table with new entry nIdx and server b

2: oIdx ← T [j].u
(¬b)
x

3: T [jx].u
(¬b)
x ← nIdx

4: T [jx].bx ← ¬b
Remove nIdx from dummy set T.L¬b and add oIdx to it

5: T.L¬b ← T.L¬b ∪ {oIdx} \ {nIdx}
6: return T

4.3 Security Analysis
Let (−→σ0,

−→σ1) be a query sequence of length q sent to
servers (S0, S1) respectively. By Definition 1, access patterns
〈AP0(−→σ0),AP1(−→σ1)〉 observed by (S0, S1), respectively, are:

AP0 = {access(x(0)
1), . . . , access(x

(0)
i), . . . , access(x0

q)}

AP1 = {access(x(1)
1), . . . , access(x

(1)
i), . . . , access(x(1)

q)},
(1)

access(x
(k)
i) = ({read(u

(k)
j,ti, I

(k)
uj,ti)}, {write(u

(k)
j,ti, Î

(k)
uj,ti)}) , for

j ∈ {w, f}, 1 ≤ t ≤ 2 , and 1 ≤ i ≤ q performing read-then-
write operations on the server Sb, given a DOD-DSSE .Access
operation opi (Algorithm 3) at step i. Each address-data

tuple (u
(k)
j,ti, I

(k)
uj,ti) comprises a random row or column address

and an IND-CPA encryption output, respectively.

Remark 1. Due to the properties of the square inci-
dence matrix data structure, rows and columns intersect each
other and have the same length. For each actual operation,
DOD-DSSE performs a search query and an update query
to each server Sb. This prevents Sb from determining (i) if
the actual intention of the client is to search or to update,
and (ii) which data-address tuple corresponds with search or
update query. These properties prevent Sb from separately
forming search and update patterns as shown in Section 1.1.

Remark 2. Data items associated with search and up-
date queries are located in two independent address spaces
(i.e., row index vs. column index) and, therefore, their access
operations are independent from each other. For the sake of
brevity, we only analyze the security of search queries. The
same analysis can be applied to update queries. From now
on, whenever we say data Iux of the query x at address ux,
we mean the row data corresponding with the search query
along with its row index.

According to the unlinkability definition (Definition 3)
and DOD-DSSE access scheme in Algorithm 3, we define in
Definition 5 the unlinkability property of a data item which
is read from server S¬b, and its new representation is then
written to Sb under Sb’s view. We then show in Lemma 1
that any access patterns observed by servers (S0, S1) in our
scheme are unlinkable to each other by Definition 5 under
Assumption 1. Finally, we prove that DOD-DSSE achieves
our main security notion (Definition 4) in Theorem 1.

Definition 5. Let (u
(b)
x , I

(b)
ux) represent an item x in

a set I(b) of N distinct data items on server Sb such that

u
(b)
x 6= u

(b)

x′ and I
(b)
ux 6= I

(b)
ux′ for each x′, x ∈ I(b) and x 6= x′.

(ũ
(b)

x′′ , Î
(b)
ũx′′

) ∈ APb (as in (1)) is a new representation of an

arbitrary data item x′′ ∈ D, which has just been accessed on

server S¬b. In DOD-DSSE, (ũ
(b)

x′′ , Î
(b)
ũx′′

) is unlinkable to I(b)

if and only if the probability that (ũ
(b)

x′′ , Î
(b)
ũx′′

) represents the

same item with any tuples (u
(b)
x , I

(b)
ux) for each x ∈ I(b) is 1

N
.

Lemma 1. Under Assumption 1, any access patterns ob-
served by Sb and S¬b as in (1) are unlinkable with each other
by Definition 3.

Proof. For each DOD-DSSE operation xi (Algorithm
3), server Sb observes that two address-data tuples are ac-
cessed per search query simultaneously. One of them is to

read while the other is to write data being read from S¬b. The
data from all accessed addresses are IND-CPA re-encrypted
with new counters before being written back (Algorithm 3,
steps 17, 20) so that it is computationally indistinguishable
for Sb to determine which address is being read or written.

