
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017 2627

Real-Time Digital Signatures for
Time-Critical Networks

Attila Altay Yavuz, Member, IEEE, Anand Mudgerikar, Ankush Singla,
Ioannis Papapanagiotou, Senior Member, IEEE, and Elisa Bertino Fellow, IEEE

Abstract— The secure and efficient operation of time-critical
networks, such as vehicular networks, smart-grid, and other
smart-infrastructures, is of primary importance in today’s soci-
ety. It is crucial to minimize the impact of security mechanisms
over such networks so that the safe and reliable operations
of time-critical systems are not being interfered. For instance,
if the delay introduced by the crypto operations negatively
affects the time available for braking a car before a collision,
the car may not be able to safely stop in time. In particular,
as a primary authentication mechanism, existing digital signa-
tures introduce a significant computation and communication
overhead, and therefore are unable to fully meet the real-time
processing requirements of such time-critical networks. In this
paper, we introduce a new suite of real-time digital signatures
referred to as Structure-free and Compact Real-time Authenti-
cation (SCRA), supported by hardware acceleration, to provide
delay-aware authentication in time-critical networks. SCRA is
a novel signature framework that can transform any secure
aggregate signature into a signer efficient signature. We instan-
tiate SCRA framework with condensed-RSA, BGLS, and NTRU
signatures. Our analytical and experimental evaluation validates
the significant performance advantages of SCRA schemes over
their base signatures and the state-of-the-art schemes. Moreover,
we push the performance of SCRA schemes to the edge via highly
optimized implementations on vehicular capable system-on-chip
as well as server-grade general purpose graphics processing units.
We prove that SCRA is secure (in random oracle model) and
show that SCRA can offer an ideal alternative for authentication
in time-critical applications.

Index Terms— Applied cryptography, digital signatures,
real-time authentication, hardware-acceleration.

I. INTRODUCTION

TECHNOLOGICAL advances in sensors and embed-
ded systems are making the deployment of “smart”

Manuscript received December 25, 2016; revised April 12, 2017 and
May 29, 2017; accepted June 3, 2017. Date of publication June 19,
2017; date of current version July 26, 2017. This material is partially
based upon work supported by the Department of Energy under Award
DE-OE0000780 and by the NSF CAREER Award CNS-1652389 at Oregon
State University. This work was supported in part by NSF under Award
CNS-1719369 and Award ACI-1547390 at Purdue University. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. Qian Wang. (Corresponding author: Attila Altay Yavuz.)

A. A. Yavuz is with the School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR 97331 USA (e-mail:
attila.yavuz@oregonstate.edu).

A. Mudgerikar, A. Singla, and E. Bertino are with the Computer Science
Department, Purdue University, West Lafayette, IN 47907 USA (e-mail:
amudgeri@purdue.edu; asingla@purdue.edu; bertino@purdue.edu).

I. Papapanagiotou is with Netflix Inc., Los Gatos, CA 95032 USA,
and also with Purdue University, West Lafayette, IN 47907 USA (e-mail:
ipapapa@ncsu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2017.2716911

infrastructures possible. Such infrastructures will usher
automation in a large number of application domains such as
transportation, manufacturing, smart-grid and urban life (e.g.
Smart-city).

Because of their control capabilities and pervasive data
acquisition, securing such smart-infrastructures is a critical
requirement. Even though many security techniques are avail-
able, their application to smart infrastructures is not straight-
forward, especially when such infrastructures are based on
networks that include mobile devices, and for safety reasons,
they have to meet real-time requirements. We refer to such
networks as time-critical networks.

An example is a vehicular network in which events from
vehicles, such as sudden brake of a vehicle, have to be
communicated promptly to the other vehicles in the network
so that they can timely react to the events. Scalability
is also crucial as many envisioned time-critical networks
involve huge numbers of devices and systems. A key security
technique for any comprehensive solution is represented
by authentication as it is critical for establishing trust
and securing communications among parties in a network.
Authentication techniques have been widely investigated.
However, to meet the real-time and scalability requirements of
large scale time-critical networks, we need techniques that are
far more efficient than the currently available ones. It is critical
that devices in such a network should be able to respond
and/or to initiate a large number of authentications in a small
time-frame.

To address such a requirement, in this paper we develop
a series of fast digital signatures, supported by hardware-
acceleration, to enable real-time authentication in time-critical
networks. We introduce a generic signature framework,
referred to as Structure-free and Compact Real-time
Authentication (SCRA), that can be instantiated with any
secure aggregate signature. We then develop specific
SCRA instantiations from Condensed-RSA [30], BGLS [7],
NTRU [27] and PASSSign [18], and demonstrate that these
SCRA schemes are significantly more computationally effi-
cient than their counterparts in modern CPUs. We also
computationally parallelize SCRA across thousands light-
weight threads commonly supported by modern GPUs. We
use several optimizations and show that the performance
can be higher compared to the performance obtained when
the CPU is used. Finally, we apply similar optimiza-
tions to SoCs commonly used by car manufacturers and
IoT deployments.

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2628 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

A. State-of-the-Art Methods and Limitations

We outline the advantages and limitations of authentication
mechanisms that are most relevant to our work.

1) Message Authentication Codes and Standard Digital
Signatures: Symmetric crypto-based authentication mecha-
nisms rely on Message Authentication Code (MAC) [28].
Despite their computational efficiency, these methods are
not practical for broadcast authentication in large-scale dis-
tributed systems, as they require pairwise key distribution
among all signers and verifiers. They also cannot achieve
non-repudiation and public verifiability. Digital signatures
(e.g., RSA [35], ECDSA [3]) rely on the Public Key Infrastruc-
tures (PKIs) [28], which makes them publicly verifiable and
scalable for large systems. Hence, they are considered as
a primary authentication mechanism for large-scale delay-
aware systems. For instance, the vehicular WAVE architecture
mandates the use of PKI mechanisms to sign critical mes-
sages [2]. Despite their scalability, standard digital signature
schemes require several expensive operations such as modular
exponentiation and pairing (e.g., BLS [8]). Therefore, they are
not suitable for time-critical authentication. It has been shown
that they introduce significant delays, which are unacceptable
in time-critical networks such as vehicular networks [33].

2) Delayed Key Disclosure and Amortized Signatures:
Delayed key disclosure methods [32] are efficient as they
introduce an asymmetry between signer and verifier via a
time factor. However, these methods require packet buffering,
and therefore cannot achieve immediate verification (which is
vital for delay-aware authentication). Signature amortization
(e.g., [25]) computes a signature over a set of messages instead
of individual messages. Hence, the cost of signature generation
and verification is amortized over multiple messages. However,
these methods require packet buffering and introduce packet
loss risk due to the use of hash chains.

3) Specialized Signatures: One-Time Signatures (OTSs)
(e.g., [34]) offer fast signature generation and verification.
However, they incur very large signature and public key sizes,
and also public keys must be renewed frequently. Various
customizations of traditional signatures (along with crypto-
graphic pairing [8]) and OTSs for time-critical systems such
as vehicular networks (e.g., [16]) and smart-grids have been
proposed. However, these schemes still suffer from computa-
tional inefficiency (due to heavy use of pairings) or public key
distribution issues (OTSs).

The offline-online signatures (e.g., [31]) pre-compute a
token for each message to be signed at the offline-phase, and
then use it to compute a signature on a message very effi-
ciently at the online-phase. Despite their merits, offline-online
signatures incur significant storage overhead (i.e., linear with
respect to the number of messages to be signed). Moreover,
they require heavy computation for applications with high
message throughput, since the signer depletes pre-computed
tokens rapidly and is forced to regenerate them at the online-
phase. Hence, offline-online signatures are not suitable for
time-critical networks with high message throughput.

Our prior work Rapid Authentication (RA) [41] is an
efficient offline-online signature, which leverages the already

available pre-defined message structures in certain applications
(e.g., smart-grid) to reduce the computational and storage
overhead of RSA-type offline-online constructions. Despite its
advantages, RA is only suitable for applications that have a pre-
defined message structure with a limited number of message
components. Moreover, RA requires pre-computed tokens (i.e.,
one-time masking signatures) to be stored/renewed per item as
in traditional offline-online techniques. Hardware-Accelerated
Authentication (HAA) [39] exploits hardware acceleration to
speed up RA in various settings. HAA demonstrates the ben-
efit of hardware acceleration to reduce the end-to-end delay
of digital signature schemes. In particular, HAA shows the
performance advantages offered by GPUs for offline-online
signatures to batch regenerate tokens as they are depleted.

B. Our Contribution

We develop a new suite of delay-aware signatures that we
refer to as Structure-Free and Compact Authentication (SCRA)
to enable fast authentication for time-critical networks.

