
U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

1

Immutable Authentication and Integrity Schemes
for Outsourced Databases

Attila A. Yavuz, Member, IEEE

Abstract—Database outsourcing enables organizations to offload their data management overhead to the external service providers.
Immutable signatures are ideal tools to provide authentication and integrity for such applications with an important property called
immutability. Signature immutability ensures that, no attacker can derive a valid signature for unposed queries from previous queries
and their corresponding signatures. This prevents an attacker from creating his own de-facto services via such derived signatures.
Unfortunately, existing immutable signatures are very computation/communication costly, which make them impractical for real-life
applications.
In this paper, we developed three new schemes called Practical and Immutable Signature Bouquets (PISB), which achieve efficient
immutability for outsourced databases. PISB schemes are simple, non-interactive, and computation/communication efficient. Our
generic scheme can be constructed from any aggregate signature coupled with a standard signature. Our specific scheme is
constructed from Condensed-RSA and Sequential Aggregate RSA. It has a low verifier computational overhead and compact
signature. Our third scheme offers the lowest end-to-end delay among existing alternatives by enabling efficient signature
pre-computability. We provide formal security analysis of PISB schemes (in Random Oracle Model) and give a theoretical analysis on
the relationship between signature immutability and signature extraction. We also showed that PISB schemes are more efficient than
previous alternatives.

Index Terms—Applied cryptography; outsourced databases; immutable digital signatures; distributed systems.

F

1 INTRODUCTION

It is a growing trend that the data is outsourced and being managed
on remote servers, which are maintained by third party outsourcing
vendors. One such data outsourcing approach is “database as a
service” (DAS) model [1], in which clients outsource their data
to a database service provider1,2 that offers a reliable mainte-
nance/access for the hosted data [2].

Data outsourcing can significantly reduce the cost of data
management (e.g., via continuous service, expertise, maintenance)
and therefore it is highly beneficial for entities with limited
management capabilities such as small to medium businesses [2]–
[4]. However, despite its merits, data outsourcing brings various
security challenges, since the sensitive data is hosted in a (semi)
untrusted environment. These security challenges include but not
limited to the confidentiality [5], access privacy [6], authentication
and integrity [7]. Another challenge is to provide the security
efficiently such that the data outsourcing still remains practical
and cost efficient.

The focus of this paper is to provide authentication and
integrity of outsourced data via aggregate signatures (e.g., [8]),
while also guaranteeing a vital security property called signature
immutability in a practical manner.

Differences between this article and its preliminary version
in [9]: In this article, we develop a new construction and also give
a more comprehensive security and performance analysis over the
preliminary version in [9]: (i) We introduce a new scheme called
PISB -RP that offers the lowest end-to-end delay among existing

Attila A. Yavuz is with the School of Electrical Engineering and Com-
puter Science, Oregon State University, Corvallis, OR 97331 USA, (e-mail:
attila.yavuz@oregonstate.edu)

1. http://www.ibm.com/software/data/db2
2. http://www-935.ibm.com/services/us/en/it-services/

storage-and-data-services.html

alternatives. (ii) We investigate the relationship between signature
immutability and aggregate signature extraction [8], [10], which
has been omitted in previous outsourced database authentication
schemes (e.g., [3], [7]). We proved that the signature extraction is
a necessary condition for some immutable signature constructions
such as PISB -RP . (iii) We discuss pros and cons of various
PISB instantiations by highlighting their performance character-
istics.

1.1 System and Data Model
We follow Mykletun et al.’s Outsourced Database Model
(ODB) [3], [7] as a variant of “database as a service” [1].

System Model: There are three types of entities in the system;
data owners, server (database service provider) and data queriers
(clients). These entities behave as follows.
•Data Owners: A data owner can be a single or a logical entity

such as an organization. Each data owner in the system signs her
database elements (e.g., each tuple separately) and then outsources
them along with their signatures to the server. This protects the
integrity and authentication of outsourced data against both the
server and outside adversaries (e.g., in the case of the server is
compromised).

The data owner computes the individual signature of each
database element (e.g., each tuple) with an aggregate signature
scheme (e.g., [8]), which allows the combination of these signa-
tures according to the content of a query. This enables the server
to reply any query on the outsourced data with a compact constant
size signature (instead of sending a signature for each element in
the query, which entails a linear communication overhead). This
outsourcing step is performed offline, and therefore its cost is not
the main concern.
• Server (Service Provider): The server maintains the data

and handles the queries of data queriers. The server is trusted

http://www.ibm.com/software/data/ db2
http://www-935.ibm.com/services/us/en/it-services/storage-and-data-services.html
http://www-935.ibm.com/services/us/en/it-services/storage-and-data-services.html

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

2

Low-bandwidth

Data Queriers

Data Owners

(1) Performed offline and once: Compute
individual signatures and outsource data/
signature pairs to the service provider

Bandwidth, battery, computation
and/or memory limited devices

(2) Query data items over
the server. Querier expects
minimum end-to-end delay

Service Provider (Server)
(3) Given a query, fetch its corresponding
individual signatures (obtained during stage
(1)), and aggregate them according to the
content of the query. Reply the query along
with the aggregate signature

Fig. 1: Mykletun et al.’s Outsourced Database Model (ODB)

with these services, but it is not trusted with the integrity and
authentication of the data. Hence, each data owner digitally signs
her data before outsourcing it as described previously.

Once a data querier (i.e., clients who perform data queries)
queries the server, the server computes a constant size signature
by aggregating the corresponding individual signatures of database
elements associated with this query. Recall that the server knows
these individual signatures, since the data owner provided all
individual signatures to the server at the offline phase. The
server then performs necessary cryptographic operations to ensure
the immutability of this aggregate signature. Observe that the
server faithfully follows the immutability operations, since the
immutability prevents external parties to offer similar services free
of charge.

The query handling phase is performed online. The server
is expected to handle larger number of queries simultaneously
with a minimum end-to-end delay. Therefore, the cost of signature
immutability operations are highly critical.
• Data Queriers (Clients): Queriers are heterogeneous entities,

which may be resource-constrained in terms bandwidth, battery
and/or computation (e.g., a PDA). A querier can make a query
on the database elements belonging to a single or multiple data
owners. The former is called single signer queries while the latter
is called multiple signer queries. The data querier verifies the
aggregate signature of her query, along with cryptographic tokens
transmitted for the immutability.

Figure 1 summarizes the ODB model described above.
Data Model: We assume that the data is managed with a

traditional relational database management system and the queries
are formulated with SQL. Our work handles only SQL queries
involving SELECT clauses, which return the selection of a set of
records or fields matching a given predicate.

The granularity of data integrity and authentication may vary
according to the application (e.g., attribute level). For example,
one possible choice is to provide them at the tuple level (i.e.,
sign each tuple individually), which offers a balance between the
storage, transmission and computation overheads introduced by
the cryptographic scheme [3].

1.2 Problem Statement: Signature Mutability in ODBs

Ability to aggregate different signatures into a single one is
advantageous, as exemplified in the above ODB model. However,
this property may have undesirable security implications.

Remark that aggregate signatures exhibit homomorphic prop-
erties, and therefore are malleable by design [11]. That is, any

party can derive valid aggregate signatures, without explicitly
querying them, by just combining aggregate signatures of previ-
ously queried messages. For instance, let ASig be a multiplicative
aggregate signature scheme (e.g., C -RSA as in Definition 5). In
the above ODB setting, assume that the data owner provides an
aggregate signature σ on items m1, . . . ,mk to the server (e.g., a
music album comprised of different songs). Later, the data owner
issues an another signature σ′ on items mk+1, . . . ,ml. Notice
that any querier (e.g., the client) can derive a valid signature on
query elementsm1, . . . ,ml (that have not been queried before) by
simply computing σ = σ · σ′. As an example, this signature may
permit the querier to sell and re-distribute two separate albums
together without obtaining any authorization from the data owner.

This property of the aggregate signatures is called as signature
mutability and has several undesirable effects on real-life appli-
cations. Another example is content access control mechanisms
for outsourced databases. Assume that the data owner requires
the server to enforce an access control policy, in which each
client can access only certain parts of the database via an access
token (i.e., a signature). Each client may possess different access
privileges. However, if clients collude then they can exploit sig-
nature mutability to derive an access token (a mutated aggregate
signature), which provides an access right to them beyond their
actual privileges.

Intuitively, the signature immutability refers to the difficulty
of computing new valid aggregated signatures from a set of
other aggregated signatures [7]. The term “immutable signature
bouquets” [7], [12] refers a set (bouquets) of aggregate signatures,
which cannot be mutated by an adversary but only can be aggre-
gated by the permitted entity (i.e., the server in our case). We give
further details about the existing immutable signatures in Section
1.3, and provide formal definitions for signature immutability in
Section 3.

1.3 Related Work and Limitations

Aggregate signatures aggregate n individual signatures associated
with n different users (or data items) into a single, compact sig-
nature. The first aggregate signature scheme was proposed in [8],
and then several new schemes achieving more advanced properties
were developed (e.g., sequentiality [13], ID-based for low storage
overhead [14]). As discussed in Section 1.2, aggregate signatures
are mutable by definition, which creates security problems for
some applications. Achieving efficient and practical aggregate sig-
nature immutability, especially in the context of data outsourcing
model described in Section 1.1, is the main objective of this paper.

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

3

We give the details of aggregate, sequential aggregate [15], [16]
and condensed signatures [3], [7] in Section 2.

Mykletun et al. [7] introduce signature immutability tech-
niques to address the signature mutability problem described in
Section 1.2. These immutable signatures are called as “Immutable
Signature Bouquets”, which refer to a set (bouquets) of aggregate
signatures that can be aggregated by the permitted entity (i.e.,
the server in our ODB model) but cannot be used to derive
other valid aggregate signatures (i.e., the signature bouquets are
immutable). Their RSA-based techniques prevent an adversary
from deriving new signatures by hiding the actual aggregate
signature via an interactive Guillou-Quisquater (GQ) [17] based
protocol. This approach is interactive and therefore introduces
high communication overhead and end-to-end delay. Their non-
interactive RSA variant uses a signatures of knowledge method,
which substantially increases the computational cost and has large
signature size. Their BGLS signature method iBGLS [8] offers
a small signature size, but it is very computationally costly due
to cryptographic pairing operations. Hence, none of these tech-
niques are suitable for nowadays task-intensive and heterogeneous
outsourcing applications. Notice that these are the only general
purpose immutable signature constructions (to the best of our
knowledge) and therefore are the main counterpart of our schemes.
We provide an extensive comparison of these schemes with our
proposed PISB schemes in Section 6.

