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Abstract—Cognitive radio networks (CRNs) have emerged as
an essential technology to enable dynamic and opportunistic spec-
trum access which aims to exploit underutilized licensed channels
to solve the spectrum scarcity problem. Despite the great benefits
that CRNs offer in terms of their ability to improve spectrum uti-
lization efficiency, they suffer from user location privacy issues.
Knowing that their whereabouts may be exposed can discourage
users from joining and participating in the CRNs, thereby poten-
tially hindering the adoption and deployment of this technology
in future generation networks. The location information leakage
issue in the CRN context has recently started to gain attention
from the research community due to its importance, and several
research efforts have been made to tackle it. However, to the
best of our knowledge, none of these works have tried to iden-
tify the vulnerabilities that are behind this issue or discuss the
approaches that could be deployed to prevent it. In this paper,
we try to fill this gap by providing a comprehensive survey that
investigates the various location privacy risks and threats that
may arise from the different components of this CRN technology,
and explores the different privacy attacks and countermeasure
solutions that have been proposed in the literature to cope with
this location privacy issue. We also discuss some open research
problems, related to this issue, that need to be overcome by
the research community to take advantage of the benefits of
this key CRN technology without having to sacrifice the users’
privacy.

Index Terms—Location privacy, cognitive radio networks,
dynamic spectrum access, privacy preserving protocols.

I. INTRODUCTION

COGNITIVE radio networks (CRNs) have been widely
adopted as an efficient way to improve the spectrum

utilization efficiency and alleviate the spectrum scarcity cri-
sis caused by the huge demand on radio frequency resources.
This technology has several applications and is considered as
one of the main enablers for 5G wireless networks to deal
with its stringent spectrum requirement. This paradigm, first
coined by Mitola [1], could be thought of as an intelligent
wireless communication system that is aware of its surround-
ing and that can adapt dynamically to the changes in the
RF environment. It enables dynamic spectrum access (DSA)
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and improves the spectrum utilization efficiency by allowing
unlicensed/secondary users (SUs) to exploit unused spectrum
bands of licensed/primary users (PUs). That is, SUs can oppor-
tunistically use unused spectrum bands (aka spectrum holes or
white spaces), which are defined by FCC as the channels that
are unused at a specific location and time [2], so long as doing
so does not cause harmful interference to PUs.

A. The CRN Location Privacy Problem

Despite its great potential for improving spectrum utilization
efficiency, the CRN technology suffers from serious privacy
and security risks. Although the survey covers location privacy
issues arising at the various CRN components, for motivation
purposes, we focus in this section on the spectrum discovery
component only, in which white spaces are identified using
either the cooperative spectrum sensing or the database-driven
spectrum access functions.

1) Cooperative Spectrum Sensing: In cooperative sensing, a
central entity called Fusion Center (FC) orchestrates the sens-
ing operations as follows: It selects one channel for sensing
and, through a control channel, requests that each SU per-
form local sensing on that channel to detect the presence of
PU signals and send its sensing report back to it. Fusion
Center then combines the received sensing reports, makes a
decision about the channel availability, and diffuses the deci-
sion back to the SUs. Here, a sensing report is essentially
a sensed/measured quantity characterising some PU signal
strength the SU observed on some PU channel, and what quan-
tity the SU measures depends on the spectrum sensing method
it uses (e.g., waveform [3], energy detection [4], cyclostation-
arity [5], etc.; see Section II-A1 for more details). For example,
when using the energy detection method, the sensed quantity
is the energy strength of the sensed PU signal, often referred
to as received signal strength (RSS) [6].

In cooperative sensing, communications between SUs and
Fusion Center could be done via one of the following:
(i) direct, single-hop wireless links; (ii) multi-hop links (with
first link being wireless); (iii) wired links (whether single or
multiple hops). In the first and second types, location privacy
information can be easily leaked by observing the wireless
radio signals sent by SUs to Fusion Center. In this case, exist-
ing (mostly mature) location privacy preservation technologies
(see [7], [8] for sensor, [9] for WiFi and [10] for cellular) can
be applied here to protect the location privacy of SUs during
cooperative sensing. In the third communication type when
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Fig. 1. Location privacy issues during spectrum discovery.

SUs communicate with Fusion Center via wired links, wire-
less signal-based localization techniques can no longer be used
here to locate SUs.

However, unlike traditional wireless networks, in the case of
cooperative sensing, preventing leakage of location informa-
tion from wireless signals (e.g., by communicating via wired
links) does not guarantee the preservation of SUs’ location pri-
vacy. This is because location information can also be leaked
from the sensing reports sent by SUs to the Fusion Center
during cooperative sensing [11]. Recall that a sensing report
is essentially the received signal strength (RSS) value of some
PU signal that the SU observed on a specific PU channel. And
it has been shown that these values are highly correlated to
the physical location of the reporting SU [11]. Now Fusion
Center may know the actual physical locations of few PUs as
well as the channels these PUs communicate on, and thus, by
knowing the RSS values measured by an SU on each of these
PU channels, Fusion Center can easily locate the SU. Some
illustrative scenarios, showing how Fusion Center can easily
infer the physical locations of SUs by simply looking at few
sensing reports on different PU channels, are given in [11].
This is also illustrated in Figure 1(a).

2) Database-Driven Access: In database-driven spectrum
access, spectrum availability information is provided to SUs by
querying a spectrum database, often maintained and controlled
by a third party (e.g., Google, Spectrum Bridge, RadioSoft,
etc.). Here, although SU queries’ final destination is the
database, which is often located far away from the SUs, loca-
tion information can also be leaked from wireless radio signals
if the SUs’ first hop is a wireless link; e.g., a cellular base
station or a WiFi access point. In this case, the aforemen-
tioned, existing location privacy preservation techniques that
overcome wireless signal-based leakage can also be applied
to protect SUs’ location privacy. However, as illustrated in
Figure 1(b), there is a more straightforward location privacy
threat specific to the database-driven access method: In order
for an SU to acquire spectrum availability information, it is
required to query the database with its physical location, so
that the database can inform it about spectrum availability in
its vicinity. This explicit exposure of SUs’ location information
to third (commercial) parties raises serious privacy concerns
and has some undesired consequences, as discussed next.

B. Why Worry About Location Information Privacy?

Most users will not be okay with having their whereabouts
and private location information made public, especially in the

presence of malicious entities that may be eager to exploit
this information for malicious purposes and to gain more
knowledge about other sensitive and private information. A
survey conducted in 2015 by Pew Research found that “Most
Americans hold strong views about the importance of privacy
in their everyday lives”, and that “These feelings also extend
to their wishes that they be able to maintain privacy in their
homes, at work, during social gatherings, at times when they
want to be alone and when they are moving around in pub-
lic” (Madden and Rainie [12]). This same survey also reports
that “90% say that controlling what information is collected
about them is important” and “88% say it is important that
they not have someone watch or listen to them without their
permission”. For instance, with an operation as simple as a
succession of database accesses, a database can easily moni-
tor and track the SU’s daily life activities and communications,
allowing the database to learn various behavioral information
about the user; e.g., where he/she goes for shopping, which
social circles he/she attends, and where and when he/she eats.
As spectrum databases are being managed by business enti-
ties, such a private information is at the risk of being sold
and shared with other commercial entities. Indeed, a SU’s
fine-grained location information, when combined with other
publicly available information, could easily be exploited to
infer other personal information about an individual including
his/her behavior, preferences, personal habits or even beliefs.
For instance, an adversary can learn an individual’s religious
belief by observing that a he/she frequently visits places with
religious affiliations. Location traces could also reveal some
information about the health condition of a user if the adver-
sary observes that the user regularly goes to a hospital for
example. The frequency and duration of these visits can even
reveal the seriousness of a user illness and even the type
of illness if the location corresponds to that of a specialty
clinic. The adversary could sell this health information to phar-
maceutical advertisers without the user’s consent. Moreover,
malicious adversaries with criminal intent could use the loca-
tion information to pose a threat to individuals’ security and
privacy; for instance, they can commit crimes of theft and
burglary when users are absent.

We envision that the public’s acceptance of the dynamic and
opportunistic spectrum sharing paradigm will greatly depend
on the robustness and trustworthiness of CRNs vis-a-vis of
their ability to address these privacy concerns. It is, there-
fore, imperative that techniques and tools to be developed
by the research community for CRNs be enabled with pri-
vacy preserving capabilities that protect the location privacy
of SUs while allowing them to harness the benefits of the
CRN paradigm without disrupting the functionalities that these
techniques are designed for to promote dynamic spectrum
access.

C. Location Privacy Protection: Pros and Cons

Ensuring that the location privacy information of SUs
is protected has great benefits. First and most importantly,
it promotes dynamic and opportunistic sharing of spectrum
resources, thereby increasing spectrum utilization efficiency.
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TABLE I
PROS AND CONS OF PRESERVING THE LOCATION PRIVACY OF SUS

Knowing that their location privacy is protected so that they do
not have to worry about their whereabouts being tracked and
their privacy being compromised, SUs will be encouraged to
participate in the cooperative spectrum sensing process, and to
query spectrum databases for spectrum availability. Ensuring
location privacy protection can also be beneficial to PUs. For
example, being concerned that their location privacy informa-
tion may be leaked to spectrum databases, SUs may attempt
to use PU channels without registering and querying spectrum
databases for spectrum availability, thereby causing harmful
interference to PUs.

Providing location privacy preservation guarantees cannot,
however, be done without a cost. It does introduce additional
communication, computation and storage overheads, which
may, in turn, also introduce additional delay when it comes to
learning about the availability status of some channel, and can,
in the extreme case, make the spectrum availability informa-
tion outdated, thus possibly resulting in using a channel that
is not vacant. The pros and cons of providing location privacy
protection are summarized in Table I.

D. State-of-the Art Surveys

There have been several existing works that investigate
and address the various CRN vulnerabilities and security
issues [13]–[17]. However, most of these survey works focus
on security and privacy issues in general with little or no
attention to the location privacy issue that we address in this
survey. For instance, Ling et al. [15] present an extensive
review on the use of reinforcement learning to achieve secu-
rity enhancement in the context of CRNs while dealing with
jamming and byzantine attacks. El-Hajj et al. [16] provide a
per-layer classification of attacks targeting CRNs, and discuss
existing countermeasure solutions that address these attacks.
Sharma and Rawat [17] discuss security threats, attacks, and
countermeasures in CRNs for both PUs and SUs with focus on
the physical layer. There have also been few surveys that aimed
at exploring location privacy issues, but they are generally not
focusing on CRNs. For instance, Zhang and Bae [18] present a
high-level overview of fundamental approaches for user local-
ization and privacy preservation but mainly in the context of
location-based services (LBS). They also discuss this issue, but
only briefly, in the context of indoor environments, wireless

sensor networks, and cognitive radio networks. To the best
of our knowledge, this is the first comprehensive survey that
digs into the different privacy threats and attacks that target the
location information of SUs at the different CRN components,
along with the different techniques that have been proposed
in the literature to mitigate and address these threats.

E. Structure and Acronyms

This paper provides a comprehensive survey of the location
privacy threats and vulnerabilities arising at the various com-
ponents of CRNs, as well as the different techniques proposed
in the literature to overcome these privacy issues. The general
survey structure is depicted in Figure 2, and is as follows:

• Section II investigates the vulnerabilities and sources
of location information leakage in CRNs, and provides
insights on how these vulnerabilities could become poten-
tial threats to SUs’ location privacy.

• Section III explores the privacy enhancing technologies
(PETs) that are most relevant to CRNs. The goal is to
show how these techniques, that are widely adopted in
other contexts, could not be applied off-the-shelf as they
are in the context of CRNs unless judiciously adapted to
the unique requirements of CRNs.

• Sections IV and V discuss threats and attacks that have
been identified in the literature with respect to the spec-
trum opportunity discovery component (Section IV), as
well as other CRN components (Section V). They also
discuss their impacts on SUs’ privacy, and investigate
countermeasure solutions that have been proposed in the
literature to deal with these attacks. These two sections
also explore and present the different metrics used to
assess and evaluate both the achievable performance and
the privacy level of these proposed solutions.

• Section VI discusses unsolved research challenges per-
taining to the location privacy in CRNs, with a special
focus on the CR components that have received the
least attention from the research community. It also
discusses open research problems arising from alterna-
tive CRN architectures and from emerging CR-based
technologies.

• Section VII concludes the survey.
For convenience, we summarize the used acronyms in Table II.
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Fig. 2. Survey structure.

TABLE II
ACRONYMS

II. SOURCES OF LOCATION INFORMATION

LEAKAGE IN CRNS

CRNs need to perform a number of spectrum-aware oper-
ations to adapt to the dynamic spectrum environment. These
operations form what is called a cognition cycle [1], [19]–[21],
which mainly consists of four spectrum functions as shown in
Figure 3: Spectrum opportunity discovery, spectrum analysis,
spectrum sharing and spectrum mobility. Despite their merit in
enhancing the spectrum utilization, CRNs may present some
privacy risks to SUs especially in terms of their location pri-
vacy. In this section, we investigate the different aspects of
the cognitive spectrum functions and we discuss the different

Fig. 3. Cognitive radio cycle [20].

threats that can compromise the location privacy of SUs in
CRNs during the execution of these functions.

A. Location Information Leakage in Spectrum Discovery

This is considered to be one of the most important com-
ponents of the cognition cycle, as it provides information
about spectrum holes and PUs’ presence. Mainly, there are
two approaches to obtain this information: spectrum sens-
ing, to be performed by SUs [22], and geolocation database.
We first describe these two approaches, and then investi-
gate the sources of location information leakage that they
may have.

1) Spectrum Sensing: Spectrum sensing enables SUs to
be aware of their surroundings and to be able to identify
spectrum holes in their vicinity so that they can exploit
them opportunistically. It basically requires SUs to sense and
detect primary signals without interfering with PU’s transmis-
sions [23], [24]. Spectrum sensing could be divided into two
main functionalities, PU detection and cooperation, which are
detailed next.

a) PU detection: The first step towards discovering
spectrum opportunities is to detect PUs’ signals. To do so,
each SU needs to sense its local radio environment, as
it is generally assumed not to have any prior knowledge
about PUs’ activities. We now present existing techniques
that have been proposed in the literature to detect primary
signals.

• Energy detection [4]: This is the simplest and the most
popular approach for signal detection [25]. It is also
considered as the optimal sensing approach when no
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information about the primary signal is available [26].
The presence or absence of a PU is decided by measur-
ing PU signal’s energy (aka the received signal strength
(RSS)) on a target channel and comparing it against a
detection energy threshold λ [6], [27].

• Matched filter detection [28]: It is considered as the opti-
mal signal detection method [25], [29] as it maximizes
the signal to noise ratio. It requires a full knowledge of
PU’s signal features such as modulation format, data rate,
etc. It compares the known signal (aka template) with the
input signal to detect the presence of the template signal
in the unknown signal. The output of the matched filter
is then compared to a predetermined threshold to decide
on PU’s presence or absence.

• Cyclostationary detection [25], [30]: PUs’ transmitted
signals are usually cyclostationary, i.e., their statistics
exhibit periodicity [27]. Such a periodicity is usually
introduced to the primary signals so that receivers can
use it for timing and channel estimation purposes. But
it can also be exploited for detecting PUs [21]. SUs can
detect this periodicity in the modulated signals by analyz-
ing a spectral correlation function. This spectrum sensing
technique is appealing because of its capability of differ-
entiating the primary signal from noise and interference
even in very low SNR environments [27].

• Wavelet detection [3], [27]: This method uses wavelet
transform, an attractive mathematical tool used to inves-
tigate signal local regularity to analyze singularities and
irregular structures in the power spectrum density caused
by spectrum usage [21]. Wavelets are used for detecting
edges, which are boundaries between spectrum holes and
occupied bands, in the power spectral density (PSD) of a
wideband channel.

Most of the above mentioned techniques are based on a
set of measurements sampled at the Nyquist rate and can
sense only one band at a time because of the hardware
limitations [31]. In addition, sensing a wideband spectrum
requires dividing it into narrow bands and making SU sense
each band using multiple RF frontends simultaneously [31].
This may result in a very high processing time and hardware
cost which makes these approaches not suitable for wideband
sensing. Compressive sensing [32] is proposed to overcome
these issues. In compressive sensing theory, a sparse signal
can be acquired and compressed simultaneously in the same
process with only the essential information at rates signifi-
cantly lower than Nyquist rate. This means that the signal
can be recovered from far fewer measurements and at a
lower rate (below Nyquist rate) compared to that of traditional
methods [31], [33]. As the wideband spectrum is inherently
sparse due to its low spectrum utilization, compressive sensing
becomes a promising approach to realize wideband spectrum
sensing.

b) Cooperation: One widely adopted approach for
improving spectrum sensing accuracy is cooperation, where
SUs share their local sensing observations and collaboratively
make spectrum availability decisions. These observations can
be made using one of PU detection techniques discussed in
Section II-A1a.