1) Main Idea: SCRA is based on the observation that the
signature aggregation operation of some signature schemes is
several magnitudes of times faster than that of their signature
generation. We leverage this fact to shift the expensive opera-
tions of signature generation phase to the key generation phase.
That is, at the key generation (offline), we compute a set of
signatures on the bit-structures of a hash output domain. Later,
we can combine these pre-computed signatures very efficiently
based on the hash of each message without enforcing a
message format (e.g., unlike [41]) or storage/regeneration of a
token per-message (e.g., unlike offline-online signatures (e.g.,
RA [9], [41]) that incurs linear storage and re-computation
overhead). This simple but elegant strategy enables SCRA to
achieve very fast signature generation, a low end-to-end cryp-
tographic delay, small-constant signature sizes with a constant-
size private/public key. Figure 1 further outlines our main idea.

2) Properties: We outline below the relevant properties of
our schemes.
• Generic and Simple Design: SCRA can be instantiated

from any aggregate signature. We prove that SCRA is
EU-CMA-secure if its base scheme is IA-EU-CMA secure
(see Section II). We show that SCRA is at least a magnitude
times faster than standard signatures as shown in Table I even
without optimization.
• Highly Fast Signing, Low Delay and Compactness: We

develop several instantiations of SCRA offering performance
trade-offs with different computational overhead, signature and
key sizes.
- SCRA-C-RSA is constructed from C-RSA [30], which trans-

forms the highly costly exponentiation of RSA signing into
a few modular exponentiations, followed by already efficient
signature verification. Therefore, SCRA-C-RSA offers the
lowest end-to-end delay among all of its counterparts (e.g.,
7 and 18 times faster than ECDSA and RSA, respec-
tively) with a signature size of standard RSA. This makes
SCRA-C-RSA an ideal choice for time-critical applications
with a reasonable signature size.

- SCRA-BGLS is constructed from BGLS [7], which reduces
the signing cost from an exponentiation to a few modular

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2629

Fig. 1. The main idea behind our preliminary construction.

TABLE I

THE ESTIMATED EXECUTION TIME (IN msec) OF SCRA AND ITS COUNTERPARTS

multiplications. SCRA-BGLS offers the smallest signature
size among all counterparts with a minimal signer overhead,
making it suitable for resource-limited devices.

- SCRA-NTRU is based on the NTRU [27] signature scheme.
It is important to mention that we use the NTRU scheme
that is secure against transcript attacks [13]. Signatures are
aggregated using the lattice based aggregation technique
described in [15]. The lattice based sequential aggregate
signature is proven to be secure in the random oracle security
model [4]. Due to its moderate signature and key sizes and
low end-to-end delay, SCRA-NTRU is ideal for time-critical
applications.

- SCRA-NTRUPASS is based on the PASS [18] signature
scheme. It is also a lattice based cryptographic scheme based
on the partial Fourier recovery problem.
• Performance Enhancements via Hardware-Acceleration:

We improve the performance of SCRA by developing vari-
ous hardware-acceleration and software-optimizations, which
enable significant speed improvements (see Section VI).

II. DEFINITIONS AND MODELS

We first introduce our notation and definitions, followed
by our system and threat model. We then give our security
model, in which we clarify the security properties of the
SCRA schemes.

A. Notation and Definition

|S| denotes the cardinality of set S. {xi}li=0 denotes (x0, . . . ,

xl). x
$← S denotes that variable x is randomly and uniformly

selected from set S. ||, |x | and {0, 1}∗ denote the concatenation
operation, the bit length of variable x and the set of binary
strings of any finite length, respectively.

Definition 1: A signature scheme SGN is a tuple of three
algorithms (Kg, Sig, Ver) defined as follows:

- (sk, PK) ← SGN.Kg(1κ): Given the security
parameter 1κ , the key generation algorithm returns
a private/public key pair (sk, PK) as the output.

- s ← SGN.Sig(m, sk): The signing algorithm takes a
message m ∈ {0, 1}∗ and a private key sk as the input,
and returns a signature s as the output.

- {0, 1} ← SGN.Ver(m, s, PK): The verification algorithm
takes a message m ∈ {0, 1}∗, signature σ and public key
PK as the input. It returns a bit: 1 means valid and 0
means invalid.

SCRA relies on aggregate signatures [7], which can aggregate
multiple signatures into a single compact signature. SCRA uses
a single-signer aggregate signature (e.g., [30], [43]), which
aggregates signatures computed under the same private key.

Definition 2: A single-signer aggregate signature ASig is
defined as follows:

2630 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

- (sk, PK) ← ASig.Kg(1κ): Given the security parameter
1κ , the key generation algorithm returns a private/public
key pair (sk, PK) as the output.

- γi ← ASig.Sig(mi , sk): The signing algorithm takes a
message mi ∈ {0, 1}∗ and private key sk as the input.
It returns a signature γi computed under sk as the output.

- s ← ASig.Agg(γ1, . . . , γL , params): The aggregation
algorithm takes a set of signatures γ1, . . . , γL and option-
ally some parameters params as the input. It returns
a single-compact signature s as the output. Optional
params may include sk (aggregation under private key)
or PK (public aggregation) depending on specific instan-
tiations. We will omit params for the sake of simplicity.

- {0, 1} ← ASig.Ver(−→m , s, PK): The verification algorithm
takes messages −→m = (m1, . . . , mL), aggregate signa-
ture s and PK as the input. It returns a bit: 1 means valid
and 0 means invalid.

B. System and Threat Model

Our system model follows the traditional PKC-based broad-
cast authentication model (e.g., [41]), in which a signer
computes a digital signature on a message and broadcasts a
message-signature pair to the verifiers. This model is com-
patible with our target time-critical applications. For instance,
in vehicular networks, a vehicle or road infrastructure broad-
casts authenticated messages to the surrounding entities as
described in vehicular communication standards [2]. Our threat
model reflects how a standard digital signature-based broadcast
authentication works. That is, an adversary A can observe
message-signature pairs computed under a private key. A also
can actively intercept, modify, inject and replay messages
transmitted over the network. A aims at producing existential
forgeries against the digital signatures computed by signers.

C. Security Model

The security notion for a signature is Existential Unforge-
ability under Chosen Message Attacks (EU-CMA).

Definition 3: The EU-CMA experiment for SGN is as
follows:

- Setup. Algorithm B runs (sk, PK) ← SGN.Kg(1κ) and
provides PK to the adversary A .

- Queries. A queries B on any message m j of her
choice for j = 1, . . . , qs . B replies to each query with
a signature s j ← SGN.Sig(m j , sk).

- Forgery. A outputs a forgery (m∗, s∗) and wins the
EU-CMA experiment, if SGN.Ver(PK, m∗, s∗) = 1 and
m∗ was not queried to B .

SGN is (t, qs, ε)-EU-CMA secure, if no A in time t making
at most qs queries has an advantage with probability ε.

SCRA is constructed from a single-signer aggregate signa-
ture that achieves the signature immutability (described in
detail below). The basic security notion for aggregate sig-
natures is Aggregate-EU-CMA (A-EU-CMA) [7], [20], which
captures the homomorphic properties of aggregate signatures.
Later, the security of aggregate signatures has evolved to cap-
ture improved security properties such as signature immutabil-
ity. Intuitively, signature immutability refers to the difficulty of
computing new valid aggregated signatures from a set of other

aggregated signatures [29]. To describe Immutable-A-EUCMA
(IA-EU-CMA) [26], [43] security, we first define the aggregate
signature extraction argument as below.

1) Aggregate Signature Extraction: The L-aggregate signa-
ture extraction problem, referred as AE problem, means that
for a given aggregate signature s ← ASig.Agg(γ1, . . . , γL)
computed on L individual data items, it is difficult to extract
the individual signatures (γ1, . . . , γL) provided that only s
is known to the extractor. Moreover, it is difficult to extract
any aggregate signature subset s′ from a given aggregate
signature s [42]. The AE problem was first introduced by
Boneh et al. in [7] for the security of BGLS signatures,
but as an intractability assumption without a proof. Coron
and Naccache [10] later showed that Boneh’s AE problem
for BGLS scheme is equivalent to the Computational Diffie
Hellman Assumption (CDH) [21]. Yavuz et al. [43] analyzed
the log truncation problem for forward-secure and aggregate
signatures [26], and produced formal proofs with AE argu-
ment for only the DLP-based schemes [43]. A related problem
in the context of one-way accumulators for RSA have been
considered in [6], which extends to other aggregate RSA
variants (e.g., C-RSA [29]).

Definition 4: The AE experiment for a ASig is as
follows [42]:

- Setup. Algorithm B runs (sk, PK) ← ASig.Kg(1κ) and
provides PK to the adversary A .

- Queries. A queries B on any batch message comprised
of L individual messages −→m j = (m j,1, . . . , m j,L) of her
choice for j = 1, . . . , qs . B replies to each query j with
an aggregate signature s j ← ASig.Agg(γ j,1, . . . , γ j,L),
where {γ j,i ← ASig.Sig(m j,i , sk)}Li=1.