Immutable signatures serve as a building block for various
data outsourcing applications such as database-as-a-service [12]
and data protection methods (e.g., [18], [19]). They are also
used with other cryptographic primitives such as forward-secure
signatures to obtain secure audit logging systems (e.g., [20]–[22]).
However, immutability techniques used in these secure logging
systems require linear overhead and therefore are not suitable for
our envisioned applications.

Offline/online signatures (e.g., [23]) and some special pre-
computation techniques (e.g., [24]) are also related to our con-
structions. In offline/online signatures (e.g., [23], [25], [26]),
the signer prepares a token during the offline phase, which can
be used to sign any message during the online phase without
performing expensive operations (e.g., modular exponentiation).
Offline/online signatures (e.g., [23], [25], [26]) offer generic
signature pre-computation. That is, any signature scheme can
be executed in offline/online mode. However, majority of these
methods rely on one-time signatures to achieve online computa-
tional efficiency generically. Hence, for each signature, a one-time
public key and signature must also be generated and transmitted.
The size of these public keys and signatures are very large (e.g.,
3-5 KB for HORS [27] and similar overheads for its variants
such as [28]–[31]). Hence, despite their computational benefits,
these methods are not ideal to accelerate immutable database
authentication methods. Some specific pre-computation methods
such as pre-computed DSA tokens [24] can be considered as a
special instantiation of offline/online signatures. Different pre-
computation methods for Discrete Logarithm Problem (DLP)
based signatures have also been developed in [32] (e.g., for
Schnorr signatures [33] but also applicable to several other Meta-
Elgamal signatures [34]). Pre-computation methods for RSA-type
signatures also have been proposed in [35], but they can only work
on strictly pre-structured messages (e.g., as in some command
and control protocols). Hence, they are not applicable for our
envisioned applications.

Another related work is on the Authenticated Data Structures

(ADS) [36], [37]. An ADS is a method for data authentication,
in which the (untrusted) server (i.e., prover) answers questions
of a querier (i.e., verifier) on the data structure and provides
extra information used to generate a proof that the answers
are valid [38]. RSA-accumulator [39] based ADSs have been
proposed in [40], [41]. Merkle-hash tree [42] is used to construct
several ADSs. Verifiable B-trees (i.e., a B-tree using Merkle-hash
tree) in [43] and MB-trees (a VB-tree with light hash function
instead of heavy signatures) in [44] are some notable Merkle-
hash tree based ADS variants. Another line of ADSs is based
on authenticated skip-lists [45], from which several constructions
have been developed (e.g., [46], [47]). Kupcu et. al. in [38]
introduced a Hierarchical ADS (HADS), which offer compact
proof sizes for multi-clause queries. ADSs are also used for secure
logging purposes in different settings as in [48].

ADSs generally use a proper digital signature scheme as a
building block, where the prover returns a proof (i.e., a signature)
for per-item in the answer. Remark that, as mentioned in [12], [41],
[48], digital signatures with additional capabilities (e.g., in our
case immutable aggregation) can improve the efficiency of ADSs
by serving as a special building block. Assume that the client and
server in our data model act as the prover and verifier, respectively,
for an ADS. In this case, PISB schemes can be used to generate
a small-constant size and non-malleable (i.e., immutable) proof
to offer compactness. That is, instead of returning a proof for
per-item in a query with l-items, one can utilize PISB schemes to
create a single-compact proof on l-items as an aggregate signature,
which cannot be used to alter any other proofs thanks to the
immutability property. For instance, our RSA-based schemes (e.g.,
PISB -CSA-RSA) can serve as a compact and non-malleable
building block for RSA-accumulator based ADSs (e.g., [40], [41]).

Note that our work focuses on the authentication and integrity
services. There are extensive studies on the data privacy for out-
sourced database systems (e.g., [49]), which are complementary
to our work.

1.4 Our Contribution

To address the limitations of existing immutable aggregate sig-
nature constructions, we develop cryptographic schemes called
Practical Immutable Signature Bouquets (PISB), which is suit-
able for outsourced database systems. Specifically, we devel-
oped three PISB schemes: (i) Condensed-RSA (C-RSA) and
Sequential Aggregate RSA (SA-RSA) based scheme called
PISB -CSA-RSA, (ii) a generic scheme called PISB -Generic,
and (iii) a scheme that enables efficient immutable aggregate
signature pre-computation called PISB -RP . We summarize the
desirable properties of our schemes below:

1. Non-interactive Signature Immutability: PISB schemes do
not require any multi-round interaction among the server
and queriers. Hence, they are much more communica-
tion efficient than previous alternatives. For instance, our
PISB -CSA-RSA incurs only 1KB communication overhead,
while GQ-based scheme in [3], [7] requires 9KB. Moreover, the
non-interactive nature of our schemes make them packet loss
tolerant, which is a desirable property for mobile and ad-hoc
clients (queriers).

2. High Computational Efficiency and Pre-computability:
PISB schemes are much more computationally efficient than
their counterparts.

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

4

• PISB -CSA-RSA is a client efficient scheme be-
ing a magnitude of time faster than SKROOT-
based and iBGLS schemes in [3], [7]. Therefore,
PISB -CSA-RSA is an ideal alternative for battery
and/or computational limited clients such as mobile and
hand-held devices. It is also plausibly efficient at the
server side while achieving this client efficiency.

• PISB schemes are the only alternatives that en-
able efficient immutable signature pre-computation.
PISB -Generic permits specific pre-computation meth-
ods such as ECDSA tokens [24] to be implemented.
PISB -RP offers pre-computable immutable signatures
with the lowest computational and communication over-
head among all existing alternatives.

3. Communication Efficiency: PISB schemes offer smaller signa-
ture sizes compared to other alternatives:

• PISB -CSA-RSA and PISB -RP (with C -RSA) are
the only RSA-based schemes that can compute a
compact immutable aggregate signature, which makes
them more communication efficient than their coun-
terparts [3], [7]. PISB -Generic has a much smaller
signature size than RSA-based schemes and also has a
comparable signature size with iBGLS in [3], [7] (while
being much more computationally efficient).

• PISB -RP introduces only κ-bit (e.g., 80-bit) transmis-
sion overhead over PISB -CSA-RSA while enabling
signature pre-computability. Hence, PISB -RP is much
more communication and storage efficient than other al-
ternatives with pre-computability such as offline/online
signatures (e.g., [25], [26]) and PISB -Generic instan-
tiations (see Section 6).

4. Formal Security Analysis and Provable Security: Previous
works (e.g., [3], [7]) give only heuristic security arguments
regarding the signature immutability. Our work is the only one
providing a formal security model and proofs for the signature
immutability (in Random Oracle Model (ROM) [50]). We also
highlight the relationship between aggregate signature extrac-
tion (see Section 3.2) and signature immutability, which has
been omitted in previous outsourced database authentication
schemes.

5. Low Delay: High computational/communication efficiency and
non-interactive nature of PISB schemes enable a low end-to-
end delay. PISB -RP with C -RSA offers two magnitudes of
times lower end-to-end delay than that of schemes proposed
in [3], [7].
Limitations: We highlight some limitations of PISB as fol-

lows: (i) Any PISB instantiation (e.g., PISB -Generic and
PISB -RP with BGLS [8]) with multiple signer type aggre-
gate signature can handle queries from multiple data own-
ers. However, despite being the fastest PISB instantiation,
PISB -CSA-RSA can only handle single data owner queries. This
may pose a limitation for certain applications enforcing queries
with multiple data owners. (ii) Similar to its counterparts [3], [7],
PISB schemes can only handle SELECT, but not AVG type of
queries (e.g., PISB cannot return an aggregate signature on a
sum of signed messages).

2 PRELIMINARIES

In this section, we give the notation and preliminary definitions
used by our schemes.

Notation: Operators || and |x| denote the concatenation oper-
ation and the bit length of variable x, respectively. x $← S denotes
that variable x is randomly and uniformly selected from set S . |S|
denotes the cardinality of set S . {xi}li=0 denotes (x0, . . . , xl).
We denote by {0, 1}∗ the set of binary strings of any finite length.

Definition 1 A signature scheme Sig is a tuple of three algorithms
(Kg ,Sign,Ver) defined as follows:
- (sk , pk) ← Sig .Kg(1κ): Given the security parameter 1κ,

the key generation algorithm returns a private/public key pair
(sk , pk) as the output.

- s ← Sig .Sign(sk ,m): The signing algorithm takes sk and a
message m as the input. It returns a signature s as the output.

- c ← Sig .Ver(pk ,m, s): The signature verification algorithm
takes pk , m and s as the input. It outputs a bit c, with c = 1
meaning valid and c = 0 meaning invalid.

The standard security notion for a signature scheme
is Existential Unforgeability under Chosen Message Attacks
(EU -CMA) [51], which is defined below.

Definition 2 EU -CMA experiment for Sig is defined as follows:
- Setup. Challenger algorithm B runs the key generation algorithm

as (sk , pk) ← Sig .Kg(1κ) and provides pk to the adversary
A.

- Queries. Beginning from j = 1 and proceeding adaptively,
A queries B on any message mj of her choice up to qs mes-
sages. For each query j, B computes sj ← Sig .Sign(sk ,mj)
as the signing oracle of A and returns sj to A.

- Forgery. Finally, A outputs a forgery (m∗, s∗) and wins the
EU -CMA experiment, if Sig .Ver(pk ,m∗, s∗) = 1 and
m∗ was not queried to B.
Sig is (t, qs, ε)-EU -CMA secure, if no A in time t making

at most qs signature queries has an advantage at least with
probability ε in the above experiment.

An aggregate signature scheme (e.g., [8]) aggregates multiple
signatures of different signers into a single compact signature.
Hence, it can be used for multiple querier applications.

Definition 3 An aggregate signature scheme ASig is a tuple of
four algorithms (Kg , Sign,Agg ,Ver) defined as follows:

- (
−→
sk,
−→
pk) ← ASig .Kg(1κ): Given the security parameter 1κ

and a set of signers U = {1, . . . , u}, the aggregate key gen-
eration algorithm generates a private/public key pair (sk i, pk i)
for i = 1, . . . , u, as in Definition 1 key generation algorithm.
The aggregate key generation algorithm returns a private/public
key pair

−→
sk = (sk1, . . . , sku) and

−→
pk = (pk1, . . . , pku) as the

output.
- si ← ASig .Sign(sk i,mi): As in Definition 1 signature gener-

ation algorithm.
- σ1,u ← ASig .Agg({pk i,mi, si}ui=1): The aggregation algo-

rithm takes {pk i,mi, si}ui=1 as the input. It combines individ-
ual signatures si, 1 ≤ i ≤ u and returns an aggregate signature
σ1,u as the output.

