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Abstract—In this paper, we propose new location privacy
preserving schemes for database-driven cognitive radio networks
that protect secondary users’ (SUs) location privacy while allow-
ing them to learn spectrum availability in their vicinity. Our
schemes harness probabilistic set membership data structures
to exploit the structured nature of spectrum databases (DBs)
and SUs’ queries. This enables us to create a compact represen-
tation of DB that could be queried by SUs without having to
share their location with DB, thus guaranteeing their location
privacy. Our proposed schemes offer different cost-performance
characteristics. Our first scheme relies on a simple yet powerful
two-party protocol that achieves unconditional security with a
plausible communication overhead by making DB send a com-
pacted version of its content to SU which needs only to query
this data structure to learn spectrum availability. Our second
scheme achieves significantly lower communication and compu-
tation overhead for SUs, but requires an additional architectural
entity which receives the compacted version of the database and
fetches the spectrum availability information in lieu of SUs to
alleviate the overhead on the latter. We show that our schemes
are secure, and also demonstrate that they offer significant advan-
tages over existing alternatives for various performance and/or
security metrics.

Index Terms—Database-driven spectrum availability, location
privacy preservation, cognitive radio networks, set membership
data structures.

I. INTRODUCTION

COGNITIVE radio networks (CRNs) have emerged as
a key technology for addressing the problem of spec-

trum utilization inefficiency [2]–[8]. CRNs allow unlicensed
users, also referred to as secondary users (SUs), to access
licensed frequency bands opportunistically, so long as doing
so does not harm licensed users, also referred to as pri-
mary users (PUs). In order to enable SUs to identify
vacant frequency bands, also called white spaces, the fed-
eral communications commission (FCC) has adopted two

Manuscript received September 24, 2016; revised March 10, 2017; accepted
April 26, 2017. Date of publication May 8, 2017; date of current version
June 16, 2017. This work was supported in part by the U.S. National Science
Foundation under NSF award CNS-1162296. This manuscript is an extension
of [1], published in: Computer Networks and Information Security (WSCNIS),
2015 World Symposium on. The associate editor coordinating the review of
this paper and approving it for publication was Q. Zhang. (Corresponding
author: Mohamed Grissa.)

The authors are with Oregon State University, Corvallis, OR 97331
USA (e-mail: grissam@oregonstate.edu; attila.yavuz@oregonstate.edu;
hamdaoui@oregonstate.edu).

Digital Object Identifier 10.1109/TCCN.2017.2702163

main approaches: spectrum sensing-based approach and geo-
location database-driven approach.

In the sensing-based approach [9], SUs themselves sense
the licensed channels to decide whether a channel is available
prior to using it so as to avoid harming PUs. In the database-
driven approach, SUs rely on a geo-location database (DB)
to obtain channel availability information. For this, SUs are
required to be equipped with GPS devices so as to be able
to query DB on a regular basis using their exact locations.
Upon receipt of a query, DB returns to SU the list of available
channels in its vicinity, as well as the transmission parameters
that are to be used by SU. This database-driven approach has
advantages over the sensing-based approach. First, it pushes
the responsibility and complexity of complying with spectrum
policies to DB. Second, it eases the adoption of policy changes
by limiting updates to just a handful number of databases, as
opposed to updating large numbers of devices [10].

Companies, like Google and Microsoft, are selected by
FCC to administrate these geo-location databases, follow-
ing the guidelines provided by PAWS (Protocol to Access
White-Space) [10]. PAWS protocol defines guidelines and oper-
ational requirements for both the spectrum database and the
SUs querying it. These requirements include: SUs need to
be equipped with geo-location capabilities, SUs must query
DB with their specific location to check channel availability
before starting their transmissions, DB must register SUs and
manage their access to the spectrum, DB must respond to SUs’
queries with the list of available channels in their vicinity along
with the appropriate transmission parameters.

Despite their effectiveness in improving spectrum utilization
efficiency, database-driven CRNs suffer from serious security
and privacy threats. The disclosure of location privacy of SUs
has been one of such threats to SUs when it comes to obtaining
spectrum availability from DBs. This is simply because SUs
have to share their locations with DB to learn about spec-
trum availability. The fine-grained location, when combined
with publicly available information, can lead to even greater
private information leakage. For example, it can be used to
infer private information like shopping patterns, preferences,
behavior and beliefs, etc. [11]. Being aware of such potential
privacy threats, SUs may refuse to rely on DB for spectrum
availability information. Therefore, there is a critical need
for location-privacy preserving schemes for database-driven
spectrum access.

2332-7731 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



256 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 3, NO. 2, JUNE 2017

A. Our Contribution

In this paper, we propose two location privacy-preserving
schemes for database-driven CRNs with different performance
and architectural benefits. The first scheme, location privacy
in database-driven CRNs (LPDB), provides optimal location
privacy to SUs within DB’s coverage area by leveraging set
membership data structures (used to test whether an element
is a member of a set) to construct a compact version of DB.
The second scheme, LPDB with two servers (LPDBQS), min-
imizes the overhead at SU’s side at the cost of deploying an
additional entity in the network. The cost-performance trade-
off gives more options to system designers to decide which
topology and which approach is more suitable to their specific
requirements.

Both approaches exploit two important facts: (i) Spectrum
databases are highly structured [10]; and (ii) SUs queries
contain always the same device-specific characteristics (e.g.,
device type, antenna hight, frequency range, etc.) [10]. The
highly structured property of the database refers to the fact
that DB’s structure is usually agreed upon by the FCC and the
database administrators, like Google, Microsoft, etc, and that
the queries and messages exchanged by DB and SUs have
a specific format in terms of what data they include. This
well-defined information is available to both database admin-
istrators and SUs which allows them to have an idea on what
kind of data the other party will include in its query/response,
and also to compact both DB’s content and the queries using
probabilistic data structures. In fact, and as recommended by
the PAWS standard, the database should always reply to SUs
with a set of predetermined information. This allows DB to
compact its content to include only this information, which
significantly reduces queried data sizes, and enables SUs to
emulate DB’s response when querying the probabilistic data
structure as we show next.

