
1

Efficient Oblivious Data Structures for Database
Services on the Cloud

Thang Hoang, Ceyhun D. Ozkaptan, Gabriel Hackebeil, and Attila A. Yavuz, Member, IEEE

Abstract—Database-as-a-service (DBaaS) allows the client to store and manage structured data on the cloud remotely. Despite its
merits, DBaaS also brings significant privacy issues. Existing encryption techniques (e.g., SQL-aware encryption) can mitigate privacy
concerns, but they still leak information through access patterns, which are vulnerable to statistical inference attacks. Oblivious
Random Access Machine (ORAM) can seal such leakages; however, the recent studies showed significant challenges on the
integration of ORAM into databases. That is, the direct usage of ORAM on databases is not only costly but also permits very limited
query functionalities. In this paper, we propose new oblivious data structures called Oblivious Matrix Structure (OMAT) and Oblivious
Tree Structure (OTREE), which allow tree-based ORAM to be integrated into database systems in a more efficient manner with diverse
query functionalities supported. OMAT provides special ORAM packaging strategies for table structures, which not only offers a
significantly better performance but also enables a broad range of query types that may not be efficient in existing frameworks. On the
other hand, OTREE allows oblivious conditional queries to be performed on tree-indexed databases more efficiently than existing
techniques. We implemented our proposed techniques and evaluated their performance on a real cloud database with various metrics,
compared with state-of-the-art counterparts.

Index Terms—Privacy-enhancing Technologies; Oblivious Data Structure; ORAM

F

1 INTRODUCTION

Services for outsourcing data storage and related in-
frastructure to the cloud have grown in the last decade
due to the savings they offer to companies in terms of
capital and operational costs. For instance, major cloud
providers (e.g., Amazon, Microsoft) offer Database-as-a-
service (DBaaS) that provides relational database manage-
ment systems on the cloud. This enables a client to store and
manage structured data remotely. Despite its merits, DBaaS
raises privacy issues. The client may encrypt the data with
standard encryption; however, this also prevents searching
or updating information on the cloud, thereby invalidating
the effectiveness of database utilization.

Various privacy enhancing technologies have been de-
veloped toward addressing the aforementioned privacy vs.
data utilization dilemma. For instance, the client can use
special encryption techniques such as SQL-aware encryp-
tion (e.g., [1], [2]) or searchable encryption with various
security, efficiency and query functionality trade-offs (e.g.,
[3], [4], [5], [6], [7], [8], [9], [10]) to achieve the data confi-
dentiality and usability on the cloud. However, even such
encryption techniques might not be sufficient for privacy-
critical database applications (e.g., healthcare) since sensi-

• Thang Hoang is with the School of EECS, Oregon State University,
Corvallis, OR, 97331. E-mail: hoangmin@oregonstate.edu

• Attila A. Yavuz is with the Department of Computer Science and
Engineering, University of South Florida, Tampa, FL, 33620. E-mail:
attilaayavuz@usf.edu

• Gabriel Hackebeil is with the Department of Industrial and Operations
Engineering, University of Michigan, Ann Arbor, MI, 48109.

• Ceyhun D. Ozkaptan is with the Department of Electrical and Computer
Engineering, The Ohio State University, Columbus, OH 43210. E-mail:
ozkaptan.1@osu.edu.

• Work done when the second, the third and the fourth authors were
employed at Oregon State University. E-mail: {ozkaptac, hackebeg, at-
tila.yavuz}@oregonstate.edu.

Query q2

Query q1

Table-A (Encrypted)

Client

Database-as-a-Service (DBaaS)

RowID Col1 Col2 Col3 Col4

Row1 A B C D

Row2 E F G H

Row3 I J K L

Row4 M O P Q

Encrypted Queries
to Table-A

(honest-but-curious)
Respond r1

Respond r2

Database can record and
analyze query (access) patterns

(q1,r1),…,(qn,rn)
Statistical Inference Attack Sensitive information

may be revealed

Query qn

Respond rn

.

.

.