- c ← ASig .Ver({pk i,mi}ui=1, σ1,u): The verification algo-
rithm takes {pk i, mi}ui=1 and σ1,u as the input. It outputs a
bit c, with c = 1 meaning valid and c = 0 meaning invalid.

The EU -CMA experiment for ASig is a straightforward
extension of Definition 2, in which A is required to produce a

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

5

forgery under a public key pk ∈
−→
pk that is not under his control

during the experiment (see [8] for details).
We define the PISB syntax as below.

Definition 4 PISB signature scheme is a tuple of four algorithms
(Kg , Init ,Sign,Ver) defined as follows:
- (SK ,PK)← PISB .Kg(1κ): Given the security parameter 1κ,

the key generation algorithm runs (
−→
sk,
−→
pk) ← ASig .Kg(1κ)

and (sk , pk) ← Sig .Kg(1κ). It returns a private/public key
pair SK = (

−→
sk, sk) and PK = (

−→
pk, pk), respectively, as the

output.
-
−→
V ← PISB .Init(

−→
M,
−→
sk,PK): The initialization algorithm

takes messages
−→
M = (m1, . . . ,mu),

−→
sk and PK as the input. It

computes individual signatures si ← ASig .Sign(sk i,mi), i =

1, . . . , u and returns
−→
V = (

−→
M,
−→
S = {si}ui ,PK) as the output.

- γ ← PISB .Sig(sk ,−→m,
−→
V): The signing algorithm takes sk ,

messages −→m ∈
−→
M and

−→
V as the input. It aggregates corre-

sponding signatures si ∈
−→
S on −→m ∈

−→
M via ASig .Agg under−→

pk, and then computes an individual signature s′ on σ via
Sig .Sign under pk . It returns the signature γ ← (σ, s′) as
the output.

- c ← PISB .Ver(PK ,−→m, γ): The verification algorithm takes
PK , −→m and γ as the input. If σ on −→m and s′ on σ under

−→
pk and

pk are valid, respectively, then it outputs a bit c = 1 meaning
valid; otherwise c = 0 meaning invalid.

Condensed-RSA (i.e., C -RSA) [3], [7] aggregates RSA sig-
natures computed under the same private key. Hence, it is used for
single querier (signer) applications.

Definition 5 C -RSA is a tuple of three algorithms
(Kg ,Sig ,Ver) defined as follows:
- (sk , pk)← C -RSA.Kg(1κ): Given the security parameter 1κ,

the key generation algorithm generates a RSA private/public
key pair. That is, it randomly generates two large primes
(p, q) and computes n = p · q. The public and secret ex-
ponents (e, d) ∈ Z∗n satisfies e · d ≡ 1 mod φ(n), where
φ(n) = (p − 1)(q − 1). The key generation algorithm returns
sk ← (n, d) and pk ← (n, e) as the output.

- σ ← C -RSA.Sig(sk ,−→m): Given sk and messages −→m =
(m1, . . . ,ml), the signing algorithm returns a signature σ ←∏l

j=1 sj mod n as the output, where sj ← [H(mj)]
d mod n

for j = 1, . . . , l. H is a full domain hash function (e.g., [52])
defined as H : {0, 1}∗ → Zn.

- c ← C -RSA.Ver(pk ,−→m,σ): Given pk = (n, e), −→m and σ,
if σe =

∏l
j=1H(mj) mod n then the signature verification

algorithm returns bit c = 1 else c = 0.

A sequential aggregate signature (e.g., [16]) performs signa-
ture generation and verification operations in a specific order.
One example is SA-RSA [16], in which the signature generation
and aggregation operations are performed together. We define
SA-RSA as below:

Definition 6 SA-RSA [16] is a tuple of three algorithms (Kg ,
ASign,Ver) defined as follows:

- (
−→
sk,
−→
pk)← SA-RSA.Kg(1κ): Given the security parameter 1κ

and a set of signers U = {1, . . . , u}, the key generation algo-
rithm generates a RSA private/public key pair sk i ← (ni, di)
and pk i ← (ni, ei), ensuring that 2k−1(1 + (i − 1)/u) ≤

ni < 2k−1(1 + i/u), where k = |ni| for i = 1, . . . , u.
It returns a private/public key pair

−→
sk ← {ni, di}ui=1 and−→

pk ← {ni, ei}ui=1 as the output.

- σ1,u ← SA-RSA.ASig(sku, {mi}u−1i=1 ,mu, {pk i}u−1i=1 , pku,
σ1,u−1): The signer u receives aggregate signature σ1,u−1
on messages {mi}u−1i=1 under public keys {pk i}u−1i=1 . The
signer u first verifies σ1,u−1 with the verification algorithm
SA-RSA.Ver . If it succeeds, the signer u computes the signa-
ture as hu = H(−→m||

−→
pk) and yu = hu+σ1,u−1. The sequential

aggregate signature algorithm outputs σ1,u ← yduu mod nu.

- c ← SA-RSA.Ver(−→m,
−→
pk, σ1,u): Given σ1,u on −→m under

public keys
−→
pk = {ni, ei}ui=1, first check 0 ≤ σ1,u ≤ nu. If

gcd(σ1,u, nu) = 1 then yu ← σeu1,u mod nu else yu ← σ1,u.

Compute hu ← H(−→m||
−→
pk) and σ1,u−1 ← (yu−hu) mod nu.

Verify signatures recursively as described in this verifica-
tion algorithm until the base case u = 1, in which check
(σ1,1 − h1) mod n1 = 0 where h1 ← (m1||pk1). If it holds
return c = 1 else c = 0.

In our PISB -CSA-RSA scheme, we use a (simplified) single
signer (and aggregator) instantiation of SA-RSA [16].

3 SECURITY MODEL

We first give the security model of PISB schemes. We then give
an analysis on the aggregate signature extraction [8], [10] and the
immutable aggregate signature constructions.

3.1 PISB Security Model
Our security model reflects how PISB system model works.
That is, our security model formally captures the immutability
of aggregate signatures for the EU -CMA experiment, which we
call Immutable-EU -CMA (I -EU -CMA) experiment.

Definition 7 I -EU -CMA for PISB is defined as follows:
- Setup. Challenger algorithm B runs (SK ,PK) ←
PISB .Kg(1κ) and provides PK to the adversary A.

- Queries. A queries B on any message −→mj = (mj,1, . . . ,mj,u)
of her choice for j = 1, . . . , qs. B replies each query j with a
signature γj computed under PK .

- Forgery. A outputs a forgery (m∗, γ∗) and wins the
EU -CMA experiment, if

(i) PISB .Ver(PK ,m∗, γ∗) = 1,

(ii) m∗ 6⊆ {−→mj}qsj=1 or ∃I ⊆ {1, . . . , qs} : m∗ ⊆ ||k∈I−→mk

That is, (i) the forgery is valid, (ii) m∗ has not been queried
previously, or it is a subset and/or any combination of previously
queried data items (−→m1, . . . ,

−→mqs).
PISB is (t, qs, ε)-I -EU -CMA secure, if no A in time t

making at most qs signature queries has an advantage at least
with probability ε in the above experiment.

3.2 Aggregate Signature Extraction and Signature Im-
mutability
u-aggregate signature extraction problem (afterwards referred as
AE problem for the brevity) was first introduced by Boneh et.
al. in [8] to ensure the security of pairing-based BGLS aggregate
signature schemes. However, this problem can be generalized for
other types of aggregate signatures.

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

6

Intuitively, the difficulty of aggregate signature extraction
implies that for a given aggregate signature σ1,u computed from
u individual signatures, it is difficult to extract these individual
signatures σ1, . . . , σu provided that only σ1,u is known to the
extractor. Moreover, it should be difficult to extract any aggregate
signature subset σ′ from a given of σ1,u.

Definition 8 AE experiment for ASig is defined as follows:

- Setup. Challenger algorithm B runs (
−→
sk,
−→
pk) ← ASig .Kg(1κ)

and provides
−→
pk to algorithm A.

- Queries. A queries B on any batch message −→mj =
(mj,1, . . . ,mj,u) of her choice for j = 1, . . . , qs. B replies
each query j with a signature σj computed under

−→
pk.

- Aggregate Extraction. A outputs a message-signature pair
(m∗, σ′), where m∗ = (m∗1, . . . ,m

∗
k), 1 ≤ k ≤ u and wins

the AE experiment, if
(i) ASig .Ver({pk i,m∗i }i∈{1,...,k}, σ′) = 1,

(ii) ∃I ′ ⊆ {1, . . . , qs} : m∗ ⊆ ||k∈I′−→mk,

(iii) ∀I ⊆ {1, . . . , qs} : [m∗||(||j∈I−→mj)] 6= {−→ml}qsl=1

That is, (i) the forgery is valid, (ii) m∗ is a subset of previ-
ously queried or some combination of previously queried batch
messages, and (iii) if m∗ is combined with any previously
queried or a combination of previously queried batch messages,
the combination is not equal to one of the previously queried
batch message itself. That is, the extracted signature is not
simply derived from previously queried signatures (which im-
plies signature mutability), and therefore the aggregate signature
extraction is non-trivial.

ASig is (t, qs, ε)-AE secure, if no A in time t making at most
qs signature queries has an advantage at least with probability ε in
the above experiment.

Initially, Boneh’s AE problem is given as an intractability
assumption without a proof. Later, Coron et. al. in [10] proved
that Boneh’s AE problem for BGLS scheme is equivalent to the
Computational Diffie Hellman Assumption (CDH) [53]. Yavuz et.
al. in [21] analyzed log truncation problem for forward-secure
and aggregate signatures [20], [54], and produced formal proofs
with AE argument for only DLP-based schemes [54]. A related
problem for one-way accumulators for RSA have been considered
in [39], which extends to other aggregate RSA variants (e.g.,
C -RSA [7] and SA-RSA [16]).

4 THE PROPOSED SCHEMES

In this section, we describe our proposed schemes. For each
PISB scheme, we first give the intuition behind the scheme
followed by its detailed description.

4.1 PISB-Generic Scheme
Our generic scheme relies on a very simple observation: It is
possible to guarantee the immutability of an aggregate signature
by simply computing a standard digital signature on it. The server
can sign the aggregate signature with his private key and define
the immutable signature as a signature pair.