A desirable property of our schemes is their simplicity that
is expected to facilitate their applicability in real-life applica-
tions. Our proposed schemes offer various cost-performance
trade-offs that can meet the requirements of different appli-
cations. We study these tradeoffs and show that high privacy
and better performance for SUs’ can be achieved, but at the
cost of deploying an additional architectural entity in the sys-
tem. We show that our proposed schemes are secure and more
efficient than their existing counterparts. In addition, we study
the impact of system parameters on the performances of our
proposed schemes, and compare them against those obtained
via existing approaches.

Compared to our preliminary work [1], this paper provides:
(i) A new scheme, LPDBQS, with multiple deployment sce-
narios, that improves the overhead on SUs’ side by relying
on an extra architectural entity; (ii) An improvement to our
previously proposed scheme, LPDB, by incorporating spec-
trum sensing to reduce the impact of the false positive rate of
the used set membership data structure on spectrum availabil-
ity information’s accuracy; (iii) A detailed security analysis
of the proposed schemes; and (iv) More detailed performance
analysis with more evaluation metrics.

The remainder of this paper is organized as follows: We
discuss related work in Section II. We present our system

and threat models along with our security assumptions in
Section III. Section IV provides a brief overview of the
set membership data structure that we use in this paper. In
Section V-A, we present our first scheme LPDB. We describe
our second scheme LPDBQS in Section V-B. We evaluate
and analyze the performance of the proposed schemes in
Section VII, and conclude our work in Section VIII.

II. RELATED WORK

Despite its importance, the location privacy issue in CRNs
only recently gained interest from the research commu-
nity [12]. Some works focused on addressing this issue in
the context of collaborative spectrum sensing [13]–[17] while
others focused on addressing it in the context of dynamic spec-
trum auction [18]. However, these works are not within the
scope of this paper as we focus on the location privacy issue
in database-driven CRNs.

Protecting SUs’ location privacy in database-driven CRNs
is a very challenging task, since SUs are required to pro-
vide their physical locations to DB in order for them to be
able to learn about spectrum opportunities in their vicini-
ties. Recently developed techniques mostly adopt either the
k-anonymity [19], Private Information Retrieval (PIR) [20],
or differential privacy [21] concepts. However, direct adapta-
tion of such concepts yield either insecure or extremely costly
results. For instance, k-anonymity guarantees that SU’s loca-
tion is indistinguishable among a set of k points, which could
be achieved through the use of dummy locations by generat-
ing k − 1 properly selected dummy points, and performing k
queries to DB using both the real and dummy locations. For
example, Zhang et al. [22] rely on this concept to make each
SU query DB by sending a square cloak region that includes
its actual location. Their approach makes a tradeoff between
providing high location privacy and maximizing some util-
ity, which makes it suffer from the fact that achieving a high
location privacy level results in a decrease in spectrum utility.

PIR, on the other hand, allows a client to obtain information
from a database while preventing the database from learn-
ing which data is being retrieved. Several approaches have
used this approach. For instance, Gao et al. [23] propose a
PIR-based approach, termed PriSpectrum, that relies on the
PIR scheme of Trostle and Parrish [24] to defend against a
newly identified attack that exploits spectrum utilization pat-
tern to localize SUs. Troja and Bakiras [25], [26] propose two
other PIR-based approaches that try to minimize the number of
PIR queries by either allowing SUs to share their availability
information with other SUs [25] or by exploiting trajectory
information to make SUs retrieve information for their cur-
rent and future positions in the same query [26]. Despite
their merit in providing location privacy to SUs these PIR-
based approaches incur high overhead especially in terms of
computation.

Using differential privacy, Zhang et al. [27] rely on the
ε-geo-indistinguishability mechanism [28] to make SUs obfus-
cate their location. However, such a mechanism introduces
noise to SU’s location which may impact the accuracy of the
spectrum availability information retrieved.
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There have also been other privacy-enhancing technologies
(PETs) that are not specific to CRNs but are designed to enable
private queries over a database in general. However, many of
these PETs are designed for applications that do not fit in
the context of CRNs. For instance, oblivious random access
memory (ORAM) [29] aims to enable a user to outsource its
encrypted data to a database and to offer him/her the possibil-
ity to access this data while hiding the access patterns from the
database [12]. Searchable symmetric encryption [30] is another
PET that is largely deployed to privately outsource one’s data
to another party while maintaining the ability to selectively
search over it [12]. These PETs are designed for protecting
queries and searches over data that is outsourced to a database,
which is completely different from the CRN scenario where
the queried data belong to the database itself.

III. SYSTEM MODEL AND SECURITY ASSUMPTIONS

A. Database-Driven CRN Model

We first consider a CRN that consists of a set of SUs
and a geo-location database (DB). SUs are assumed to be
enabled with GPS and spectrum sensing capabilities, and
to have access to DB to obtain spectrum availability infor-
mation within its operation area. To learn about spectrum
availability, a SU queries DB by including its location and
its device characteristics. DB responds with a list of avail-
able channels at the specified location and a set of parameters
for transmission over those channels. SU then selects and
uses one of the returned channels. While using the chan-
nel, SU needs to recheck its availability on a daily basis or
whenever it changes its location by 100 meters as mandated
by PAWS [10].

We then investigate incorporating a third entity to the net-
work along with DB and SUs. This entity, referred to as
query server (QS), has a dedicated high throughput link with
DB. QS is used to guarantee computational location pri-
vacy while reducing the computational and communication
overhead especially on SUs’ side.