Fig. 4. Cooperative spectrum sensing.

The idea behind cooperation is to exploit spatial diver-
sity of spatially distributed SUs to cope with problems,
like shadowing, multipath fading, and receiver uncertainty,
that may impact individual local observations of SUs [22].
There have been many cooperative approaches proposed
in [25] and [34]–[37], and cooperative spectrum sensing
has been widely adopted in many cognitive radio standards,
e.g., WhiteFi [38], IEEE 802.22 WRAN [39] and IEEE
802.11af [40]. The collaboration between SUs is usually per-
formed through a control channel [29] and could be realized
in two major ways: centralized and distributed [41].

In the centralized approach a central entity, referred to as
fusion center (FC), orchestrates the cooperative sensing task
among SUs through a control channel as shown in Figure 4(a).
FC collects the local observations from SUs and combines
them to determine PU’s presence on a specific channel. In
the distributed approach, SUs do not rely on FC for making
channel availability decisions. They instead exchange sens-
ing information among one another to come to a unified
decision [41], [42] as shown in Figure 4(b)

Another promising approach for enabling effective coopera-
tive spectrum sensing over a large geographic area is to exploit
the emerging crowdsourcing paradigm, in which spectrum ser-
vice providers outsource spectrum sensing tasks to distributed
mobile users [6], [43]–[46]. Crowdsourcing is formally defined
as the act of taking a job traditionally performed by a desig-
nated agent and outsourcing it to an undefined, generally large
group of people in the form of an open call. This concept has
been adopted in many contexts [47], and has been first applied
to CRNs by Fatemiah et al. [43].

The use of crowdsourcing for enabling spectrum sensing
is motivated by several facts and trends. First, according to
a recent Cisco report [48], the number of mobile-connected
devices is expected to hit 11.6 billion. This huge num-
ber guarantees sufficient geographic coverage, especially in
highly populated regions such as metropolitan areas [44]
where dynamic spectrum access (DSA) systems are expected
to play important roles [46]. Moreover, future mobile devices
are widely expected to be able to perform spectrum sensing
tasks given the expected pervasiveness of DSA future wireless
systems [44], [49]. Finally, mobile devices are increasingly
equipped with more powerful communication and computation
resources, and are enabled with self-localization capabili-
ties, making mobile crowdsourcing even more appealing and
attractive [46].

The cooperative spectrum sensing process is usually per-
formed by a specified set of nodes that are considered to be
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Fig. 5. Spectrum database-based CRN topologies.

trustworthy [43]. Crowdsourcing-based cooperative spectrum
sensing, on the other hand, is to be realized by gathering and
combining sensing reports from a large group of nodes that
could be unreliable, untrustworthy, or even malicious [43],
thereby giving rise to new challenges.

Another important challenge that arises from SUs’ coopera-
tion nature is how to combine the various SUs’ sensing results
or observations for hypothesis testing to decide on the presence
of primary signals in an accurate manner. This process con-
sists of sending the sensing results to FC or to the neighboring
SUs, depending on the topology, to make spectrum availability
decisions. It is referred to as data fusion and can be done in
one of two ways: soft combining and hard combining [50]. In
soft combining, local sensing reports, measured locally by SUs
from their received signals, are combined together to compute
some statistics using combining rules such as square law com-
bining (SLC), maximal ratio combining (MRC) and selection
combining (SC) [50]. In hard combining, SUs make decisions
about the availability of the spectrum locally, and share their
one-bit decision (i.e., available or not available) outputs to
make a voting decision about spectrum availability [50].

2) Geolocation Database: This is another approach
for spectrum opportunity discovery that was recom-
mended recently by FCC [51]. A typical database-driven
CRN [52], [53] consists of a geolocation database (DB) con-
taining spectrum availability information, a set of SUs and a
set of PUs as shown in Figure 5(a). To learn about spectrum
opportunities in its vicinity, a SU is not required to detect the
primary signal by itself anymore. Instead, it needs to query
DB by including its exact location in the query. DB then replies
with a set of available channels in SU’s location and with
the appropriate transmission parameters (e.g., transmit power)
for each channel to avoid interfering with the incumbents.
Afterwards, depending on the situation, SU may optionally
inform DB of its choice and registers the channel it is planning
to operate on during what is referred to as notification or com-
mitment phase [54], [55]. DB keeps track of this information to
have more visibility over the CRN and make its decision adap-
tively which allows it to reduce interference among SUs. SUs
may be able to communicate directly with DB as in Figure 5(a)
or via a fixed base station that relays their queries to DB as
in Figure 5(b).

3) Sources of Location Information Leakage: In this
Section, we investigate the different vulnerabilities in the spec-
trum opportunities discovery phase and the potential threats
that could exploit them in order to localize SUs. We first
begin by exploring the sources of leakage in the cooperative

spectrum sensing approach, and then we explore those in the
database-based approach.

a) Cooperative spectrum sensing: In the cooperative
spectrum sensing approach, SUs need to communicate with
other entities in the CRN to exchange and share their obser-
vations of the spectrum. This collaboration may lead to a
significant leakage of information regarding the location of
the collaborating SUs. In the following, we investigate and dis-
cuss the different vulnerabilities that arise from the cooperation
process.

Wireless signal: This is the most obvious and direct source
of leakage in wireless networks in general and in CRNs
in particular. The wireless medium and its inherent open
and broadcast nature in CRNs makes it much easier for an
attacker to compromise a SU’s privacy and more specifically
its location [56], [57]. Despite the many efforts to protect the
private location information at the system level, mainly using
encrypted signal transmissions, the signal itself can still be
used to potentially localize a SU. Classic approaches for local-
ization are usually based on a small set of measurements on
the wireless signals, that include time-based ranging, received
signal strength (RSS) and angle of arrival (AoA) [56].

• Time-based ranging: This is used to estimate the dis-
tance between two communicating nodes by measuring
the signal propagation delay, known also as time-of-flight,
τF = d/c, where d is the actual distance between the
nodes and c is the propagation speed (c � 3.108m/s) [57].
This can be accomplished using either time-of-arrival
(ToA) or time difference-of-arrival (TDoA). If at time t1
the victim node sends a packet that contains the times-
tamp t1 to a semi-honest or malicious node that receives
it at time t2, then the latter node can estimate the dis-
tance that separates it from the victim node based on
τF = t1 − t2. This technique is known as ToA rang-
ing [56], [57]. ToA needs at least three measurements of
distance to localize the target via triangulation [58], which
means that a malicious entity cannot localize precisely a
target SU unless it is mobile or it collaborates with two
other malicious entities. TDoA, on the other hand, does
not rely on the absolute distance between a pair of nodes
but rather on the measurement of the difference in time
between signals arriving at two base nodes.

• Received signal strength (RSS)-based ranging: In theory,
the energy of a radio signal decreases with the square of
the distance from the signal’s source. As a result, a node
listening to a radio transmission should be able to use
the strength of the received signal to estimate its distance
from the transmitter [59]. More details about the practi-
cality of RSS-based ranging technique and its feasibility
given various factors could be found in [60].

• Angle of arrival (AoA)-based ranging: AoA could be
defined as the angle between the propagation direction
of an incident wave and some reference direction known
as orientation [61]. The estimation of AoA could be
done using directive antennas or using an array of uni-
formly separated receivers [62]. The relative angle could
then be used to derive the distance between the two
communicating nodes [59].
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Observations: The spectrum sensing measurements and
observations that SUs share to identify spectrum holes may
be another source of location information leakage in CRNs.
In the case of soft combining rule where SUs have to share
their raw measurements, SUs may see their location informa-
tion exposed. Indeed, it has been shown in [6] and [11] that
the sensing reports containing RSS measurements on PUs’
signal, are highly correlated to SUs’ physical location. The
RSS measurements could be used to localize SUs with respect
to PUs whose channels are sensed through these measure-
ments. Note that this RSS is different from the RSS that we
discussed previously for wireless signal which are obtained
through a direct communication through the wireless medium
between the adversary and the target victim. If the CRN uses
a hard combining rule for the cooperative sensing, SUs need
just to share their binary decision values. This can still leak
some information about SUs’ location as it can tell whether
a SU belongs to the coverage area of a PU especially if the
activity of PU is known by the attacker.

Identity: One cannot talk about a location information
leakage if the identity of the target victim is not revealed.
Therefore, the identity of the user could also be considered as
a source of location information leakage in the way that an
attacker can match this identity to a specific location. In other
words, if an attacker learns that a SU is located at a specific
location but at the same time fails to identify who it is, the
location privacy of SU cannot be considered as compromised.
So, as long as a SU is anonymous, its location privacy is pre-
served. In some cases, identity could also give an idea about
the location of a SU if combined with publicly known infor-
mation of this specific SU. Take the example of a user whose
identity is revealed. Based on this information, an adversary
can learn the profession of this user, for instance a doctor
that works at a specific hospital. This allows an attacker to
estimate the position of the target SU with high probability
especially during regular working hours. This shows that the
identity could be associated with a specific location of a SU.

Radio hop count: The sensing information needs to be deliv-
ered to the appropriate nodes for the final decision, especially
in multi-hop CRNs which requires deploying efficient rout-
ing protocols. These routing protocols usually rely on hop
count information [63], [64], and such information turns out
to be another potential source of location information leak-
age [59]. Many approaches are proposed in the literature,
especially in the context of wireless sensor networks, to esti-
mate node position based on the number of hops between pairs
of nodes [65], [66].

Clustered network: SUs may need to form or join dif-
ferent clusters during the spectrum sensing phase in order
to improve the overall sensing performance and overhead.
Different approaches are proposed in the literature for clus-
ter formation in CRNs based on several criteria and metrics
including geographical location, channel availability, signal
strength and channel quality [67]. This clustering could leak
information about SUs’ location especially if the clustering
criteria is based on the positions of SUs or on some infor-
mation correlated to this position. Chan et al. [68] show that
the clustering information along with some knowledge of the

position of some anchor nodes in wireless sensor networks
can lead to localizing the remaining nodes in the network.
The same idea could be exploited in the context of CRNs in
case, for example, that some SUs are compromised and their
location is known to the adversary. In that case, the adversary
can localize the remaining SUs. Moreover, if the clusters are
also overlapping, this could further facilitate localization as
shown by Youssef et al. [69].

Signal-to-noise ratio (SNR): SUs may need to share their
measured SNRs, with respect to the channels of interest, with
other SUs to cooperate in forming coalitions and selecting
the decision making nodes in ad hoc CRNs [70]. The average
SNR of PU’s received signal measured at SU i is given by:

SNRi,PU = PPU · κ

dα
PU,i · σ 2

(1)

with PPU is the transmission power of PU, σ 2 denotes the
Gaussian noise variance, κ is a path loss constant, α is the
path loss exponent and dPU,i is the distance between PU and
SU i [71]. As Equation (1) shows, the SNR value measured
by a SU depends on the distance that separates it from the
corresponding PU. This could present a source of location
information leakage as this information could be exploited to
localize SU especially when it has to share its SNR with other
SUs in the same coalition [72].

The vulnerabilities and sources of leakage that we have
raised previously could lead to serious location privacy risks
for SUs if exploited by malicious entities in the CRN. This
leakage could happen in the following scenarios:

• Cooperation and sharing observations: In order to par-
ticipate in the cooperation for spectrum sensing, SUs
need to share their observations of the spectrum either
with other SUs or with a central entity. Despite the fact
that sharing this information considerably improves the
spectrum sensing performance, it exposes, however, indi-
vidual SUs observations to other entities in the network.
This becomes problematic if, during the sharing process,
an external or internal malicious entity to the network
gains access to these observations. This is due to the fact
that these observations could be exploited to compromise
SUs’ location privacy as discussed earlier.

• Dynamism: Due to the dynamic nature of CRNs, SUs
can leave or join the collaborative spectrum sensing
task at anytime, making privacy-preserving aggregation
techniques designed for static networks to hide individ-
ual observations of SUs unsuitable for CRNs. Indeed,
this might allow a malicious entity that is collecting
aggregated observations from SUs to estimate individ-
ual observations of leaving or joining SUs which, as
discussed previously, is a source of location information
leakage.

• Node failure: The location privacy issue here is very sim-
ilar to the situation of network dynamism. Indeed, if, for
some reason, some SUs cannot sense the spectrum or fail
to share their sensing reports during the cooperation pro-
cess, the individual observations of these SUs could be
estimated. Again, these individual observations could be
exploited by an adversary for localization purposes.
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• User selection: User selection is an important step in
cooperative spectrum sensing, which aims to optimally
select the cooperating SUs that lead to the maximiza-
tion of the cooperative gain and the minimization of
the cooperation overhead. SUs are selected such that all
the sensing reports are informative and not correlated
while saving energy by avoiding unnecessary sensing
operations [41]. This selection could be done through a
clustering approach that divides SUs into different clus-
ters. Malady and da Silva [73] propose several approaches
for grouping SUs into clusters in distributed CRNs to
keep bandwidth and power requirements manageable.
Their methods are based on different criteria includ-
ing SUs’ positions with respect to a given reference
or to PU if PU’s position is known. Ding et al. [74]
propose a decentralized clustering-based user selection
algorithm that relies on unsupervised learning to group
SUs with best detection performance together to lead
the sensing process. As discussed previously, the clus-
tering information could be exploited to localize SUs
during the cooperative spectrum sensing process. Another
way for selecting SUs for spectrum sensing, which has
just started to gain some interest in the context of
CRNs, is crowdsourcing as we have explained earlier.
Crowdsourcing may, however, give rise to some privacy
risks, especially in terms of location privacy as shown by
Jin and Zhang [46]. The selection process in this case
relies on an open call, made by FC, for users in order to
contribute to the sensing at a specific location. This makes
it easy for FC to associate users with the location of
interest.
b) Geolocation database: With this architecture, SUs

are not anymore required to perform spectrum sensing to
learn about spectrum opportunities. Instead, they only need
to query a geolocation spectrum database to get the list of
available channels in their vicinity. This brings new privacy
challenges that are completely different from the ones that
emerge from the cooperation in spectrum sensing. In the
following, we investigate the different sources of location
information leakage that may arise from this specific CRN
architecture.

Query: This is the most implicit source of location informa-
tion, as every SU needs to include its precise location every
time it queries DB for available channels. This information
is usually sent in a plaintext form, allowing eavesdroppers to
retrieve it. And even if the communication channel between
SUs and DB is authenticated; i.e., it eliminates the risk of an
eavesdropper, there is still the risk of having a malicious DB.

List of available channels in the query’s response: This
information could also be used by an adversary to narrow
down the locations where a target SU might possibly be.
Indeed, knowing which channels are available for a cer-
tain SU allows a malicious entity to attribute this SU to
multiple PUs coverage areas especially if the adversary, DB for
example, is aware of these PUs’ activities and status.

Maximum transmit power (MTP): The MTP over a specific
spectrum band is included in DB’s response to SU, and is
assigned to it based on its distance from its corresponding

PU. It is usually calculated as follows

P =
{

0, d ≤ r0

h(d − r0), d > r0
(2)

where d is the distance between the querying SU and its closest
PU, r0 is the protected contour radius of the channel of interest
and h(.) is a continuous, monotonically increasing function.
As shown in Equation (2), MTP is highly correlated to the
distance of SU from PU. In situations where PUs’ positions
are publicly known, an attacker could exploit MTP values that
SUs receive from DB to infer SUs’ locations.

These vulnerabilities and sources of leakage could become
actual threats when exploited solely or combined together, and
can occur in the following scenarios:

• Querying DB: When a SU interacts with DB to learn
about spectrum availability, its location can easily be
revealed as it is included in the query. Even if, somehow,
a privacy-preserving scheme is implemented to make
DB unable to retrieve SU’s location information from its
query but at the same time can still provide it with the
spectrum availability information at its vicinity, an adver-
sary can still localize SU by exploiting the information
included in DB’s response as we discuss next.

• DB’s response: DB’s response to a SU’s query includes
information like the list of available channels, and the
maximum transmit power over each of those channels.
This information could be used as explained earlier by
a malicious DB or an external adversary to infer the
location of a target SU.

• Commitment phase: Some implementations of the
database-based CRNs require that a SU, upon receiving
the response from DB, informs DB about the chan-
nel that it chooses to operate on. This will make SU’s
usage information available at least to DB. Hence, SUs
in database-based CRNs will be prone to attacks that
could exploit the vulnerabilities arising from spectrum
utilization information as we explain in Section II-D2.

B. Location Information Leakage in Spectrum Analysis

This is an important step in the cognition cycle as it allows
to analyze the information obtained from spectrum sensing
to gain knowledge about spectrum holes (e.g., interference
estimation, and duration of availability). Spectrum analysis
usually consists of two major components: spectrum charac-
terization, and reconfiguration. In this section, we explain each
of these two components and discuss their sources of location
information leakage.