PISB -Generic slightly increases the signature size, since a
secondary signature is transmitted along with the aggregate signa-
ture. However, this is actually much more communication efficient
than GQ-based and SKROOT-based methods in [3], [7]. That is, a

secondary standard signature (e.g., ECDSA [55] with 40 bytes) is
much smaller than cryptographic values transmitted (e.g., up to 9
KB) to achieve the immutability in [3], [7]. PISB -Generic also
allows the server to choose any signature scheme to provide the
immutability. For instance, the server may use ECDSA tokens [24]
or offline/online signatures [26], which enable faster response
times in demand peaks via pre-computability (as discussed in
Section 1.3). This flexibility makes PISB -Generic more efficient
at the server side than previous alternatives (see Table 1).

The PISB -Generic algorithms, as a realization of the
PISB syntax (Definition 4) in the ODB settings, are as below.

1) (SK ,PK)← PISB -Generic.Kg(1κ): Execute (
−→
sk,

−→
pk) ← ASig .Kg(1κ) for data owners U = {1, . . . , u}.
Execute (sk , pk) ← Sig .Kg(1κ) for the server. The
system private and public keys are SK = (

−→
sk, sk) and

PK = (
−→
pk, pk), respectively.

2)
−→
V ← PISB -Generic.Init(

−→
M,
−→
sk,PK): Let messages

−→
M = {−→m1, . . . ,

−→mu} be database elements to be outsourced,
where each −→mi = (mi,1, . . . ,mi,l) belongs to the
data owner 1 ≤ i ≤ u. Each data owner i computes
si,j ← ASig .Sign(sk i,mi,j) for i = 1, . . . , u and
j = 1, . . . , l. Set

−→
V ← (

−→
M,
−→
S ,PK) and provide

−→
V to

the server, where
−→
S = {si,j}u,li=1,j=1.

3) γ ← PISB -Generic.Sign(sk ,−→m,
−→
V): The server receives

a multiple-signer query −→m = {m1, . . . ,mk} on a subset of k
data owners U ⊆ U. Fetch the corresponding public key and sig-
natures on −→m from

−→
V as V ← {pki,mi,j , si,j}∀i∈U,∃j:mi,j∈

−→
M

and compute σ ← ASig .Agg(V). Also compute s′ ←
Sig .Sign(sk , σ) and set γ ← (σ, s′).

4) c← PISB -Generic.Ver(PK ,−→m, γ): Given γ = (σ, s′)

and pk ← {pk i}∀i∈U , if Sig .Ver(pk , s′, γ) = 1 and
ASig .Ver(pk ,−→m,σ) = 1 hold return c = 1, else c = 0.

Remark 1 One may further strengthen PISB constructions by
involving index numbers and timestamps, which are needed if the
application is sensitive to the order of data items and freshness of
the data query.

(i) For instance, in PISB -Generic, the server may compute
the protection signature as s′ ← Sig .Sign(sk , σ||tsσ), where
tsσ is the timestamp of the protection signature. This ensures that
each protection signature is unique and achieves the freshness. (ii)
During the initialization phase, each data owner and data items
of each owner are associated with indexes indicating their order
in the aggregate signature. That is, each data owner i computes
si,j ← ASig .Sign(sk i,mi,j ||i||j) for i = 1, . . . , u and j =
1, . . . , l. This ensures the order of data items if the query response
is sensitive to such an order.

4.2 PISB-CSA-RSA Scheme

An effective way to provide the signature immutability is to com-
pute the protection signature by replacing the standard signature in
PISB -Generic with an aggregate signature (no extra protection
signature is transmitted). However, this method is not applicable to
aggregate signatures such as C -RSA, in which only the signatures
computed with the same private key, can be aggregated (also called
as single signer aggregate signature). Recall that C -RSA cannot
aggregate signatures belonging to different signers, since an RSA

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

7

modulus n can not be safely shared among multiple signers (this
leads to the factorization of n, exposing the private keys [56]).
Hence, despite C -RSA is an efficient scheme, its immutable
variants (e.g., [3], [7]) are inefficient as discussed in Section 1.2.

It is highly desirable to construct a scheme that can compute
an aggregate RSA signature involving both a data owner and the
server (without exposing their private keys via the factorization of
modulo). Our main observation is that, this goal can be achieved
by levering the sequential aggregate signatures from trapdoor
permutations (e.g., SA-RSA [16], as defined in Definition 6)
together with C -RSA. We call our new scheme that exploits this
observation as PISB -CSA-RSA.

In PISB -CSA-RSA, the data owner computes RSA signa-
tures s1, . . . , sl on m1, . . . ,ml with her keys (n, d). During
the query phase, the server computes a C -RSA signature σ′ by
aggregating RSA signatures. The server then uses SA-RSA to
compute an immutable aggregate signature γ on m1, . . . ,ml with
his keys (n, d) by aggregating it on σ′. The public key of the
system is (〈n, e〉, 〈n, e〉). The verification order of the client is
with SA-RSA under (n, e) for γ and then with C -RSA under
(n, e) for σ′.

PISB -CSA-RSA is an instantiation of PISB -Generic, in
which the multiple signer ASig is replaced with the single signer
C -RSA, and the protection signature Sig is replaced with a
simplified variant of SA-RSA. Since SA-RSA can aggregate on
the C -RSA output, PISB -CSA-RSA immutable signature does
not include an extra signature component.

The PISB -CSA-RSA algorithms are defined below. Note that
the algorithm is executed only for a single signer case.

1) (SK ,PK)← PISB -CSA-RSA.Kg(1κ): The data owner
executes (sk , pk) ← C -RSA.Kg(1k), where sk = (n, d)
and pk = (n, e). The server generates a RSA private/public
key pair sk ← (n, d) and pk ← (n, e), n < n . The system
private/public key are SK ← (sk , sk) and PK ← (pk , pk).

2)
−→
V ← PISB -CSA-RSA.Init(−→m, sk): The data owner com-

putes an individual signature sj ← [H(mj)]
d mod n for

j = 1, . . . , l, where −→m = (m1, . . . ,ml). The data owner sets
the message-signature pairs as

−→
V ← (−→m,

−→
S) and provide

−→
V to

the server, where
−→
S = (s1, . . . , sl).

3) γ ← PISB -CSA-RSA.Sign(sk ,−→m,
−→
V): The server re-

ceives a single-signer query −→m = (m1, . . . ,ml). It fetches
the corresponding signatures (s1, . . . , sl) on −→m from

−→
V and

computes σ′ ←
∏l
j=1 sj mod n. It then computes h ←

H(−→m||pk), y ← (h+ σ′) mod n and γ ← yd mod n .

4) c← PISB -CSA-RSA.Ver(PK ,−→m, γ): Given γ, the veri-
fier computes y′ ← γe mod n and σ′ ← (y′ − h′) mod n ,
where h′ ← H(−→m||pk). If C -RSA.Ver(pk ,−→m,σ′) = 1 then
return c = 1 else c = 0.

Remark 2 In PISB -CSA-RSA, we use a simplified
SA-RSA variant [16] with the following properties: (i)
SA-RSA is used in a single signer setting (the server as the
signer and aggregator). (ii) The public key correctness controls
(e.g., range check and gcd control) are not required, since the
public keys are already certified in our system model. That is,
ni belongs to a legitimate signer and gcd(ei, φ(ni)) = 1 holds.
This retains the computational efficiency of traditional small RSA
exponents.

4.3 PISB-RP Scheme

To achieve a minimum end-to-end delay, it is important to
minimize the server’s online signature generation overhead (i.e.,
the computation overhead of protection signature). One may
consider directly adapting pre-computation methods (e.g., [24] or
offline/online signatures (e.g., [23]) to PISB setting. However, as
discussed in Section 1.3, special pre-computation methods are not
applicable to various PISB instantiations such as C -RSA and
pairing-based constructions; and offline/online signatures intro-
duce extremely large public key and signatures sizes. Hence, none
of these methods are suitable to accelerate signature generation in
PISB schemes.

To address these limitations, we developed Random Pre-
computed PISB (PISB -RP) scheme. PISB -RP can transform
any AE secure aggregate signature scheme (see Section 3.2) into
an immutable pre-computable aggregate signature. The intuition
behind our scheme is to inject a random component (along with its
signature) into each aggregate signature, which can be computed
independent from messages to be signed. Randomness prevents an
adversary to create mutations from existing signatures, while the
message independency enables signature pre-computability to gain
performance advantages. We achieve this by generating a random
number r and its signature s (i.e., the protection signature), which
can be aggregated into any future aggregate signature σ by the
server. The pair (r, s) can be generated and stored during the
offline phase by the server, or the data owner may generate and
transmit them to the server (only for single-user cases). During the
online phase, the server aggregates protection signature s into σ,
which is more efficient than computing s itself.

Notice that PISB -RP does not rely on costly one-time
signatures (e.g., 3-5 KB signature and public key overhead for per
message), and therefore is much more communication and storage
efficient than PISB -Generic instantiated with offline/online sig-
natures (e.g., [27]). It also does not compute online signatures and
does not transmit an extra protection signature. Hence, it is more
communication and computation efficient than PISB -Generic.
However, unlike PISB -Generic (but like offline/online and other
non-generic pre-computed tokens [24]), it requires storing a pair
as (r, s) for each message to be signed at the server side.

The PISB -RP algorithms are defined below.

1) (SK ,PK)← PISB -RP .Kg(1κ): Execute (
−→
sk,
−→
pk) ←

ASig .Kg(1κ) for U = {1, . . . , u}. Execute (sk , pk) ←
ASig .Kg(1κ) for the server. The system private and public keys
are SK = (

−→
sk, sk) and PK = (

−→
pk, pk), respectively.

2)
−→
V ← PISB -RP .Init(

−→
M,
−→
sk,PK): Identical to that of

PISB -Generic.Init .

3) γ ← PISB -RP .Sign(sk ,−→m,
−→
V): It has two phases:

• Offline Phase: The server pre-computes (r, s) to be
used in online phase, where r

$← {0, 1}κ, s ←
ASig .Sign(sk , r) and store (r, s).

• Online Phase: The server receives a multiple-signer query
−→m = {m1, . . . ,mk} on a subset of k data owners U ⊆
U. Fetch the corresponding public key and signatures
on −→m from

−→
V as V ← {pki,mi,j , si,j}∀i∈U,∃j:mi,j∈

−→
M

and compute σ′ ← ASig .Agg(V). Also fetch a pre-
computed pair (r, s) and set γ ← (σ, r), where σ ←
ASig .Agg(

−→
pk, 〈−→m, r〉, 〈σ′, s〉).