- Aggregate Extraction. A outputs (−→m ∗, σ ′), where −→m ∗ =
(m∗1, . . . , m∗k), 1 ≤ k ≤ L and wins the AE experiment,
if

1. ASig.Ver({m∗i }i∈{1,...,k}, σ ′, PK) = 1,
2. −→m ∗ is a subset of previously queried or some combi-

nation of previously queried batch messages: ∃I ′ ⊆
{1, . . . , qs} : −→m ∗ ⊆ ||k∈I ′

−→m k . This implies that−→m ∗ itself as a batch query never has been queried
directly to B (but individual data items in −→m ∗ have
been queried as an element of different batch queries
before, but not individually),

3. The extraction is non-trivial: If −→m ∗ is combined with
any previously queried or a combination of previously
queried batch messages, the combination is not equal
to one of the previously queried batch message itself:
∀I ⊆ {1, . . . , qs} : [−→m ∗||(|| j∈I

−→m j)] �= {−→m l}qs
l=1.

ASig is (t, qs, ε)-AE secure, if no A in time t making at most
qs queries has an advantage with probability ε.

We now provide the definition of Immutable-A-EUCMA
(IA-EU-CMA) security [26], [43] as below:

Definition 5: The IA-EU-CMA experiment for a ASig is as
follows [42]:

- Setup. Algorithm B runs (sk, PK) ← ASig.Kg(1κ) and
provides PK to the adversary A .

- Queries. A queries B on any batch message comprised
of L individual messages −→m j = (m j,1, . . . , m j,L) of her
choice for j = 1, . . . , qs . B replies to each query j with

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2631

an aggregate signature s j ← ASig.Agg(γ j,1, . . . , γ j,L),
where {γ j,i ← ASig.Sig(m j,i , sk)}Li=1.

- Forgery. A outputs a forgery (−→m ∗, γ ∗) and wins the
experiment IA-EU-CMA, if

1. The forgery is valid as ASig.Ver(−→m ∗ , γ ∗, PK) = 1,
2. −→m ∗ is a subset of previously queried or some com-

bination of previously queried batch messages: ∃I ′ ⊆
{1, . . . , qs} : −→m ∗ ⊆ ||k∈I ′

−→m k ,
3. Batch query −→m ∗ has not been queried previously

as −→m ∗ �⊆ {−→m j }qs
j=1. This implies one of the two

conditions: (i) At least one item m∗′ ⊆ −→m ∗ has never
been queried to B , or (ii) the AE experiment wining
conditions 2-3 hold as described in Definition 4.

ASig is (t, qs, ε)-IA-EU-CMA-secure, if no A in time t
making at most qs queries has an advantage at least with
probability ε.

III. PROPOSED SCHEMES

In this section, we present our proposed schemes. We
first describe the SCRAdigital signature framework. We
then provide several instantiations of the generic SCRA,
each offering a unique performance benefit compared to
the others.

A. Structure-Free and Compact Real-Time Authentication

SCRA can transform any aggregate signature into a signer-
efficient signature scheme, whose signing operation is as
fast as just the aggregation (i.e., simple modular addition
or multiplication) of a small set of pre-computed signatures.
SCRA has several advantages over the state-of-the-art sig-
natures: (i) SCRA is a magnitude(s) of times more efficient
with respect to signature generation than standard signatures
(e.g., RSA [35], ECDSA [3], BGLS [7]). (ii) Unlike message-
formatted signature schemes [41], SCRA does not require
any pre-defined message formats. (iii) Unlike offline-online
signatures [31], [37], [41], SCRA does not require linear-
sized token storage. (iv) SCRA offers compact signature and
public key sizes, and therefore is more scalable than one-time
signatures (e.g., [34]).

The detailed description of SCRA is given in Algorithm 1.
We further elaborate as follows:

Let (sk′, PK ′)← ASig.Kg(1κ) be a ASig key pair and H :
{0, 1}∗ → {0, 1}d be an ideal hash function (i.e., H behaves
as a Random Oracle (RO) [4]), where d-bit denotes the output
length of the cryptographic hash function.

1) Key Generation (Offline): We apply a divide-and-
conquer strategy over the hash output H : {0, 1}∗ → {0, 1}d .
That is, a d-bit hash output can be interpreted as integers
(j1, . . . , jL), where each ji is a b-bit integer such that b · L =
d . We then compute a signature on each b-bit integer j
with its corresponding index i as m̃i, j ← i || j ||P , γi, j ←
ASig.Sig(m̃i, j , sk ′), i = 1, . . . , L, j = 0, . . . , 2b − 1, where
P is a random padding. The index (i, j) will enable the signer
to select the corresponding pre-computed signature from the
table � in the online phase for a given message, and therefore
ensure the correctness of the scheme. Moreover, the index i
enforces the order of the bit chunks in the online phase.

The random padding P is added to ensure that, for practical
applications, the input of hash function remains larger than d
as required.

We construct a pre-computed sub-message/signature table

� = {m̃i, j , γi, j }L ,2b−1
i=1, j=0, which supports very efficient signa-

ture generation. � is constant-size (e.g., unlike [9], [31]) and
imposes no structure/length constraints on the online messages
to be signed (e.g., unlike [41]).

2) Signature Generation: Given m ∈ {0, 1}∗, the signer
computes (M∗1 , . . . , M∗L) ← H (m||r), and fetches the cor-

responding signatures γ ′i of i ||M∗i ||P from �, where r
$←

{0, 1}κ , i = 1, . . . , L. The rest is to combine signatures
efficiently as s ← ASig.Agg(γ ′1, . . . , γ ′L), where σ ← (r, s).

3) Signature Verification: The verifier computes
(M∗1 , . . . , M∗L) ← H (m||r) and verifies σ as
{0, 1} ← ASig.Ver(〈1||M∗1 ||P, . . . , L||M∗L ||P〉, s, PK ′).

B. Instantiations of SCRA

An ideal aggregate signature to instantiate SCRA must
achieve very efficient signature aggregation and
IA-EU-CMA security. We identified three signatures to
instantiate SCRA: Condensed-RSA (C-RSA) [30] based
on RSA [35], BGLS [7] based on pairing and aggregate-
NTRU signatures [15], [36] based on NTRU [13]. We
summarize important operations of our SCRA instantiations
in Algorithms 2-5. For the sake of brevity, we only give the
dominant signature operations that are performed in each
algorithm. The rest of the SCRA operations are as described
in Algorithm 1 and are not repeated. Moreover, we only
give the private/public keys of each instantiation without
describing key generation steps and parameters in detail.
We refer interested readers to C-RSA [30], BGLS [7] and
NTRU [15], [36] for the details.

SCRA-C-RSA is based on Condensed-RSA (C-RSA) [30]
and therefore it obtains the highest computational efficiency
benefit from SCRA among all instantiations. That is, C-RSA is
by default a verifier efficient signature scheme but its sig-
nature generation is expensive (i.e., an exponentiation under
a large modulo). Since the SCRA significantly reduces the
signing cost, SCRA-C-RSA achieves the lowest end-to-end
delay among all instantiations with a moderate signature size
(e.g., 2KB RSA signature size). SCRA-C-RSA is described in
Algorithm 2.

SCRA-BGLS is based the BGLS signatures [7], and there-
fore has the smallest signature/key size among all instantia-
tions (e.g., 320 bits). The SCRA strategy also significantly
increases the signature efficiency of BGLS. However, since
BGLS has an expensive signature verification due to crypto-
graphic pairing operations, SCRA-BGLS has a larger end-to-
end cryptographic delay compared to our other instantiations.
SCRA-BGLS is described in Algorithm 3.

SCRA-NTRU is based on NTRU aggregate signature [15].
Note that SCRA-NTRU achieves the highest signing effi-
ciency among all instantiations (it is even more efficient than
SCRA-C-RSA at the signer side). It also has a low end-to-
end delay, which is comparable to SCRA-C-RSA but slightly

2632 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

Algorithm 1 Structure-Free Compact Real-Time Authentication (SCRA) Scheme

(sk, PK)← SCRA.Kg(1κ): Executed offline (once).

1: (sk′, PK ′)← ASig.Kg(1κ), P
$← {0, 1}d .

2: Select integers (b, L) such that b · L = d .
3: m̃i, j ← i || j ||P , γi, j ← ASig.Sig(m̃i, j , sk ′), i = 1, . . . , L, j = 0, . . . , 2b − 1.
4: sk← (sk′, �) and PK ← (PK ′, P), where �← (m̃i, j , γi, j) for i = 1, . . . , L, j = 0, . . . , 2b − 1.