To begin with, we show that access(x
(b)
i) is unlinkable to

access(x
(¬b)
i) as follows:

We first analyze the address-data tuple denoted as (u(b), I
(b)
u),

which is read and observed by Sb. I
(b)
u is decrypted into I′

(b)
u

and then is IND-CPA re-encrypted with a new counter before
being written to S¬b (steps 17, 20). I′ is assigned by the
client to a new random index selected from a set of dummy

addresses in S¬b as u(¬b) $← Tw.L¬b, which is independent
from u(b). Under Assumption 1, Sb does not have a view on
S¬b and vice versa. So, Sb does not know if I′ is assigned
to which u(¬b) in S¬b and under which new encryption form

Î. Therefore, (u(b), I
(b)
u) can represent the same item with

any address-data tuples (u(¬b), I
(¬b)
u) in S¬b with the same

probability of 1
N

, where N is the number of items in S¬b.

By Definition 5, (u(b), I
(b)
u) is unlinkable to any items in S¬b

from Sb’s view. Considering the S¬b’s view, S¬b also does

not know which address-data tuple (u(b), I
(b)
u) was read from

Sb under Assumption 1. Meanwhile, Î is a IND-CPA encryp-
tion so that it looks random-uniform to all other data in S¬b.
Moreover, the address associating with Î is selected randomly
from the set of dummy addresses L¬b with |L¬b|= N . It is

oblivious for S¬b to link Î to any item which will be queried
subsequently. Notice that to achieve this obliviousness, it is
mandatory to always keep |L¬b| = N . Once the new IND-

CPA encryption form Î of an item is written to new address
u(¬b) in S¬b, its old address in S¬b will be set to dummy and
included to L¬b by the client (Subroutine 4, steps 2, 5).

We next consider search address-data tuple denoted as

(ũ(b), Î
(b)
ũ) which is written to Sb under Sb’s view. This tuple

is the new representation of an arbitrary item which has just
been queried from S¬b. As DOD-DSSE access operations
on servers Sb and S¬b are symmetric, meaning that Sb can
act as S¬b in the aforementioned analysis and vice versa.
Therefore, the same analysis is applied to this case.

Finally, we show that if each pair (access(x
(b)
i), access(x

(¬b)
i))

is pairwise unlinkable to each other, for all 1 ≤ i ≤ q, then

access(x
(b)
i) is also unlinkable to others access(x

(¬b)
j) for all

1 ≤ j 6= i ≤ q. Without loss of generality, we assume that

j < i. As (access(x
(b)
j), access(x

(¬b)
j)) is pairwise unlinkable,

meaning that given access(x
(b)
j) observed by Sb, the corre-

sponding access(x
(¬b)
j) generated in S¬b is oblivious from

Sb’s view. It is computationally infeasible for Sb to link

access(x
(b)
i) with any access patterns access(x

(¬b)
j) generated

in S¬b by just observing access(x
(b)
j). The same principle

applies to S¬b as operations on two servers are symmetric.
Hence, the Lemma 1 holds.

Corollary 1. For any access pattern observed by Sb
(or S¬b), the same query will result in the same address being
accessed on Sb (or S¬b), at most twice.

Proof. Assume that at step i the real query x is per-
formed and its corresponding data item is read from address

u
(b)
x in server Sb. According to DOD-DSSE scheme, data of

x will be written to an arbitrary address u
(¬b)
x in S¬b (Algo-

rithm 3, step 21). Given that the same query x is performed

again at step j > i, its data will be read from S¬b so that

S¬b can observe the address u
(¬b)
x accessed at step i is now

accessed again. By this access pattern, S¬b can infer the
same query is performed at step i and j on it. However from
Sb’s view, it is oblivious for Sb to determine if the data being

written to an arbitrary address ũ
((b))
x at step j is associated

with the query x at step i due to Lemma 1. Now assume that
at step k, where k > j > i, the query x is performed again.
It will be read from Sb and then written to S¬b. Similar to
that of Sb at step j, S¬b observes an access operation which
is unlinkable to access operations generated at step j and
i by Lemma 1. It can be easily seen that the same query
only generates the same address access at most two times.
Therefore, the corollary holds.