B. Security Model and Assumptions

DB and QS are assumed to be honest but curious. That
is, DB and QS follow the protocol honestly but may try to
infer information on the input of other parties beyond what
the output of the protocol reveals. Specifically, our objective
is to prevent these two entities from learning SUs’ location.
Therefore, our security assumptions are as follows:

Security Assumption 1: DB and QS do not modify the
integrity of their input. That is, (i) DB does not maliciously
change SU’s query’s content; (ii) QS does not modify the input
that it receives from DB or SU.

Security Assumption 2: DB and QS do not collude with
each other to infer the location of SUs from their queries.

We further assume that the communication between dif-
ferent entities is secured by a cryptographic protocol like
TLS [31] as suggested by PAWS [10]. This eliminates the risk
of an adversary trying to eavesdrop the communication.

Fig. 1. Cuckoo Filter: 2 hashes per item, 8 buckets each containing 4 entries.

IV. SET MEMBERSHIP DATA STRUCTURES

Our proposed privacy-preserving schemes utilize set mem-
bership data structures to exploit the highly structured prop-
erty of DB. There are several data structures that are designed
for set membership tests, e.g., bloom filter [32], cuckoo fil-
ter [33], etc. However, in this paper, we opt for cuckoo filter as
the building block of our schemes. We use cuckoo filter to con-
struct a compact representation of the spectrum geo-location
database as explained in Sections V-A & V-B. What moti-
vates our choice is that cuckoo filter offers the highest space
efficiency among its current well known alternatives, such as
bloom filters. Besides, it has been proven to be more efficient
than these alternatives especially for large sets. Finally, the
cuckoo filter enjoys fast Lookup and Insert operations that are
beneficial to our schemes.

A cuckoo filter [33] uses cuckoo hashing [34] and is
designed to serve applications that need to store a large number
of items while targeting low false positive rates and requiring
storage space smaller than that required by bloom filters. A
false positive occurs when the membership test returns that an
item exists in the cuckoo filter (i.e., belongs to the set) while it
actually does not. A false negative, on the other hand, occurs
when the membership test returns that an item does not exist
while it actually exists. In cuckoo filters, false positives are
possible, but false negatives are not, and the target false posi-
tive rate, denoted throughout this paper by ε, can be controlled
but has a direct impact on the filter’s size. Figure 1 shows an
example of a cuckoo filter that uses two hashes per item and
contains 8 buckets each with 4 entries.

A cuckoo filter has mainly two functions: An Insert func-
tion that stores items in the filter, and a Lookup function that
checks whether an item exists in the filter. In the Insert oper-
ation, cuckoo filter stores a fingerprint f of each item x, as
opposed to storing the item itself. The space cost, in bits, of
storing one item in the cuckoo filter using the Insert function
depends on the target false positive rate ε and is given by
(log2(1/ε) + log2(2β))/α where α is the load factor of the
filter which defines its maximum capacity, and β is the num-
ber of entries/slots per bucket. Once the maximum feasible,
α, is reached, insertions are likely to fail, and hence, the filter
must expand in order to store more items [33]. The Lookup
operation is performed by first computing a fingerprint of the
desired item and two indexes, representing the potential loca-
tions (or buckets) of this item in the filter, and then checking
whether these two locations contain the item.
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V. PROPOSED SCHEMES

In this section, we describe our proposed schemes. The first
scheme, LPDB, is simple as it involves only two parties, SUs
and DB, and provides unconditional location privacy to SUs
within the coverage area of DB. The second scheme, LPDBQS,
offers computational privacy with a significantly reduced over-
head on SUs’ side compared to LPDB, but at the cost of
introducing an extra architectural entity.

Since we are unable to access the actual spectrum database,
we relied on two sources to have an estimate of this structure:
First, we have relied on the recommendation of the PAWS
standard [10], which defines the interaction between SUs and
DB and what information they should exchange. Second, we
used graphical Web interfaces provided to the public by white
space database operators like Google [35], Microsoft [36],
iconectiv [37], etc. These Web interfaces comply with PAWS
recommendation and allow an interested user to specify a loca-
tion of interest and learn spectrum availability in that location
to emulate the interaction between a SU and DB in real world.
While the purpose of these interfaces was initially to pro-
vide a working platform as a showcase for FCC to acquire
approval for operating spectrum database, we believe it has
enough information to enable us to estimate the structure of
the database and SUs’ queries.

As required by PAWS, SUs must be registered with DB to
be able to query it for spectrum availability. Registered
SU starts by sending an initialization query to DB which
replies by informing the SU of specific parameterized-rule
values. These parameters include time periods beyond which
the SU must update its available-spectrum data, and maximum
location change before needing to query DB again. Afterwards,
SU queries DB with an available spectrum query which con-
tains its geolocation, device identifier, capabilities (to limit
DB’s response to only compatible channels) and antenna char-
acteristics (e.g., antenna height and type). DB then replies with
the set of available channels in the SU’s location along with
permissible power levels for each channel.

Based on these interactions between SU and DB, which we
learned from PAWS and the database Web interfaces, we esti-
mate the structure of DB to be as illustrated in Table I. Each
row corresponds to a different combination of location pairs
(locX,locY) and channel chn. One location may contain sev-
eral available channels at the same time. Note that even if
the real structure deviates from the one illustrated in Table I
(e.g., more/different attributes, more tables, etc), our schemes
can be adapted to the new structure of both the queries and
the database by designing or using a different probabilistic
data structure(s). Also, even in this case, the PAWS standard
requires that DB always replies to spectrum availability queries
with a set of predetermined values that have to be in the
database no matter what structure it has. In that case, DB only
needs to insert these values in the cuckoo filter and this could
be done independently from the database structure.