Fig. 1: Problem Statement: Information leakages through
query access patterns over an encrypted database.

tive information may be revealed through access patterns
when the client execute encrypted queries on the encrypted
database. Recent work (e.g., [11], [12], [13], [14], [15])
showed that information leakage through the access pattern
can be combined with some prior contextual knowledge to
launch statistical inference attacks thereby, revealing vital
information about encrypted queries and database. For ex-
ample, such information leaks may expose the prognosis of
illness for a patient or types/timing of financial transactions
over valuable assets based on encrypted queries. Therefore,
hiding the access pattern an important requirement for
privacy-critical database applications.

Oblivious Random Access Machine (ORAM) [16] can be
used to hide the client access patterns for such encrypted
databases. Preliminary ORAM schemes (e.g., [16], [17])
were costly, but recent ORAM constructions (e.g., [18], [19],
[20], [21], [22], [23]) have shown promising results. Most
efficient ORAM schemes (e.g., [21], [24], [25]) follow the
tree paradigm [19], and achieve O(logN) communication

2

RowID Col1 Col2 Col3 Col4

Row1 A B C D

Row2 E F G H

Row3 I J K L

Row4 M O P Q
Row_1

Row_2 Row_3

Row_4

Tree-based ORAM Construction of Table A

(a) Limitations of Row-Oriented Packaging in DBaaS

1. Statistical Queries:
• Downloading all ORAM

blocks for statistical results

2. Conditional Queries:
• Downloading all ORAM

blocks to check conditions

Tree-based ORAM Construction of Table A

(b) Limitations of Cell-Oriented Packaging in DBaaS

A
B

C

D

E
F

G

H

I
J

K

L

M
O

P

Q

1. Size of Position Map:
• O(MN)

2. Row-Related Queries:
• Round-trip delay to fetch all

cells in a row
3. Column-Related Queries:
• Round-trip delay to fetch all

cells in a column for queries
such as conditional and
statistical

Table-A (MxN)

Client

Oblivious Access and
Query to Table-A

STATISTICAL
QUERY

CONDITIONAL
QUERY

ROW QUERY ROW QUERY

(c) OMAT (Oblivious Matrix Structure): An oblivious matrix structure and new
ORAM packaging strategies to permit diverse and efficient queries on table instances.

• Efficient and Oblivious Statistical Queries on Columns

• Efficient and Oblivious Conditional Queries on Columns without Indexing

• Efficient and Oblivious Row Queries

(d) OTREE (Oblivious Tree Structure): An oblivious tree structure and new level-
based ORAM packaging strategies with a heap unification for tree-indexed databases.

• Efficient and Oblivious Access to Tree Data Structures

• Oblivious Access to Index-Tree for Efficient Conditional and Range Queries

Imlementation and Experimental Evaluation
(i) OMAT and OTREE are fully implemented with Path-ORAM. (any tree-based ORAM scheme can be used)

(ii) Performance evaluations on LAN server and in-state remote (Amazon EC2) server with MongoDB instances

STATISTICAL
QUERY

CONDITIONAL
QUERY

Desirable Properties of Our Proposed Schemes

Research Gap: Limitations of Existing Oblivious Database Access Approaches

Fig. 2: Research gap to be addressed and desirable properties of the proposed schemes.

overhead. Despite these improvements, there are several
research gaps towards achieving efficient integration of
ORAM into database applications. In the following, we
discuss the research gaps and limitation of state-of-the-art
approaches.

1.1 Limitations of Existing Approaches
The direct application of ORAM to the structured encrypted
data has been shown to be costly in the context of searchable
encryption [26], [27]. Meanwhile, there is a limited number
of studies on the application and integration of ORAM
for encrypted database systems. Chang et al. in [28] were
among the first to investigate the use of ORAM in real
database systems with a framework called SEAL-ORAM.
In SEAL-ORAM, various ORAMs were implemented and
compared on a MongoDB database platform, where ORAM
blocks are constructed in a row-oriented manner. While
it shows the possibility of using ORAM for encrypted
databases, the functionalities and performance offered by
such a direct adaptation seem to be limited. We outline the
limitations of two direct ORAM applications in Figure 2,
and further elaborate them as below.