1) Spectrum Characterization: Available spectrum bands
may have different channel characteristics that vary over time.
In order to determine the most suitable spectrum band, one
needs to characterize these channels. Such a characterization
requires the monitoring and observation of the RF envi-
ronment, as well as the monitoring and awareness of PUs
activities in these channels [75].

a) RF environment characterization: This process esti-
mates some of the following key parameters to characterize
the different spectrum bands.
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• Interference: It is crucial to estimate and model the
interference caused by SUs at the primary receiver to
derive the permissible power of a SU and ensure coex-
istence between SUs and PUs. Rabbachin et al. [76]
propose a statistical model for aggregate interference gen-
erated by SUs in a limited or finite region by taking into
consideration the shape of the region and the position of
PU. The interference signal at PU generated by the ith

SU is modeled as [76]:

Ii = √
PIR

−b
i Xi (3)

where PI is the interference power at the near-far region
limit; Ri is the distance between the ith SU and PU; and
Xi is the per-dimension fading channel path gain of the
channel from the ith SU to PU.

• Path loss: This is closely related to distance and
frequency. Path loss increases as the operating frequency
increases, resulting in a decrease in the transmission
range. Increasing the transmission power may be used
to compensate for the increased path loss, and hence for
the decrease in transmission range. But this may increase
interference at other SUs and PUs. According to [77], the
average path loss of a channel could be expressed using
a path loss exponent α. This exponent measures the rate
at which the RSS decreases with distance, and its value
depends on the specific propagation environment [78]. It
is also considered as a key parameter in the distance esti-
mation based localization algorithms, where distance is
estimated from the RSS [79].

• Channel switching delay: This is basically the delay intro-
duced by switching from one channel to another. In
CRNs, the channel switching could be triggered by sev-
eral events, such as the detection of PUs, the return of
PUs to their channels, and/or the degradation of received
QoS in the current channel, as we discuss in Section II-D.

• Channel holding time: It is the expected duration SUs
can occupy a licensed channel before getting interrupted.

• Channel error rate: This is defined as the rate of data ele-
ments incorrectly received from the total number of data
elements sent during a time interval. This rate may vary
depending on the modulation scheme and the interference
level of the channel [75].
b) PU activity modeling: As spectrum availability

depends not only on the RF environment characteristics but
also on the activities of PUs, it is crucial that PU activi-
ties are taken into account when characterizing the spectrum
bands. This is essentially done by accounting for how long
and how often PUs appear on their licensed spectrum bands.
Existing approaches adopted for modeling this activity mainly
rely on measured data obtained from the numerous spectrum
measurement campaigns that have been conducted worldwide
to quantify and study the PU spectrum utilization and assess
the current status of the spectrum [80]–[82]. These measure-
ments are also performed to improve the accuracy of spectrum
databases. Many of these works consider only simple but
important statistics of the spectrum occupancy, such as the
maximum or the minimum and the average of power levels, the
spectrum occupancy, and the duty cycle [80]. These statistics

are simple and reliable, but provide an incomplete model of
the PUs’ activities. Other approaches consider more advanced
statistical models, such as probability function models (e.g.,
CDF and PDF), Markov chains and linear regressions. These
measurement-based modeling methods describe the statistical
behaviors of the spectrum occupancy as a whole, but do not
give the actual state of the spectrum occupancy, i.e., whether
a channel is busy or available.

Some other significant research models the PU activity
as a Poisson process with exponentially distributed inter-
arrivals [81], [83]. However, such approaches fail to capture
the short-term temporal fluctuations or variations exhibited
by the PU activity, and do not consider correlations and
similarities within the monitored data [81].

There are also approaches that try to predict future PU activ-
ities and thus locate future spectrum opportunities by using
learning techniques and by exploiting the history of spectrum
band usage [75], [81]. However, the prediction may go wrong
resulting in harmful interference to PUs.

c) Sources of location information leakage: As men-
tioned earlier, spectrum characterization consists of building
knowledge about the radio environment and PU activities. This
knowledge, however, could be exploited (maliciously or un-
maliciously) to leak location information of SUs, as discussed
next.

Interference: As shown in Equation (3), the interference
is highly correlated to the distance that separates SU from
a PU. An adversary that has access to the characteristics of
the interference caused by SUs can exploit this information to
estimate the distance that separates SU from a PU.

Radio environment map (REM): This is a widely used
method to characterize the spectrum. It is an integrated
database that could be deployed in CRNs to store information
about the radio environment’s interference, signal proper-
ties, geographical features, spectral regulations, locations and
activities of radios, policies of SUs and/or service providers,
and past experiences [84], [85]. The main functionality of a
REM is the construction of dynamic interference map for each
frequency at each location of interest. This could be done
in two different ways, either via field measurements or via
propagation modeling. In the first approach, a REM collects
spectrum measurements from nodes with spectrum sensing
capabilities. These nodes could be actual SUs or dedicated
spectrum sensors [86]. Since it is impractical to have mea-
surements all the time at all possible locations, REM fuses
the collected measurements to estimate the interference level
at locations with no measurement data by means of spa-
tial and temporal interpolation [86]. The field measurement
approach is believed to provide the highest location accuracy
but not without a price. Its price lies in the need to perform
drive tests whenever changes occur in the radio environment
to keep the REM up to date. The second approach, prop-
agation modeling, relies on mathematical models for radio
propagation prediction, which allow easy, fast and inexpen-
sive updating for the REM. Indeed, whenever there is a
change in the radio environment, we only need to rerun the
propagation models with the new parameters to update the
REM [56].
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This is different from the spectrum geolocation database in
that REM generates spectrum map by processing the data col-
lected from multiple sources with its cognitive engine, and
therefore can easily adapt to dynamic operating environments
whereas DB stores quasi-static information. REM introduces
environment awareness that would be harder to acquire by
individual CR capabilities via extensive spectrum analysis.
Hence, REM can also be seen as the network support turning
simple nodes into intelligent ones [86].

This radio map, when it is in the hands of some malicious
entity in the network, could be exploited to localize a query-
ing SU that sends its measurement to the REM manager in
order to learn about spectrum availability. One way to exploit
this information is based on fingerprinting localization tech-
nique which basically estimates the target position by simply
finding the best-matched pattern or fingerprint for the mea-
surement provided by SU within a certain map [56]. Machine
learning techniques could be used to build the radio signal
map during the training phase and then to compare the online
measured RSS to the preconstructed map during the localiza-
tion phase [56]. Obviously the map that could be used for the
localization is the REM itself. As the REM could be used in
a distributed or a centralized manner, either a malicious BS or
a malicious SU could exploit it to localize a target SU.

2) Reconfiguration: After the channel of choice has been
characterized, SU’s transceiver parameters have to be recon-
figured to adapt to channel conditions and satisfy the
QoS requirements and regulatory policies. These parameters
include:

• Transmission power: Controlling this parameter aims to
achieve several objectives that include minimizing energy
usage, reducing co-channel interference, etc. [87], [88].

• Operating frequency: This parameter represents the capa-
bility of SUs to reconfigure their central frequency in
response to variations in the RF environment.

• Channel bandwidth: This refers to the width of the spec-
trum over which a SU operates. It is essential for SUs to
have variable channel adaptation capabilities to be able
to operate in heterogeneous networks.

• Communication technology: This allows interoperability
between different communication technologies such as
GSM, LTE, etc.

Sources of location information leakage: Some of the recon-
figurable parameters that we have listed could leak some
information about SUs’ location especially if these parameters
are controlled in a shared way.

• Power control: This process may present a threat to SUs’
location privacy. Most of the existing approaches for
power control rely on the signal-to-noise ratio (SNR) or
the signal-to-interference-plus-noise ratio (SINR) metric
when solving the power control problem [88]–[91]. For
example, Hoven and Sahai [88] use local SNRs of primary
signals measured by SUs as a metric to design an effective
power control rule. Other works use SINR as a constraint
or a requirement to minimize the total transmission power
of the CRN as in [89] and maximize the spectrum uti-
lization of the CRN as in [92]. Yang et al. [93] model
this problem as a game with SINR-based utility function.

Power control might become threatening to the privacy of
SUs as information like SNR and SINR is usually corre-
lated to the distance that separates a SU from a PU. This
is problematic especially when the power control process
is intended to achieve a system-level goal like minimizing
the total transmission power [89] or maximizing the over-
all spectrum utilization [92] of CRNs. In that case, power
control will have to be performed jointly between SUs
in a centralized [89], [94] or distributed [89], [92]–[94]
way, thereby exposing local SNR and SINR values, for
example, to other CRN entities or intruders, putting SUs’
location information at risk.

C. Location Information Leakage in Spectrum Sharing

Multiple SUs may try to access the same spectrum bands at
the same time, thus necessitating multiple-access coordination
mechanisms that allow multiple SUs to share the same spec-
trum [95]. Spectrum sharing consists then of enabling coexis-
tence of multiple SUs while avoiding interference (among SUs
themselves as well as between SUs and PUs) and maintaining
some target QoS levels. Broadly speaking, this functionality
is composed of three elements: resource allocation, spectrum
access and spectrum trading.

1) Resource Allocation: Enabling dynamic spectrum shar-
ing is crucial to the success of CRNs. It allows users to select,
use, and share spectrum bands adaptively with the aim of max-
imizing the overall spectrum utilization efficiency while not
causing harmful interference to legacy users [87], [96]–[99].
In this section, we discuss two resource allocation functions:
spectrum selection and assignment and power control and
beamforming.

a) Spectrum selection and assignment: Once the spec-
trum holes are analyzed and characterized, the most suitable
channel is selected based on QoS requirements of SUs, as
well the characteristics of the channels [87], [98], [100].
Several criteria may be taken into account while assigning
spectrum bands to SUs. These include minimizing interference
to PUs, maximizing overall spectrum efficiency, maximizing
SUs’ throughput, minimizing network delay, and increasing
network connectivity, just to name a few [87], [101]. Spectrum
assignment could be done in a centralized or a distributed
way, and there have been many proposed approaches, both
centralized and distributed, that address the spectrum assign-
ment and selection problem in CRNs [87], [96], [102]–[107].
Generally speaking, these approaches are mainly based on one
of the four mature concepts: graph theory, game theory, learn-
ing and adaptation, and optimization theory. Next, we explore
these four concepts and investigate the sources of location
information leakage that may arise from using them.

i) Graph theory: Graph theory has been extensively
used to address the spectrum assignment problem especially
when the structure of the CRN is assumed to be known a
priori [87]. Here the network is modeled as a graph, where
the vertices usually represent SUs and the edges model the
connection between these SUs. To solve the graph-based spec-
trum assignment problem, network conflict graphs and graph
coloring are widely used [87].
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• Network conflict graph: This models and captures the
interference among SUs caused by concurrent transmis-
sions of nearby SUs communicating on the same or
neighboring channels [87]. The vertices of the graph rep-
resent the communication links among SUs, whereas the
edges represent the pairs of links whose concurrent com-
munications interfere with one another when assigned
the same or adjacent spectrum bands [87], [98], [108].
Conflict graphs are mostly used in centralized topologies,
where a central entity (BS or FC) constructs the graph and
uses it to assign channels among SUs.

• Graph coloring: In this approach, the CRN is mapped
to a graph that could be either unidirectional or bidirec-
tional depending on the algorithm’s characteristics. The
vertices in this graph represent SUs that need to share the
spectrum, and the edges model the interference between
SUs. PUs could also be included in the graph with
pre-assigned colors. The spectrum assignment problem
using graph coloring is equivalent to coloring each ver-
tex (or edge) using different colors from a specific set
of colors, each often representing an available spectrum
band [87], [98], [109]. The goal is to improve spectrum
efficiency by increasing frequency reuse while meeting
interference constraints by ensuring that two connected
vertices (SUs) cannot be assigned the same color, i.e.,
the same band.

Sources of location information leakage: We identify
two main sources of leakage that arise from graph-based
approaches during the spectrum selection process: the topol-
ogy and the connectivity information.

• Topology: The topology of the network that could be
learned via the graph-based spectrum assignment tech-
niques could be explored to infer SUs’ location. In fact,
some works have already used this information to localize
nodes in wireless sensor networks [110], [111].

• Connectivity: This information basically tells which
nodes are located within each other’s transmis-
sion range (i.e., connected to one another). Many
approaches have used this information for positioning
purposes [112]–[115] and some of them can be used to
localize target nodes even from connectivity information
among the nodes themselves only [112], [113].

ii) Game theory: Game theory has also been exten-
sively used to solve the spectrum assignment problem in
CRNs [96], [104], [116]. A game could be seen as a way
of interaction between multiple players competing with each
other while trying to adjust their strategies to optimize their
utilities [21]. Game theory is suitable for the spectrum assign-
ment problem in CRNs as the spectrum allocation decision
of one SU has a direct impact on the performance of other
neighboring SUs [87].

Spectrum selection games in CRNs usually consist of
three components: The players which represent SUs and may
include PUs, the action space and the utility function(s). The
players have a set of functions representing available frequency
bands. The action space is the Cartesian product of the sets of
actions of all players. Each player has a utility function that
is used to translate the action space into the real world needs,

e.g., the frequency bands that meet SU’s requirements [87].
The goal of the game is to maximize each SU’s utility func-
tion. This takes into consideration the impact of each SU’s
decisions on the other players. For games with specific char-
acteristics, there is always a steady state solution (i.e., a Nash
equilibrium), and any unilateral change of a player leads to a
lower utility for that specific player [87], [116].

Sources of location information leakage: Games may
require that SUs share their channel selection decisions among
one another. This information, just like the case of spectrum
availability, could be used for SU localization. In fact, this
information reveals the list of channels that a SU may be
interested in using; i.e., the list of available channels in its
vicinity. Sharing this list with other SUs may put into risk
SU’s own privacy, as this information could be used by an
adversary to estimate its position especially if this adversary
has a global knowledge of the CRN.

iii) Learning and adaptation: CRNs employ software-
defined radios, which are capable of executing complex com-
putational tasks through a specialized software module called
the cognitive engine [105], [117]. This engine has learning
capabilities that allow SUs to make spectrum selection deci-
sions and perform tasks in a distributed manner by only relying
on what SUs learn from the environment [105], [118]. This
is usually done by means of machine learning techniques,
which have recently attracted significant attention in the con-
text of CRNs [119]–[121]. For example, Baldo et al. [122]
propose a cognitive engine based on artificial neural network
(ANN) that learns how environmental measurements and the
status of the network affect the CRN performance on different
channels. Based on this, the cognitive engine can dynam-
ically select the best channel, expected to yield the best
performance for SUs. Li [123] use a multi-agent Q-learning
approach, a model-free type of reinforcement learning, to
address the problem of channel selection in multi-user and
multi-channel CRNs. Each SU considers both the channel and
the other SUs as its environment, updates its Q values con-
tinuously, and uses the Q-table to select the best channel.
NoroozOliaee et al. [119], [124] derive new private objec-
tive functions suitable for supporting elastic traffic that can be
used by learning algorithms to enable cognitive users to locate
and exploit unused spectrum opportunities in a distributed
manner while maximizing their received throughput. These
same authors also derive learning-based objective functions for
the inelastic traffic model with non-cooperative [125], [126]
and cooperative [127], [128] users. Yau et al. [129] pro-
pose a context-aware and intelligent dynamic channel selection
scheme that enables SUs to adaptively select channels for data
transmission to enhance QoS.

Sources of location information leakage: The learning pro-
cess may also lead to some location information leakage. This
is mainly due to:

• Environmental measurements: In centralized CRNs, the
learning agent, usually FC, needs to collect environ-
mental measurements during the training phase [122] to
be able to select the best channels for secondary trans-
missions. In the case of distributed CRNs, the learning
process involves multiple agents, which often need to
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exchange measurement information among themselves.
As we have shown previously, this information, when
shared among the different CRN entities, may reveal
significant information about SUs’ location.