A. LPDB

In this section, we describe our basic scheme, which
is referred to as location privacy in database-driven

TABLE I
SIMPLIFIED EXAMPLE OF DB’S STRUCTURE

CRNs (LPDB). The novelty of LPDB lies in the use of set
membership data structures to construct a compact (space effi-
cient) representation of DB that can be sent to querying SUs to
inform them about spectrum availability.

In our scheme, instead of sending its location, a SU sends
only its characteristics (e.g., its device type, its antenna type,
etc.), as specified by PAWS [10], to DB, which then uses them
to retrieve the corresponding entries in all possible locations.
DB then puts these entries in a cuckoo filter and sends it to SU.
Upon receiving this filter, SU constructs a query that includes
its characteristic information, its location, and one of the pos-
sible channels with its associated parameters. SU then looks
up this query in the received cuckoo filter to see whether that
channel is available in its current location.

Parameters that are inserted in the response of DB may
include the location, time stamps, the available channels, and
the transmission power to be considered when using those
channels. SU’s characteristics and DB parameters could be
agreed upon beforehand between DB and SUs to make sure
that SU queries the cuckoo filter with the right parameters.

The proposed LPDB scheme is illustrated in Algorithm 1,
and briefly described as follows: First, each SU starts by
constructing query to be sent to DB by including a set of char-
acteristics, which are specific to the querying device, along
with a time stamp ts. DB then retrieves the entries that cor-
respond to query and constructs a cuckoo filter CF (which
could be done offline). Since DB contains availability status
for each channel in each location, the number of entries sat-
isfying query will still be huge and one way to further reduce
it is to retrieve only the information about available channels
and ignore the other ones. Afterwards, DB concatenates the
data in each row to construct xj as illustrated in Step 6, inserts
it to CF and sends CF to SU.

SU constructs a string y by concatenating its location coor-
dinates with a combination of one channel and its possible
transmission parameters and tries to find whether y exists in
CF by using the Lookup operation of CF. SU keeps changing
the channel and the associated parameters until it finds the
string y in CF or until SU tries all possible channels. Note
that, depending on the false positive rate ε of CF, even if the
Lookup operation returns True it does not necessarily mean
that the specified channel is available. Setting ε to be very
small makes the probability of having such a scenario very
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Algorithm 1 LPDB Algorithm
1: SU queries DB with query← f (char, ts);
2: DB retrieves resp containing r entries satisfying query;
3: DB constructs CF;
4: for j = 1, . . . , r do
5: if avlj = 1 then
6: xj ← (locXj‖locYj‖chn‖ts‖ . . .);
7: DB inserts xj into CF: CF.Insert(xj);

8: DB sends CF to SU;
9: SU initializes decision ← Channel is busy

10: for all possible combinations of par do
11: SU computes y← (locX‖locY‖chni‖ts‖ . . . ‖parn);
12: if CF.Lookup(y) then
13: SU senses chn;
14: if Sensing(chn)← available then
15: decision ← chn is available; break;

return decision

small, thus reduces the risk of using a busy channel, but this
cannot be done without increasing the size of CF. To further
reduce the risk of falling into this case, we have also included
an additional sensing step to confirm the query’s result and
give more accurate information about the status of the chan-
nel of interest. If SU finds y in CF, then it needs to sense the
specific channel found in y to confirm its availability. SU can
conclude that this channel is free and thus can use it only if
the sensing result coincides with CF’s response.

If, after trying all possible combinations, SU does not find y
in CF, this means that no channel is available in the specified
location as cuckoo filters do not incur any false negatives.

When the size of DB is not large, then LPDB works well
(as will be shown Section VII) by providing unconditional pri-
vacy with reasonably small amounts of overhead. However, a
scalability issue may arise when the location resolution is very
small (resolution used in DB could be as small as 50 meters)
and/or the area covered by DB is large (e.g., at the scale of a
country). In this case, the number of locations, and thus the
number of entries in DB, can be large, and then even after rely-
ing on the cuckoo filter, the size of the data to be transmitted
may still be impractical (e.g., in the order of gigabytes). This
depends on the desired resolution and DB’s covered area. Next,
we present a discussion about a possible way to deal with this
scalability issue in the case of a very large DB.

Performance-Privacy Tradeoff: As discussed before,
LPDB may suffer from a scalability issue when the size
of DB’s coverage area is very large. We can address this
issue through the following observation. When the covered
area is large and/or the location resolution is small, allowing
DB to learn one of SU’s coordinates can drastically reduce
the number of entries that DB retrieves. This leads to
considerably reduce the size of CF to be transmitted, thus
making the approach scalable. Interestingly, in the case of
large areas, revealing one of SU’s coordinates does not make
it any easier for DB to infer SU’s location. To illustrate this,
let’s for example assume that DB covers the entire surface
of the United States, as shown in Figure 2. Allowing DB to

Fig. 2. Location Leakage.

learn one coordinate (e.g., the latitude) means that it can
only learn that SU is located somewhere on the blue line that
spans the latitude of the whole country. But since DB does
not know the longitude of SU, then knowing the latitude only
does not offer any practical information about SU’s location.

This, as shown in Section VII-A, drastically reduces the size
of CF transmitted by DB at the cost of loosing the uncondi-
tional location privacy of SUs. However, when the coverage
area of DB is large, even revealing one of the coordinates still
achieves high location privacy of SUs. Indeed, since databases
(like those managed by Microsoft and Google) may cover an
entire nation of the size of the United States, the revealed infor-
mation is not sufficient to localize SU, yet, this reduces our
scheme’s overhead substantially. The example of the United
States in Figure 2 shows that our scheme can offer high privacy
even when one of the coordinates is revealed. Throughout, we
refer to this variant of our scheme as LPDB with leakage.