σ ← SCRA.Sig(m, sk): Given a message m ∈ {0, 1}∗, compute its signature as follows:
1: (M∗1 , . . . , M∗L)← H (m||r), where r ← {0, 1}κ and M∗i ∈ [0, 2b − 1], i = 1, . . . , L.
2: m′i ← i ||M∗i ||P , and fetch corresponding signature γ ′i of m′i from table �, i = 1, . . . , L.
3: s ← ASig.Agg(γ ′1, . . . , γ ′L) and σ = (r, s).

{0, 1} ← SCRA.Ver(m, σ, PK): Given m ∈ {0, 1}∗, verify its signature σ under PK as follows:
1: (M∗1 , . . . , M∗L)← H (m||r),
2: m′i ← i ||M∗i ||P , i = 1, . . . , L,
3: {0, 1} ← ASig.Ver(〈m′1, . . . , m′L〉, s, PK ′).

Algorithm 2 SCRA Instantiation With Condensed-RSA [30]: SCRA-C-RSA

(sk, PK)← SCRA-C-RSA.Kg(1κ): Given 1κ , generate C-RSA and SCRA-C-RSA parameters as follows:
1: Randomly generate two large primes (p, q) and computes n = p · q . The public and secret exponents (e, d) ∈ Z∗n satisfies

e · d ≡ 1 mod φ(n), where φ(n) = (p − 1)(q − 1). Set sk′ ← (n, d) and PK ′ ← (n, e). Let H ′ be a full domain hash
function (e.g., [5]) defined as H ′ : {0, 1}∗ → Zn .

2: Compute γi, j ← H ′(m̃i, j)
d mod n, i = 1, . . . L, j = 0, . . . , 2b − 1, set (�, sk, PK) as in Algorithm 1.

σ ← SCRA-C-RSA.Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ ′i of m′i from �, i = 1, . . . , L.
Compute s ← ∏L

i=1(γi) mod n. Set σ as in Algorithm 1 SCRA.Sig Step 3.

{0, 1} ← SCRA-C-RSA.Ver(m, σ, PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate signature
verification), if se =∏L

i=1 H ′(m′i) mod n, return 1, else return 0.

Algorithm 3 SCRA Instantiation With BGLS [7]: SCRA-BGLS

(sk, PK) ← SCRA-BGLS.Kg(1κ): G1 and G2 are two (multiplicative) cyclic groups of prime order p. g1 and g2 are
generators of G1 and G2, respectively. GT is an additional group such that |G1| = |G2| = |GT |. ê is a bilinear pairing
ê : G1×G2→ GT such that (i) Bilinear: for all u ∈ G1, v ∈ G2, ê(ua, vb) = ê(u, v)a·b. (ii) Non-degenerate: ê(g1, g2) �= 1
(please refer to [7] for details). Finally, H ′ : {0, 1}∗ → G1 is a Full Domain Hash [19] modeled as RO [4].

1: Set sk′ = x and PK ′ = gx
2 ∈ G2 [7], where x

$← Z p .
2: Compute γi, j ← H ′(m̃i, j)

x ∈ G1, i = 1, . . . L, j = 0, . . . , 2b − 1, set (�, sk, PK) as in Algorithm 1.

1: σ ← SCRA-BGLS.Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ ′i of m′i from �, i = 1, . . . , L.
Compute s ← ∏L

i=1(γi) ∈ G1. Set σ as in Algorithm 1 SCRA.Sig Step 3.

1: {0, 1} ← SCRA-BGLS.Ver(m, σ, PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate signature
verification), if ê(s, g2) =∏L

i=1 ê(H ′(m′i), gx
2 ∈ G2), return 1, else return 0.

Note: We implement SCRA-BGLS on an elliptic curve E, in which modular exponentiation and multiplication correspond
point scalar multiplication and point addition on E [17], respectively.

less efficient, since NTRU aggregate signature verification
algorithm in [15] is less efficient than that of SCRA-NTRU and
a low end-to-end delay but with a larger signature size.
SCRA-NTRUPASS is based on the PASS [18] signature
scheme. It provides similar performance to SCRA-NTRUin
terms of both latency and storage but the lattice based scheme
is more practical to use. This means that SCRA-NTRUPASS is
secure for usage even with smaller parameters as it is based on

the partial Fourier recovery problem rather than the approxi-
mate CVP problem for SCRA-NTRU.

IV. SECURITY ANALYSIS

We now present our security analysis for SCRA schemes.
Theorem 1: SCRA is (t, qs, ε)-EU-CMA secure, if the

underlying ASig is (t ′, qs, ε)-IA-EU-CMA secure, where t ′ =
O(t)+(ASGN +RO(.))·qs. RO(.) and ASGN denote the cost of

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2633

Algorithm 4 SCRA Instantiation With Lattice-Based Sequential Aggregate Signatures [15]: SCRA-NTRU

(sk, PK)← SCRA-NTRU.Kg(1κ): We use lattice-based sequential aggregate signature schemes AggSign and AggVerify as
described in [15], that is secure in the random oracle model [4]. Let AggSign and AggVerify are functions as described
in [15].

1: Set fA : Bn → Rn as a family of preimage-sampleable trapdoor function NTRUSign [27], where PK ′ ← A = g/ f ∈ Rq
X ,

sk′ ← T =
[

f g
F G

]

, T is the trapdoor and Bn is the domain of fA. ωi represents the list of i partial aggregate

signatures.
2: Compute γi, j ← NT RU Sign(sk, H (m̃i, j)), i = 1, . . . L, j = 0, . . . , 2b − 1, set (�, sk, PK) as in Algorithm 1.

1: σ ← SCRA-NTRU.Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ ′i of m′i from �, i = 1, . . . , L.
Compute s ← AggSign(T, γi , ωi−1) for i = 1, . . . , L. Set σ as in Algorithm 1 SCRA.Sig Step 3.

1: {0, 1} ← SCRA-NTRU.Ver(m, ω, PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate signature
verification), if AggVerify(A, m, s, {ωi }Li), return 1, else return 0.

Algorithm 5 SCRA Instantiation With Lattice-Based Sequential Aggregate Signatures [15]: SCRA-NTRUPASS

(sk, PK) ← SCRA-NTRUPASS.Kg(1κ): We again use lattice-based sequential aggregate signature schemes AggSign and
AggVerify as described in [15], that is secure in the random oracle model [4]. Let AggSign and AggVerify are functions as
described in [15].

1: Set fA : Bn → Rn as a family of preimage-sampleable trapdoor function PASSSign [18], where sk′ is a polynomial L∞
norm equal to 1(coefficients are chosen independently from the set [−1, 0, 1]), PK ′ ← A = F	 · sk′ , T is the trapdoor
and Bn is the domain of fA . ωi represents the list of i partial aggregate signatures.

2: Compute γi, j ← P ASSSign(sk, H (m̃i, j)), i = 1, . . . L, j = 0, . . . , 2b − 1, set (�, sk, PK) as in Algorithm 1.

1: σ ← SCRA-NTRUPASS.Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ ′i of m′i from �, i = 1, . . . , L.
Compute s ← AggSign(T, γi , ωi−1) for i = 1, . . . , L. Set ω as in Algorithm 1 SCRA.Sig Step 3.

1: {0, 1} ← SCRA-NTRUPASS.Ver(m, σ, PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate signature
verification), if AggVerify(A, m, s, {∑i }Li), return 1, else return 0.

random oracle invocation and aggregate signature generation,
respectively.

Proof: Suppose that A breaks (t, qs, ε)-EU-CMA secure
SCRA. We construct a simulator F , which breaks
(t ′, qs, ε)-IA-EU-CMA secure ASig by using A as a subroutine
with the experiment below:
Setup: F is provided with two oracles as below:

1. A random oracle h ← RO(m), which returns h
$← {0, 1}d

if m ∈ {0, 1}∗ has not been queried before, else it
returns the same answer h for the given m. That is, the
cryptographic hash function H in SCRA is modeled as a
random oracle.

2. A signature oracle s ← Osk′(
−→m) as in

IA-EU-CMA experiment (i.e., Definition 5). That
is, given a query −→m = (m1, . . . , mL), O returns an
aggregate signature as s ← ASig.Agg(γ1, . . . , γL),
where (sk′, PK ′) ← ASig.Kg(1κ) and {γi ←
ASig.Sig(mi , sk′)}Li=1.

3. F gives PK ← (PK ′, P) to A , where P
$← {0, 1}d as

in Algorithm 1 SCRA.Kg Step 4.
Queries: A queries F on m j ∈ {0, 1}∗ for j = 1, . . . , qs .
For each query j , F performs the following operations:

1. F queries RO(.) on (m j ||r j), and receives an answer as

(m̃ j,1, . . . , m̃ j,L) ← RO(m j ||r j), where r j
$← {0, 1}κ

such that {|m̃ j,i | = b}Li=1 and b · L = d (as in Algorithm
1 SCRA.Kg Steps 2-3 and SCRA.Sig Step 1).