• Limitations of Row-Oriented Approach: In SEAL-ORAM, each
row of the database table is packaged into an ORAM block.
We refer to this approach as RowPKG. RowPKG allows effi-
cient insert/delete/update queries on a row in the database
table. However, to execute oblivious insert/delete/update
on a column, RowPKG requires to transfer all blocks in
ORAM, which is not only bandwidth-costly but also client-
storage expensive. Similarly, the execution of any column-
related queries (e.g., statistical, conditional queries) is also
inefficient because they require transferring all the ORAM
blocks, which may not be practical for large databases. R
RowPKG (i.e., row-oriented packaging) and its limitations
are outlined in Figure 2-(a).

• Limitations of Cell-Oriented Approach: Another approach is
to package each cell of the database table into an ORAM
block. This approach increases the size of position map,
which is an imperative component stored at the client in
tree-based ORAMs. To eliminate the position map, oblivious

2D-grid structure (referred to as ODS-2D) [23] can be used to
store the database table by clustering each O(log(N)) cells
into an ORAM block and using the pointer trick to link the
blocks together. However, this approach may increase the
number of requests when the query requires fetching an
entire row or column. This incurs end-to-end delay due to
a large number of round-trip delays, and therefore, is not
suitable for large databases. Cell-oriented packaging and
its limitations are summarized in Figure 2-(b). The above
discussion indicates that there is a significant need for an
efficient oblivious data structure that permits diverse types
of queries on encrypted databases. Hence, in this paper, we
seek answers to the following research questions:

“Can we create an efficient oblivious data structure for en-
crypted databases that allows diverse types of queries with
a low overhead? Can we harness asymptotically optimal
ORAMs over structured data to create an oblivious data
structure?”

1.2 Our Contributions

Given the availability of asymptotically-optimal ORAM
building blocks, our objective is to create new oblivious
data structures by harnessing such ORAMs in efficient man-
ners. Specifically, we propose two efficient oblivious data
structures that permit various types of queries on encrypted
databases:

(i) Our first scheme is referred to as Oblivious Ma-
trix Structure (OMAT) (Section 3.1). The main idea behind
OMAT is to create an oblivious matrix structure that permits
efficient queries over table objects in the database not only
for the row but also column dimension. This is achieved
via various strategies that are specifically tailored for the
matrix structure with a delicate balance between the query
diversity and the ORAM bandwidth overhead. This allows
OMAT to perform various types of oblivious queries without
streaming a large number of ORAM blocks or maintaining
a very large position map at the client. (ii) Our second
scheme is referred to as Oblivious Tree Structure (OTREE)
(Section 3.2), which is designed for oblivious accesses on
tree-indexed database instances. Given a column whose val-
ues can be sorted into a tree structure (i.e., numeric values),

3

TABLE 1: Transmission cost and client storage for compared schemes.

Scheme Communication Costa Efficiencyb Client Storagec
End-to-End Delayd

Moderate
Network

High
Network

single column-related query (e.g., statistical, conditional queries)
RowPKG [28] Z · (B1 ·N) · (2M − 1) 1.00 O(M ·N) · w(1) 6096 s 776 s
ODS-2D [23] (M/4) · [Z · (16 ·B1) · log2(M ·N/16)] 17.04 O(M · log(M ·N)) · w(1) 1245 s 292 s
OMAT Z2 · (B1 ·M) · log2(N) 28.44 O(M · log(N)) · w(1) 475 s 60 s

single row-related query (e.g., insert/delete/update queries)
RowPKG [28] Z · (B2 ·N) · log2(M) 1.00 O(N · log(M)) · w(1) 567 ms 56 ms
ODS-2D [23] (N/4) · [Z · (16 ·B2) · log2(M ·N/16)] 0.19 O(N · log(M ·N)) · w(1) 2380 ms 350 ms
OMAT Z2 · (B2 ·N) · log2(M) 0.25 O(N · log(M)) · w(1) 2032 ms 128 ms