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

8

4) c← PISB -RP .Ver(PK ,−→m, γ): Given γ = (σ, r) and
pk ← ({pk i}∀i∈U , pk) ⊆ PK , if |r| = κ and
ASig .Ver(pk , 〈−→m, r〉, σ) = 1 hold return c = 1, else c = 0.

We now discuss two specific instantiations of PISB -RP . For
the sake of brevity, we do not give the full descriptions, but only
explain how signing and aggregation are performed (other steps
are straightforward to derive from PISB -RP).
• BGLS-based: At the offline phase (following the notation

given in [8]), the server generates r $← {0, 1}κ, h ← h(r), s ←
hx and store (r, s). At the online phase, given σ′ on −→m, the server
computes σ ← σ′ · s and set γ ← (σ, r).

Notice that, compared to iBGLS [7], [12] and PISB -Generic,
the server saves one full exponentiation (or one full scalar multi-
plication [57], [58] if it is implemented with ECC) during the
online phase with this instantiation of PISB -RP . The only online
computational cost for the server is a modular addition operation
and hash operation, whose costs are negligible. However, the
server stores |q| + κ bits for per message to be signed during
the offline phase.
• C-RSA based: This instantiation only works for the single

signer case. Unlike BGLS-based instantiation, not the server but
the data owner generates pre-computed pairs and then provides
them to the server to be used during the online phase (the server
cannot aggregate his RSA signature on r over C -RSA signature
of the data owner): At the initialization phase PISB -RP .Init ,
the data owner generates r $← {0, 1}κ, s← [H(r)]d mod n and
gives (r, s) to the server (this corresponds to the offline phase
of PISB -RP .Sign executed by the server). At the signature
generation (online) phase of PISB -RP .Sign , given aggregate
signature σ′ on −→m, the server computes σ ← σ′ · s mod n and
set γ ← (σ, r).

This instantiation provides the lowest end-to-end computation
delay among all the compared schemes, since the online com-
putational overhead of server and client are only a few modular
multiplication plus hash operations.

5 SECURITY ANALYSIS

We prove that PISB schemes are I -EU -CMA secure in Theo-
rem 1 and Theorem 2 (in ROM [50]). We ignore terms that are
negligible in terms of κ.

Theorem 1 PISB -Generic is (t, qs, ε)-I -EU -CMA
secure, if ASig is (t′, qs, ε)-EU -CMA secure and Sig is
(t′, qs, ε)-EU -CMA secure, where t′ = O(t) + qs · (Op+Op′)
and (Op,Op′) denote the cost of signature generation for
ASig and Sig , respectively.

Proof: Suppose algorithmA breaks (t, qs, ε)-I -EU -CMA secure
PISB -Generic. We then construct a simulator B, which breaks
(t′, qs, ε)-EU -CMA secure ASig or (t′, qs, ε)-EU -CMA secure
Sig by using A as subroutine.

We set the EU -CMA experiments for ASig and Sig . B is
given a ASig public key

−→
pk and a Sig public key pk as the input,

where (
−→
sk,
−→
pk) ← ASig .Kg(1κ) and (sk , pk) ← Sig .Kg(1κ).

B is given an access to ASig .Sign and Sig .Sign oracles under−→
sk and sk up to qs signature queries on both, respectively (as in
Definition 2).

We then set the I -EU -CMA experiment for PISB -Generic,
in which B executes A as follows:

- Setup: Given (
−→
pk, pk), B sets the PISB -Generic public key

PK ← (
−→
pk, pk) as in PISB -Generic.Kg algorithm. By

Definition 7, B gives PK to A and also permits A to make
qs PISB -Generic signature queries.

- Queries: A queries B on messages −→mj = (mj,1, . . . ,mj,u) of
her choice for j = 1, . . . , qs. B handles queries as follows:

a) Given A’s j-th query −→mj , B queries ASig .Sign oracle
on −→mj under

−→
pk. The ASig .Sign oracle returns sj,i ←

ASig .Sign(sk i,mj,i) for i = 1, . . . , u. B then computes the
aggregate signature as σj ← ASig .Agg(

−→
pk,−→mj , sj,1, . . . ,

sj,u). This step is identical to PISB -Generic.Init algo-
rithm, where

−→
M in this experiment is comprised of u vectors

each with qs data items.
b) B queries Sig .Sign oracle on σj under pk . The

Sig .Sign oracle returns s′j ← Sig .Sign(sk , σj) (as in
PISB -Generic.Sign algorithm, executed by the server).
B replies A with γj = (σj , s

′
j).

- Forgery of A: A outputs a forgery (m∗, β∗ = 〈σ∗, s′∗〉) and
wins the I -EU -CMA experiment if

(i) PISB -Generic.Ver(PK ,m∗, β∗) = 1,
(ii) m∗ 6⊆ {−→m1, . . . ,

−→mqs} or ∃I ⊆ {1, . . . , qs} : m∗ ⊆
||k∈I−→mk

If A loses in the I -EU -CMA experiment then B loses in
the EU -CMA experiments for ASig and Sig , and B aborts.
Otherwise, B proceeds for two possible forgeries as follows:
a) If m∗ 6⊆ {−→m1, . . . ,

−→mqs} then B returns the forgery
(m∗, σ∗) against ASig , which is non-trivial since B did
not ask m∗ to ASig .Sign . This forgery is valid
since PISB -Generic.Ver(PK ,m∗, β∗) = 1 implies
ASig .Ver(

−→
pk,m∗, σ∗) = 1.

b) If ∃I ⊆ {1, . . . , qs} : m∗ ⊆ ||k∈I−→mk then B re-
turns the forgery (σ∗, s′∗) against Sig , which is non-trivial
since B did not ask σ∗ to Sig .Sign . This forgery is
valid since PISB -Generic.Ver(PK ,m∗, β∗) = 1 implies
Sig .Ver(pk , σ∗, s′∗) = 1.
The execution time of B is that of A plus the time required to

handle A’s queries. That is, for each query of A, B requests one
ASig and Sig signature, whose total costs for handling qs queries
is qs · (Op+Op′). Hence, t′ = O(t) + qs · (Op+Op′).
A does not abort the during the query phase, as the simulation

of B is perfectly indistinguishable. That is, the real and simulated
views of A are identical, and each value in these views are
computed identically as described during the experiment. The
probability that A wins the experiment without querying B is
negligible in terms of κ. Therefore, B wins with the probability ε
that A wins.

Theorem 2 PISB -CSA-RSA is (t, qs, ε)-I -EU -CMA secure
if RSA signature scheme is (t′, (2 · l)qs, ε)-EU -CMA secure,
where t′ = O(t) + 2(l · qs)Exp and Exp and l denote
modular exponentiation and number of messages in a single
PISB -CSA-RSA query, respectively.

Proof: Suppose algorithmA breaks (t, qs, ε)-I -EU -CMA secure
PISB -CSA-RSA. We construct a simulator B breaking (t′, (2 ·
l)qs, ε)-EU -CMA RSA by using A as subroutine.

We set two separate EU -CMA experiments for B, in which
it is given RSA public keys pk = (n, e) and pk = (n, e)
and provided signature oracles under their corresponding private

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

9

keys sk = (n, d) (i.e., oracle O1) and sk = (n, d) (i.e.,
oracle O2), respectively. B will simulate A’s signature queries via
(O1,O2). B then executesA for the I -EU -CMA experiment for
PISB -CSA-RSA as follows:

- Setup: Given (pk , pk), B sets the PISB -CSA-RSA public
key PK ← (pk , pk) as in PISB -CSA-RSA.Kg algorithm.
By Definition 7, B gives PK to A and allows A to ask qs
PISB -CSA-RSA signatures under PK .

- Queries: A queries B on messages −→mj = (mj,1, . . . ,mj,l) of
her choice for j = 1, . . . , qs. B handles queries as follows:

a) Given A’s j-th query −→mj , B queries O1 on each mj,i and
obtains corresponding si under pk for i = 1, . . . , l (as in
PISB -CSA-RSA.Init , data owner).

b) B computes σ′ ←
∏l
i=1 si mod n, h ← H(−→mj ||pk) and

y ← h + σ′. B queries O2 on y under pk and obtains γ (as
in PISB -CSA-RSA.Sign , executed by the server).

- Forgery of A: A outputs a forgery (m∗, γ∗) and wins the
I -EU -CMA experiment if

(i) PISB -CSA-RSA.Ver(PK ,m∗, γ∗) = 1,
(ii) m∗ 6⊆ {−→m1, . . . ,

−→mqs} or ∃I ⊆ {1, . . . , qs} : m∗ ⊆
||k∈I−→mk

If A loses in the I -EU -CMA experiment then B loses in
the EU -CMA experiments for RSA against O1 and O2, and
B aborts. Otherwise, B computes y∗ ← (γ∗)e mod n and
σ∗ ← y∗ −H(m∗||pk) and continues as follows:

a) If m∗ 6⊆ {−→m1, . . . ,
−→mqs} then B returns the forgery (m∗, s∗)

against O1, where s∗ is computed from σ∗ by removing the
corresponding individual signatures of data items in m∗ that
have been queried before (if m∗ is not a vector then use
s∗ itself). This forgery is non-trivial since B did not ask
m∗ to O1 during the experiment. B also returns the forgery
(y∗, γ∗) against O2, which is non-trivial since B did not ask
y∗ to O2 during the experiment. Both forgeries are valid since
PISB -CSA-RSA.Ver(PK ,m∗, γ∗) = 1 implies m∗ and y∗

are valid under pk and pk , respectively.
b) If ∃I ⊆ {1, . . . , qs} : m∗ ⊆ ||k∈I−→mk holds then Breturns

the forgery (σ∗, γ∗) against O2. This forgery is valid and non-
trivial as discussed the above.

The execution time and probability analysis are similar to
Theorem 1 (i.e., the simulation is perfectly indistinguishable).

Theorem 3 PISB -RP is (t, qs, ε)-I -EU -CMA secure, if
ASig is (t′, qs, ε)-EU -CMA secure and (t, qs, ε)-AE secure,
where t′ = O(t) + qs · Op and Op denotes the cost of signature
generation for ASig .