It is worth reiterating that when the covered area is not too
large, then the size of the cuckoo filter is practical and there
is no need to reveal one of SU’s coordinates. In this case, our
scheme, LPDB, provides unconditional privacy without incur-
ring much overhead. The system regulator can decide about
which approach to follow depending on the system constraints
and the size DB’s covered area.

B. LPDBQS

In this section, we propose a new scheme, LPDBQS, which
offers better performance at SUs’ side than that of LPDB. This
comes at the cost of deploying an additional entity, referred
to as query server (QS), and having a computational secu-
rity as opposed to unconditional. QS is introduced to handle
SUs’ queries instead of DB itself, which prevents DB from
learning information related to SUs’ location information.
QS learns nothing but secure messages sent by SUs to check
the availability of a specific channel.
• Intuition: We introduce QS to avoid sending CF, which

might be large, to SU. Instead, CF, that contains HMAC secure
entries inserted by DB using a secret key provided by SU, is
sent to QS through a high throughput link pre-established with
DB. SU just needs to query, using HMAC messages, QS which
looks for its queries in CF. Using HMAC, SU can hide the
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Algorithm 2 LPDBQS Algorithm
1: SU queries DB with query← f (k, char, ts);
2: DB retrieves resp containing r entries satisfying char;
3: DB constructs CFk;
4: for j = 1, . . . , r do
5: if avlj = 1 then
6: xj ← (locXj‖locYj‖ts‖ . . . ‖rowj(c));
7: CFk.InsertHMACk(xj);

8: DB sends CFk to QS over a high throughput link;
9: SU initializes decision ← Channel is busy

10: for all possible combinations of par do
11: SU computes y← (locX‖locY‖chn‖ts‖ . . . ‖parn);
12: SU computes yk ← HMACk(y) and sends it to QS;
13: QS looks up for yk in CFk using Lookup;
14: if CFk.Lookup(yk) then
15: SU senses chn;
16: if Sensing(chn)← available then
17: decision ← chn is available; break;

return decision

content of the query string, which includes its location infor-
mation, among others, from QS which ignores the key used to
construct the hashed query and the CF. This not only prevents
QS from learning the query’s content but also the entry that
matches it in the filter. As most of the computation and com-
munication overhead are incurred by both DB and QS, this
scheme is the most efficient in terms of overhead incurred by
SUs. LPDBQS is summarized in Algorithm 2 and described
in the following.

First, SU starts by sending a secret key k, pre-established
beforehand, along with its device characteristics to DB.
DB then retrieves only the entries that have available chan-
nels and that also comply with the device characteristics of
the querying SU. Afterwards, DB constructs a cuckoo filter
CFk and inserts into it the entries retrieved in the previous
step as shown in Steps 4–7. InsertHMACk , in Step 7, is a mod-
ified version of the Insert procedure, where the fingerprint is
replaced by an HMACk function. DB uses HMACk with the
secret key k, provided by SU, to construct hashed entries and
insert them to CFk. DB then sends CFk to QS via the high
speed link that connects DB to QS.

SU constructs a string y by concatenating its location coor-
dinates with a combination of one channel and its possible
transmission parameters. Subsequently, SU hashes y using an
HMAC with the secret key k and sends the new value yk to
QS to find out whether CFk of QS contains yk. If the query’s
combination is found in CFk, then SU needs to take one further
step: It senses the channel that was included in the query. If the
result of the sensing complies with the outcome of the Lookup
operation in CFk, then SU can conclude that this channel is
available and, thus, it can use it for its future transmissions.
In this case, SU can stop querying QS. The sensing operation
is added to confirm the outcome of querying the cuckoo filter
and overcome the risk of falling into the case of a false positive
result that would eventually make SU interfere with primary
transmissions. In case the sensing result is different from the

outcome of the Lookup operation, then SU keeps changing the
channel and the associated parameters until QS finds yk in CFk

or until SU tries all possible channels and combinations.
This scheme considerably reduces the overhead perceived

by SUs, as much of the computation is performed offline by
DB, and SUs do not need to download the cuckoo filters which
are only sent to QS over a high throughput link.

If DB knows the possible device characteristics of the query-
ing SUs, this can help to further reduce the incurred overhead.
Indeed, DB can pre-compute several cuckoo filters for each
possible combination of potential device parameters offline
by relying on a set of secret keys K = {k1, . . . , kz} that it
generated beforehand. For each combination of parameters,
DB constructs multiple CFk with different keys from K to
make sure that each SU uses a different filter. SUs are not
required to generate their own keys as in the previous vari-
ant. Whenever a SU queries DB for spectrum opportunities,
DB shares a secret key k with it and sends the corresponding
CFk to QS. SU uses k to construct its hashed strings and query
CFk of QS just like in Algorithm 2.

Leveraging a Secure Hardware: As long as DB and QS do
not collude, as stated in Security Assumption 2, neither of
them can infer the coordinates of SUs from the keyed one-way
function output. To mitigate the non-collusion requirement
between FC and QS, LPDBQS could be implemented in a
slightly different way by relying on a secure hardware (e.g.,
a secure co-processor or a trusted platform module) that
can perform cryptographic operations without exposing its
embedded private key. This hardware can be deployed inside
DB itself and play the role of QS. Such a high-end secure
hardware is physically shielded from penetration [38], and
any tampering from the adversary, potentially DB, triggers
the automatic erasure of sensitive memory areas containing
critical secrets [39]. When a secure hardware meets the FIPS
140-2 level 4 [40] physical security requirements, it becomes
infeasible for FC to tamper with the operations executed by
this hardware. DB sends the cuckoo filters to this hardware,
and SUs have to query this hardware to learn about spectrum
availabilities.