• Activity prediction: Prediction strategies through machine
learning techniques could also be used to predict both
PU and SU activities based on past measurements and
experience [130], [131]. This can allow a malicious entity
to predict which channels a SU might be using in the
future. Combining this information with the learned activ-
ity model of PUs and their coverage areas, it becomes
possible to predict a SU’s location, just as explained in
Section II-D2.

iv) Optimization theory: Optimization techniques (e.g.,
convex optimization, linear programming, non-linear program-
ming, etc.) have also been widely used to solve the spectrum
assignment problem in CRNs. For instance, Tan and Le [107]
formulate the channel assignment problem as an integer opti-
mization with the aim to maximize throughput, and propose
two greedy non-overlapping and overlapping channel assign-
ment algorithms to solve it. Bkassiny and Jayaweera [132]
model the channel assignment problem as a weighted bipar-
tite graph, where PUs and SUs constitute the two disjoint
sets of vertices in the bipartite graph. The authors use the
well-known Hungarian method [133] to solve this problem
in polynomial time. Ding et al. [134] formulate the joint
spectrum and power allocation problem as a convex optimiza-
tion problem, and propose a distributed algorithm to solve it.
Ghorbel et al. [135], [136] propose two-phase optimization
heuristics also for joint allocation of the spectrum and power
resources. Their proposed heuristics split the spectrum and
power allocation problem into two sub-problems, and solve
each of them separately. The spectrum allocation problem is
solved during the first phase using learning, whereas the power
allocation is formulated as a real optimization problem and
solved, during the second phase, by traditional optimization
solvers. Salameh [137] formulate the joint rate/power con-
trol and channel assignment as a mixed-integer program with
the aim to maximize the sum-rate achieved by all contending
SUs over all available spectrum opportunities. Due to the NP-
hardness nature of this problem, they transform it into a binary
linear programming problem which they solve in polynomial
time. Xin and Xiang [138] formulate the joint QoS-aware
admission control, channel assignment, and power allocation
as a non-linear NP-hard optimization problem. In [139] the
channel assignment problem is expressed as an Integer Linear
Programming (ILP) problem. These approaches rely on heuris-
tics to solve the spectrum assignment due to the complexity
of the formulated optimization problems.

b) Power control and beamforming: Power control and
beamforming are effective methods for mitigating co-channel
interference and thus boosting the system capacity. The chal-
lenge with power control and beamforming in CRNs lies in
making sure that SUs’ transmissions do not cause the received
interference at PUs to exceed a tolerable limit. In light of this,
a number of beamforming and power allocation techniques
have been proposed for CRNs with various objectives, such as
capacity maximization [140] and transmit power minimization.

For instance, Le and Hossain [141] propose to formulate
the joint rate and power allocation problems for the secondary
links as optimization problems with both QoS and interference
constraints under low network load conditions. This work
relies on two popular fairness criteria, namely, the max-min
and the proportional fairness criteria. Kim et al. [142] develop
joint admission control and rate/power allocation methods
subject to QoS and minimum rate requirements as well as
maximum transmit power and fairness constraints for SUs in
MIMO ad hoc CRNs.

Zhang et al. [140] consider beamforming and power alloca-
tion jointly for SIMO-MAC, and formulate it as two optimiza-
tion problems: sum-rate maximization and SINR balancing.
These problems are solved using a water-filling based algo-
rithm and constraint decoupling techniques. The goal is to
obtain the suboptimal power allocation strategy and to max-
imize the minimal ratio of the achievable SINRs relative to
the target SINRs of the users in the system under a sum-
power constraint. Zheng et al. [143] propose beamforming
designs for a multi-antenna CRN, with the aim of allowing
multiple SU transmissions concurrently with the PU presence,
to achieve also SINR balancing subject to the constraints of the
total SUs transmit power and the received interference power
at the PUs. This is achieved by optimizing the beamforming
vectors at the SU transmitter based on imperfect channel state
information (CSI).

2) Spectrum Access: Spectrum access of CRNs is respon-
sible for the sharing of the spectrum among SUs by handling
medium contention, interference avoidance, multi-user coex-
istence, etc. [144].

a) Access paradigms: There are three spectrum access
paradigms in CRNs:

Spectrum underlay: This paradigm mandates that SUs can
transmit concurrently with PUs only if doing so generates an
amount of interference at the primary receivers that is below
some acceptable threshold [142], [145].

Spectrum overlay: Spectrum overlay paradigm also allows
concurrent primary and secondary transmissions. But SUs
are assumed to have knowledge about certain primary trans-
mission parameters to avoid interference with the primary
transmissions. The enabling premise for overlay systems is
that SUs are allowed to use the spectrum for their own trans-
missions as long as they are willing to use some of their power
to relay some of PUs’ transmissions [146].

Spectrum interweave: This paradigm is based on the oppor-
tunistic spectrum access idea, which has been one of the
main drivers for cognitive radio access. Different from the
two previous paradigms, this paradigm does not allow simul-
taneous secondary and primary transmissions on the same
frequency band. Instead, it allows SUs to access and use the
licensed spectrum only when the spectrum is vacant [145].

b) Spectrum access techniques: Many MAC protocols
have been proposed to coordinate SUs to access and share
the available channels and to avoid (or reduce) collisions
among users [140]. Such a coordinated access could be per-
formed in a distributed or a centralized way [144]. These
protocols can either be cooperative [147], [148] in that they
require coordination among SUs to enable efficient sharing of
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spectrum and thus improve spectrum utilization, or contention-
based [149], [150] in that no coordination is required among
users. In contention-based protocols, cognitive senders and
receivers exchange their sensing results through handshak-
ing mechanisms to negotiate which channel they will use
for their communications [144]. Tan and Le [107] propose
an overlapping channel assignment algorithm and design a
MAC protocol to resolve the access contention problem when
multiple SUs attempt to exploit the same available channel.
Salameh et al. [151] propose a contention-based protocol that
tries to satisfy QoS constraints by limiting the number of used
channels per SU.

In coordination-based protocols, each SU shares its channel
usage information with its neighbors to increase sensing reli-
ability, and to improve overall system performance [144]. For
instance, Hamdaoui and Shin [148] propose a coordination-
based MAC protocol that adaptively and dynamically seeks
and exploits opportunities in both licensed and unlicensed
spectra and along both the time and the frequency domains.
Zhao et al. [152] propose a heterogeneous distributed
MAC protocol that permits distributed coordination of local
clusters in a multi-hop CRN through a local common
channel.

c) Sources of location information leakage: The shar-
ing of information during this coordination process, though
needed for enabling efficient multiple access, could expose
the location information of SUs to one another.

Sensing outcomes: Contention-based MAC protocols may
require SUs to share their sensing outcomes with one another
to negotiate their access to the spectrum. However, as we
have shown in Section II-A3a, these sensing outcomes can
potentially leak SUs’ location information.

Channel usage information: Channel usage information,
when shared among SUs as in coordination-based MAC pro-
tocols, is shown to leak details about their location; this will
be discussed later in Section II-D2.

3) Spectrum Trading: Spectrum trading could be seen as
the economic aspect of spectrum sharing [153]. It aims to
maximize the revenue of the spectrum owners, i.e., PUs, while
maximizing the satisfaction of SUs [154] that compete for
gaining access to the spectrum. Spectrum trading can be done
between PUs and SUs or among SUs only [153]. It relies
mainly on two concepts: Auction theory and market theory.
Next, we highlight these two concepts and investigate their
sources of leakage.

a) Auction: A typical dynamic spectrum auction has
three main phases: 1) Spectrum discovery phase: SUs obtain
spectrum availability information through one of the spectrum
opportunity discovery approaches, explained in Section II-A,
and determine the bid price for each available channel based
on its quality. 2) Bidding phase: each SU submits its bids
and its location along with its ID to the auctioneer. 3) Channel
assignment: once the auctioneer collects all the bids from SUs,
it distributes channels among them and charges the winners
accordingly [155]. This is suitable for situations when the
price of the spectrum is undetermined and depends on SU’s
requirements [154]. Auction-based spectrum sharing for CRNs
has been studied intensively in [156]–[158].

b) Market theory (monopoly market): This is the
simplest market structure as there is only one seller, i.e., PU, in
the system. Based on SUs’ demand, the seller can optimize the
trading process to obtain the highest profit [153], [159], [160].

Oligopoly Market: This is a type of market that lies between
full competition and no competition (or monopoly) and is
defined as a market with only a small number of firms and with
substantial barriers to entry in economics [21]. These firms or
primary service providers compete with each other indepen-
dently to achieve the highest profit by controlling the quantity
or the price of the supplied commodity which is the spectrum
resource in this case. Unlike the monopoly case, in oligopoly,
there are multiple firms that provide the same service, making
it necessary for firms to consider each other’s strategy [153].
The most basic form of oligopoly is duopoly, where only two
sellers exist in the market [159], [160].

Market-equilibrium: In this spectrum trading model, the pri-
mary service provider or spectrum seller is assumed to be
not aware of other service providers, which could be due to
the lack of any centralized controller or information exchange
among each other. This makes the spectrum seller naively set
the price according to the spectrum demand of SUs. This price
reflects the willingness of the spectrum seller to sell its spec-
trum which is generally determined by the supply function.
On the other hand, the willingness of a SU to buy spectrum is
determined by the demand function [116]. Market-equilibrium
aims at giving a price for which spectrum supply from a
primary service provider is equal to spectrum demand from
SUs [21]. This price achieves two goals: the spectrum supply
of the primary service provider meets all spectrum demand of
SUs, and the spectrum market does not have an excess in the
supply [116].

c) Sources of location information leakage: Spectrum
trading may also introduce some sources of location infor-
mation leakage as we discuss next.

Location information: During the bidding phase of spec-
trum auction, SUs may need to submit their locations to the
auctioneer as suggested in [155]. This is clearly an obvious
source of location information leakage as it exposes the loca-
tion information of SUs to the auctioneer and to an external
adversary that may be eavesdropping the communications of
SUs during the auction process.

Bid channels: SUs here need to submit their bids for their
channels of interest to the auctioneer (or spectrum broker) .
An adversary aiming to infer a SU’s location can deduce, from
the list of channels SU bids for, that SU is located somewhere
where these channels are available. Simple intersection of the
availability areas of these channels can easily locate SU [155].

Bid prices: For each channel available for auction, a SU can
first evaluate its quality and, depending on the channel’s qual-
ity, establish a price for it. It then submits its bid for the
channel to the broker. These prices are shown to be a potential
source of SUs’ location information leakage [155].

D. Location Information Leakage in Spectrum Mobility

SUs communicating on a licensed spectrum band may need
to vacate their current band at any time, for instance, due to
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the return of PUs to their licensed band. When this happens,
SUs need to find and switch their ongoing communications to
another vacant band to avoid the disruption of their ongoing
transmissions. This is known as spectrum mobility or spec-
trum handoff [161]. There are several events that could trigger
spectrum handoff in CRNs, and next, we list some of them:

• PU’s return: Whenever a PU returns to its channel, SU is
forced to vacate it and switch to another available one,
if any. This initiates the handoff process. Finding a new
available channel often requires SU to perform spectrum
sensing, making handoff more challenging [162].

• SU’s mobility: Because spectrum availability is location
dependent, moving while having an ongoing communi-
cation may trigger spectrum handoff, as current channel
may no longer be available in SU’s new location [163].

• Quality degradation: Spectrum handoff could be trig-
gered by the degradation of the channel quality. It can
be triggered when, for example, the QoS level received
by SU goes below a certain threshold, forcing it to find
and switch to another channel.

1) Spectrum Handoff Strategies: Based on the handoff trig-
gering timing, spectrum handoff techniques could be classified
into four categories or strategies: Non-handoff strategy, reac-
tive handoff strategy, proactive handoff strategy, and hybrid
handoff strategy [164], [165]. We first explore these differ-
ent strategies, then we investigate their sources of location
information leakage.

a) Non-handoff strategy: In this strategy, when one of
the triggering events for handoff occurs, SUs stop transmitting
over the current channel and choose not to switch to another
channel. Instead they remain idle until the channel becomes
available again [166], as introduced in the non-hopping mode
of the IEEE 802.22 WRAN standard [167]. How good this
handoff strategy is depends on the activities and loads of PUs.
It causes very little to no PU interference but the waiting
latency to resume secondary transmission could be unpre-
dictably very large, as it depends on when PU leaves the
spectrum. This strategy is best suited for systems with short
PU transmissions [164].

b) Pure reactive handoff strategy: In this strategy, the tar-
get channel selection and the handoff are performed reactively
after a spectrum handoff triggering event occurs [165], [168].
Here, SUs need to perform spectrum sensing in order to find
the target backup channel to which communication is to be
transferred. Several reactive handoff strategy-based approaches
are proposed in [169] and [170]. In general, this strategy has
less handoff latency than that of the non-handoff strategy, but
has larger latency when compared to the proactive spectrum
handoff strategy [164], [165] (described next). The handoff
performance of this strategy depends on the accuracy and
speed of the spectrum sensing process in identifying a vacant
target channel.

c) Pure proactive handoff strategy: In this approach,
the handoff and the target channel selection are performed
proactively before a spectrum handoff triggering event takes
place [171], [172]. SUs do so by periodically observing all
channels to obtain spectrum usage statistics which allow
them to determine the candidate channels for spectrum

handoff [168]. The selection of the target free channel for
future spectrum handoff is usually made based on PU traf-
fic characteristics [165], where SUs can predict PU arrivals
in the target spectrum band in advance. Hence, the handoff
latency is reduced considerably when compared to the reac-
tive spectrum handoff strategy, which requires taking action
after the handoff triggering event takes place. However, if the
prediction of PU traffic is inaccurate or if the target backup
channel is obsolete, for instance due to being occupied by
other SUs at handoff time, this could lead to poor handoff
performance [164]. This makes this strategy best suited to
networks with well-modeled PU traffic characteristics.

d) Hybrid handoff strategy: This approach combines
proactive spectrum sensing with reactive spectrum handoff as
suggested by Christian et al. [164]. It performs proactive spec-
trum sensing to decide on the backup target channel in advance
and before the handoff is triggered, and makes a reactive hand-
off decision after the triggering event takes place. Thus, it
reduces the handoff latency when compared to the reactive
handoff strategy. This hybrid approach could be seen as a
tradeoff between reactive and proactive handoff strategies.

2) Sources of Location Information Leakage: Spectrum
mobility can also leak some location information about SUs,
as highlighted next.

Handoff: Recall that a SU utilizing a PU channel is forced
to vacate the channel (and possibly switch to another) when
PU returns to and claims its channel. PU (and easily other
entities) knows, in this situation, that SU is located within its
coverage area. Handoff can thus lead to leakage of location
information of SU performing handoff.

Spectrum utilization information: A SU’s spectrum usage
history (e.g., sequence of channels SU has used over some
period of time) could easily be used to localize SU (or to
track it if it is moving). Recall that when a SU is commu-
nicating over a PU channel, it means that SU is outside the
coverage areas of all ON PUs associated with that channel,
or inside the area of an OFF PU. Now, for instance, by track-
ing which channels SU has used over a period of time and
by knowing when and which PUs are OFF/ON during that
time period, an adversary can easily narrow down the area
where SU is located at by intersecting the areas associated
with PUs [54]. Spectrum utilization history information could
then be a significant source of location information leakage.

Sensing reports: Before handoff, a SU may need to sense
the spectrum to identify a new target channel (using one of
PU detection techniques identified in Section II-A1a). If coop-
eration is further required to select the appropriate channel for
handoff, SUs will have to share their sensing reports, which
can compromise their location privacy.

Location privacy-preserving protocols should therefore be
designed with the objective of hiding information that can leak
SU’s location during the handoff process and also reducing,
as much as possible, the occurrences of handoff events.

E. Summary

In this section, we identified the sources of location privacy
leakage emerging from the different components of CRNs,
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namely, spectrum discovery, spectrum analysis, spectrum shar-
ing, and spectrum mobility. We highlighted the different
functionalities of each of these components, and discussed how
some of these functionalities can present some vulnerabilities
that could be exploited to localize SUs. In the next section,
we will go over a family of renowned privacy enhancing tech-
nologies and generic crypto schemes that we believe are the
most relevant to CRNs. We will also discuss to which extent
these technologies could be applied to design location privacy-
preserving protocols that could prevent attacks exploiting the
identified vulnerabilities.

III. LIMITATIONS OF GENERIC PRIVACY ENHANCING

TECHNOLOGIES IN CRNS

Location privacy preservation is a mature technology
for many wireless systems, such as sensor [7], vehicu-
lar [173], [174], WiFi [9], cellular [10], and others [175].
Depending on the wireless system and application at hand,
location information can be leaked through various means,
ranging from wireless signal localization [7], [9] to traffic
monitoring and analysis [8]. For instance, in sensor networks,
location information can be inferred by monitoring packet
reception times [8] or analyzing packet traffic [176], [177]
of source nodes. Countermeasure solutions for these attacks
have also been proposed, ranging from introducing random-
ness to multi-hop path selection [178], [179] to making the
source nodes move randomly [8] to confuse the attackers.
Unlike other wireless systems, location privacy preservation
that addresses vulnerabilities in CRNs has not, however,
received much attention, though several works related to spec-
trum sensing [11], [54], [55], [72], [180]–[182], spectrum
auction bids [155], [183], subscriber identification [184], and
database-driven DSA [54], [55], [180]–[182], [185] have been
proposed.