Proof: Suppose algorithmA breaks (t, qs, ε)-I -EU -CMA secure
PISB -RP . We then construct a simulator B, which breaks
(t′, qs, ε)-EU -CMA secure and (t, qs, ε)-AE secure ASig by
using A as a subroutine.

We set the EU -CMA experiments for B, in which it is given
ASig public keys (

−→
pk, pk), where (

−→
sk,
−→
pk) ← ASig .Kg(1κ)

and (sk , pk) ← ASig .Kg(1κ). B is also provided signature
oracle ASig .Sign under PK = (

−→
pk, pk). B will simulate A’s

signature queries via ASig .Sign . B also maintains two lists
LR and LD that are used to keep track the queries during the
experiment. B then executes A for the I -EU -CMA experiment
for PISB -RP as follows:

- Setup: Given (
−→
pk, pk), B sets the PISB -RP public key

PK ← (
−→
pk, pk) as in PISB -RP .Kg algorithm. By Definition

7, B gives PK to A and allows A to ask qs PISB -RP signa-
tures under PK .

- Queries: A queries B on messages −→mj = (mj,1, . . . ,mj,u) of
her choice for j = 1, . . . , qs. B handles queries as follows:

a) B generates rj ← {0, 1}κ and sets m̃j ← (−→mj , rj).
B inserts rj and m̃j into LR and LD, respectively.

b) B queries ASig .Sign on m̃j and obtains its corresponding
signature σj . B sets γj ← (σj , rj) and returns γj to A.

- Forgery of A: A outputs a forgery (m∗, γ∗) and wins the
I -EU -CMA experiment if

(i) PISB -RP .Ver(PK ,m∗, γ∗) = 1,
(ii) m∗ 6⊆ {−→m1, . . . ,

−→mqs} or ∃I ⊆ {1, . . . , qs} : m∗ ⊆
||k∈I−→mk

If A loses in the I -EU -CMA experiment then B loses in
the EU -CMA and AE experiments for ASig , and B aborts.
Otherwise, given m∗ = (m∗1, . . . ,m

∗
k), 1 ≤ k ≤ u and

γ∗ = (σ∗, r∗), B sets the forgery (or aggregate extraction) as
(m̃∗, σ∗), where m̃∗ = (m∗, r∗). B continues as follows:
a) Forgery: If m∗ 6⊆ {−→mj}qsj=1 or r∗ /∈ LR holds then
B returns the forgery (m̃∗, σ∗) against ASig .Sign . This
forgery is non-trivial since m̃∗ /∈ LD. The forgery is
valid since PISB -RP .Ver(PK ,m∗, γ∗) = 1 implies
ASig .Ver(PK , m̃∗, σ∗) = 1 and |r| = κ.

b) Aggregate Extraction: If ∃I ⊆ {1, . . . , qs} : m∗ ⊆
||k∈I−→mk and r∗ ∈ LR hold then it implies the following
conditions also hold as in Definition 8:

(i) ASig .Ver(PK , m̃∗, σ∗) = 1,
(ii) ∃I ′ ⊆ {1, . . . , qs} : m̃∗ ⊆ ||k∈I′m̃k, m̃k ∈ LD,

(iii) ∀I ⊆ {1, . . . , qs} : [m̃∗||(||j∈Im̃j)] 6= {m̃l}qsl=1,
since r∗ ∈ LR and r∗ 6= {m̃l ∈ LD}qsl=1 hold.

Since the validity and non-triviality conditions described in
Definition 8 are satisfied, B returns (m̃∗, σ∗) as an aggregate
extraction against ASig .Sign .

The execution time and probability analysis are similar to Theorem
1 (i.e., the simulation is perfectly indistinguishable).

6 PERFORMANCE ANALYSIS

We now present the performance analysis of PISB schemes and
compare them with the existing alternatives.

6.1 Computational Overhead
In PISB -Generic, the server requires a Sig .Sign plus the ag-
gregation of l individual ASig signatures. The client requires a
Sig .Ver plus ASig .Ver for l data items. In PISB -CSA-RSA,
the server requires a C -RSA.Sig computation plus l modu-
lar multiplications. The client requires a single RSA.Ver plus
C -RSA.Ver for l data items.

The PISB -CSA-RSA is the most client efficient scheme
among all of its counterparts, since it only requires
RSA and C -RSA signature verifications with a small exponent
(e.g., e = 3). Therefore, it is an ideal choice for battery or
computational limited queriers such as mobile devices. However,
it requires a full RSA exponentiation at the server side. Notice
that even with the server side exponentiation, the end-to-end delay
of PISB -CSA-RSA is 50, 65, 41, and 55 times lower than

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

10

that of PISB -Generic, GQ-based, SKROOT-based and iBGLS
schemes, respectively. The end-to-end delay of PISB -RP instan-
tiated with C -RSA is (l + 1)H + (2l + 4) ·Mul. This is the
lowest computational end-to-end delay among all compared alter-
natives being a magnitude(s) of times more efficient than previous
schemes [7], [12] as well as other PISB variants (see Table 2 and
Figure 2d for execution time comparisons without and with sim-
ulated network delays, respectively). Finally, PISB -Generic can
be instantiated with various signature schemes, which allow dif-
ferent performance trade-offs (see Table 1).

6.2 Communication and Storage Overhead
PISB schemes do not require multi-round communication
to achieve the immutability. Therefore, their signature over-
head is the aggregate signature plus the protection signature
in PISB -Generic, and only the aggregate signature itself in
PISB -CSA-RSA. The private and public key sizes are the sum
of that of their base signature schemes.

PISB -Generic with BGLS and ECDSA has the smallest key
and signature sizes among its counterparts with the exception of
iBGLS (which has a much larger end-to-end delay and client
computation as seen in Table 2). PISB -CSA-RSA also has
much smaller signature and key sizes than that of GQ-based and
SKROOT-based schemes. Despite GQ-based scheme is client and
server computationally efficient, it is not practical due to its multi-
round communication (introduces a substantial communication
delay as shown in Figure 2d). Multi-round communication is
undesirable for wireless and low bandwidth applications due to
the packet loss potential.

PISB -RP requires transmitting κ-bit (e.g., 80 bits) random
number along with the aggregate signature. It also requires storing
(|σ| + κ) pre-computed token-signature pairs per query as in
other pre-computation methods (e.g., [23], [25], [27]). These
signature size and pre-storage overhead are more efficient than
that of PISB -Generic instantiation with ECDSA token and
offline/online signatures (e.g., [23], [25], [27]) as shown in Table
1 and Table 2. However, notice that, all pre-computation methods
including PISB -RP increases the server storage compared to
PISB schemes and previous schemes (e.g., [7], [12]) that do not
rely on pre-computation.

6.3 Discussions
Table 1 and Table 2 compare our schemes with previous schemes.
We give details of the comparison as follows:
• Instantiations: In PISB -Generic instantiated with

C -RSA and OO2, we assume that one-time public key for
per-item is transmitted along with the one-time signature itself.
Another possibility is to pre-deploy a one-time public keys to the
client side, which would then incur a linear public key size (and
also pre-deployment still requires the transmission of a one-time
public keys). One may replace HORS [27] with some variants
such as TV-HORS [29] that does not require transmitting or
pre-storing one-time public keys via public key hash chaining
methods. However, such methods sacrifice security (i.e., time-
valid security), introduce non-negligible packet loss and requires
a loose-time synchronization [29]. In PISB -RP instantiated with
C -RSA, the size of private/public key are |n| but not 2|n|,
since both the individual signatures to be aggregated and random
number-signature pairs are generated by the data owner with the
same private key.

We select some instantiations from Table 1 to provide repre-
sentative numeric values in Table 2. We select PISB -Generic in-
stantiated with BGLS, since it provides the smallest signature
and private/public key sizes (without pre-computation) and also
enables the multiple-signer aggregation. PISB -CSA-RSA is a
versatile scheme with high computational efficiency and plau-
sible signature/key sizes without requiring pre-computation. We
select PISB -RP instantiated with C -RSA, since it achieves
the highest computational efficiency, low communication and
end-to-end delay overall, but it requires pre-storage. Notice that
PISB -RP has a smaller pre-storage overhead than that among
other pre-computation alternatives with similar end-to-end delay
(e.g., (CRSA,OO1) and (CRSA,OO2) as seen in Table 1, but
(BGLS,ECDSA-p) has a high end-to-end delay due to BGLS).
PISB -Generic is instantiated with BGLS [8] as ASig (20 byte)
and with ECDSA [55] as Sig (40 byte protection signature)
for pre-computed parameters (0.36 ms) [59] or pre-computed
tokens [24] (0.03 ms). PISB -RP in this example is instantiated
with C -RSA. PISB -RP generically can achieve both multiple
(e.g., via BGLS instantiation) and single signer aggregation.

The immutable signature size is the aggregate signature size
plus the size of additional cryptographic tags transmitted (e.g.,
protection signatures, values transmitted for multi-rounds).
• Parameters and Measurements: Given κ = 80, we select

|n| = 1024, |H| = 160, |q′| = 160, |p′| = 512, |b| = 30,
z = 20, t = 256. The estimated execution times are measured
for l = 10 data items (query elements). Estimated execution
times are measured on a computer with an Intel(R) Core(TM)
i7 Q720 at 1.60GHz CPU and 2GB RAM running Ubuntu 10.10.
We used MIRACL [59] library for all the measurements including
cryptographic pairing operations.
• Multi-rounds and Delays: GQ-based scheme needs three

communication rounds (each three passes) to achieve κ ≥ 80, in
which each pass needs to transmit an element from Z∗N . End-to-
end delay is the sum of client and server execution times plus the
estimated communication delay introduced by multi-rounds. Only
GQ-based scheme requires multi-rounds, which substantially in-
crease its end-to-end delay. We only consider the delay introduced
due to extra rounds (but not the unavoidable one-way transmission
from server to the client, which exists in all compared schemes).
The average network delay is assumed as 30 ms round trip time
for a single query.
• Pre-storage overhead: PISB -RP , offline/online signa-

tures (e.g., [23], [25], [26] and PISB -Generic instantiations
that rely offline/online signatures and ECDSA tokens [24] require
storing a pre-computed token in order to generate a signatures
during the online phase (see the last column of Table 1). For
instance, given a = 104 queries to be processed, PISB -RP with
C -RSA, PISB -Generic with (BGLS,ECDSA-p), (CRSA,OO1)
and (CRSA,OO2) require approximately 1.3 MB, 0.5 MB, 48 MB
and 2.5 MB pre-storage, respectively.
• Figures: Figure 2a and Figure 2b compare estimated exe-

cution times of PISB and previous schemes for the client and
server sides, respectively. These estimated execution times are
based on the values presented in Table 2 and are projected for
the increasing numbers of queries up to a = 104 (for l = 10
data items for each query). Figure 2c compares the communication
overhead of PISB and previous schemes. These costs are based on
only signature sizes but not the transmitted data items (which are
the same for all compared schemes). Figure 2d compares end-to-
end delay of PISB and previous schemes by considering average