VI. SECURITY ANALYSIS

In this section, we analyze the security of our proposed
schemes LPDB and LPDBQS.

Theorem 1: Under Security Assumptions 1 and 2,
LPDB does not leak any information on SUs’ location.

Proof: We construct a history list H of each entity’s
knowledge about SUs’ information during the execution of
LPDB.

SU. A SU cannot learn anything about other SUs informa-
tion nor the filters {CFi,t}n−1,tf

i=1,t=t0
that they receive from DB as

the communication between each SU and DB is secured, i.e.,
HSU = ∅. Note that, even if, a SU would learn the filters
of other SUs, i.e., HSU = {CFi,t}n−1,tf

i=1,t=t0
, HSU includes no

information about SUs’ location.
DB. In Step 1 of Algorithm 1, DB learns HDB = {char}ni=1

which contains the characteristics of the querying SUs. HDB

may include information like frequency ranges in which
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SU can operate, antenna characteristics, etc. This information
is not related to the querying SUs’ location. This shows that the
knowledge that DB gains during the execution of LPDB does
not allow it to infer SUs’ location when they try to learn
about spectrum opportunities. LPDB offers an unconditional
privacy in the sense that DB’s knowledge about SUs’ location,
during the execution of LPDB, does not increase compared
to its initial knowledge, which is necessarily the coverage
area of DB.

Theorem 2: Under Security Assumptions 1 and 2
LPDBQS does not leak any information about SUs’
location beyond κ − HMAC secure values.

Proof: We construct a history list of each entity’s knowledge
during the execution of LPDBQS.

SU. As the communication between different entities is
secured, SUs cannot learn any information about the com-
municated information of other entities, i.e., HSU = ∅.

DB. In Line 1 of Algorithm 2, DB learns
HDB = {ki,t, chari, tst}n,tf

i=0,t=t0
. Obviously, SUs’ secret

keys {ki,t}n,tf
i=0,t=t0

and timestamp values {tst}tft=t0 cannot leak
any information about SUs’ location since these values are
not correlated to their physical location. Similarly, their
characteristics {chari}ni=1 contain information about SUs’
devices capabilities, like their possible transmit powers,
antennas height, etc, which cannot be used to localize them.
This proves that DB’s knowledge about SUs’ location during
the execution of LPDBQS does not differ from its initial
knowledge; i.e., that SUs are within DB’s covered area.

QS. As indicated in Lines 8 & 12 of Algorithm 2, the
only information that QS can learn during the execution of
LPDBQS, is HQS = {yki,t , CFki,t}n,tf

i=1,t=t0
. {yki,t}n,tf

i=1,t=t0
are as

secure as HMAC. The elements of {CFki,t}n,tf
i=1,t=t0

are com-
puted using a pseudo random function (as an HMAC is also a
pseudo random function) with SUs’ secret keys {ki,t}n,tf

i=1,t=t0
,

where {ki,t}n,tf
i=1,t=t0

$← {0, 1}κ and κ is the security level.

{yki,t}n,tf
i=1,t=t0

are independent from each other. The same

applies to {CFki,t}n,tf
i=1,t=t0

. Each query from {yki,t}n,tf
i=1,t=t0

has
a corresponding HMAC key, which means that even for
the same SU querying the same information, there will be
randomly independent and uniformly distributed outputs gen-
erated by DB and SUs. Since only SUs and DB know the
keys {ki,t}n,tf

i=1,t=t0
and that these keys are updated for every

query made by SUs, QS cannot learn any information about
SUs’ location as long as it does not collude with DB as stated
in Security Assumption 2. Correlating queries {yki,t}n,tf

i=1,t=t0
to

SUs’ physical location is equivalent to breaking the underlying
HMAC or PRF, which is of probability 1/2κ .

We can conclude that LPDBQS is as secure as the underly-
ing HMAC.

VII. EVALUATION AND ANALYSIS

In this section, we evaluate the performance of our proposed
schemes. We consider that DB’s covered area is modeled as a√

m×√m grid that contains m cells each represented by one
location pair (locX,locY) in DB. We use the efficient cuckoo
filter implementation provided in [41] for our performance

analysis with a very small false positive rate ε = 10−8 and
a load factor α = 0.95. In addition, since personal/portable
TVBD devices of SUs can only transmit on available channels
in the frequency bands 512−608 MHz (TV channels 21−36)
and 614-698 MHz (TV channels 38 − 51), this means that
users can only access 31 white-space TV band channels in
a dynamic spectrum access manner [42]. Therefore, in our
evaluation we set the number of TV channels s = 31.

Since in practice, at a given time, only a percentage of DB’s
entries contains available channels, we have ran an experi-
ment to learn what a realistic value of this percentage might
be. We denote this percentage (averaged over time and space)
as �. We have used the Microsoft online white spaces database
application [36] to identify and measure � by monitoring 8
different U.S. locations (Portland, San Faransico, Houston,
Miami, Seattle, Boston, New York and Salt Lake City) for
few days with an interval between successive measurements
of 3 hours. Our measurements show that � is about 6.8%.

Not only does this experiment allow us to evaluate the com-
munication overhead, but also the computational overhead,
especially from the database side since both overheads are
linear functions of the percentage � as we show in Table II.

There are several factors that influence the performance of
both LPDB and LPDBQS. One of these factors is the percent-
age � which has a significant influence on the performance
of our schemes as we show in Table II and Figure 6. Also,
the number of cells in the grid covered by DB has a direct
impact on the size of DB, and thus on the communication and
computational overheads of DB as highlighted in Table II and
Figures 3 and 5a. In fact, as the number of cells increases, the
size of DB increases and so does the computational complexity
of constructing the cuckoo filter. In addition, the false positive
rate, ε, has an impact on the cost of storing one record in the
cuckoo filter and subsequently on the communication overhead
as we illustrate and discuss in Figure 4 and Table II. Finally,
the fraction of positive queries, fp, can impact the lookup per-
formance as we show and discuss in Figure 7a. We discuss
these factors in more details in the next section.