traversal on database tree index (e.g., range queries)
non-caching
ODS-Tree [23] 2 · Z1 ·B · (H + 1)2 1.00 O(H) · w(1) 7929 ms 1318 ms
OTREE Z2 ·B · (H + 1) · (H + 2) 1.60 O(H) · w(1) 3762 ms 592 ms

half-top caching
ODS-Tree [23] 2 · Z1 ·B ·

⌈
H+1

2

⌉
· (H + 1) 1.00 O(

√
2H) +O(H) · w(1) 5979 ms 1008 ms

OTREE Z2 ·B ·
⌈
H+1

2

⌉
·
(⌈

H+1
2

⌉
+ 1
)

3.20 O(
√
2H) +O(H) · w(1) 1676 ms 272 ms

• Table Notations: M and N denote the total number of (real) rows and columns in the matrix data structure, respectively. H is the height of the
tree data structure. Z and B denote the bucket size and size of each block (in bytes), respectively.
• Settings: We instantiate our schemes and their counterparts with underlying Path-ORAM for a fair comparison. The bottom half of the table
compares OTREE and ODS-Tree when combined with tree-top caching technique proposed in [29], in which we assume the top half of tree-based
ORAM is cached on the client during all access requests.
• Server Storage: All of the oblivious matrix structures require O(MN) server storage, however, the storage of OMAT is a constant (e.g., Z = 4)
factor larger than others. OTREE is twice more storage efficient than ODS.
a Represents the total cost in terms of bytes to be processed (e.g., communication/computation depends on the underlying ORAM scheme) between
the client and the server for each request. For OMAT , ODS-2D and RowPKG, the cost is for one access operation per query. For OTREE and ODS,
the cost is for traversing an arbitrary path in a binary tree.
b Denotes the communication cost efficiency compared to chosen baseline, where Z = 4, B1 = 64, B2 = 128,M = 215, N = 29 for ODS-2D,
RowPKG and OMAT, and Z1 = 4, Z2 = 5 (for stability), B = 4096, H = 20 for ODS-Tree and OTREE.
c Client storage consists of the worst-case stash size to keep fetched data. Additionally, the position map of OMAT and RowPKG are
O((M + N) log(M + N)) and O(M · log(M)), respectively. For ODS based structures and OTREE, position map requires O(1) storage due to
pointers and half-top cached blocks are also included in client storage.
d The delays were measured with a MongoDB instance running on Amazon EC2 connected with the client on two different network settings which
are described in Section 5.1.

OTREE allows efficient oblivious conditional queries (e.g., a
range query).

We illustrate desirable properties of our schemes in
Figure 2-(c,d), and further discuss them as follows.

• Highly efficient and diverse oblivious queries: OMAT sup-
ports a diverse set of queries to be executed with ORAM.
Specifically, OMAT permits oblivious statistical queries over
value-based columns such as SUM, AVG, MAX and MIN. More-
over, oblivious queries on rows (e.g., insert, update) can
be executed on an attribute with a similar cost. As shown
in Table 1, with the given parameters and experimental
setup, executing a column-related query such as statistical
or conditional query with OMAT is approximately 28×more
communication efficient than that of RowPKG and this
enables OMAT to perform queries approximately 13× faster
than that of RowPKG. Compared to ODS-2D, although
OMAT is only 1.6 × more communication-efficient, it per-
forms approximately 5× faster in practice due to the large
number of additional round-trip delays. OTREE achieves
better performance than ODS for obliviously accessing the
database index, which is constructed from the values of a
column as a tree data structure. The communication cost of
OTREE is 1.6× less than that of ODS without caching. This
gain can be increased up to 3.2× with the caching strategy.

• Generic Instantiations from Tree-based ORAM Schemes: We
notice that any tree-based ORAM scheme (e.g., [21], [22])
can be used for both OMAT and OTREE instantiations.

This provides a flexibility in selecting a suitable underly-
ing ORAM scheme, which can be adjusted according to
the performance requirements of specific applications. Note
that, in this paper, we instantiated our schemes with Path-
ORAM [21] due to its efficiency, simplicity and not requiring
any server-side computation.