Theorem 1. Given a server Sb, DOD-DSSE achieves
security Definition 4, meaning that DOD-DSSE leaks no
information beyond ORAM security definition with the ex-
ception of one-time repetition of an unlinkable query on the
other S¬b, to which Sb does not have access.

Proof. Given an access pattern APb of length q as in
(1) observed by server Sb, denote Yq as the set of all possible
combinations y of N data items, where |y|= q. We have Nq

possible strings as |Yq|= Nq. Let u
(b)
i,1 , u

(b)
i,2 be read and write

addresses for search query observed by Sb, respectively, given

a data access request access(x
(b)
i). From Sb’s view, data item

of the real query xi (denoted as I′xi) can be accessed from

u
(b)
i,1 , or u

(b)
i,2 (i.e., I′xi is actually accessed from S¬b and then

written to Sb). By Lemma 1, we have:

Pr(access(x
(b)
i)) =

2∑
j=1

1

2

[
Pr(pos(I′xi) = u

(b)
i,j) Pr(u

(b)
i,j ∈ Tw.Lb)

+ Pr(pos(I′xi) = u
(b)
i,j) Pr(u

(b)
i,j 6∈ Tw.Lb)

]
=

2∑
j=1

1

2

[
1

N

1

2
+

1

N

1

2

]
=

1

N
.

Notice that given a real query xi, Algorithm 3 generates
two random row indices on each server Sb: one is from the
set of dummy addresses and the other is from from the set
of non-empty addresses. Such addresses are removed from
their current set and included in the other set. This is to
maintain the size of each set so that given another real query
xj 6= xi, its generated addresses are randomly chosen from
size-consistent sets, making it independent of each other.
Hence, from Sb’s observation, access patterns generated by

access(x
(b)
i) are computational indistinguishable from those

generated by access(x
(b)
j), given that xj 6= xi.

For xj = xi, with q ≥ j > i ≥ 1, we have two cases:

(i) If pos(I′xi) = u
(b)
i,1 then pos(I′xj) = u

(b)
j,2, meaning I′xi is

read from Sb, while I′xj is read from S¬b. By Lemma 1,
data in uj,2 is unlinkable to any data items in Sb. There-

fore, access(x
(b)
j) generates an access pattern which is

statistically independent from access(x
(b)
i) in server Sb.

(ii) If pos(I′xi) = u
(b)
i,2 then pos(I′xj) = u

(b)
j,1, meaning Ixi is

read from S¬b and I′xj is read from Sb. Sb observes that

the same address is accessed again (i.e., u
(b)
j,1 = u

(b)
i,2).

By Lemma 1, data from u
(b)
i,2 is written to S¬b which

is unlinkable to any data items in S¬b; the probability
that Sb can determine if I′xj is re-written back to it

in subsequent access operations is 1
N

. That means
given another query xk such that xk = xj = xi, with

k > j > i, the access pattern generated by access(x
(b)
k)

is statistically independent from access(x
(b)
j) as in case

(i). Therefore, the information DOD-DSSE leaks in
this case is that the same query can generate the same
address access at most twice, as shown in Corollary 1.

To sum up, we have Pr(APb) =
∏q
j=1 Pr(access(x

(b)
j)) =(

1
N

)(q−r)
, where r is the number of one-time repetitions of

data access requests as in case (ii). There are N (t−r) possible
strings y ∈ Yq that can generate the same APb so that it is
computationally indistinguishable for Sb to determine which
string in N (t−r) candidates generates the APb. In the worst
case, where there are r = q/2 repetitions in the data request

sequence of length q, then Pr(APb) =
(

1
N

)q/2
.

Security against statistical attacks. In traditional DSSE,
each search or update query on a keyword or a file produces
the same address being accessed for consistency purposes.
This deterministic relation between queries and address to-
kens permits an adversary to perform statistical attacks, such
as query frequency analysis, to uncover the relations among
keyword/file being accessed [15, 3, 27, 11].