Next, we also compare our schemes with respect to existing
approaches in terms of (i) communication and computational
overhead, and (ii) location privacy. Since the schemes in [27]
and [22] try to achieve a different goal, which is the mutual
location privacy between SUs and PUs, we do not include
them in our overhead analysis. Note that, since the PIR pro-
tocol used in [25] has not been specified, we use the protocol
proposed by Trostle and Parrish [24] used in PriSpectrum [23]
in our performance comparison.

A. Communication and Computation Overhead

1) Communication Overhead: We provide analytical
expressions of the communication overhead of these schemes
in Table II. For LPDB, we provide two expressions of the
overhead with respect to two scenarios: (i) when SUs do not
reveal one of their coordinates, (ii) when one of the coordi-
nates is revealed by SUs. In both scenarios the data transmitted
consist basically of query, sent by SU, and the response of
DB to it. The size of the response generated by DB depends
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TABLE II
COMMUNICATION AND COMPUTATION OVERHEAD OF PROPOSED AND EXISTENT SCHEMES

Fig. 3. Communication Overhead.

on the number of entries in DB that satisfy query and on the
space needed to store each of these entities in CF. The num-
ber of entries for LPDB is given by � · s · m and reduces to
� · s · √m when one of the coordinates is revealed by SU.
s · m and s · √m provide the number of entries in DB that
satisfy the query of SU for both scenarios. � gives the per-
centage of those entries with available channels. LPDBQS
incurs a slightly higher communication overhead than LPDB
from a system point of view, as SU needs to additionally
send a maximum of s · σHMAC to QS. However, most of
this overhead is incurred between DB and QS as SUs do
not have to download CFs from DB anymore. For illustration
purpose, we plot in Figure 3 the system communication over-
head of the different schemes using the expressions established
in Table II.

As shown in Figure 3, and as expected, LPDB is clearly
more expensive than the other schemes in terms of commu-
nication overhead even when �, determined experimentally,
is equal to 6.8%. However, revealing one of the coordi-
nates brings a huge gain and makes our scheme even better
than existing approaches, yet without compromising the loca-
tion privacy. LPDBQS has almost the same communication
overhead as LPDB but with the difference that most of this
overhead is incurred between DB and QS.

We study also the impact of varying the target false posi-
tive rate, ε, on the cost of inserting one record in the CF in
bits as illustrated in Figure 4. This has a direct impact on the
size of the filter and thus the communication overhead of our
schemes. We do this for multiple values of β, which is the

Fig. 4. False positive rate vs. space cost per element.

number of slots per bucket in the cuckoo filter. As shown in
Figure 4, targeting a smaller value of ε costs more bits to store
an item in the filter and subsequently increases the communi-
cation overhead. Increasing the value of β will require more
bits per item to achieve the same target ε as illustrated in the
Figure. However, cuckoo filter still achieves significantly bet-
ter than other probabilistic data structures like space-optimized
bloom filter as shown in the Figure, which again justifies our
choice of the cuckoo filter technique.

2) Computational Overhead: We also investigate the effi-
ciency of our proposed schemes in terms of their computa-
tional overhead. We evaluate the computation required at each
entity separately, and we provide the corresponding analytical
expression of the overhead as shown in Table II. Again we
provide two estimated costs for both scenarios of LPDB. The
computation of DB is given in terms of the number of inser-
tions it has to perform into CF. This depends on the number of
DB entries that comply with query considering only the avail-
able channels. This number is equal to � · s · m in LPDB and
reduces to � · s · √m in LPDB with leakage. For the com-
putational cost at the SU’s side, LPDB’s overhead depends
solely on the number of possible channels, s, and the cost of
one Hash and one Lookup operations, as shown in Table II.
One of the reasons that motivated our use of the cuckoo fil-
ter, as we mentioned earlier, is that it is characterized by an
extremely fast Lookup operation. This allows SUs to check
whether a specific combination, y, exists in the filter, i.e.,
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Fig. 5. Computation Comparison.

Fig. 6. Impact of varying �.

whether channel is available, very efficiently. LPDB’s over-
head at SU’s side does not depend on the size of DB since any
lookup query to CF always reads a fixed number of buckets (at
most two) [33], which makes our scheme more scalable than
existing approaches in terms of computation when the size
of DB increases. In LPDBQS, DB performs the same com-
putation as in LPDB. The Lookup operations on CF are now
outsourced to QS instead of SUs and QS needs to perform a
maximum of s · lookup for every querying SU, which is very
fast to perform as we mentioned earlier. Every SU needs to
only construct HMAC-strings {ykt}tft=t0 which could be done
extremely quickly and could even be precomputed. Note that
the PIR-based approaches have similar cost on DB’s side,
since in any PIR scheme, the server is destined to have O(m)

computation [24].
For illustration purpose, we plot in Figure 5 the computa-

tional overhead incurred by each SU and DB, in the different
schemes using the expressions established in Table II.

Our schemes are much more efficient than existing
approaches at both DB and SU sides as shown in Figures 5a
& 5b. The gap keeps increasing considerably as the number
of cells (i.e., the size of DB) increases. This is due to the
fact that these approaches’ cost is dominated by an increasing
number of modular multiplications which are very expensive
compared to the Insert and Lookup operations of the cuckoo
filter in our schemes.