A. Adaptation of Existing Privacy Enhancing Technologies

Direct adaptation of existing Privacy Enhancing
Technologies (PETs), such as Searchable Encryption
(SE) (e.g., [186]–[190]) and Oblivious Random Access
Memory (ORAM) (e.g., [191]–[193]), which enable a client
to outsource its data to a database in an encrypted form so
it can perform search queries on it, cannot, for example,
be used as they are in database-driven DSA to enable
private spectrum information retrieval. There have also
been proposed cryptographic techniques that enable generic
(e.g., Fully Homomorphic Encryption (FHE) [194]–[196])
or specific (e.g., functional encryption [197], [198]) data
processing over encrypted data, and these existing PETs
cannot be directly adapted either to fit the CRN context, so
that SUs’ location privacy is preserved while still querying
the spectrum database for availability information in an
effective manner. Architectural differences and performance
requirements of CRNs make direct adaptation extremely
ineffective. Privacy-preserving search/access techniques,
such as SE or ORAM, are specifically designed for a data
outsourcing model [189], [190], [199], in which a client
encrypts its own data with its private key and then outsources

it to the database. However, in database-driven DSA, a third
party owns and manages the spectrum database. Therefore,
it is impractical for database owners to generate a search-
able encrypted copy of the database for each single user
(note that the initialization phase of these PETs are highly
costly [187], [193]). Existing, fully generic techniques such
as FHE [194], [195] are, on the other hand, extremely costly
and therefore impractical for CRNs.

That is said, there have been several attempts that aimed
to adapt existing PETs to fit the CRN context. In the case
of database-driven DSA for example, the proposed techniques
that aim to protect the location information of SUs when
they are querying databases for spectrum availability informa-
tion rely on either k-anonymity [200], [201] or PIR (private
information retrieval) [202], [203]. k-anonymity approaches
(e.g., [55]) essentially rely on a third party, known as the
anonymizer, to ensure that the probability of identifying the
location of a querying user remains under 1/k, where k is
the size of the anonymity set to be received by the untrusted
database (alternatively, the anonymity set can be constructed
distributedly instead of relying on a third party). k-anonymity
approaches are known to suffer from one major problem:
they cannot achieve high location privacy without incurring
substantial communication/computation overhead (e.g., higher
privacy means higher k). They often compromise the location
privacy at the benefit of lowering the incurred overhead, or
vice-versa [204]. PIR-based approaches [54], [180], [181], on
the other hand, offer much better privacy than k-anonymity
approaches, but also incur substantial overhead, thus limiting
their practical use for CRNs [205]. Proposed approaches rely-
ing on these technologies will be discussed in more details in
later sections.

In what follows from this section, we take a closer look
at some of the most known and generic PETs and dis-
cuss why they cannot be used off-the-shelf as they are in
the context of CRNs to protect SUs from location inference
attacks that exploit the vulnerabilities identified in Section II.
These techniques, include homomorphic encryption, oblivi-
ous transfer, private information retrieval, data outsourcing-
based techniques, differential privacy, and secure multiparty
computation.

B. Homomorphic Encryption

Homomorphic encryption is a special form of encryption
that allows computations to be performed on ciphertexts. It
generates an encrypted result whose decryption matches the
result of operations performed on the plaintexts. There are
two kinds of homomorphic encryption: full and partial.

1) Fully Homomorphic Encryption: This is a special type
of homomorphic encryption which allows the computation of
arbitrary functions on encrypted data without decrypting it.
This concept was first introduced by Gentry [206] and is based
on the properties of ideal lattices. Theoretically speaking, this
is a very powerful concept as it permits the construction of a
program that performs all kind of operations on the ciphertexts.
Since such a program does not need to decrypt its inputs, it
can be run by an untrusted party without revealing its inputs
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and internal state, making it an attractive tool for preserving
privacy.

This might seem applicable in the context of CRN to hide,
for example, the observations of SUs (proven to leak infor-
mation about SUs location as discussed in Section II-A3a)
during the spectrum sensing phase and share them with FC (or
other SUs) without worrying about SU’s location privacy. The
main issue, however, with this type of encryption is that it
involves high computation and requires large storage, mak-
ing it unpractical. Another major issue with this encryption
is that the search time resulting from using fully homomor-
phic encryption is linear in the length of the dataset. This
again makes it unpractical, especially for applications with
large datasets like spectrum geolocation databases.

2) Partially Homomorphic Encryption: A partially homo-
morphic cryptosystem is an encryption scheme that, unlike
fully homomorphic encryption, can only perform either mul-
tiplication or addition on the ciphertexts, but not both.
Several cryptosystems with homomorphic properties were
proposed in the literature. Paillier cryptosystem [207] is
one of the most famous additive homomorphic schemes.
Examples of multiplicative homomorphic cryptosystems
include Elgamal [208] and Rivest et al. [209]. Thanks to
their homomorphic properties, these schemes could be used
in situations that require performing some basic operations on
sensitive data while hiding user inputs (like when reporting
sensing information).

Partially homomorphic encryption is more practical than the
fully homomorphic one; however, for them to provide high
security level, they incur large communication and computa-
tional overhead. This makes it unpractical to use especially for
large CRNs if not used judiciously.

C. Oblivious Transfer

Oblivious transfer (OT) is a privacy enhancing protocol that
enables a sender to transfer one of many pieces of data to
a receiver, while keeping the sender oblivious as to which
piece has been sent and while making sure that the receiver
receives only one message. The simplest flavour of this proto-
col, 1-out-of -2, was first introduced by Rabin [210] and was
later generalized to 1-out-of -n and k-out-of -n cases. In the
1-out-of -n case, as explained in Figure 6, the sender has n
messages and the receiver has an index i. The receiver wants
to learn the ith message without the sender learning i. On the
other hand, the sender wants that the receiver only learns one
message among the n messages. This could be thought of as
a suitable approach to use for extracting spectrum availability
information from the spectrum DB. This approach, however,
incurs very large communication and computational overheads
which makes it unpractical in a delay sensitive problem like
spectrum availability discovery.

D. Private Information Retrieval (PIR)

This concept was first introduced by Chor et al. [202]. It
allows users to privately retrieve records from a database while
preventing the latter from learning which records are being
retrieved. This could be thought of as a weaker version of

Fig. 6. Oblivious transfer for the case 1-out-of -n.

1-out-of -n OT which further requires that the receiver does
not learn anything about the other entries in the database.

PIR approaches could be classified into two cate-
gories: Information-theoretic PIR and computational PIR. In
information-theoretic setting, the reconstruction of the client’s
query is impossible no matter how much computation the
adversary would perform. A trivial PIR approach could
be to download the entire database. This would offer an
information-theoretic privacy, i.e., unbreakable privacy, but on
the other hand involves enormous communication overhead.
Any information-theoretical PIR solution has a communica-
tion overhead of at least the size of the database as proven by
Chor et al. [202]. Fortunately, this applies only to the case
where the database is stored only on a single server. One
way to get around this extensive overhead is by assuming that
the database is replicated in several servers that do not com-
municate with each other. This way, a non-trivial theoretic
PIR solution that has communication overhead smaller than
the database size turns out to be feasible. An information-
theoretic approach in this model means that an individual
database server cannot learn which element was retrieved by
the user, no matter how much computation it may perform
as long as it does not collude with the other servers [211].
Several approaches proposed in the literature considerably
reduce the communication overhead of information theoretic
PIR (e.g., [212] where the communication cost is O(n1/2k−1)

with k is the number of database servers).
On the other hand, in computational PIR approaches, the

security is based on hard-to-solve well-known cryptographic
problems, e.g., discrete logarithm or factorization [213].
This makes them secure against computationally bounded
adversaries. But an adversary with sufficient computational
resources can learn the client’s query by breaking the under-
lying security system. Some computational PIR approaches
are able to provide poly-logarithmic communication complex-
ity [211]. Gentry and Ramzan [214] propose the most com-
munication efficient PIR that has a constant communication
overhead.

Even though research on PIR is making progress in terms
of reducing the overhead, PIR approaches still suffer from
large overhead that limits their practicality and impedes their
off-the-shelf use without adaptation in the context of CRNs.

E. Data Outsourcing-Based Techniques

These techniques are designed for applications that require
secure data outsourcing, where a client’s sensitive data is
outsourced to a third-party storage provider, e.g., the cloud.
Existing access control solutions focus mainly on preserving
confidentiality of stored data from unauthorized access and
the storage provider. Next, we discuss two well known data
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Fig. 7. Searchable symmetric encryption.

outsourcing based PETs: searchable symmetric encryption
(SSE) and oblivious random access memory (ORAM).

1) Searchable Symmetric Encryption (SSE): Searchable
symmetric encryption is a PET that is largely deployed to pri-
vately outsource one’s data to another party while maintaining
the ability to selectively search over it [199]. This means that
a client needs to outsource its data to a database/server in
an encrypted form to be able to later perform private search
queries on it as shown in Figure 7. Despite its efficiency and
the high level of privacy that SSE provides, it cannot be applied
to database-based CRNs simply because in SSE, the data has
to be outsourced by the client, whereas in database based
CRNs, the data about spectrum availability is generated and
provided by the service operator that manages the spectrum
database. This means that SUs have no control over this data
and, thus, they cannot encrypt it and outsource it to DB as
required by SSE.

2) Oblivious Random Access Memory (ORAM): Encrypting
its outsourced data is not sufficient for a user to pro-
tect the confidentiality of his/her data content as his/her
access pattern to the data remains unprotected which may
reveal the user’s private information. ORAM is introduced
by Goldreich and Ostrovsky [191] to not only preserve data
confidentiality but also to hide a user’s access pattern to its out-
sourced data blocks. Traditionally, ORAM has been designed
to arrange the data such that the user never touches the
same piece twice, without an intermediate shuffle. This erases
the correlation between block locations and obfuscates the
memory accesses of data, so that access patterns do not leak
information about the stored data. Just like SSE, ORAM can
only fit to the problem of data outsourcing which is not suit-
able to the context of CRNs for the same reasons discussed
for SSE.

F. Differential Privacy

This is a recent privacy concept tailored to the statistical
disclosure control problem which is defined as follows: how
to release statistical information about a set of people without
compromising the privacy of any individual [215]. Its goal is
to assure a good statistical accuracy while preserving individ-
ual’s privacy. It is a well established definition guaranteeing
that queries to a database do not reveal too much information
about specific individuals who have contributed to the database
as suggested in [216]. The formal definition of this concept
could be found in [217]. The basic idea behind it is that for
two almost identical input data sets, the outputs of the mech-
anism that provides differential privacy are almost identical.
More precisely, it requires that the probability that a query
returns a value v when applied to a database D , compared to

the probability to report the same value when applied to an
adjacent database D ′ (i.e., D , D ′ differ in at most 1 entry)
should be within a bound of expε for some privacy level ε.
Since differential privacy is a probabilistic concept, any dif-
ferentially private mechanism is necessarily random. A typical
way to achieve this notion is to add controlled random noise,
drawn from a Laplace distribution for instance, to the query
output. One benefit of this concept is that a mechanism can
be shown to be differentially private independently from any
side information that the adversary might have.

However, standard differential privacy techniques usually
perform poorly in situations where participants contribute var-
ious time-series data that could be aggregated and mined for
useful information, due to noise [218]. Examples of time-series
data may include users’ current locations, weather information
or information obtained from other participatory sensing appli-
cations like spectrum sensing in CRNs [218]. Moreover, the
nature of differential privacy concept makes it poorly suitable
for applications that involve a single user, such as spectrum
database-based opportunities discovery, where the location of
a single user has to be hidden. Thus, it requires that any change
in a user’s location have negligible effect on the published out-
put of the query, which makes it impossible to communicate
any useful information to the service provider [219]. Despite
this, some approaches try to adapt this concept to the context
of CRNs as we show in Sections IV and V.

G. Secure Multiparty Computation (MPC)

The concept of secure multiparty computation (MPC) orig-
inates from the works of Yao [220] and Goldreich et al. [221].
It allows a group of n mutually distrusting parties P1, . . . , Pn,
holding private inputs x1, . . . , xn to securely compute a joint
function f (x1, . . . , xn) = (y1, . . . , yn) on these inputs [222].
The goal is to make each party Pi learn only yi but nothing
else. This could be achieved through an interactive protocol,
executed between these parties, whose execution should be
equivalent to having a trusted party that privately receives xis
from Pis, computes f and returns yis to Pis. This protocol
should be able to give the correct result to honest parties even
if some parties are dishonest.

In a CRN context, this could be an attractive tool to provide
privacy for any task that involves some computation between
several entities. For instance, this could be used in distributed
cooperative spectrum sensing during the spectrum discovery
phase to allow SUs to collaborate in order to compute statis-
tics over the sensing reports while preserving the privacy of
their reports and thus their location. Another potential use
of MPC could be during the coalition formation process,
again in the spectrum discovery phase, to prevent leaking
SNR values that can compromise SUs’ location as explained in
Section II-A3a. MPC could also be used in game theoretical
approaches during the spectrum sharing phase to prevent the
leakage that can arise from the local decisions shared between
different SUs during the game. Furthermore, this could be
an attractive tool also to protect the bids of SUs during the
auction process that is performed to ensure spectrum sharing
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among SUs. As explained in Section II-C3c, the auction pro-
cess may leak some information about SUs’ location which
makes it natural to consider leveraging sealed bids or relying
on a trusted party for the auction. Ideally, an MPC protocol
should be equivalent to a trusted third party; hence, MPC could
play this role and replace an untrusted auctioneer as suggested
in [222].

It is obvious that the potential applications of MPC are
multifold due to its flexibility to emulate multiple scenarios.
However, the bottleneck is its extensive computational and
communication overhead, which makes its deployment diffi-
cult in practical situations, and more precisely in the context
of CRNs, at least for the time being.

H. Summary

In this section, we explored a family of renowned PETs
and generic crypto schemes that we believe are the most rel-
evant to CRNs. We highlighted the benefits and limitations of
applying these schemes to CRN off-the-shelf as they are. In
the following section, we will present and discuss location pri-
vacy preservation approaches proposed for protecting location
privacy during the spectrum opportunity discovery process.
We will explore the different threat models, location inference
attacks, and location privacy preserving techniques that are
specific to this spectrum discovery component.

IV. LOCATION PRIVACY PRESERVATION FOR SPECTRUM

OPPORTUNITY DISCOVERY COMPONENT

In this section, we investigate the different approaches
proposed in the literature to deal with the location privacy issue
in CRNs during the spectrum opportunity discovery phase.
First, we discuss the challenges that face designing SU’s loca-
tion privacy preserving protocols in both cooperative spectrum
sensing and geolocation database-based approaches. Then, we
list the different threat models that need to be considered in
these two approaches. After that, we detail existing and poten-
tial attacks that could be performed by malicious entities to
localize SUs by exploiting the vulnerabilities that we identified
in Section II-A. Subsequently, we describe existing solutions
that are proposed to cope with these attacks and preserve SUs’
location privacy. Finally, we explain the performance metrics
that are or could be used to assess the performance and reli-
ability of location privacy preserving protocols in CRNs, and
present tradeoffs that are considered when designing these
protocols.

A. Location Privacy in Cooperative Spectrum Sensing

As discussed in Section II-A3a, the cooperation among SUs
during the sensing process gives rise to several vulnerabilities
that could be exploited to compromise SUs’ location privacy.
Thus, location privacy preservation protocols for cooperative
sensing need to be designed with several goals in mind:

• Hide sensing information: As explained in
Section II-A3a, SUs’ sensing reports may leak informa-
tion about their locations [223]. Hence, one main goal of
these protocols is to hide sensing reports by concealing
the observed sensing information from decision makers

or any potential external attackers that might eavesdrop
SU’s communications [11], [224]–[227].

• Achieve accurate spectrum availability information:
Protocols need to preserve the location privacy of SUs,
but without compromising their ability to still provide
accurate spectrum availability information. Achieving this
design goal is very challenging, due to its conflicting
nature: hiding information for the privacy protection pur-
pose may limit the ability to provide accurate spectrum
availability information.

• Optimize resource usage: An important limitation that
needs to be accounted for when designing privacy pre-
serving protocols is SUs’ resource capability. It is then
important to design protocols that require minimum
computation and storage resources and incur limited com-
munication overheads. This, for instance, implies that
expensive cryptographic approaches are to be avoided.

• Hide SNR values: Another goal that needs be aimed
at is to hide the SNR values that SUs might need to
exchange to form coalitions, for example. As explained
in Section II-A3a, SNR may leak significant information
about SUs’ location, and thus a reliable location privacy
preserving scheme needs to conceal these values without
hindering the CRN operations relying on them.

1) Threat Models: Several threat models are considered in
the literature to study and address SUs’ location privacy issue
in cooperative spectrum sensing:

• Dolev–Yao threat model: In this model the adver-
sary, usually an intruder, can overhear, intercept, and
synthesize any message that is exchanged between
SUs and FC or even between SUs themselves during
the cooperative spectrum sensing process. The adver-
sary is only limited by the constraints of the crypto-
graphic methods used [228]. This model is considered
in [53], [226], and [227]

• Semi-honest or honest-but-curious threat model: This
means that the adversary, that could be a FC [11], [224],
[226], [227], a SU [226], [227] or an additional entity as
in [227], follows the sensing protocol honestly without
changing any of its parameters. However, it shows some
interest in learning the location information of target SUs
by exploiting their sensing reports.