2. F queries s j ← Osk′(
−→
M j), where

−→
M j = 1||m̃ j,1||P, . . . ,

L||m̃ j,L ||P . F sends σ j = (s j , r j) to A (as in Algorithm
1 SCRA.Kg Step 3 and SCRA.Sig Steps 2-3).

Forgery: A outputs a forgery (m∗, σ ∗ = 〈s∗, r∗〉) and
wins the EU- CMA experiment, if (i) SCRA.Ver(m∗, σ ∗,
PK) = 1 and (ii) m∗ /∈ {m1, . . . , mqs }. If A loses
in the EU-CMA experiment, then B also loses in the
IA-EU-CMA experiment and aborts. Otherwise, F returns
a ASig forgery as (

−→
M ∗, s∗), where

−→
M ∗ = (1||m̃∗1||P, . . . ,

L||m̃∗L ||P) such that (m̃∗1, . . . , m̃∗L) ← RO(m∗||r∗) (as
in Query phase Step 1). F check the forgery condi-
tions for IA-EU-CMA experiments as in Definiton 5 as
follows:

1) Validity: Given that SCRA.Ver(m∗, σ ∗, PK) = 1 holds,
ASig.Ver(

−→
M ∗, s∗, PK ′) = 1 also holds. Therefore,

ASig forgery is valid.
2) Non-triviality: F checks if

−→
M ∗ �⊆ {−→M 1, . . . ,

−→
M qs } holds.

This implies of the conditions below:
a) At least one data item (j ||m̃∗j ||P) ∈ −→M ∗ has never

been queried to O (i.e., the forgery condition 3.i in
Definition 5). Hence, the IA-EU-CMA-secure ASig is
broken.

2634 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

b) The signature extraction occurs by Definition 4 condi-
tion 2-3 as ∃I ′ ⊆ {1, . . . , qs} : −→M ∗ ⊆ ||k∈I ′

−→
M k (i.e.,

the forgery condition 3.ii in Definition 5). This implies
that
−→
M ∗ as a batch query has never been queried to O.

At the same time, each data item { j ||m̃∗1||P}Lj ∈
−→
M ∗

has been queried as a part of a batch query k ∈ I ′−→M k ,
and s∗ is the aggregation of their corresponding indi-
vidual signatures (i.e., individual signatures have been
extracted and combined as in Definition 4). Finally,
the signature extraction is non-trivial since

−→
M ∗ is

comprised of L data items and therefore it cannot be a
trivial combination of previously asked batch queries.
Hence, the IA-EU-CMA-secure ASig is broken.

If the above conditions hold, F wins in the
IA-EU-CMA experiment against ASig. Otherwise, F aborts.
The probability that F wins in the IA-EU-CMA experiment
is identical to that of A winning in the EU-CMA experiment.
Note that H is modeled as a random oracle, and therefore
the probability that H is not target collision-resilient or
subset-resilient [34] is a negligible probability in terms of κ
(i.e., 1/2d/2). For each query of A , F performs a query
to RO(.) and another query to O. Hence, the execution time
of F is that of A plus (ASGN + RO(.)) · qs . �

We now prove that the SCRA-C-RSA and SCRA-BGLS
schemes are secure in Theorem 2 and Theorem 3, respectively.
Remark that, for the sake of brevity, we refer to the generic
proof in Theorem 1 for common steps, and only emphasize
the scheme-specific steps in these theorems.

Theorem 2: SCRA-C-RSA is (t, qs, ε)-EU-CMA secure, if
the underlying C-RSA is (t ′, qs, ε)-IA-EU-CMA secure, where
t ′ = O(t)+[RO(.)+ L · (Ex pn+Muln+H ′)] ·qs. RO(.), H ′,
Ex pn and Muln denote the cost of random oracle invocation,
hash function H ′, modular exponentiation and multiplication
under modulo n, respectively.

Proof: Suppose that A breaks (t, qs, ε)-EU-CMA secure
SCRA. We construct a simulator F , which breaks
(t ′, qs, ε)-IA-EU-CMA secure C-RSA by using A as a sub-
routine as follows:
Setup: F is given RO(.) and Osk′ as in Theorem 1 Setup
Phase. By Algorithm 2, (sk′ = 〈n, d〉, PK ′ = 〈n, e〉) and hash
function used by O is H ′ : {0, 1}∗ → Zn that behaves as a

RO. F gives PK ← (PK ′, P) to A , where P
$← {0, 1}d as

in Algorithm 2.
Queries: A queries F on m j ∈ {0, 1}∗ for
j = 1, . . . , qs . For each query j , F queries O on
(1||m̃ j,1||P, . . . , L||m̃ j,L ||P)← RO(m j ||r j) as in Theorem 1
Query Phase and gets s j ← ∏L

i=1 H ′(i ||m̃ j,i ||P)d mod n as
in Algorithm 2. F returns σ j = (s j , r j).
Forgery: A outputs a forgery (m∗, σ ∗ = 〈s∗, r∗〉) and checks
the EU- CMA experiment winning conditions (i)-(ii) as in
Theorem 1 Forgery Phase. If they hold, then F returns a
C-RSA forgery for IA-EU-CMA experiment as (

−→
M ∗, s∗) as in

Theorem 1 Forgery Phase and proceeds as follows:

1) Validity: SCRA.Ver(m∗, σ ∗, PK) = 1 implies
(s∗)e = ∏L

i=1 H ′(i ||m̃∗i ||P) mod n holds. Therefore,
C-RSA forgery is valid.

2) Non-triviality: F checks if one these conditions hold:
i) At least one data item (j ||m̃∗j ||P) ∈ −→M ∗ has never
been queried to O. This implies that IA-EU-CMA-
secure C-RSA is broken, since by the validity condi-
tion, there is a signature as s′ = H ′(j ||m̃∗j ||P)d mod
n, which was not obtained from O. ii) The signature
extraction occurs as defined in Theorem 1 Non-triviality
condition (b). That is, individual signatures {s∗j =
H ′(j ||m̃∗j ||P)d mod n}Lj=1 have never been individually

queried to O, but all were part of a batch query k ∈ I ′−→M k .
This implies IA-EU-CMA-secure C-RSA is broken by the
signature extraction argument as in [30] and [42]) (see
Section II-C). The non-triviality holds as in Theorem 1.

The success probability is as in Theorem 1 and the proba-
bility that H ′ produces a collision is 1/2|n|/2. For each query
of A , F performs a query to RO(.) and O, which requires a
H ′ computation, followed by an exponentiation/multiplication
under n for each item in (1||m̃ j,1||P, . . . , L||m̃ j,L ||P). Hence,
the execution time of F is that of A plus [RO(.)+L ·(Ex pn+
Muln + H ′)] · qs . �

Theorem 3: SCRA-BGLS is (t, qs, ε)-EU-CMA secure, if
the underlying BGLS is (t ′, qs, ε)-IA-EU-CMA secure, where
t ′ = O(t)+ [RO(.)+ L · (Ex p+ Mul + H ′)] · qs. RO(.), H ′,
Ex p and Mul denote the cost of random oracle invocation,
hash function H ′, modular exponentiation and multiplication
in G1, respectively.

Proof: Suppose that A breaks (t, qs, ε)-EU-CMA secure
SCRA. We construct a simulator F , which breaks
(t ′, q ′s , ε′)-IA-EU-CMA secure BGLS by using A as a sub-
routine with the experiment below:
Setup: F is given RO(.) and Osk′ as in Theorem 1 Setup
Phase. By Algorithm 3, (sk′ = x, PK ′ = gx

2 ∈ G2) and H ′ :
{0, 1}∗ → G1 is a RO. F gives PK ← (PK ′, P) to A as in
Algorithm 3.
Queries: A queries F on m j ∈ {0, 1}∗ for
j = 1, . . . , qs . For each query j , F queries O on
(1||m̃ j,1||P, . . . , L||m̃ j,L ||P)← RO(m j ||r j) as in Theorem 1
Query Phase and gets s j ← ∏L

i=1 H ′(m̃i, j)
x ∈ G1 as in

Algorithm 3. F returns σ j = (s j , r j).
Forgery: A outputs a forgery (m∗, σ ∗ = 〈s∗, r∗〉) and
checks EU- CMA experiment winning conditions (i)-(ii) as
in Theorem 1 Forgery Phase. If they hold then F returns a
BGLS forgery for IA-EU-CMA experiment as (

−→
M ∗, s∗) as in

Theorem 1 Forgery Phase and proceed as follows:

1) Validity: SCRA.Ver(m∗, σ ∗, PK) = 1 implies that that
ê(s∗, g2) = ∏L

i=1 ê(H ′(i ||m̃∗i ||P), gx
2 ∈ G2) holds.

Therefore, BGLS forgery is valid.