In DOD-DSSE , queries observed in each server are unlink-
able by Definition 3 to each other, meaning that they can
be independently generated by any possible keywords/files,
from the server’s view. DOD-DSSE achieves the security by
Definition 4 in that, the only information that server Sb can
infer from its observed access pattern is one-time repetition
of an arbitrary query, which is previously performed on the
other server S¬b. Note that servers do not have a view of
each other’s accesses or queries (i.e., non-colluding servers).
This leakage is negligible for any practical setting, and does
not permit to establish any statistical relationship, since
one-time repetitions are unlinkable. These security guaran-
tees imply that DOD-DSSE can not only prevent statistical
analysis (e.g., [15]) but also any other potential threats that
may exploit the linkability among arbitrary queries.

5. PERFORMANCE EVALUATION
We evaluated the performance of our scheme on real net-

work settings with different network latencies. By latency,
we mean the round-trip time taken by a packet to go from
the host (i.e., client) to the destination (i.e., server) and
back. In addition, we made several comparisons. First, we
compared our scheme’s cryptographic end-to-end delay (i.e.,
the time to completely process a search or update operation)
with a traditional DSSE scheme which does not hide the
access pattern (e.g., [26]). We then compared to a simu-
lated scheme which applies ORAM on a DSSE dictionary
data structure and matrix data structure4. We notice that
in order to be comparable with ORAM, which can achieve
oblivious operations (i.e., whether the operation is search
or update), our DOD-DSSE scheme is designed to always
perform both search and update queries regardless of the type
of actual operation which is required. Therefore, search and
update operations require the same amount of time. This is
in contrast with traditional DSSE schemes in which search

4We did not implement the full scheme, we estimated the perfor-
mance by simulation in a real network setting and assuming a 4 KB
block-size ORAM as presented in [25, 24].

and update operations incur different delays. This will be
shown in the following experiments.

Hardware setting and configuration. We used a HP
Z230 Desktop as the client and two virtual servers provided
by Amazon EC2. The client machine was installed with
CentOS 7.2 and equipped with Intel Xeon CPU E3-1231v3
@ 3.40GHz, 16 GB RAM and 256 GB SSD. We deployed
servers running Ubuntu 14.04 with m4.4xlarge instance type
which offers 16 vCPUs @ 2.4 GHz, Intel Xeon E5-2676v3, 64
GB RAM and 200 GB SSD for each server.

We adopted Google sparse hash table5 to implement the
data structures Tf , Tw stored at the client side. We im-
plemented IND-CPA encryption and decryption schemes
using AES-CTR mode as it supports parallelism and key
pre-computation. We used AES-128 CMAC to implement
the hash function H. For cryptographic primitives, we uti-
lized libtomcrypt6 with Intel AES-NI hardware accelerated
library7 to optimize the performance of cryptographic op-
erations. We used ZeroMQ library8 to implement network
communication between client and server(s).

Dataset. We performed our experiments on the Enron
email dataset9. We selected subsets of the Enron corpus to
construct the DSSE data structure with various combinations
of keyword-file pairs, ranging from 108 to 9× 1010. This is to
evaluate the performance of DOD-DSSE and its counterparts
with different dataset sizes starting from small to very large
similar to [4].

Results and Comparison. We first measured the pre-
processing time to build the encrypted data structures in
DOD-DSSE with different sizes. With the largest data struc-
ture being experimented, which consists of 9× 1011 keyword-
file pairs (i.e., 300,000 files and 300,000 keywords), it takes
the client roughly 20 hours to construct two encrypted in-
cidence matrices. For 108 keyword-file pairs, the time is 30
seconds. Notice that this initialization phase is only run
one time in the offline phase so that its cost is not an im-
portant factor. Our focus is to evaluate the performance of
DOD-DSSE and its counterparts in the online phase, where
we perform search and update operations on the constructed
data structure(s).

Next, we showed the performance of DOD-DSSE scheme
in the online phase. We created two Amazon EC2 servers
in the same geographical region (i.e., in-state), resulting
in an average network latency of 11 ms and throughput
of 100 Mbps. It takes approximately 800 ms to perform a
search (or update) operation on the distributed data structure
consisting of 9× 1011 keyword-file pairs, as demonstrated in
Figure 4b.