• Malicious threat model: Entities in the CRN may be mali-
cious, meaning that FC, SU or any other entity involved
in the cooperative spectrum sensing process can change
their parameters and lead several attacks to localize a
target SU.

• Non-collusion threat model: FC, SUs and any other enti-
ties in the CRN do not collude to infer target SUs’
location [226], [227]. This means that these entities do
not share what they learned about target SUs’ location
during the cooperative spectrum sensing process.

• Collusion threat model: FC or some SUs may collude
with other SUs or entities and work together to infer tar-
get SUs’ location [11], [225] by exploiting their sensing
reports and communication signals.

2) Location Inference Attacks: Location inference attacks
exploit the vulnerabilities and the sources of leakage that we
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Fig. 8. Localization of an SU via Trilateration using the ranges d1, d2 and
d3 corresponding to PU1, PU2 and PU3 respectively.

explained in Section II-A3a to localize SUs. These attacks
could be performed by an internal entity (e.g., another SU or
FC) or an external attacker that does not belong to the CRN.
These attacks can be classified into two categories, based on
the information used for localization: Geometric localization
and fingerprinting.

a) Geometric localization based attacks: These attacks
exploit channel parameter measurements including RSS, SNR,
AoA, ToA and TDoA to localize a target SU. RSS, SNR and
ToA could be used to get the range information, as explained
in Section II-A3a, which is essential for the trilateration local-
ization technique [56], [72]. Trilateration is a very simple and
intuitive approach that computes the position of a target node
by finding the intersection of three circles that model the range
with respect to at least three anchor nodes as depicted in
Figure 8.

In the context of CRN, the anchor nodes could be three PUs
whose locations, depending on the situation, could be publicly
known. Thus, an attacker that has access to the RSSs that a
SU measures with respect to three channels could exploit this
knowledge to localize SU using trilateration. SNR could also
be used in a similar way, as reported in [72], for ad hoc CRNs.
The attack can occur during the process of forming coali-
tions and choosing coalition heads as these operations require
exchanging SNR information between SUs. Another attack
scenario could involve multiple attackers or colluding nodes
that belong to the CRN and that have a direct communication
with the target node.

Triangulation is also another technique that exploits chan-
nel parameter measurements for localization purposes. It uses
angles instead of distances and requires at least two reference
nodes to localize the target node [229]. The two reference
nodes measure the AoA of the signal coming from the tar-
get node. The position of the target node is the intersection
of the two lines along the angles from each reference node
as in Figure 9. As this attack requires a direct communica-
tion between the victim and the attackers, this implies that
the attackers, which are also the reference nodes in this case,
belong to the CRN, e.g., two colluding malicious SUs.

Geometric localization attacks may be performed in CRNs
that deploy crowdsourcing (explained in Section II-A1b) for
spectrum sensing. For instance, Jin and Zhang [46] propose an
attack scenario that targets the location privacy of participants
in the crowdsourcing process. They consider a special setting

Fig. 9. Localization of an SU via Triangulation using the angles of arrivals,
AoAs, θ1 and θ2 of the SU’s signal measured respectively at PU1 and PU2.

Fig. 10. Localization of an SU via Fingerprinting using its RSS signature
[RSS1, RSS2, RSS3] with respect to 3 channels and the REM database.

where these participants compete to perform spectrum sensing
tasks at specific locations via a reverse combinatorial auction
operation [230]. During this auction, participants send their
bids, corresponding to their claimed cost of performing the
sensing tasks. This cost, as modeled by the authors, involves
the round trip distance that a participant needs to travel to per-
form the sensing tasks and return back to its current location,
called base location, which is the target of the proposed attack.
This attack exploits the geometric relationship between users
bids and the distance they travel to perform the sensing.

b) Fingerprinting based attacks: These attacks are more
suitable in situations where the geometric relationships
between SUs’ positions and measurements cannot be estab-
lished. It estimates the victim’s location by finding the best
matched fingerprint for the corresponding measurement within
a pre-built RF map. It consists mainly of two phases: An off-
line or training phase and an on-line or test phase. In the
off-line phase, the RF map is generated. This map could be
the REM (discussed in Section II-B1c) if the attacker is FC or
a SU that has access to it, or it could be a map that an exter-
nal attacker has built by itself. Figure 10 shows a simplified
example of how this kind of localization works.

Li et al. [11] consider two attacks that rely on this princi-
ple to localize a SU based on its RSS measurements that it
shares with FC in a centralized CRN. They assume that an
attacker constructs a signal propagation model by collecting
all the sensing reports transmitted within the network [11].
The attacker uses machine learning techniques, for exam-
ple k-means classifier as in [11], to partition the RSS data
into multiple sets corresponding to various locations. The first
attack, called single report location privacy (SRLP) Attack,
involves an external attacker that eavesdrops SUs’ commu-
nications or an internal attacker that could be an untrusted
FC or a compromised SU. Under this attack, the attacker
exploits individual RSS measurements of SUs to localize them
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TABLE III
LOCATION PRIVACY PRESERVING SCHEMES IN COOPERATIVE SPECTRUM SENSING

by computing the distance between each sensing report and
the centroids of each cluster in the signal propagation model
that is built beforehand by the attacker. The second attack
that they propose is called differential location privacy (DLP)
attack which estimates the sensing report of a SU during
the aggregation process performed by FC. In this attack, the
attacker compares the changes of the aggregation results after
a SU joins or leaves the CRN and then it infers its location by
finding to which cluster the estimated report belongs to, just
like in the SRLP attack.

It is worth mentioning, however, that even though finger-
printing could be attractive for leading location inference
attacks, it is not necessarily practical unless the attacker is
very powerful with lots of resources. This is due to the
fact that the construction of accurate radio maps and fin-
gerprints requires considerable off-line effort and may give
rise to several challenges. These include, but are not lim-
ited to, the huge number of measurements that need to be
taken and also the need to regularly update the radio map due
to the inherent time varying nature of wireless channels and
networks [56].

3) Location Privacy Preserving Approaches: As explained
in Section II-A1b, SUs in cooperative spectrum sensing CRNs
need, first, to share their observations either with FC (in cen-
tralized CRNs) or with other SUs (in distributed CRNs). These
local observations are then combined to make a cooperative

spectrum availability decision. These observations could be
statistics computed over the signal or just local binary deci-
sions made by each SU individually. Both cases present some
privacy risks to SUs as discussed in Section II. Thus, research
efforts should focus on hiding SUs’ observations from the
other entities in the network. Most of the existent works that
we discuss in this Section consider the location inference
attack from the sensing reports that SUs share. We summarize
these works in Table III and we discuss them in more details
in the following.

Li et al. [11] introduce an approach that uses secret shar-
ing and the privacy preserving aggregation process proposed
in [231] to conceal the content of the sensing reports. This
scheme uses also dummy report injections to replace the report
of a leaving SU in order to cope with the differential location
privacy attack (explained in Section IV-A2b) and prevent a
malicious FC from estimating the sensing report of the leaving
SU. Moreover, this scheme can bear collusion attacks involv-
ing FC and some compromised SUs. Despite its merits, it
has several limitations: (i) FC needs to collect all the sensing
reports in order to be able to decode the aggregated result.
Obviously, this could not be fault tolerant, since some reports
may be missing due, for example, to the unreliable nature of
wireless channels. (ii) It cannot handle network dynamism
if multiple SUs join or leave the network simultaneously,
as it can only deal with the event of one SU leaving or
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joining the network at a time. (iii) The pairwise secret sharing
requirement, that this scheme has, incurs extra communication
overhead and delay. (iv) The underlying encryption scheme
requires solving the discrete logarithm problem [213] for the
decryption, which is extremely costly and is only possible for
very small plaintext space.

Grissa et al. [42], [226] propose a location privacy preserv-
ing protocol that aims to hide SU’s sensing reports (specifically
RSS) from FC and the sensing threshold used for the decision
from SUs. This prevents FC from trying to localize SUs using
their sensing reports and, at the same time, prevents malicious
SUs from using the sensing threshold to manipulate their mea-
surements and impact FC’s decision. This scheme relies on
order preserving encryption [232] to make SUs encrypt their
sensing reports and allow FC to learn only the relative order of
these reports. Using this order and following a binary search-
like technique, FC executes at most log n private comparisons
between SUs’ RSSs and FC’s sensing threshold using yao’s
millionaire protocol [233]. The order learned by FC aims to
make the number of private comparisons logarithmic in the
number of SUs. This is shown to provide high location pri-
vacy to SUs while enabling an efficient sensing performance.
However, even though this approach has a low communica-
tion overhead and a logarithmic computational overhead as
a function of the number of SUs, the computation incurred
is still relatively high. This is due to the use of the expensive
yao’s millionaire protocol [233] that, itself, relies on expensive
homomorphic encryption.

Some approaches consider an intermediate node or
entity to help addressing the location privacy issue,
e.g., [224] and [227]. Mao et al. [224] provide an approach
that requires SUs to encrypt their RSS values using a derivative
of Elgamal [208] encryption scheme. In their approach, one
of SUs is picked to play the role of a helper to FC. First, the
Helper and FC collaborate to construct a public/secret key pair
and each of them keeps a part of the secret key for itself. Then,
FC and Helper share the public key with SUs. Subsequently,
SUs send their RSSs encrypted using this public key to the
Helper that permutes them, decrypts them with the secret
part that it has, and then sends them to FC which decrypts
them using its part of the key. Once decrypted, FC aggre-
gates the RSS values to make a final decision. The authors
consider a semi-honest threat model for FC and Helper and
a restricted malicious model where only SUs are malicious.
However, even though this approach guarantees that individ-
ual sensing reports cannot be revealed neither to FC nor to
the Helper, it incurs high communication overhead. In order
to provide high enough security level, the keys of El Gamal
cryptosystem, and hence the size of the ciphertexts, need to
be very large. This makes the communication cost very high,
especially when the number of SUs is large. Moreover, as
FC can learn aggregated sensing reports of SUs, this scheme
is still prone to the DLP attack explained in Section IV-A2b.

Grissa et al. [42], [227] propose another approach that relies
also on order preserving encryption (OPE) and on deploy-
ing an additional node, referred to as gateway (GW). GW is
deployed to perform private comparisons between SUs’ sens-
ing reports and the decision criteria or threshold of FC. This

is done by making each SU encrypt its RSS, using OPE and a
unique secret key shared with FC, and send it to GW. FC also
sends n encryptions of its sensing threshold, using OPE and
the n keys established with SUs, and sends them to GW.
On top of the OPE encryption, each entity communicating
with GW encrypts its data with a key uniquely established
with GW to secure the communication. GW removes the
second layer encryption and compares each OPE encrypted
RSS to its corresponding OPE encrypted sensing threshold
(the one that FC has constructed with the same secret key).
The main advantage of this approach is its high efficiency in
terms of communication and computational complexity due
to its reliance on symmetric encryption only. The high effi-
ciency benefits of this technique comes, however, at the cost
of needing an additional architectural entity, GW, that has to
be managed by a third party to avoid collusion with SUs or
FC and to provide the claimed privacy guarantees.

Other approaches consider a different CRN scenario
that consists of multiple service providers (SPs) that may
exchange sensing data among themselves as in [225].
Wang and Zhang [225] propose a framework that aims to
preserve SUs’ privacy in collaborative spectrum sensing from
malicious SPs. It assumes that the only trustworthy SP for a
SU is the one serving it. The remaining SPs and SUs may col-
lude to infer private information about a target SU, including
its location. To preserve SUs’ privacy, this framework hides
individual sensing data of SUs by making each SP transform
sensing reports of corresponding SUs into cloaks. To find the
optimal cloaking strategy, each SP projects its original sensing
data to a single-dimensional space, with minimal data distor-
tion [225], using a privacy-preserving non-invertible projection
and shares statistical information of the projected data with
one SP picked as a leader. The leader uses this information
to decide about the optimal cloaking strategies and shares it
with the other SPs. The authors rely on dynamic programming
to obtain the optimal cloaking strategy that minimizes infor-
mation distortion and that is obtained through collaboration
between SPs. This scheme considers collusion between differ-
ent malicious entities and provides differential privacy to SUs.
However, its privacy level decreases with the decrease of the
number of SPs and the increase of the number of SUs. It also
introduces some distortion to the sensing information which
may impact the sensing accuracy.

Some works try also to address the location privacy issue in
distributed cooperative sensing. For example, Kasiri et al. [72]
address this issue in multi-channel cognitive radio MANETs.
They propose a scheme that relies on the notion of anonymiza-
tion to prevent location information leakage from SNR values
that are exchanged between SUs for coalition formation
purposes. Anonymization is achieved by means of random
manipulation and distortion of the exchanged SNRs, which
can leak information about the location of SUs as shown
in Section II-A3a. Each SU creates an anonymization area
with respect to each sensed channel. However, a major lim-
itation of this scheme is that the more channels sensed by a
SU the more likely it is to be located as the adversary can
intersect the anonymization areas to narrow down SU’s loca-
tion. Another limitation is that it cannot achieve high location
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privacy without degrading the sensing performance of the
CRN. Indeed, the authors present a tradeoff between privacy
and performance as both cannot be maximized together.

Some works try also to preserve the location privacy of users
that participate in the crowdsourcing process, which is used
to recruit distributed mobile users to sense a given channel
around specific locations. For instance, Jin and Zhang [46]
formulate participants selection process as a reverse auction
problem where participants compete to perform spectrum sens-
ing tasks in return for rewards. Each participant’s true cost
for performing the sensing tasks is closely related to its cur-
rent location as explained in Section IV-A2. The authors
rely on the exponential mechanism to protect the location
information and prevent the attack that they have identified
(explained in Section IV-A2). Users are selected iteratively for
each sensing sub-task following the exponential mechanism to
guarantee differential privacy for their bids, and consequently
differential location privacy. While protecting location privacy,
this approach aims to minimize the social cost that repre-
sents the sum of the real costs of users completing all the
sensing tasks. However, minimizing this cost deteriorates the
location privacy level, which is the main limitation of this
approach.

4) Performance Metrics and Tradeoffs:
a) Performance metrics:

Computational complexity: This is an important metric as
SUs are usually resource constrained. Thus, it is paramount
to consider this when designing a location privacy preserv-
ing scheme for CRNs. This metric usually accounts for the
overhead resulting from the various operations required by the
scheme (e.g., cryptographic operations) and incurred by all dif-
ferent entities involved in the privacy preserving protocol, and
could be measured separately for each entity or as a whole
for the entire system. Computational complexity has a direct
impact on the delay that a SU may experience before getting
the decision about the spectrum availability. Computational
complexity is considered in most of the research works that
address the location privacy issue in cooperative spectrum
sensing in CRN, e.g., [11], [72], [224], [226], and [227].

Communication overhead: Communication overhead is
another important metric that needs to be considered. Location
privacy preserving schemes must not overwhelm the network
by incurring high communication overhead that may lead to
the degradation of the overall system performance, especially
provided that bandwidth and/or energy resources are often
limited. Encryption, which most proposed solutions rely on
to ensure privacy, tends to incur, depending on the size of
ciphertexts, heavy communication overheads. Another factor
that also tends to contribute to this overhead is the number of
SUs involved in the cooperative sensing task.

Spectrum availability accuracy: It is important to protect
SUs’ location privacy, but while making sure that doing so
does not interfere with the cooperative sensing task. Therefore,
another important metric is the ability of these privacy pre-
serving schemes to perform the sensing task accurately. This
is quantified, for example in [72], using the detection proba-
bility to capture the impact of the privacy preserving scheme
on detecting PUs presence.

Location privacy level: As the ultimate goal of any location
privacy preserving protocol is to preserve the location privacy
of SUs, it is then paramount to have a metric that can be
used to assess and quantify the privacy level. There are several
metrics that could be used for capturing this:

• Anonymity level: This measures the level of anonymity
provided by the cloaking algorithm and usually refers to
the size of the area to which a SU generalizes its location
to achieve anonymity. One way to quantify this is by com-
puting a relative measure normalized by the anonymity
level required by a SU. Kasiri et al. [72] rely on a similar
approach and define the location privacy level of a spe-
cific SU as the ratio between the anonymized area with
respect to all PUs and the maximum anonymized area
of that SU. The privacy level for the whole network is
obtained by computing the average of the location privacy
levels over all SUs.

• Entropy: This shows how uniform the probability of
locating a SU at a specific position is and it is used to
measure the uncertainty level that an adversary has [234].
Li et al. [11] have used this concept to quantify the loca-
tion privacy level of their schemes. The area covered
by the CRN is divided into sub-regions, forming a set
G = {g1, g2, . . . , gm}. The uncertainty of the adversary,
and thus the location privacy level of a SU i involved in
the cooperative spectrum sensing, is then defined as:

A(i) = −
m∑

b=1

pi|b log
(
pi|b

)
(4)

where pi|b is the probability that SU i is located in
sub-region gb. The location privacy level for the over-
all system is then given by A = ∑n

i=1 A(i), where n
is the number of SUs. If an attacker can uniquely infer
that SU i is located at sub-region gb, then pi|b = 1, i.e.,
A(i) = 0. On the other hand, if the attacker is unable
to tell which sub-region SU is located in, which means
SU could be located at any region with equal probabil-
ity pi|b = 1/m, then the privacy level for SU i would be
A(i) = log m, which is the maximum privacy level it can
get when participating in the cooperative sensing.