2) Non-triviality: F checks if one of these conditions hold.
(i) At least one data item (j ||m̃∗j ||P) ∈ −→M ∗ has never

been queried to O. That is, IA-EU-CMA-secure BGLS is
broken, since by validity condition, there is a signature
as ê(s′, g2) = ê(H ′(j ||m̃∗j ||P), gx

2 ∈ G2), which was not
obtained from O. (ii) The signature extraction occurs as
defined in Theorem 1 Non-triviality condition (b). That is,
individual signatures ê(s∗j , g2) = ê(H ′(j ||m̃∗j ||P), gx

2 ∈
G2), j = 1, . . . , L have never been individually queried

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2635

to O, but all were part of a batch query k ∈ I ′−→M k .
This implies IA-EU-CMA-secure BGLS is broken by the
signature extraction argument as in [10] (see Section II-
C). The non-triviality of signature extraction holds as in
Theorem 1.

The success probability analysis is as in Theorem 1 and the
probability that H ′ produces a collision is 1/2|G1|/2. For each
query of A , F performs a query to RO(.) and an another
query to O, which requires a H ′ computation, followed by
an exponentiation and multiplication in G1 for each item in
(1||m̃ j,1||P, . . . , L||m̃ j,L ||P). Hence, the execution time of
F is that of A plus t ′ = O(t) + [RO(.) + L · (Ex pn +
Muln + H ′)] · qs . �

Remark 1: The formal proof of SCRA-NTRUand
SCRA-NTRUPASS follow a similar logic and therefore
will not be repeated here. At the same time, we note
that despite the existence of an A-EU-CMA analysis,
IA-EU-CMA proof and analysis for signature extraction
argument are not currently available for NTRU signatures.
Hence, a full formal reduction requires this gap to be filled
first, which is out of the scope of this paper.

V. PERFORMANCE ANALYSIS AND COMPARISON

In this section, we present the performance results of our
experiments. We first compare the results of the SCRA with
the state-of-the-art algorithms on a modern powerful CPU.
We then provide results for the GPU implementations of
SCRA-C-RSA and SCRA-NTRU as compared to their CPU
counterparts. For the GPU, we used an Nvidia Tesla K40c
card, which is comprised of 2880 computing cores with
12GB of GDDR5 device memory and 288GB/sec memory
bandwidth. Our base system is equipped with an Intel Core i7-
6700K 4.0GHz Quad-Core Processor and 16GB DDR4 2400
MT/s. This infrastructure represents a datacenter setting. We
also implemented SCRA on a System-on-Chip (SoC). We
used an Nvidia Tegra K1 SoC, which has a 4-Plus-1 quad-
core ARM Cortex A15 CPU with clock rate of 2.3 Ghz
and an embedded GPU with 192 computing cores. Such
SoCs represent smaller scale systems that are widely used in
IoT deployments. We open sourced the source code for the
research and academic community to use and evaluate.1

We summarize the results in Table I. Table I also provides
the implementation details, parameters and key/table sizes.
Table I shows the clear superiority of SCRA in terms of
signature generation efficiency and end-to-end cryptographic
delay (i.e., the sum of signature generation and verification
times) using a powerful CPU. That is, the signature gen-
eration of SCRA instantiations are 24, 18 and 516 times
faster than their non-SCRA counterparts for RSA, BGLS,
and NTRU, respectively. This indicates that SCRA is an
ideal choice for a very high-throughput signature generation,
especially for resource-limited devices in IoT deployments.
Similarly, SCRA-C-RSA and SCRA-NTRU offer 18 and 7 times
lower end-to-end crypto delay compared to RSA and NTRU,
respectively, making them ideal choices for time-critical
authentication.

1https://github.com/ipapapa/HWAcccelarated-Crypto

TABLE II

THE STORAGE SPACE OF SIGNATURE TABLE AND THE NUMBER
OF AGGREGATIONS REQUIRED FOR VARIOUS L AND b VALUES

In addition to their computational efficiency, the
SCRA schemes are also compact, since the signature
and public key sizes remain the same with their base
signature scheme (the transmission of |r | = κ is negligible).
By comparing to each other, SCRA-C-RSA achieves the
lowest end-to-end delay with a moderate signature size (e.g.,
256 bytes), while SCRA-BGLS offers the smallest signature
(20 bytes) but the highest end-to-end delay. SCRA-NTRU has
the lowest signing delay (0.0018 msec), low end-to-end delay
but with large signatures (e.g., 1587 bytes). Note that all
SCRA schemes require storing a pre-computed table �, which
introduces a constant-size extra storage overhead at the signer
side e.g., 160 KB, 2 MB and 12.33 MB for SCRA-BGLS,
SCRA-C-RSA and SCRA-NTRU respectively. This signer
storage is plausible even for some embedded devices (e.g.,
Raspberry PI 2 [1]), and negligible for vehicular networks.
Moreover, recall that, unlike offline-online signatures, the
signer overhead of SCRA is constant and it does not require
to regenerate tokens.

The offline stages of the algorithms take fairly minimal
times of 2.45, 8.65 and 12.83 seconds for SCRA-BGLS,
SCRA-C-RSA and SCRA-NTRU, respectively. The offline stage
will only be required to execute once during the system
deployment.

A. Space Versus Execution Time

We have a trade-off between the space taken to store the
signatures and the execution time of the signing and the
verification stages. As described in 1, an d-bit hash output
can be interpreted as integers (j1, . . . , jL), where each ji is
a b-bit integer such that b · L = d . The total number of
signatures that need to be calculated and stored in the offline
stage of an algorithm is thus L · 2b. The total storage cost
is thus L · 2b · S where S is the size of one signature. This
also implies that the number of aggregations to be performed
during the online phase increases linearly with L. Table II
provides for the SHA-256 hashing scheme various values of
(L, b) parameters and corresponding size of the signature
table � for each SCRA instantiation.

One may observe that the smallest storage overhead can
be attained with (L = 256, b = 1), wherein we store a
signature for every bit in the hash output domain. However,
this requires L = 256 signature aggregations in the online
signature generation phase (e.g., 256 modular multiplications

2636 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

for SCRA-C-RSA), which may not be computationally effi-
cient. Another end of the trade-off is (L = 16, b = 16),
wherein only L = 16 online aggregations are required during
the online phase. However, this requires substantially larger
table sizes, which may be suitable for some real-life appli-
cations. We observed that (L = 32, b = 8) offers a highly
favorable overall performance/storage performance, as shown
in Table I and Table II. The size of the pre-computed tables for
SCRA-BGLS, SCRA-C-RSA and SCRA-NTRUis 160 KB, 2 MB
and 12.33 MB, respectively, for signature-sizes of 20, 256 and
1578 bytes, respectively. This will require 32 signatures to be
aggregated in the online-signing phase of each SCRA scheme.

VI. HARDWARE-ACCELERATION OF SCRA

To accelerate SCRA, we leveraged the parallel processing
and optimization capabilities of GPUs both on server and
embedded in the SoCs. We have introduced several optimiza-
tions to parallelize the individual steps of SCRA algorithms.
We used optimizations specific to the architecture of the GPU
to harness the vast amount of available lightweight cores [11].

A. Accelerating SCRA-C-RSA With GPUs
- SCRA RSA - Server: In the offline signature stage, for

8192 messages, we achieve x1.3 times more through-
put with our GPU optimizations compared to the CPU
only implementations. In the online signature stage, we
achieve significantly high throughput gains, which can
reach up to x5.3 times. In the verify stage, the gain is
around x4.2 times. These results are reported in Figures 2
and 3. In terms of execution time, the GPU can process
a message in 0.367, 0.022, 0.031 milliseconds for the
offline, online and verify stages of the algorithm, respec-
tively. This is approximately x1.31, x5, x4 times faster
than the corresponding CPU execution times. The GPU
gives a worse performance than the CPU if a very small
number of messages are processed. This is mainly due to
the low clock speeds of the GPU cores as compared to the
CPU and also due to the time to copy the data from the
CPU memory to the GPU memory and vice-versa. Our
experiments show that the online signature and signature
verification stages are executed faster in the GPU than in
the CPU for message batches greater than 128 and 256,
respectively.

- SCRA RSA - SoC: In the offline signature stage, for 8192
messages, we achieve x3.2 times higher throughput with
our GPU optimizations compared to CPU only imple-
mentations. In the online signature stage, we achieve high
throughput gains up to x5.2 times. In the verify stage, the
gain is around x4.8 times. These results are reported in
Figures 4 and 5.

Below we describe the techniques we adopted to achieve
some of the performance speedups shown by above
experiments.

1) Chinese Remainder Theorem (CRT): We leverage
CRT [28] to accelerate SCRA on GPUs. We split a k-bit
signature σ into two k/2 bit signatures σ1 and σ2. σ1 =
Md mod p−1 mod p, σ2 = Md mod q−1 mod q , where M is

Fig. 2. SCRA-RSA: Time to sign a message on a server.