We compared the actual cost of DOD-DSSE with that
of our counterparts. We selected the scheme in [26] to be
our main traditional DSSE counterpart as, to the best of
our knowledge, it is the most secure DSSE scheme in the
literature. We used Path ORAM [24] protocol for ODS as it
offers optimal bandwidth overhead. We simulated the cost
of using ODS on a dictionary (denoted as ODICT) and a
square incidence matrix (denoted as OMAT) data structures

5https://github.com/sparsehash/sparsehash
6http://www.libtom.org/LibTomCrypt/
7https://software.intel.com/articles/download-the-intel-aesni-

sample-library
8http://zeromq.org/
9https://www.cs.cmu.edu/∼./enron/

108 109 1010 1011

keyword--le pairs (log scale)

0

0.5

1

1.5

2

2.5

3

T
im
e
(m
in
u
te
)

DOD-DSSE

DSSE [26] (search)
DSSE [26] (update)
ODICT (Path ORAM-based [24] ODS [25])
OMAT (Path ORAM-based [24] ODS [25])

108 109 1010 1011

keyword--le pairs (log scale)

0

100

200

300

400

500

600

700

800

T
im
e
(m
il
is
ec
on
d
)

DOD-DSSE

DSSE [26] (search)
DSSE [26] (update)

(a) DOD � DSSE vs. ODS and traditional DSSE (b) DOD � DSSE vs. traditional DSSE

zo
om

ed
in

Figure 4: End-to-end cryptographic delay with in-state network latency, where (b) is zoomed in view of DOD-DSSE and
traditional DSSE, which is hard to be observed in (a).

108 109 1010 1011

keyword--le pairs (log scale)

0

2

4

6

8

10

12

14

T
im
e
(m
in
u
te
)

DOD-DSSE
DSSE [26] (search)
DSSE [26] (update)
ODICT (Path ORAM-based [24] ODS [25])
OMAT (Path ORAM-based [24] ODS [25])

108 109 1010 1011

keyword--le pairs (log scale)

0

200

400

600

800

1000

1200

T
im
e
(m
il
is
ec
on
d
)

DOD-DSSE

DSSE [26] (search)
DSSE [26] (update)

(a) DOD � DSSE vs. ODS and traditional DSSE (b) DOD � DSSE vs. traditional DSSE

zo
om

ed
in

Figure 5: End-to-end cryptographic delay with out-state network setting, where (b) is zoomed in view of DOD-DSSE and
traditional DSSE, which is hard to be observed in (a).

because the former provides sublinear operating time while
the latter achieves the best security. We applied an average
padding strategy to mitigate the information leakage from
ODICT due to the optimal search/update time property.

We analyzed the asymptotic communication complexity
of the aforementioned schemes. Traditional DSSE achieves
optimal bandwidth overhead of O(r), where r is the number
of data corresponding with the search/update query [26].
In ODS approaches, keyword-files pairs are packaged into
4KB blocks, and the total number of blocks is denoted as B.
Given a search/update operation, the number of blocks being
transmitted by OMAT and ODICT is s · c · O(logB) and
s′ · c ·O(logB), respectively, where c = 4 is the bucket size in
Path ORAM [24] and s, s′ are the numbers of communication
rounds to retrieve sufficient results for the query [25]. In
DOD-DSSE , the bandwidth complexity is 4 ·O(N), where
N is the maximum number of unique keywords/files that
DOD-DSSE can support.