We also evaluate the impact of other parameters on the over-
head perceived by both SUs and DB as shown in Figure 7.
First, in Figure 7a, we illustrate the variation of the through-
put of the lookup operations in million operations per second
(MOPS) in a cuckoo filter of size 112MB as a function of

the fraction of positive queries fp, i.e., queries for items that
actually exist in the filter. This clearly shows the efficiency
of the lookup operations that SU or QS has to perform to
check availability information within CF. CF always fetches
two buckets and thus achieves about the same performance
when the queries are 100% positive or 100% negative and
drops when fp = 50% for which the CPU’s branch prediction
is least accurate [33].

We also assess the insertion throughput that DB experiences
to construct the CF as a function of the load factor α as shown
in Figure 7b. As opposed to the lookup throughput shown
in Figure 7a, CF has a decreasing insert throughput when it
is more filled (though their overall construction speed is still
high). This is mainly due to the fact that CF may have to
move a sequence of existing fingerprints recursively before
successfully inserting a new item, and this process becomes
more expensive when the load factor grows higher [33].

3) Impact of Varying the Percentage � of Entries With
Available Channels: We also study the impact of � on the
overhead incurred by our schemes. For this, we plot in Figure 6
the communication and the system computational overheads
for different values of �. We plot only LPDB and LPDB with
leakage as LPDBQS has almost the same overhead as LPDB.
As shown in Figure 6, both overheads behave similarly in
the way that decreasing � when one of the coordinates is
revealed doesn’t impact much our scheme. LPDB w/ Leakage
has the smallest overhead compared to the case where no leak-
age is allowed. On the other hand, decreasing this parameter
drastically reduces the overhead of LPDB and even makes it
comparable to LPDB w/ Leakage in terms of communication
and computation. This means that in the case where only 1%
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Fig. 7. a. Lookup performance when a filter achieves its capacity. b. Insertion throughput for different load factors α.

TABLE III
LOCATION PRIVACY

or less of DB entries have available channels, there is no need
to reveal one of the coordinates to reduce the overhead.

B. Location Privacy

We compare our schemes to existing approaches in terms
of location privacy level by presenting the security problems
on which they rely as illustrated in Table III. We also precise
the localization probability of SUs under these schemes. The
best probability that could be achieved is 1/m, i.e., SUs are
within DB coverage area. If one of the schemes is broken then
this probability increases considerably.

LPDB offers unconditional security, as SUs do not share
any information that could reveal their location. LPDB could
be seen as a variant of PIR in which the server sends a whole
copy of the database to the user and this is the only way to
achieve information theoretic privacy (i.e., cannot be broken
even with computationally unbounded adversary) in a single-
server setting. Even if one of the coordinates is intentionally
revealed by a SU, its location is still indistinguishable from√

m− 1 remaining possible locations.
The approaches in [23], [25], and [26] rely on computa-

tional PIR protocols to preserve SUs’ location privacy. The
security of Computational PIR protocols’ is established against
a computationally bounded adversary based on well-known
cryptographic problems that are hard to solve (e.g., dis-
crete logarithm or factorization [43]). This means that these
approaches offer lower security level than LPDB.

The approach proposed by Zhang et al. [22] relies on the
concept of k-anonymity, which offers very low privacy level as
the probability of identifying the location of a querying SU is
equal to 1/k. Also, an approach cannot be proved to satisfy
k-anonymity unless assumptions are made about the attacker’s
auxiliary information. For instance, dummy locations are only
useful if they look equally likely to be the real location from
the adversary’s point of view. Any auxiliary information that
allows the attacker to rule out any of those locations would
immediately violate the definition.

As we have shown in Section VI, LPDBQS is as secure as
its underlying HMAC which is breakable only with probability
of 1/2κ , where κ is the security level. For the same security
level, HMAC incurs much less communication overhead than
that of the computational PIR protocols in [23], [25], and [26].

Zhang et al. [27] propose an approach whose privacy
depends on the ε-geo-indistinguishability [28] mechanism,
which is derived from the differential privacy concept. In this
mechanism, a SU sends a randomly chosen point z close to
its location, but that still allows it to get a useful service.
An informal, definition of this mechanism as given in [28] is
as follows: A mechanism satisfies ε-geo-indistinguishability
if and only if for any radius r > 0, the user enjoys �-privacy
within a radius r, where � = εr and ε is the privacy level
per unit of distance. A user is said to enjoy �-privacy within
r if, by observing z, the adversary’s ability to find the user’s
location among all points within r, does not increase by more
than a factor depending on � compared to the case when z is
unknown [28]. The smaller � the stronger the privacy the user
enjoys. SU can specify its privacy level requirement by pro-
viding the radius r it is concerned about, and the privacy level
that it wishes for this specific radius. Relying on this mech-
anism in the context of CRN, is problematic because, first,
it introduces some noise to SU’s location which may cause
erroneous spectrum availability information and, subsequently,
interference with primary transmissions. Second, to avoid fac-
ing the previous issue, SU may need to pick the radius that
can still give it accurate information which means necessar-
ily that r <<

√
m. Hence, even though the adversary will be

unable to pinpoint the exact location of the SU, it will be able
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though to learn that it is within the radius r from the shared
location z.

In summary, as can be seen in Table III and as explained
above, LPDB offers the highest location privacy level
as it achieves information-theoretic security. LPDBQS can
offer similar security guarantees as computational PIR-based
approaches but with significantly better computational and
communication overhead thanks to the use of HMAC.

VIII. CONCLUSION

In this paper, we have proposed two location privacy pre-
serving schemes, called LPDB and LPDBQS, that aim to
preserve the location privacy of SUs in database-driven CRNs.
They both use set membership data structures to transmit a
compact representation of the geo-location database to either
SU or QS, so that SU can query it to check whether a spe-
cific channel is available in its vicinity. These schemes require
different architectural and performance tradeoffs.
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