Fig. 3. SCRA-RSA: Time to verify a message on a server.

the message and (p, q) are the primes used. Then, we use
the mixed radix conversion algorithm [22] to combine the
two parts and recover the signature σ as σ = σ2 + [(σ1 −
σ2).(q−1 mod p)].q These two parts are processed on separate
threads in the GPU, which is significantly faster than the k-bit
modular exponentiation.

2) Montgomery Multiplication: The modular multiplication
is inefficient in the GPUs since it requires a trial division to
determine the result and is not parallelizable. The Montgomery
multiplication is suitable for implementation in a GPU, since
it does not require a trial division and can be implemented
in parallel on separate words of the message. That is, given
a · b mod n, we first find two integers r−1 and n′ using the
Extended Euclidean Algorithm such that rr−1 − nn′ = 1.
We then transform a = ar mod n and b = br mod n. Later,
we compute a ·b mod n by using Montgomery reduction [28].

3) Batch Processing: The crypto operations for multi-
ple messages are performed concurrently in the GPU. This
requires that a batch of messages be passed to the GPU, instead
of a single message.

4) Breakup of Components Into Words: To optimize the
throughput on the GPU, each message component is divided
into words of size 32/64 bits, depending on the GPU capa-
bilities. Each operation being run on a single thread is run
over words rather than over entire message components.
We use standard multi-precision algorithms [12] to represent
and perform operations between large integers.

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2637

Fig. 4. SCRA-RSA: Time to sign a message on SoC.

Fig. 5. SCRA-RSA: Time to verify a message on SoC.

5) GPU Warp Size Utilization: Warps are set of threads
(generally 32) that are considered as one single execution unit
inside a CUDA block. To gain maximum throughput from the
GPU, it is necessary to attain the maximum number of active
warps per streaming multiprocessor which is 64 in our case.
We achieve this by adjusting the number of threads per block
to the optimal value.

6) Memory Latency vs GPU Occupancy: The size of the
shared memory can limit the number of active warps on the
GPU at a particular point in time by reducing the occupancy of
the Streaming Multiprocessors (SM). The other limiting factor
in the performance output is the number of reads and writes
on the global memory on the device. We identified a balance
between the SM occupancy and the global memory read/write
latency by testing various permutations of memory allocations
among the shared and global memory.

7) Constant Length Non-Zero Window Technique: We scan
the bits of the exponent from the least significant bit to
the most significant bit. At each step, we compute a zero
window or a non-zero window [23]. With the binary square-
and-multiply method, we can process these windows and
reduce the number of modular multiplications, making the
exponentiation algorithm faster.

B. Accelerating SCRA-NTRU With GPUs
- SCRA NTRU - Server: In the online signature stage, for

4096 messages, we achieve x0.79 times more throughput
with our GPU optimizations compared to CPU only
implementations. In the verify signature stage and offline

Fig. 6. SCRA-NTRU: Time to sign a message.

Fig. 7. SCRA-NTRU: Time to verify a message.

stage, we achieve high throughput gains up to x6.5 and
x30 times respectively. These results are reported in
Figures 6 and 7, respectively.
The cryptographic operations for multiple messages are
performed concurrently on the GPU. This requires that
a batch of messages be passed to the GPU, instead of
a single message for the signing and verification stage.
We do not employ the GPU for the online stage of
SCRA-NTRU because the signature aggregation tech-
nique is computationally expensive and deploying it on
a GPU core provides little performance benefit. Due to
these reasons, the CPU performs better than the GPU
during the online stage of the protocol.

- SCRA NTRU - SoC: In the online signature stage, for
1024 messages, we achieve x0.81 times more throughput
with our GPU optimizations compared to CPU only
implementations. In the verify sign stage and offline
stage, we achieve high throughput gains upto x6.65 and
x17.7 times respectively. These results are reported in
Figures 8 and 9 respectively.

We summarize below the optimizations that have resulted
in the performance gains shown by the previous experiments.

1) Batch Processing: Message components are processed in
batches as in Section VI-A. As mentioned before, we do not
use the GPU for the online stage of SCRA-NTRU.

2) Convolution Operations: The convolution operations in
the NTRU in the signing and verification phase are accelerated
by employing GPUs. The convolution operation between two

2638 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

Fig. 8. SCRA-NTRU: Time to sign a message.

Fig. 9. SCRA-NTRU: Time to verify a message.

n bit polynomials is divided into n cores for each operation
where each core is responsible for calculating one bit of the
resulting polynomial.

3) Fourier Transformations: Implementing the Fourier
transformation on GPUs further accelerates the signing, verifi-
cation and offline stages. Due to the use of faster convolution
and Fourier transformation operations on GPUs, the verify
stage of the protocol on GPUs is significantly faster than on
CPUs.

VII. CONCLUSION

In this paper, we developed a new series of delay-aware dig-
ital signatures for time-critical applications, which we refer to
as Structure-Free Compact Authentication (SCRA). SCRA can
transform any secure aggregate signature into a signer efficient
signature via a novel constant-size pre-computation strategy.
We proposed several instantiations of SCRA schemes based on
Condensed-RSA, BGLS, and NTRU signatures, each offering
a unique computation time, key and signature size trade-offs.
Our implementations and performance comparison with the
existing alternatives show that the SCRA schemes achieve
significantly faster signature generation and lower end-to-
end delay. We also formally proved that SCRA schemes are
secure (in ROM). Finally, we pushed the performance of
SCRA schemes to their edge by fully implementing them on
server-grade GPUs and SoCs, which indicated significant per-
formance gains. All these properties make the SCRA schemes
a suitable alternative for delay-aware authentication for time-
critical applications.

ACKNOWLEDGMENT

This work was done in part at Robert Bosch LLC Research
and Technology Center at North America (CR/RTC3-NA),
Pittsburgh, PA, USA, by Attila A. Yavuz during his employ-
ment at Bosch. The authors appreciate and gratefully acknowl-
edge the donation of a Tesla K40 GPU and the Tegra K1
System on Chip from the NVIDIA Corporation used for the
research described in this paper.

REFERENCES

[1] Raspberry Pi 2 Specs, accessed on Jun. 22, 2017. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

[2] IEEE Guide for Wireless Access in Vehicular Environments (WAVE)—
Architecture, IEEE Standard 1609.0-2013, Mar. 2014, pp. 1–78.

[3] ANSI X9.62-1998: Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA),
Amer. Bankers Assoc., Washington, DC, USA, 1999.

[4] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proc. 1st ACM Conf. Comput.
Commun. Secur. (CCS), 1993, pp. 62–73.

[5] M. Bellare and P. Rogaway, “The exact security of digital signatures-
how to sign with RSA and rabin,” in Proc. 15th Int. Conf. Theory Appl.
Cryptogr. Techn., 1996, pp. 399–416.

[6] J. Benaloh and M. de Mare, “One-way accumulators: A decentralized
alternative to digital signatures,” in Proc. Workshop Theory Appl.
Cryptogr. Techn., 1994, pp. 274–285.

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Proc. 22nd Int.
Conf. Theory Appl. Cryptogr. Techn. (EUROCRYPT), 2003, pp. 416–432.

[8] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” J. Cryptol., vol. 14, no. 4, pp. 297–319, 2004.

[9] D. Catalano, M. D. Raimondo, D. Fiore, and R. Gennaro, “Off-line/on-
line signatures: Theoretical aspects and experimental results,” in Proc.
Pract. Theory Public Key Cryptogr. (PKC), 2008, pp. 101–120.

[10] J. Coron and D. Naccache, “Boneh et al.’s k-element aggregate
extraction assumption is equivalent to the Diffie–Hellman assumption,”
in Proc. 9th Int. Conf. Theory Appl. Cryptol. (ASIACRYPT), 2003,
pp. 392–397.

[11] K. Diao, I. Papapanagiotou, and T. J. Hacker, “HARENS: Hardware
accelerated redundancy elimination in network systems,” in Proc. IEEE
Int. Conf. Cloud Comput. Technol. Sci. (CLOUDCOM), Dec. 2016,
pp. 237–244.

[12] E. K. Donald, “The art of computer programming,” in Sorting and
Searching, vol. 3. Redwood City, CA, USA: Addison Wesley, 1999,
pp. 426–458.

[13] L. Ducas and P. Q. Nguyen, “Learning a zonotope and more: Crypt-
analysis of NTRU sign countermeasures,” in Advances in Cryptology—
ASIACRYPT (Lecture Notes in Computer Science), vol. 7658. Berlin,
Germany: Springer, 2012, pp. 433–450.

[14] N. P. Smart et al., “Algorithms, key size and parameters report,” Eur.
Union Agency Netw. Inf. Secur. (ENISA), Heraklion, Greece, Tech.
Rep. TP-05-14-084-EN-N, Nov. 2014.