After that, we benchmarked the actual performance of
DOD-DSSE and its counterparts in practice based on the
previous asymptotic communication analysis. Figures 4a,
4b demonstrate the actual end-to-end cryptographic delay
(i.e., encryption, transmission delays) of schemes using in-

Table 2: Total size of encrypted data structure(s) in GB.

keyword-file pairs DOD-DSSE † DSSE [26] ODICT OMAT

108 0.1 0.02 1.37 0.05
2.5× 109 2.4 0.6 37.38 1.16

1010 10 2.4 149.54 4.66
2.25× 1010 22.4 5.6 336.46 10.48

4× 1010 40 10 598.15 18.63
6.25× 1010 62.4 15.6 934.60 29.10

9× 1010 90 22.4 1345.83 41.91
†DOD-DSSE stores two encrypted data structures in two non-colluding
servers so that the storage cost for each server will be a half of presented
numbers.

state Amazon EC2 server(s) with various data structure
sizes. We can see that DOD-DSSE incurs a small-constant
communication overhead due to extra queries (i.e., 4x times
slower than traditional DSSE). However, it is approximately
50x and 210x times faster than ODICT and OMAT which
specifically take 42 and 167 seconds to perform an operation
on the large data structure, respectively. This indicated that
even though the asymptotic complexity of ODS approaches
looks very efficient, hidden constants such as c, s, s′ actually
contribute a lot to the communication overhead, as shown
in Table 1 and Figure 4a.

We inspected the cost of DOD-DSSE to investigate the
impacts of network communication and cryptographic opera-
tions on the end-to-end delay. We observed that the majority
of the delay is due to network transmission, in which the
ratio between it and cryptographic operations is roughly
8:1. To investigate more the impact of network latency and
throughput on DOD-DSSE and its counterparts, we setup
two EC2 servers geographically located outside of our state,
resulting in a network latency and throughput of 31 ms
and 30 Mbps, respectively. As it can be seen in Figure 5b,
this geographically distributed out-state environment makes
DOD-DSSE and traditional DSSE perform approximately
200 ms and 100 ms slower than in-state setting, respectively.
Due to the characteristics of ODS requiring a number of
communication rounds to perform a search or update oper-
ation, slower network latency and throughput significantly
impact the performance of ODICT and OMAT. We can see
that DOD-DSSE is now 170x and 690x times faster than
ODICT and OMAT, respectively by this setting. Comparing
with the in-state configuration, ODICT and OMAT are both
4.5x times slower than their in-state version. This implies
12.78 minutes and 3.2 minutes to accomplish an operation,
respectively (Figure 5a).

Finally, we analyzed the storage cost of DOD-DSSE . With
the largest dataset being experimented in this study (i.e.,
9× 1011 keyword-file pairs), DOD-DSSE requires approxi-
mately 35 MB to store at the client side all necessary infor-
mation for its operation such as symmetric keys, Tf , Tw and
global counter arrays. This can be easily fulfilled even by
resource-limited devices such as a smartphone or a tablet.
Tables 2 shows the total size of the encrypted data struc-
ture(s) stored at the server side required by DOD-DSSE and
its counterparts with different dataset sizes. DOD-DSSE
requires 8x and 2x times as much storage space as that of
traditional DSSE and OMAT, respectively, and yet, is much
more compact than ODICT using dictionary10. Consider-
ing the advantages of DOD-DSSE in terms of efficiency,
storage cost and achieved security aspects over traditional
DSSE and ORAM-based methods, our scheme is likely to
be an ideal security-performance trade-off DSSE scheme for
privacy-critical cloud computing.

6. RELATED WORK
Searchable Encryption (SE). The first SE was proposed
by Song et al. in [20] and was followed by several schemes
which can search only on static file collections (e.g., [6, 8]).
Kamara et al. were among the first to develop a DSSE
scheme [13], followed by several DSSE schemes that offer
various performance and security properties such as small
leakage [21, 26], scalable searches with extended query types
[5, 4] and high efficiency [17].

All DSSE schemes leak data structure-access pattern in-
cluding search pattern and update pattern (see Section 1.1).
Liu et al. in [15] showed that the search pattern reveals
significant information about the queried keywords. Bosch et
al. in [2] developed a search pattern hiding DSSE, which re-
quires re-encrypting and transmitting entire encrypted data
structure per search query and, therefore, seems to be im-
practical. Islam et al. in [11] showed that, with some prior

10We would like to notice an advantage of dictionary over matrix
structure. That is, it is not limited by the number of unique keywords
and files, but only the maximum number of keyword-file pairs which
might be useful for applications requiring diverse keyword-file relations.

knowledge on the keyword/file pairs, an adversary can learn
significant information about the queries and keywords from
the access pattern. The update pattern leaks information
during updates depending on the type of data structure used
and other security-performance trade-offs [26]: The most
efficient DSSE [13] achieves the least security. The schemes
in [12] and [4] achieved higher privacy. Recently, Yavuz and
Guajardo [26] proposed a scheme that leaks less information.