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

11
TABLE 1: The client and server overhead of PISB and its counterparts for l data items (analytical)

- Client Comp. Server Comp. Sig. SK PK Pre-store

PISB-

Generic, multiple Sig.Ver + ASig.Ver l Sig.Sign + ASig.Aggl |σ| u|sk | u|pk | -
(BGLS,ECDSA-P) l(BM +H) + 1.3 ·Emul l ·EAdd 3|q′| 2|q′| 2(|p′|+ |q′|) a(2|q′|+ κ)

Generic (CRSA,OO1) l(H +Mul) +Exp
|n|
|n| l ·Mul+H 3|n| 3|n| 3|n| a(2|n|)

(CRSA,OO2) l(H +Mul) + z ·H l ·Mul (z + t)(|H|+ |n|) t · (|H|+ |n|) t · (|H|+ |n|) a(t · |H|)

PISB-
Generic, multiple ASig.Ver l+1 ASig.Aggl+1 |σ| u|sk| u|pk| a(|σ|+ κ)

BGLS, u = 2 l · (BM +H) l ·EAdd |q′| 2|q′| 2(|p′|+ |q′|) a(|q′|+ κ)
RP CRSA l · (H +Mul) l ·Mul |n|+ κ |n| |n| a(|n|+ κ)

PISB-CSA-RSA l(H +Mul) Exp
|n|
|n| + l ·Mul |n| 2|n| 2|n| -

GQ-based [7] 3Exp
|b|
|n| + l(H +Mul) 3Exp

|b|
|n| + l ·Mul 9|n| |b|+ |n| |b|+ |n| -

SKROOT-based [7] 4Exp
|n|
|2n| + l(H +Mul) 4Exp

|n|
|2n| + l ·Mul 4|n| 5|n| |n| -

iBGLS [7] l · (BM +H) EMul + l · EAdd |q′| |q′| |p′|+ |q′| -

• Notation: We denote our proposed schemes and the metrics that they outperform at least one of the compared schemes in bold. Exp|x|
|y| denotes a modular exponentiation with a

modulus and exponent sizes |y| and |x|, respectively. Mul denotes modular multiplication under modulus n. BM , EAdd, and EMul denote ECC bilinear map, scalar addition
and scalar multiplication over modulus q′, respectively. Mulq′ denotes modular multiplication under modulus q′. ASig.Ver l denotes the aggregate signature verification for l
items (the notation applies to ASig.Agg). We omit constant number of low-cost operations if there is an expensive operation (e.g., a single H or Mul is omitted if there is an
Exp). We use double-point scalar multiplication for ECDSA verifications (1.3 · Emul instead of 2 · EMul). |H|, |σ|, |sk | and |pk | denote the bit lengths of the output of H ,
signature, private key and public key for Sig , respectively (Sig is selected as ECDSA with |q′| in Table 1). OO1 and OO2 refer to Shamir’s offline/online scheme [25] and generic
offline/online scheme [26] instantiated with HORS [27], respectively. (BGLS,ECDSA-P) means PISB-Generic is instantiated with BGLS as the aggregate signature and ECDSA
with token Pre-computation [24] as the protection signature. The similar notation applies to (CRSA,OO1) and (CRSA,OO2). For PISB schemes “multiple" denoted in generic scheme
means multiple-signer for u distinct data owners. All other PISB schemes are evaluated in single signer mode. Variables a denotes the number of queries to be made by the client
(also implies the number of pre-computed tokens to be stored by the server) in a given session. Variables (z, t) are parameters used in HORS [27].

TABLE 2: The client/server overhead of PISB and its counterparts for l = 10 items in a query (in ms)

- PISB-GenericPISB-CSA-RSA PISB-RP GQ-based [7] SKROOT [7]iBGLS [7]
Server Comp. 0.66 / 0.39 4.03 0.22 1.5 92.4 2.2
Client Comp. 224.97 0.46 0.41 1.57 92.77 245.7

Extra rounds 0 0 0 3 rounds (each
3 passes) 0 0

(Est.) End-to-end 225.63 4.49 0.63 292 185.17 247.9
Signature size 60 byte 1 KB 1.1KB 9 KB 4 KB 20 byte

sk size 40 byte 2 KB 1KB 1 KB 5 KB 20 byte
pk size 80 byte 1 KB 1 KB 1 KB 1 KB 40 byte

Pre-store (server), (per-message) 50 byte - 138 byte - - -
Pre-computation cost (offline, per-message) 0.68 - 4.06 - - -

Aggregation Type Multiple/single Multiple/single Single Single Single Multiple
Provable Sec. Yes Yes Yes No No No

Special Pre-computation Yes Yes Yes No No No

execution time plus simulated network delays. The estimated
end-to-end delay is the server and client execution times plus
the simulated network delay. We assume that the network delay
for each query varies between 20 ms to 40 ms for a round-
trip communication (fluctuations in the plot are caused by these
varying delays). Notice that interactive schemes (e.g., GQ in [7],
[12]) are negatively affected from network delays.

These comparisons show that PISB schemes are the most
computational and communication efficient schemes with the
lowest end-to-end delay among all compared alternatives.

7 CONCLUSION

In this paper, we developed new cryptographic schemes called
PISB , which provide practical immutable signatures for out-
sourced databases. We also gave the first formal security assess-
ment of immutable signatures for outsourced databases, high-
lighted the relationship between aggregate extraction problem
and signature immutability, and then provided formal proofs
for PISB schemes. We also demonstrated that PISB schemes
are much more efficient than previous immutable signatures:
PISB -Generic describes a simple yet efficient way to obtain
immutable constructions via standard signatures that is more
efficient than previous solutions. PISB -CSA-RSA offers a very

low verifier computational overhead and high communication
efficiency via a C -RSA based construction, which is ideal
for battery/computation limited queriers (e.g., mobile devices).
PISB -RP achieves the lowest end-to-end delay among all com-
pared alternatives via special pre-computation techniques, which is
desirable for task-intensive applications by increasing the service
quality. All PISB schemes are non-interactive and have small
signature sizes. Hence, PISB schemes are ideal choices for
providing immutability, authentication and integrity services for
outsourced database systems.

REFERENCES

[1] H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing database as a
service,” in Proceedings of the 18th International Conference on Data
Engineering, ser. ICDE ’02, Washington, DC, USA, 2002, pp. 29–38.

[2] R. S., “Secure data outsourcing,” in Proceedings of the 33rd international
conference on Very large data bases (VLDB), 2007, pp. 1431–1432.

[3] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and integrity
in outsourced databases,” Transaction on Storage (TOS), vol. 2, no. 2, pp.
107–138, 2006.

[4] A. Patel, S. J. Nirmala, and S. M. Bhanu, “Security and availability of
data in the cloud,” in Advances in Computing and Information Technol-
ogy, ser. Advances in Intelligent Systems and Computing. Springer
Berlin Heidelberg, 2012, vol. 176, pp. 255–261.

[5] H. Wang and L. V. S. Lakshmanan, “Efficient secure query evaluation
over encrypted xml databases,” in Proceedings of the 32nd international
conference on Very large data bases, ser. VLDB ’06, 2006, pp. 127–138.

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

12

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Generic
CSA−RSA
RP

GQ
SKROOT
iBGLS

(a) Server execution time comparison of PISB and its counterparts

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Generic
CSA−RSA
RP

GQ
SKROOT
iBGLS

(b) Client execution time comparison of PISB and its counterparts

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Generic
CSA−RSA
RP

GQ
SKROOT
iBGLS

(c) Communication cost comparison of PISB and its counterparts

10
0

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Generic
CSA−RSA
RP

GQ
SKROOT
iBGLS

(d) End-to-end delay comparison of PISB and its counterparts

Fig. 2: Computation, communication and end-to-end delay comparison of PISB schemes and their counterparts. PISB -Generic and
PISB -RP are instantiated with (BGLS ,ECDSA-P) and C -RSA. Figures are in log-log (base 10) scale.

[6] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Privacy-preserving group data access via stateless oblivious ram simula-
tion,” in Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2012, pp. 157–167.

[7] E. Mykletun, M. Narasimha, and G. Tsudik, “Signature bouquets: Im-
mutability for aggregated/condensed signatures,” in Proceedings of the
9th European Symposium on Research in Computer Security (ESORICS
’04). Springer-Verlag, September 2004, pp. 160–176.

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifi-
ably encrypted signatures from bilinear maps,” in Proc. of the 22th In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT ’03). Springer-Verlag, 2003, pp. 416–432.

[9] A. A. Yavuz, “Practical immutable signature bouquets (PISB) for authen-
tication and integrity in outsourced databases,” in 27th Annual on Data
and Applications Security and Privacy, ser. DBSec ’13, July 15-17 2013.

[10] J. Coron and D. Naccache, “Boneh et al.’s k-element aggregate extraction
assumption is equivalent to the diffie-hellman assumption,” in Proceed-
ings of the 9th International Conference on the Theory and Application
of Cryptology (ASIACRYPT 03’), 2003, pp. 392–397.

[11] R. Johnson, D. Molnar, D. X. Song, and D. Wagner, “Homomorphic
signature schemes,” in CT-RSA, 2002, pp. 244–262.

[12] E. Mykletun and G. Tsudik, “Aggregation queries in the database-as-a-
service model,” in Proceedings of the 20th IFIP WG 11.3 working con-

ference on Data and Applications Security, ser. DBSEC’06. Springer-
Verlag, 2006, pp. 89–103.

[13] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters, “Sequential
aggregate signatures and multisignatures without random oracles,” in
Proc. of the 25th International Conference on the Theory and Applica-
tions of Cryptographic Techniques (EUROCRYPT ’06). Springer-Verlag,
2006, pp. 465–485.

[14] A. Boldyreva, C. Gentry, A. O’Neill, and D. Yum, “Ordered multisig-
natures and identity-based sequential aggregate signatures, with applica-
tions to secure routing,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security, (CCS ’07). ACM, 2007, pp.
276–285.