• ε-differential privacy: This concept is based on the dif-
ferential privacy concept (discussed in Section III). A
mechanism M is said to provide ε-differential privacy
for a SU i if for any two sets of sensing reports,
R = [r1, . . . , ri, . . . , rn] and R′ = [r1, . . . , r′

i, . . . , rn],
that differ only on i’s sensing report, we have:

| ln
Pr

[
M (R) = O

]
Pr

[
M (R′) = O

] | ≤ ε (5)

for all O ∈ Range(M ) with Range(M ) is the set of all
possible outputs of M [225] . The privacy level is con-
trolled by the parameter ε with higher privacy is ensured
by lower ε values. Very low values of ε ensure that
Pr[M (R) = O] and Pr[M (R′) = O] are roughly the
same, meaning that the output O is not sensitive to the
changes of any single SU’s sensing reports.

Location privacy could also be quantified using the
concepts of inaccuracy and incorrectness introduced by
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Shokri et al. [234]. These concepts could be redefined to fit
the context of location privacy in CRNs as done in [235].
First, let 	 denote the observed sensory information that could
be used to localize a SU, and x and xc represent the loca-
tion estimated by the attacker and the actual SU’s location,
respectively. Let also p(x|	) be the probability distribution
of all possible values of the target SU’s location given the
observed information. Essentially, this probability models the
adversary’s extracted information from its observations.

• Inaccuracy: This is the discrepancy between the posterior
distributions p(x|	) and p̂(x|	) which basically quanti-
fies the difference between SU’s real location distribution
and the adversary’s estimated location distribution.

• Incorrectness: This is the distance (or expected distance)
between the true SU’s location and that inferred by the
attacker. This metric is shown in [234] to be the most
appropriate for quantifying location privacy. The expected
distance, which is the adversary’s expected estimation
error, can be written as

∑
x p̂(x|	)‖x − xc‖, where ‖ · ‖

is a distance, e.g., Euclidean, between x and xc.
b) Performance tradeoffs: Several performance tradeoffs

could be made when designing location privacy preserving
schemes for cooperative spectrum sensing.

Scheme overhead vs. hardware cost: Scheme overhead in
terms of communication, computation, and/or energy could
be reduced at the cost of additional architectural components.
For example, Grissa et al. [227] introduce and rely on an extra
network entity to reduce both communication and computa-
tional overheads while also improving privacy. This reduction
in overhead is achieved by means of this new entity, intro-
duced to carry out the private comparisons between SUs and
FC without disclosing RSS values. Without such an entity,
these comparisons would have been very expensive, resulting
in an excessive scheme overhead.

Privacy level vs. scheme overhead: Achieving higher loca-
tion privacy at the cost of deploying more expensive cryptosys-
tems with higher communication and/or computation overhead
is another tradeoff researchers often make. For example, the
works in [11], [224], and [226] make such tradoffs in order
to improve the location privacy of their schemes.

Privacy level vs. sensing accuracy: Higher location privacy
can also be obtained at the cost of willing to degrade the sens-
ing performance of the CRN. For example, such a tradeoff is
made in the approach proposed by Kasiri et al. [72], where the
anonymization area, capturing the privacy level, is increased
but at the cost of decreasing the average detection probability,
representing the CRN sensing performance.

B. Location Privacy in Database-Based Spectrum Discovery

Here, the location privacy issue is completely different
from that of the cooperative sensing-based CRNs. In fact, as
explained in Section II-A2, each SU is now required to send its
exact location to DB in order to learn about spectrum opportu-
nities in its vicinity. This makes preserving the location privacy
of SUs more challenging, since an adversary does not need to
perform any extra computation to estimate the position, and the
location information here could be easily extracted from the

query itself. Thus, location information preserving schemes for
database-based CRNs need to be designed with two conflict-
ing goals: i) hiding or not including SU’s location information
in the query to be sent to DB, and ii) in response to a SU’s
query, DB needs to inform SU about spectrum availability in
SU’s vicinity. The second goal above somehow entails that
DB needs to know where SU is located at, and thus, meeting
these two conflicting requirements is very challenging. As we
will see later, this cannot be achieved without making some
performance tradeoffs.

1) Threat Models: Several threat models are considered in
the literature to study and address SUs’ location privacy issue
in database-driven CRNs:

• Dolev–Yao threat model: The adversary, usually an
intruder, can overhear, intercept, and synthesize any mes-
sage exchanged between SUs and DB. More specifically
the adversary can learn the location of an SU from
the query that the latter sends to DB to learn spectrum
opportunities. The adversary here is only limited by the
constraints of the used cryptographic schemes [228]. This
model has been considered in several works [54], [236].

• Semi-honest or honest-but-curious threat model: The
adversary, usually DB, follows the sensing protocol
honestly without changing any of its parameters, but
shows some interest in learning the location of target
SUs [54], [55], [181], [182]. This means that it responds
to SUs queries with correct spectrum availability informa-
tion, but at the same time tries to learn their whereabouts.

• Malicious-entity threat model: DB, or an intermediate BS,
may be malicious, i.e., they can change protocol parame-
ters to localize a target SU that is querying DB. In some
situations, the malicious entity could even be a sophisti-
cated adversary that has considerable resources and has
access to information from DB [237].

2) Location Inference Attacks: The most straightforward
and basic attack is based on SU’s query content. A SU needs
to include its exact location in its query to DB. This makes it
vulnerable to an intruder, that can learn its location by eaves-
dropping its queries, or even to DB that has access to these
queries. Typically, DB’s response to a SU’s query contains
spectrum availability information; e.g., the list of available
channels in SU’s vicinity and the maximum allowed transmit
powers in each of these available channels. An adversary that
has access to this information could localize a target SU by
overlapping the availability areas of the different channels
available at SU’s location as explained in Section II-A3b. This
kind of attack assumes that the adversary has knowledge about
the RF environment covered by DB as well as the activity and
coverage of PUs. The adversary can also exploit the fact that
the allowable secondary transmit powers are highly correlated
to the relative distance between a SU and a PU as discussed in
Section II-A3b. This has been exploited by Zhang et al. [55]
to identify a unified attack framework to localize both SUs
and PUs based on the MTP function introduced in [235]. The
MTP calculated by DB is divided into several levels based
on the distance between SU and PU. Specifically, when this
distance is less than a certain protection radius, SU is not per-
mitted to transmit on PU’s channel. Beyond the protection
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LOCATION PRIVACY PRESERVING SCHEMES IN DATABASE-DRIVEN SPECTRUM OPPORTUNITIES DISCOVERY

radius, SU can transmit at an increased power level as its dis-
tance from PU increases until it reaches the maximum allowed
transmit power as regulated by FCC.

3) Location Privacy Preserving Approaches: We summa-
rize the approaches that are proposed in the literature to cope
with the location privacy issue in database-based spectrum dis-
covery in Table IV and we discuss them in more details in
the following. Generally speaking, most existing techniques
attempt to protect SUs’ location privacy by adopting one of
two techniques/concepts: k-anonymity [238] or PIR (private
information retrieval) [202].

As discussed in Section III, k-anonymity-based approaches
try to ensure that the probability of identifying the loca-
tion of a querying SU remains under 1/k, where k is
the size of the anonymity set to be received by the
untrusted DB. k-anonymity-based approaches are known to
suffer from one major problem: they cannot achieve high
location privacy without incurring substantial communica-
tion/computation overhead. Furthermore, it has been shown in
a recent study led by Zang and Bolot [239] that anonymiza-
tion based techniques are not efficient in providing loca-
tion privacy guarantees, and may even leak some location
information.

For instance, Zhang et al. [55] rely on the k-anonymity
concept to provide a location privacy preserving mechanism
to protect the location privacy of both PUs and SUs. The
proposed scheme requires that each SU queries DB by sending
a square cloak region that includes its actual location instead
of just sending this location. SU keeps querying DB using the
same cloak region to avoid further location information leak-
age. This scheme requires a tradeoff between high location
privacy and spectrum utility, which means that achieving a
high location privacy level results in a decrease in spectrum

utility. This limits the applicability of this kind of approaches
as they impact the main goal of CRNs which is optimizing
spectrum utilization efficiency. As discussed earlier, a good
approach should provide location privacy to SUs but without
hindering the functioning of CRNs.

k-anonymity is also used by Li et al. [182] to protect SUs’
location privacy during the commitment phase in which SUs
have to register the channels that they are planning to use
as explained in Section II-A3b. In this approach, SUs first
send their channel requests to the BS that they are associ-
ated with, using pseudonyms that are randomly generated by
a certification authority. BS, then, queries DB on behalf of the
querying SUs using their pseudonyms. After that, DB performs
hash matching of SUs’ pseudonyms with a hash matrix pro-
vided by the certification authority to verify SUs’ pseudonyms.
Subsequently, DB assigns a set of channels to BS based on
the latter’s location. BS then allocates the channels to its
SUs using a coloring model to prevent interference between
them. Finally, BS registers the used channel of each SU in
DB by including dummy information to provide k-anonymity
to the utilization information. This is done by registering
more channels than the number of SUs’ requests to confuse
attackers and prevent them from using the utilization informa-
tion to localize SUs. Using BS to register the used channels
helps cutting off the relation between the registered chan-
nels and SUs’ identities, which makes it harder for DB to
associate this information to corresponding SUs and, hence,
localize them. Thus, the proposed scheme can decrease the
probability of localizing SUs. However, it requires that BS is
trustworthy or it would not be able to protect SUs’ loca-
tion. This assumption is not usually realistic as it is hard
to guarantee trustworthiness in practice. It suffers from the
fact that the probability of localizing SUs increases as the
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number of switching events increases or as the number of BSs
decreases.

PIR-based approaches [54], [180], [181], on the other hand,
offer much better privacy than k-anonymity-based approaches,
but incur substantial computation and communication over-
head, thus limiting their practical use for CRNs [205], unless
used judiciously as discussed in Section III. For instance,
Gao et al. [54] propose a PIR-based location informa-
tion preserving scheme by adopting the PIR protocol of
Trostle and Parrish [240]. Instead of sending its location,
SU hides its coordinates within other locations and transforms
this information in such a way that SU is the only one that can
revert it. Upon receiving the blinded query, DB multiplies it
with the spectrum availability information matrix and sends the
outcome back to SU. SU will be able to only retrieve the avail-
ability information in its location using the secure parameters
that it used to transform the original query. SU is the only one
who knows the blinding factors and the transformation used
to transform the original query. Hence, only SU can recover
the spectrum availability information from the result sent by
DB. However, this approach suffers from large computational
overhead which is due to the use of the PIR protocol, known
to be expensive to execute as we highlighted earlier.

Grissa et al. [53] propose an approach that offers an uncon-
ditional privacy to SUs within the DB’s coverage area. This
approach uses set membership data structure, more precisely
cuckoo filter [241], to send a compressed version of DB to SU.
In this scheme, SU only sends its characteristics, but not its
location, to DB, which it uses to adapt the content of the
cuckoo filter. After receiving the filter, SU constructs a query
that includes its location and a combination of other parame-
ters (e.g., band frequency, transmission power level, etc) and
queries the filter to check whether it contains the constructed
query. If it is the case, SU can deduce that the channel is avail-
able and can use it by following the parameters specified in
the query. Otherwise, SU concludes that the specified combi-
nation does not exist in DB and keeps querying the filter with
different combinations until it finds one or reaches the filter’s
capacity. Obviously, the main advantage of this scheme is that
it provides optimal location privacy to SUs as opposed to the
other approaches. However, it incurs a relatively large com-
munication overhead especially when the size of DB is huge.
The authors try to address this issue by proposing to sacrifice
one of SU’s coordinates to considerably reduce the size of the
filter while providing reasonable privacy. This is not needed
when the size of DB is not large.

Troja and Bakiras [180] propose another PIR-based
approach to protect the location privacy of mobile SUs. The
PIR mechanism used in this work allows a SU to learn spec-
trum availability in multiple-cell block containing its current
cell. As they move, SUs gradually develop a trajectory-specific
spectrum knowledge cache, via a series of PIR queries. SUs
within communication range of each other form groups and
interact in a peer-to-peer (P2P) manner to privately exchange
their anonymized cached channel availability information.
This reduces considerably the number of PIR queries as less
SUs need to query DB since they could learn opportuni-
ties from SUs within their group. However, this still incurs

large communication cost and relatively high computational
overhead, especially when the group size is relatively large.

Troja and Bakiras [181] propose another PIR-based privacy-
preserving protocol that relies on the Hilbert space filling
curve which is a continuous fractal that maps space from
2-D to 1-D [242]. DB is indexed based on this curve to
address SUs’ mobility which allows neighboring cells to be
stored in consecutive locations in DB. DB is split into multiple
disjoint segments which enables SU to retrieve channel avail-
ability information for a large number of consecutive cells
surrounding SU’s location with a single PIR query. SUs use
trajectory information, known a priori or generated on the
fly via a prediction mechanism, to minimize the number of
future PIR queries as a SU can obtain availability informa-
tion for current and future positions in just one query. Despite
its merit in providing location privacy to mobile SUs with
efficient communication overhead, this approach incurs rela-
tively large computational overhead. The main advantages of
this scheme are that it considers mobile SUs and exploits tra-
jectory information to reduce the number of PIR queries to
DB in order to reduce overhead. However, it still suffers from
one of the well known limitations of PIR-based approaches,
i.e., the high computational overhead, despite its nice effort in
reducing the number of required queries.

Other approaches try to adapt the differential privacy con-
cept, explained in Section III, and apply it in the context
of database-driven CRNs. For instance, Zhang et al. [237]
propose an approach to protect bilateral location privacy of
both PUs and SUs. SUs obfuscate their location using a
two dimensional Laplacian distribution noise satisfying the
ε-geo-indistinguishability mechanism, derived from differen-
tial privacy, introduced in [219]. The obfuscation depends on
the privacy preserving level that is decided by both SUs and
PUs by solving an optimization problem that maximizes their
bilateral utility. SU sends its obfuscated location along with
the privacy level which represents the maximum distance that
separates the sent location from the actual location. Based on
these parameters, DB decides about the transmit power and
radius or distance from PU that SU cannot exceed. The main
advantage of this approach is that it provides differential loca-
tion privacy for both PUs and SUs while allowing them to
adjust their privacy level to maximize their utility. However,
as this approach aims to maximize both the utility and privacy
level, which are always conflicting, increasing the privacy level
of both PUs and SUs often results in decreasing their utility,
and striking a balance is challenging.

4) Performance Metrics and Tradeoffs:
a) Performance metrics:

Computational complexity: Making sure that these schemes
do not require heavy computation at both ends, SU and DB,
is crucial to the design of such schemes. This is important
merely because these SU devices, again, are usually resource
constrained (in both energy and CPU), and the applications
running on them may not tolerate delays. In addition, it is
highly desirable not to overwhelm DB by involving it in heavy
computations, which can lead to congestion. Several works
(e.g., [53], [54], [180], and [181]) use this as a metric for
assessing the effectiveness of their proposed approaches. For
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example, Troja and Bakiras [181] captures the computation
overhead by measuring the average cumulative response time
that their proposed scheme leads to. This time includes the
query generation time at SU, the processing time at DB, the
network transfer time, and the resulting extraction time at SU.

Communication overhead: Another crucial performance
metric is to assess how much network data the proposed
scheme generates. This assesses whether adding a privacy pre-
serving scheme would inundate the network and degrade its
performance. Indeed, a large communication overhead may
introduce a considerable delay that may leave the spectrum
availability outdated and cause interference to PUs if SUs
decide to use channels based on this outdated information.

Location privacy level: In addition to the privacy concepts
already discussed in Section IV-A4a, the following can be used
to assess the privacy level of any given scheme.

• Localization probability: This is basically the probabil-
ity that a SU is geolocated successfully by an attacker
under a given scheme. It may be influenced by different
parameters, e.g., the number of channel switching events,
the number of BSs in the network, etc. Some approaches
like [182] have considered this metric to evaluate their
approach’s privacy level.

• Size of possible location set: This measures the granular-
ity of the location that an attacker can infer about a SU.
A privacy preserving scheme fails completely to protect
the location of a SU if the size of this set is equal to 1,
which means that the attacker has succeeded to determine
the exact cell in which SU is located [54].
b) Performance tradeoffs:

Location privacy vs. spectrum utilization: This tradeoff
consists on sacrificing some utility to provide high location
privacy guarantees. This means that seeking a higher privacy
level will necessary reduce the utility in question. For instance,
Zhang et al. [55] make a tradeoff between the location privacy
of both SUs and PUs, and spectrum utilization. SUs and PUs
can adjust their privacy levels to maximize their utilities. In
this case, increasing the location privacy level would decrease
the spectrum utilization and vice versa.