PIR. Private Information Retrieval (PIR) is the task of
retrieving a data item from a public (unencrypted) database
server without revealing to the server the specific item that
has been accessed (e.g., [7, 9]). In contrast, in our setting,
the DSSE data structure is encrypted (rather than public)
and it is private to each user. In both settings one also has
distributed (multi-server) versions of the basic protocols.

ORAM. ORAM allows clients to perform arbitrary queries
to an outsourced database without leaking any access pat-
tern. Therefore, it can be used to obliviously access encrypted
data structure in DSSE. Preliminary ORAM schemes [18]
were very costly, but recent progress in ORAM constructions
(e.g., [23, 19, 24, 25, 22]) are promising. The most efficient
and popular ORAM scheme is Path ORAM [24], which offers
optimal bandwidth/processing cost . Despite these improve-
ments, as indicated by recent studies [21, 4, 16, 1], ORAM is
not practical for searchable encryption as it introduces large
bandwidth overhead and high delay.

ODS. ODS is an instantiation of position-based ORAM
(e.g., Path ORAM) specifically designed for oblivious access
on data structure [25]. Similar to recursive ORAMs, ODS
reduces the client storage cost but increases the number
of communication rounds and bandwidth overhead. Hence,
ODS is also not practical for large data structure in DSSE.

Multi-cloud Oblivious Storage. Stefanov et al. in [22]
proposed an ORAM scheme using two non-colluding servers
to reduce the client bandwidth cost. This approach differs
from us in that two servers are required to perform com-
putation and communication with each other. We only use
servers as basic storage units so that they are only required
to have functionalities to transfer and receive data being
requested.

7. CONCLUSIONS
In this paper, we developed a new oblivious access scheme

over the encrypted data structure(s) for searchable encryp-
tion purposes that we refer to as DOD-DSSE . DOD-DSSE
achieves high security yet practical encrypted search/update
operations simultaneously. That is, DOD-DSSE seals critical
information leakage from the data structure access pattern
by guaranteeing query unlinkability and, therefore, it offers a
much higher security than traditional DSSE schemes. At the
same time, DOD-DSSE performs two orders of magnitude
faster than using ORAM-based techniques (e.g., ODS with
Path ORAM), for search/update operations on the encrypted
data structure. These properties make DOD-DSSE an ideal
alternative for oblivious yet practical searchable encryption
on privacy-critical cloud computing applications.

8. ACKNOWLEDGMENTS
We would like to thank Gabriel Hackebeil, Daniel Lin as

well as anonymous reviewers for their insightful comments
and suggestions to improve the quality of the paper.

9. REFERENCES
[1] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and

Y. Huang. Practicing oblivious access on cloud storage:
the gap, the fallacy, and the new way forward. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages
837–849. ACM, 2015.

[2] C. Bosch, A. Peter, B. Leenders, H. W. Lim, Q. Tang,
H. Wang, P. Hartel, and W. Jonker. Distributed
searchable symmetric encryption. In Privacy, Security
and Trust (PST), 2014 Twelfth Annual International
Conference on, pages 330–337. IEEE, 2014.

[3] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart.
Leakage-abuse attacks against searchable encryption. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages
668–679. ACM, 2015.

[4] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla,
H. Krawczyk, M.-C. Rosu, and M. Steiner. Dynamic
searchable encryption in very-large databases: Data
structures and implementation. IACR Cryptology
ePrint Archive, 2014:853, 2014.

[5] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C.
Roşu, and M. Steiner. Highly-scalable searchable
symmetric encryption with support for boolean queries.
In Advances in Cryptology–CRYPTO 2013, pages
353–373. Springer, 2013.