[15] H. Zhu and J. Zhou, “Finding compact reliable broadcast in unknown
fixed-identity networks (short paper),” in Proc. of the 6th International
Conference on Information and Communications Security (ICICS ’06),
2006, pp. 72–81.

[16] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham, “Sequential
aggregate signatures from trapdoor permutations,” in Proc. of the 23th In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT ’04). Springer-Verlag, 2004, pp. 74–90.

[17] L. C. Guillou and J. J. Quisquater, “A “paradoxical" identity-based
signature scheme resulting from zero-knowledge,” in Proceedings on
Advances in Cryptology (CRYPTO ’88). Springer-Verlag, 1988, pp.

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

13

216–231.
[18] P. Samarati and S. D. C. di Vimercati, “Data protection in outsourcing

scenarios: issues and directions,” in Proceedings of the 5th ACM Sym-
posium on Information, Computer and Communications Security, ser.
ASIACCS ’10, 2010, pp. 1–14.

[19] B. Thompson, S. Haber, W. G. Horne, T. Sander, and D. Yao, “Privacy-
preserving computation and verification of aggregate queries on out-
sourced databases,” in Proc. of the 9th Int. Symposium on Privacy
Enhancing Technologies, ser. PETS ’09, 2009, pp. 185–201.

[20] D. Ma and G. Tsudik, “A new approach to secure logging,” ACM
Transaction on Storage (TOS), vol. 5, no. 1, pp. 1–21, 2009.

[21] A. A. Yavuz, P. Ning, and M. K. Reiter, “BAF and FI-BAF: Efficient and
publicly verifiable cryptographic schemes for secure logging in resource-
constrained systems,” ACM Transaction on Information System Security,
vol. 15, no. 2, 2012.

[22] A. Yavuz, P. Ning, and M. Reiter, “Efficient, compromise resilient
and append-only cryptographic schemes for secure audit logging,” in
Financial Cryptography and Data Security (FC 2012), ser. Lecture Notes
in Computer Science, March 2012, vol. 7397, pp. 148–163.

[23] S. Even, O. Goldreich, and S. Micali, “Online/offline digital signatures,”
in Proceedings on Advances in Cryptology (CRYPTO ’89). Springer-
Verlag, 1989, pp. 263–275.

[24] D. Naccache, D. M’Raïhi, S. Vaudenay, and D. Raphaeli, “Can D.S.A.
be improved? Complexity trade-offs with the digital signature standard,”
in Proceedings of the 13th International Conference on the Theory and
Application of Cryptographic Techniques (EUROCRYPT ’94), 1994, pp.
77–85.

[25] A. Shamir and Y. Tauman, “Improved online/offline signature schemes,”
in Proceedings of the 21st Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’01. London, UK: Springer-
Verlag, 2001, pp. 355–367.

[26] D. Catalano, M. D. Raimondo, D. Fiore, and R. Gennaro, “Off-line/on-
line signatures: Theoretical aspects and experimental results,” ser. Public
Key Cryptography (PKC). Springer-Verlag, 2008, pp. 101–120.

[27] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signatures
with fast signing and verifying,” in Proceedings of the 7th Australian
Conference on Information Security and Privacy (ACIPS ’02). Springer-
Verlag, 2002, pp. 144–153.

[28] J. Lee, S. Kim, Y. Cho, Y. Chung, and Y. Park, “HORSIC: An efficient
one-time signature scheme for wireless sensor networks,” Information
Processing Letters, vol. 112, no. 20, pp. 783 – 787, 2012.

[29] Q. Wang, H. Khurana, Y. Huang, and K. Nahrstedt, “Time valid one-time
signature for time-critical multicast data authentication,” in INFOCOM
2009, IEEE, April 2009.

[30] J. Pieprzyk, H. Wang, and C. Xing, “Multiple-time signature schemes
against adaptive chosen message attacks,” in Selected Areas in Cryptog-
raphy (SAC), 2003, pp. 88–100.

[31] W. Neumann, “HORSE: An extension of an r-time signature scheme with
fast signing and verification,” in Information Technology: Coding and
Computing, 2004. Proceedings. ITCC 2004. International Conference
on, vol. 1, april 2004, pp. 129 – 134 Vol.1.

[32] A. A. Yavuz, “Eta: efficient and tiny and authentication for heterogeneous
wireless systems,” in Proceedings of the sixth ACM conference on
Security and privacy in wireless and mobile networks, ser. WiSec ’13.
New York, NY, USA: ACM, 2013, pp. 67–72.

[33] C. Schnorr, “Efficient signature generation by smart cards,” Journal of
Cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[34] P. Horster, H. Petersen, and M. Michels, “Meta-elgamal signature
schemes,” in Proceedings of the 2nd ACM Conference on Computer and
communications security, ser. CCS ’94. New York, NY, USA: ACM,
1994, pp. 96–107.

[35] A. Yavuz, “An efficient real-time broadcast authentication scheme for
command and control messages,” Information Forensics and Security,
IEEE Transactions on, vol. 9, no. 10, pp. 1733–1742, Oct 2014.

[36] R. Tamassia, “Authenticated data structures,” in Algorithms - ESA 2003,
ser. Lecture Notes in Computer Science, G. Di Battista and U. Zwick,
Eds. Springer Berlin Heidelberg, 2003, vol. 2832, pp. 2–5.

[37] C. Papamanthou and R. Tamassia, “Time and space efficient algorithms
for two-party authenticated data structures,” in Information and Commu-
nications Security, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2007, vol. 4861, pp. 1–15.

[38] M. Etemad and A. KÃijpÃğÃij, “Database outsourcing with hierarchical
authenticated data structures,” in Information Security and Cryptology
– ICISC 2013, ser. Lecture Notes in Computer Science. Springer
International Publishing, 2014, pp. 381–399.

[39] J. Benaloh and M. de Mare, “One-way accumulators: A decentralized
alternative to digital signatures,” in Workshop on the Theory and Ap-

plication of Cryptographic Techniques on Advances in Cryptology, ser.
EUROCRYPT ’93. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 1994, pp. 274–285.

[40] M. Goodrich, R. Tamassia, and J. Hasic, “An efficient dynamic and
distributed cryptographic accumulator,” in Information Security, ser.
Lecture Notes in Computer Science, 2002, vol. 2433, pp. 372–388.

[41] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Authenticated
hash tables based on cryptographic accumulators,” Algorithmica, pp. 1–
49, 2015.

[42] R. Merkle, “Protocols for public key cryptosystems,” in Proceedings of
the IEEE Symposium on Research in Security and Privacy, Apr 1980.

[43] H. Pang and K.-L. Tan, “Authenticating query results in edge computing,”
in Data Engineering, 2004. Proceedings. 20th International Conference
on, March 2004, pp. 560–571.

[44] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis, “Authenticated
join processing in outsourced databases,” in Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’09. New York, NY, USA: ACM, 2009, pp. 5–18.

[45] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,”
Commun. ACM, vol. 33, no. 6, pp. 668–676, Jun. 1990.

[46] J. Wang and X. Du, “Skip list based authenticated data structure in das
paradigm,” in Grid and Cooperative Computing, 2009. GCC ’09. Eighth
International Conference on, Aug 2009, pp. 69–75.

[47] B. Palazzi, M. Pizzonia, and S. Pucacco, “Query racing: Fast complete-
ness certification of query results,” in Data and Applications Security
and Privacy XXIV, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2010, vol. 6166, pp. 177–192.

[48] S. Crosby and D. S. Wallach, “Efficient data structures for tamper evident
logging,” in Proceedings of the 18th conference on USENIX Security
Symposium, August 2009.

[49] R. Ostrovsky and W. E. Skeith, III., “A survey of single-database
private information retrieval: techniques and applications,” in Proc. of
the 10th international conference on Practice and theory in public-key
cryptography, ser. PKC’07. Springer-Verlag, 2007, pp. 393–411.

[50] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proceedings of the 1st ACM confer-
ence on Computer and Communications Security (CCS ’93). NY, USA:
ACM, 1993, pp. 62–73.

[51] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman
& Hall/CRC, 2007.

[52] M. Bellare and P. Rogaway, “The exact security of digital signatures:
How to sign with RSA and Rabin,” in Proceedings of the 15th Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT ’96). Springer-Verlag, 1996, pp. 399–416.

[53] A. Joux and K. Nguyen, “Separating decision diffie-hellman from com-
putational diffie-hellman in cryptographic groups,” Journal of Cryptol-
ogy, vol. 16, no. 4, pp. 239–247, 2003.

[54] A. A. Yavuz and P. Ning, “BAF: An efficient publicly verifiable secure
audit logging scheme for distributed systems,” in Proceedings of 25th
Annual Computer Security Applications Conference (ACSAC ’09), 2009,
pp. 219–228.

[55] ANSI X9.62-1998: Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA),
American Bankers Association, 1999.

[56] X. Ding and G. Tsudik, “Simple identity-based cryptography with medi-
ated rsa,” in Proceedings of the RSA conference on the cryptographers’
track (CT-RSA ’03). Springer-Verlag, 2003, pp. 193–210.

[57] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Springer, 2004.

[58] D. Stinson, Cryptography: Theory and Practice,Second Edition.
CRC/C&H, 2002.

[59] Shamus, “Multiprecision integer and rational arithmetic c/c++ li-
brary (MIRACL),” http://www.certivox.com/miracl/miracl-download/,
Last Accessed on 09/02/2014.

http://www.certivox.com/miracl/miracl-download/

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2530708, IEEE
Transactions on Dependable and Secure Computing

14

Attila Altay Yavuz received a BS degree in
Computer Engineering from Yildiz Technical Uni-
versity (2004) and a MS degree in Computer
Science from Bogazici University (2006), both
in Istanbul, Turkey. He received his PhD degree
in Computer Science from North Carolina State
University in August 2011. Between December
2011 and July 2014, he was a member of the se-
curity and privacy research group at the Robert
Bosch Research and Technology Center North
America. Since August 2014, he has been an

Assistant Professor in the School of Electrical Engineering and Com-
puter Science, Oregon State University, Corvallis, USA. He is also an
adjunct faculty at the University of Pittsburgh’s School of Information
Sciences since January 2013.

Attila Altay Yavuz is interested in design, analysis and application of
cryptographic tools and protocols to enhance the security of computer
networks and systems. His current research focuses on the following
topics: Privacy enhancing technologies (e.g., dynamic symmetric and
public key based searchable encryption), security in cloud computing,
authentication and integrity mechanisms for resource-constrained de-
vices and large-distributed systems, efficient cryptographic protocols for
wireless sensor networks.