False positive rate vs ideal privacy: Some approaches,
like [53], use set membership data structures to construct a
compact representation of DB and make SUs query it for spec-
trum availability. However, this kind of data structures, despite
its efficiency in compacting large sets of data, could introduce
some false positives when it is queried. This means that the
result of query may reveal that a channel is available while in
reality it is not. Some data structures, like the cuckoo filter used
in [53], give the possibility to control this rate. Minimizing this
rate will, however, increase the communication overhead. So
the tradeoff here is to allow some false positives in the filter
to guarantee ideal privacy to SUs.

C. Summary

In this section, we discussed the location privacy issues in
the spectrum opportunity discovery component for both coop-
erative spectrum sensing-based and database-driven spectrum
discovery. We detailed the different threat models and attacks

Fig. 11. An example of the attacks identified in [155] which first estimate the
position of an SU to be in the intersection of the available areas of channels 1,
2 and 3. Then, the attacker further narrows down the estimated area by picking
the cell having the smallest distance between the exact channels’ qualities and
those estimated from bid prices.

that target the location information of SUs. We then presented
the different approaches that are proposed in the literature
to deal with these issues. Finally, we explained the different
performance metrics that are or could be used to assess the
efficiency and the privacy level of location privacy preserving
protocols in CRNs. In the following section, we will follow the
same structure and reasoning to discuss the location privacy
issues in the remaining CRN components.

V. LOCATION PRIVACY PRESERVATION IN

OTHER CRN COMPONENTS

In this section, we investigate SUs’ location privacy issue
in the remaining CRN components of the cognition cycle.
Unlike the spectrum opportunity discovery component, much
less attention has been given by the research community to
the location privacy issue in these components. The design
goals of privacy preserving schemes for each of these com-
ponents are then to address the sources of location informa-
tion leakages discussed in Section II-B (spectrum analysis),
Section II-C (spectrum sharing), and Section II-D (spectrum
mobility).

A. Threat Models

The same threat models that we have discussed previously in
the spectrum opportunity discovery phase apply to the remain-
ing components of the cognition cycle. Thus, we skip these
threat models here and we refer the reader to Sections IV-A
(cooperative spectrum sensing) and Section IV-B (database-
based spectrum opportunity discovery) for more details.

B. Location Inference Attacks

Some of these attacks may target SU’s location dur-
ing the dynamic spectrum auction process. For instance,
Liu et al. [155] identify an attack that exploits two sources
of leakage, highlighted in Section II-C3c: bid channels and
bid prices. The first attack uses bid channels (i.e., channels
that are bid for by a SU). As explained earlier, a SU bids
only for channels that are available for it, i.e., SU belongs to
the complement area of each corresponding PU’s coverage.
Hence, a malicious auctioneer can use the SU’s available set
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Fig. 12. An example of the attack identified in [54] which uses the comple-
ment of the coverage area of each transmitting PU to gradually localize an
SU by incrementing a score for each cell situated outside the coverage area
of each PU. The inferred location will be the cell with the highest score.

of channels, obtained from the SU’s bids, to decrease its pos-
sible location range by intersecting the complements of the
corresponding PU’s coverage areas as shown in Figure 11.
The second attack exploits the bid prices, which depend on
the quality and characteristics of the spectrum known to be
highly correlated to SU’s location. It could be used after the
first attack to further narrow down the possible location area
of the target SU. A higher bid price means that the SU per-
ceives a high spectrum quality, and hence, the auctioneer can
estimate the channel quality perceived by a SU from the SUs’
bid price information. Since an attacker can easily have (or can
reasonably be assumed to have) access to the statistics of chan-
nels’ qualities in each cell, it can then compute the distance
between these exact channels’ qualities and those estimated
from bid prices. The cell with the minimum distance corre-
sponds then to SU’s location with high probability, as depicted
in Figure 11.

Other attacks may exploit the spectrum utilization infor-
mation to localize SUs as explained in Section II-D.
Gao et al. [54], for example, identify an attack that infers SUs’
location in database-driven CRNs by exploiting the channels’
utilization information. The first component of the proposed
attack arises from the fact that a SU cannot access a PU chan-
nel if the PU is present, and hence, if a SU is active in the
presence of a PU, then the SU must be outside the PU’s cover-
age area. This gives the attacker a clue that the SU is located at
the complement of the PU’s coverage area. If the CRN cov-
ered area is modeled as a grid, as shown in Figure 12, the
adversary keeps incrementing a score, initially initialized to
0, for each cell that belongs to an available area of a specific
channel. The location of the target SU will be the cell with
the maximum score, which represents the area where all avail-
able areas of the channels overlap as illustrated in Figure 12.
The second component of the proposed attack relies on the
fact/event that a SU plans to switch from some channel chnk1

to another channel chnk2 when PUk1 returns to its channel.
In this situation there are two possible scenarios: First, when
PUk2 is also present and is using its channel chnk2 . In this case,
since SU cannot interfere with PUk2 , the attacker can learn that
the target SU is situated in the PUk1 coverage area and the

complement of PUk2 coverage area. Second, when PUk2 is
absent. In this case, the adversary can learn that SU must be
within the coverage area of PUk1 , as it must have switched
to chnk2 after PUk1 ’s return. This same attack is also used
by Zhang et al. [55] as a second component of their attack
framework.

Physical-layer information based attacks are also possible
during the spectrum sharing process. In fact, an adversary
can directly extract position-related parameters like RSS, AoA,
ToA, etc, from SUs’ signals and exploit them to locate SUs,
as explained in Section IV-A2. As an example, this kind of
attacks is considered by Zhang et al. [236].

C. Location Privacy Preserving Approaches

Few works have addressed the location privacy issue in
spectrum sharing and mobility but none, to the best of our
knowledge, have addressed this problem during spectrum
analysis phase. These works are summarized in Table V.

1) Spectrum Sharing: Some approaches try to prevent
the location information leakage by hiding sensitive infor-
mation exchanged during spectrum auction, e.g., location,
bid channels, and bid prices, as discussed in Section II-C.
Liu et al. [155] propose an approach that aims to preserve the
location privacy of the SUs that participate in spectrum auc-
tion. This approach consists of two main components: The first
component enables SUs to submit their encrypted locations
and bid prices, while allowing the auctioneer to construct the
conflict graph (explained in Section II-C1a) and determine the
maximum bid price. This is done using HMAC [243] and
the prefix membership verification scheme proposed in [244].
The second component enables the auctioneer to launch the
auction using a greedy spectrum allocation algorithm to allo-
cate the spectrum among SUs and a charging algorithm to
securely determine the winning bids with the help of a trusted
third party. Despite its merit in reducing the effectiveness of
some of the attacks presented in Section V-B, and increasing
the location privacy of SUs by hiding the bid prices and chan-
nels, this scheme suffers from some limitations. First, it relies
on a trusted third party which is not always realistic. Second,
it cannot achieve high location privacy without degrading the
auction’s performance.

Other approaches try also to prevent physical-layer based
attacks during spectrum sharing, where attackers can capture
the target SUs’ transmitted signal when they try to access the
spectrum and use it to extract position related measurements
like RSS, ToA, AoA, etc, as explained in Section II-A3a. For
instance, Zhang et al. [236] try to prevent attackers from mea-
suring RSS and using it to localize SUs following some of
the approaches presented in Section IV-A2. The authors pro-
pose to rely on a random power perturbation approach where
SUs perturb their power transmission level to obfuscate their
RSS values measured at the adversary side. This perturba-
tion consists of reducing the transmission power to prevent
an attacker from correctly estimating SUs’ positions. They
also provide a design of a socially-aware spectrum sharing
algorithm that can operate well together with the power pertur-
bation based privacy protection approach. The main advantage
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TABLE V
LOCATION PRIVACY PRESERVING SCHEMES IN SPECTRUM SHARING AND SPECTRUM MOBILITY

of this scheme is that it tries to address a physical-layer attack
that is usually hard to prevent. However, the main shortcom-
ing of this approach comes from the fact that the higher the
privacy level, the more significant the degradation of network
throughput. This means that using their scheme to preserve the
location privacy of SUs would degrade system performance.

2) Spectrum Mobility: Spectrum mobility necessarily
involves the usage of different spectrum bands over time and as
SUs move. However, as explained in Section II-D2, spectrum
utilization information can become a serious source of location
information leakage especially when the number of used chan-
nels increases. Gao et al. [54] propose a technique to prevent
this in database-driven CRNs by relying on two observations:
The first is that higher location information leakage takes place
during the channel switching process; i.e., when SU switches
from one channel to another. This means that if there is a
way to make a SU only switch to a channel that it has already
used previously, then this would not give extra information that
could be exploited by the adversary. The second is that SUs
that choose the most stable channels are less likely to switch
channels. Based on these two observations, each SU constructs
a list that stores its used channels and a prediction list that
contains the prediction of the duration of channels availabil-
ity. SU chooses a channel from the first list, containing the
usage history, if it is available. Otherwise, SU uses the second
list containing the predicted availability duration of each chan-
nel to make sure that it picks the one with the best estimated
duration, i.e., the most stable. Despite its merit in reducing
the localization probability of SUs, this approach does not
completely thwart the attack based on SU’s spectrum mobil-
ity. It just reduces the action space of the adversary which is
still able to approximate SU’s location when it tunes to other
channels. Hence, as the number of channel switching events
increases, the localization probability increases. In addition, it
suffers from a relatively high computational overhead.

D. Performance Metrics and Tradeoffs

1) Performance Metrics:
Computational complexity: This is again an essential metric

that needs to be used to evaluate any proposed scheme. It has
already been discussed in previous sections.

Communication overhead: This is also an essential met-
ric due to bandwidth constraints in CRNs, and has also been
discussed in previous sections.

Privacy level: The approaches used here are very similar to
the approaches stressed in the previous sections. For instance,
Liu et al. [155] rely on the previously discussed concepts of
uncertainty and incorrectness (see Section IV-A4a) to assess
the privacy level of their proposed scheme. Another metric
could be the number of used channels as it is important to min-
imize the frequency of SUs’ switching events to avoid attacks
relying on the channel utilization as explained in Section V-B.
So, the number of used channels could be seen as a suitable
metric to evaluate how a privacy-preserving scheme performs
in preventing such attacks as done in [54].

2) Performance Tradeoffs: As in the spectrum discovery
phase, designing location privacy preserving protocols for
spectrum analysis, sharing and mobility may require some
tradeoffs between providing location privacy and maintain-
ing some utility. For example, Zhang et al. [236] consider
making tradeoffs between achieving high location privacy and
maintaining high network throughput. Indeed, increasing the
location privacy level using their approach, as explained in
Section V-C, is equivalent to increasing the perturbation level
on the transmission power of SUs to prevent the adversary
from accurately localizing them. However, as the perturbation
level increases, and so does the privacy level, the network
throughput decreases, hindering thus the CRN performance.

E. Summary

In this section, we discussed the location privacy issues in
the spectrum analysis, spectrum sharing and spectrum mobility
components. We detailed the different threat models, location
inference attacks, and location privacy preserving approaches
that are proposed in the literature to protect the location pri-
vacy in CRNs with a focus on the aforementioned components.
Finally, we explained the different performance metrics that
could be used to assess the efficiency and the privacy level
of location privacy preserving protocols in these components.
In the following section, we will discuss some of the open
research problems and challenges with respect to the location
privacy in CRNs.

VI. OPEN RESEARCH PROBLEMS

There are still open research problems that could be further
investigated when it comes to location privacy in CRNs. The
following is a list of some of these challenges.

Location privacy in spectrum analysis: Location privacy
issues arising during the spectrum analysis process have
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received little attention by the research community in spite
of, as discussed in Section II-B, the several vulnerabilities
and sources of location information leakage this process has.
Much work still needs to be done when it comes to investigat-
ing inference attack models that can exploit these sources of
leakage, as well as developing countermeasure solution pro-
tocols that tackle those inference attacks. For instance, an
attack framework could combine information like topology,
connectivity, interference and REM to localize SUs, since this
information could be accessible during the spectrum analy-
sis process as highlighted in Section II-B. To the best of our
knowledge, none of the existing works have exploited these
vulnerabilities, nor did they try to defend them.

Location privacy in spectrum sharing and mobility: Not
many approaches in the literature have addressed the loca-
tion privacy issue in these components of the cognition
cycle despite the amount of information that could be
leaked during spectrum sharing and mobility as stressed in
Sections II-C and II-D. This is still an open issue that requires
further efforts from the research community.

Location privacy in distributed cooperative sensing: The
research efforts on providing location privacy to SUs in
cooperative spectrum sensing have focused on centralized
approaches but little has been done to address this issue for
distributed cooperative sensing. Little work has been done in
this regard (e.g., [72]); this research area is still not mature
enough and requires further investigation.

Location privacy with malicious adversaries: Most of the
existing location privacy preserving protocols in CRNs con-
sider attack scenarios that assume no collusion between the
different network entities; for example, in the context of
cooperative spectrum sensing, it is almost always assumed
that there is no collusion between FC and some SUs.
However, it is not unrealistic to assume that different entities
can collude with one another to infer location informa-
tion, especially that collusion often leads to better inference.
Techniques that address colluding attackers still need to be
developed and investigated, as not much has been done in this
regard.

Location privacy for crowdsourced spectrum sensing:
Crowdsourcing is an emerging tool that is gaining lots of
interest in the context of CRNs. It enables the discovery of
spectrum opportunities in regions with insufficient presence
of SUs. In such cases, one can rely on other users (not nec-
essary SUs) to assess which and whether other channels are
available, mainly through an open call kind of process. To
participate, these other users can be encouraged through var-
ious types of incentives (e.g., monetary, credit, etc.). In the
context of CRNs, crowdsourcing suffers from location privacy
risks that may expose the whereabouts of participating mobile
users. Dealing with this issue is still an open problem and only
a few works in the literature have dealt with it [46].

Location privacy of PUs: This is another direction that
is worth investigating, as the location of PUs could be of
paramount importance, especially in the case of military
incumbent systems that have stringent requirements in terms
of security and privacy. Also, CRN solutions that rely on the
cooperation of PUs may fail or poorly perform if PUs are

concerned about their location privacy. Addressing the loca-
tion privacy of PUs is still in its infancy, and more still needs
to be done [55], [235], [237], [245].

Location privacy in emerging CR-based technologies:
Emerging CR-based technologies [246] may bring additional
location privacy challenges on top of the ones that we have
discussed in this paper. For instance, in cognitive radio-based
cellular networks [247]–[249], multiple base stations may
localize or track SUs as they move across different cells.
The relatively small size of the cells in this kind of networks
could make it easier to localize SUs. In CRN-enabled smart
grids [250]–[252], smart meters act as SUs and opportunisti-
cally search for the available spectrum to transmit their data.
The location privacy concern here is quite different as it does
not involve tracking a user but can lead to identifying his own
personal address if a smart meter is localized. The location
information when augmented with power consumption data
sent by the smart meters can further reveal the presence or
absence of home owners and could lead to burglary for exam-
ple. Another emerging CR-based technology is cognitive radio
sensor networks (CRSN) [253], [254] where the sensor nodes
are required to sense the environment and also the spectrum.
Depending on the spectrum availability, sensor nodes, acting
as SUs, transmit their readings in an opportunistic manner to
their next hop cognitive radio sensor nodes, and ultimately, to
the sink. As the sensor nodes exchange their sensing results of
both the spectrum and the environment with other nodes, this
presents considerable threats to the location privacy of these
nodes and makes CRSN inherit the location privacy issues of
both WSNs and CRNs. All of these technologies share simi-
lar privacy threats but also have their unique vulnerabilities as
well. Thus, there cannot be a one-fits-all solution to address
the location privacy in these technologies, and further research
efforts need to be made to investigate and address issues that
are specific to each of these technologies.

Location privacy in multi-database-driven CRNs: As
FCC has already approved several companies to adminis-
trate, operate and manage spectrum databases, leveraging the
existence of these multiple databases (which are inherent to
spectrum database-driven dynamic spectrum sharing) opens up
a new class of very promising, spectrum access techniques that
can guarantee the protection of users’ location privacy infor-
mation yet without incurring significant overhead. This area
has not been explored yet, and research efforts need to be
made to investigate the potential of such an approach.

VII. CONCLUSION

In this survey, first, we have investigated SUs’ location
privacy issues in CRNs by exploring each functional com-
ponent and identifying its inherent vulnerabilities. Then, we
have discussed when and why generic and well known pri-
vacy enhancing approaches cannot be applied off-the shelf to
provide location privacy for SUs. After that we have explored
existing attacks and approaches for providing location privacy
solutions in the different CRN components. Finally, we have
highlighted some related open research problems that require
future investigation and attention.
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