[15] R. El Bansarkhani and J. Buchmann, “Towards lattice based aggregate
signatures,” in Proc. Int. Conf. Cryptol. Africa, 2014, pp. 336–355.

[16] X. Fan and G. Gong, “Accelerating signature-based broadcast authen-
tication for wireless sensor networks,” Ad Hoc Netw., vol. 10, no. 4,
pp. 723–736, Jun. 2012.

[17] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. New York, NY, USA: Springer-Verlag, 2004.

[18] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte,
“Practical signatures from the partial Fourier recovery problem,” in Proc.
Int. Conf. Appl. Cryptogr. Netw. Secur., 2014, pp. 476–493.

[19] J.-S. Coron, “On the exact security of full domain hash,” in Proc. Annu.
Int. Cryptol. Conf. (CRYPTO), 2000, pp. 229–235.

[20] R. Johnson, D. Molnar, D. X. Song, and D. Wagner, “Homomorphic
signature schemes,” in Proc. CT-RSA, 2002, pp. 244–262.

[21] A. Joux and K. Nguyen, “Separating decision Diffie–Hellman from
computational Diffie–Hellman in cryptographic groups,” J. Cryptol.,
vol. 16, no. 4, pp. 239–247, 2003.

[22] C. K. Koc, “High-speed RSA implementation,” RSA Lab., Bedford, MA,
USA, Tech. Rep. TR 201, 1994.

[23] C. K. Koç, “Analysis of sliding window techniques for exponentiation,”
Comput. Math. Appl., vol. 30, no. 10, pp. 17–24, 1995.

[24] B. Lynn. The Pairing-Based Cryptography (PBC) Library, accessed on
Jun. 22, 2017. [Online] Available: http://crypto.stanford.edu/pbc

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2639

[25] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos, “Multicast authen-
tication in fully adversarial networks,” in Proc. IEEE Symp. Secur.
Privacy, May 2004, pp. 241–253.

[26] D. Ma and G. Tsudik, “A new approach to secure logging,” ACM Trans.
Storage, vol. 5, no. 1, p. 2, 2009.

[27] C. A. Melchor, X. Boyen, J.-C. Deneuville, and P. Gaborit, “Sealing
the leak on classical NTRU signatures,” in Post-Quantum Cryptogra-
phy (Lecture Notes in Computer Science), vol. 8772, M. Mosca, Ed.
Springer, 2014, pp. 1–21.

[28] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL, USA: CRC Press, 1996,

[29] E. Mykletun, M. Narasimha, and G. Tsudik, “Signature bouquets:
Immutability for aggregated/condensed signatures,” in Proc. Eur. Symp.
Res. Comput. Secur., Sep. 2004, pp. 160–176.

[30] E. Mykletun and G. Tsudik, “Aggregation queries in the database-as-a-
service model,” in Proc. IFIP Annu. Conf. Data Appl. Secur. Privacy,
2006, pp. 89–103.

[31] D. Naccache, D. M’Raïhi, S. Vaudenay, and D. Raphaeli, “Can D.S.A.
be improved: Complexity trade-offs with the digital signature standard,”
in Proc. Workshop Theory Appl. Cryptogr. Techn., 1994, pp. 77–85.

[32] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, “Efficient authentication
and signing of multicast streams over lossy channels,” in Proc. IEEE
Symp. Secur. Privacy, May 2000, pp. 56–73.

[33] J. Petit and Z. Mammeri, “Authentication and consensus overhead
in vehicular ad hoc networks,” Telecommun. Syst., vol. 52, no. 4,
pp. 2699–2712, 2013.

[34] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signatures
with fast signing and verifying,” in Proc. 7th Austral. Conf. Inf. Secur.
Privacy (ACIPS), 2002, pp. 144–153.

[35] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[36] M. Rückert, “Lattice-based signature schemes with additional features,”
Ph.D. dissertation, Dept. Comput. Sci., Technische Univ. Darmstadt,
Darmstadt, Germany, 2010.

[37] A. Shamir and Y. Tauman, “Improved online/offline signature schemes,”
in Proc. 21st Annu. Int. Cryptol. Conf., 2001, pp. 355–367.

[38] Shamus. Multiprecision Integer and Rational Arithmetic C/C++
Library (MIRACL), accessed on Sep. 2014. [Online]. Available:
http://www.certivox.com/miracl/miracl-download/

[39] A. Singla, A. Mudgerikar, I. Papapanagiotou, and A. A. Yavuz, “HAA:
Hardware-accelerated authentication for Internet of Things in mis-
sion critical vehicular networks,” in Proc. IEEE Int. Conf. Military
Commun. (MILCOM), Oct. 2015, pp. 1–7.

[40] W. Whyte, M. Etzel, and P. Jenney. (2013). Open Source NTRU Public
Key Cryptography Algorithm and Reference Code. [Online]. Available:
https://github.com/NTRUOpenSourceProject/ntrucrypto

[41] A. A. Yavuz, “An efficient real-time broadcast authentication scheme for
command and control messages,” IEEE Trans. Inf. Forensics Security,
vol. 9, no. 10, pp. 1733–1742, Oct. 2014.

[42] A. A. Yavuz, “Immutable authentication and integrity schemes for out-
sourced databases,” IEEE Trans. Depend. Sec. Comput., to be published.

[43] A. A. Yavuz, P. Ning, and M. K. Reiter, “BAF and FI-BAF: Efficient and
publicly verifiable cryptographic schemes for secure logging in resource-
constrained systems,” ACM Trans. Inf. Syst. Secur., vol. 15, no. 2, p. 9,
2012.

Attila Altay Yavuz (M’11) received the M.S. degree
in computer science from Bogazici University,
Istanbul, Turkey, in 2006, and the Ph.D. degree
in computer science from North Carolina State
University in 2011. He is currently an Assistant
Professor with the School of Electrical Engineering
and Computer Science, Oregon State University. He
is broadly interested in design, analysis, and applica-
tion of cryptographic tools and protocols to enhance
the security of computer networks and systems.
He has authored over 40 research articles in top

conferences and journals along with several patents. His research on privacy
enhancing technologies (searchable encryption) and intra-vehicular network
security are in the process of technology transfer with potential world-wide
deployments. He is a member of ACM. He was a member of the Security
and Privacy Research Group with the Robert Bosch Research and Technology
Center, North America (2011–2014). He was a recipient of the NSF CAREER
Award (2017).

Anand Mudgerikar received the bachelor’s degree
in information and communication technology from
the Dhirubhai Ambani Institute of Information and
Communication Technology, India, and the mas-
ter’s degree in information security from CERIAS,
Purdue University, West Lafayette, IN, USA, where
he is currently pursuing the Ph.D. degree in informa-
tion security with the Computer Science Department.
His current research interests include cryptography,
intrusion detection systems, and network security.

Ankush Singla is currently pursuing the Ph.D. degree in information
security and assurance with the Computer Science Department, Purdue
University. He was involved in projects ranging from Hardware Accelerated
Authentication and Centralized Lighting management for Energy Saving. His
current research interests include blockchain usage for Internet of Things
authentication and certificateless cryptography.

Ioannis Papapanagiotou (SM’15) received the dual
major Ph.D. degree in computer engineering and
operations research from North Carolina State Uni-
versity. He has served in the faculty ranks of Purdue
University (tenure-track) and North Carolina State
University. From 2010 to 2013, he was with IBM’s
CTO Office. He is currently an Architect at Netflix
Inc., a Research Assistant Professor with the Univer-
sity of New Mexico, and a Graduate Faculty with
Purdue University. He has authored approximately
40 research articles and ten patent disclosures. He is

a Senior Member of ACM. He has also served as a TPC Chair in a number of
IEEE conferences. He has been awarded the NetApp Faculty Fellowship and
established an Nvidia CUDA Research Center, Purdue University. He has also
received the IBM Ph.D. Fellowship, the Academy of Athens Ph.D. Fellowship
for his Ph.D. research, and best paper awards in several IEEE conferences for
his academic contributions.

Elisa Bertino (F’02) is currently a Professor of
Computer Science with Purdue University, and
serves as the Director of the CyberSpace Security
Laboratory (Cyber2SLab). Prior to joining Purdue
University in 2004, she was a Professor and the
Department Head with the Department of Computer
Science and Communication, University of Milan.
She has been a Visiting Researcher with the IBM
Research Laboratory (currently Almaden), San Jose,
with the Microelectronics and Computer Technol-
ogy Corporation, with Rutgers University, and with

Telcordia Technologies. Her recent research focuses on database security,
digital identity management, policy systems, and security for web services.
She is a fellow of ACM and AAAS. She received the IEEE Computer
Society 2002 Technical Achievement Award, the IEEE Computer Society
2005 Kanai Award, and the ACM SIGSAC Outstanding Contributions Award.
She is currently serving as Editor-in-Chief of IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