[6] Y.-C. Chang and M. Mitzenmacher. Privacy preserving
keyword searches on remote encrypted data. In Applied
Cryptography and Network Security, pages 442–455.
Springer, 2005.

[7] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan.
Private information retrieval. Journal of the ACM
(JACM), 45(6):965–981, 1998.

[8] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: improved definitions
and efficient constructions. In Proceedings of the 13th
ACM Conference on Computer and communications
security, pages 79–88. ACM, 2006.

[9] I. Goldberg. Improving the robustness of private
information retrieval. In 2007 IEEE Symposium on
Security and Privacy (SP’07), pages 131–148. IEEE,
2007.

[10] F. Hahn and F. Kerschbaum. Searchable encryption
with secure and efficient updates. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 310–320. ACM, 2014.

[11] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access
pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In Annual
Network and Distributed System Security Symposium –
NDSS, volume 20, page 12, 2012.

[12] S. Kamara and C. Papamanthou. Parallel and dynamic
searchable symmetric encryption. In Financial
Cryptography and Data Security, pages 258–274.
Springer, 2013.

[13] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic
searchable symmetric encryption. In Proceedings of the
2012 ACM Conference on Computer and
Communications Security, pages 965–976. ACM, 2012.

[14] J. Katz and Y. Lindell. Introduction to modern
cryptography. CRC Press, 2014.

[15] C. Liu, L. Zhu, M. Wang, and Y.-a. Tan. Search pattern
leakage in searchable encryption: Attacks and new
construction. Information Sciences, 265:176–188, 2014.

[16] M. Naveed. The fallacy of composition of oblivious ram
and searchable encryption. Technical report,
Cryptology ePrint Archive, Report 2015/668, 2015.

[17] M. Naveed, M. Prabhakaran, and C. A. Gunter.
Dynamic searchable encryption via blind storage. In
Security and Privacy (S&P), 2014 IEEE Symposium
on, pages 639–654. IEEE, 2014.

[18] B. Pinkas and T. Reinman. Oblivious ram revisited. In
Advances in Cryptology–CRYPTO 2010, pages 502–519.
Springer, 2010.

[19] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi,
M. Van Dijk, and S. Devadas. Constants count:
practical improvements to oblivious ram. In 24th
USENIX Security Symposium (USENIX Security 15),
pages 415–430, 2015.

[20] D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In Security
and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE
Symposium on, pages 44–55. IEEE, 2000.

[21] E. Stefanov, C. Papamanthou, and E. Shi. Practical
dynamic searchable encryption with small leakage. In
Annual Network and Distributed System Security
Symposium – NDSS, volume 14, pages 23–26, 2014.

[22] E. Stefanov and E. Shi. Multi-cloud oblivious storage.
In Proceedings of the 2013 ACM SIGSAC conference
on Computer and Communications Security, pages
247–258. ACM, 2013.

[23] E. Stefanov, E. Shi, and D. Song. Towards practical
oblivious ram. arXiv preprint arXiv:1106.3652, 2011.

[24] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path oram: an extremely
simple oblivious ram protocol. In Proceedings of the
2013 ACM SIGSAC conference on Computer and
Communications security, pages 299–310. ACM, 2013.

[25] X. S. Wang, K. Nayak, C. Liu, T. Chan, E. Shi,
E. Stefanov, and Y. Huang. Oblivious data structures.
In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages
215–226. ACM, 2014.

[26] A. A. Yavuz and J. Guajardo. Dynamic searchable
symmetric encryption with minimal leakage and
efficient updates on commodity hardware. In Selected
Areas in Cryptography – SAC 2015, Lecture Notes in
Computer Science. Springer International Publishing,
August 2015.

[27] Y. Zhang, J. Katz, and C. Papamanthou. All your
queries are belong to us: The power of file-injection
attacks on searchable encryption.

	Introduction
	Problem Statement
	Our contributions

	Preliminaries
	Our Models
	The Proposed Scheme
	DOD-DSSE Encrypted Data Structure
	Proposed DOD-DSSE Algorithms
	Security Analysis

	Performance Evaluation
	Related Work
	Conclusions
	Acknowledgments
	References