• Comprehensive Experiments and Evaluations: We imple-
mented OTREE, OMAT, and their counterparts under the
same framework. We evaluated their performance with a
MongoDB database instance unning on a remote Ama-
zonEC2 server with two different network settings: (1)
moderate-speed network and (2) high-speed network. This
permits us to observe the impact of real network and cloud
environment.

2 PRELIMINARIES

We now present cryptographic techniques and implemen-
tation frameworks that are used by or are relevant to our
proposed schemes.

2.1 Tree-based ORAM

ORAM enables a client to access encrypted data on an
untrusted server without exposing the access patterns
(e.g., memory blocks, their access time and order) to the
server [16]. Existing ORAM schemes rely on IND-CPA en-
cryption [30] and an oblivious shuffling to ensure that any

4

TABLE 2: Summary of notations in tree-based ORAM.
Symbol Description

N Total number of nodes in the tree-based ORAM
H Height of the ORAM tree structure
b, B Block and Block size
Z Capacity (in blocks) of each node
P(i) Path from leaf node i to root bucket in the tree
P(i, `) Bucket at level ` along the path P(i)
S Client’s local stash (optional)
pm Client’s local position map

i := pm[id] block identified by id is currently associated with
leaf node i, i.e., it resides somewhere along P(i) or
(optional) in the stash.

Position mapClient

Server

𝑧 ℎ = log' 𝑁

Stash

Fig. 3: Tree-based ORAM structure [19].

data access patterns of the same length are computationally
indistinguishable by anyone but the client.

Recent ORAMs (e.g., [21], [24], [25], [31]) follow the tree
paradigm [19], which consists of two main data structures:
A full binary tree data structure stored at the server side
and a position map (denoted as pm) stored at the client side
(Figure 3). Each node in the tree is called a bucket (denoted
B) which can store up to Z data blocks (e.g., Z = 4). Each
block b has a unique identifier id and all blocks are of the
same size B (4 KB). A tree-based ORAM with N leaf nodes
can store up to N real blocks, and other empty slots are filled
with dummy data. P(i) denotes a path from the root to leaf
i of the tree. The position map pm holds the location among
2N possible paths P(i) for every block with identifier id.
The size of pm is O(N logN) which can be reduced to O(1)
by using recursive ORAMs to store pm on the server with
the O(logN) increase of communication rounds for each
access operation. Table 2 summarizes notations being used
for tree-based ORAM scheme.

There are two basic phases in tree-based ORAMs: re-
trieval and eviction. For each access operation, the client
gets the path ID of accessing block from the position map
and sends the path ID to the server who responds with all
blocks residing in the requested path. The client decrypts
and processes the received data to obtain the desired block
and executes the eviction function, which re-encrypts down-
loaded block(s) and pushes them back to the ORAM tree.
Notice that although recently proposed ORAM schemes
that follow the tree paradigm (e.g., [21], [24], [25]) provide
different trade-offs between communication and computa-
tion overhead, they all rely on the aforementioned basic
operations.

Path-ORAM: In Path-ORAM [21], all real blocks are down-
loaded and stored temporarily in a so-called stash at the
client in the retrieval phase. A new random address is then

4

31

52

4 1 2 3 5

Tree T Tree-based ORAM of T

Fig. 4: Oblivious Data Structure for a tree structure [23].

assigned to the accessed block and the local position map
is updated. Next, the blocks in the stash are evicted accord-
ing to the retrieval path. Path-ORAM offers asymptotically
optimal communication and computation cost of O(logN)
by storing O(N logN)-sized position map. As the recursive
ORAMs are known to be highly costly, we do not discuss
them in this work.

2.2 Oblivious Data Structure

Oblivious Data Structure (ODS) proposed by Wang et al. [23]
leverages “pointer techniques” to reduce the storage cost of
position map components in non-recursive ORAM schemes
to O(1), if the data to be accessed have some specific
structures (e.g., grid, tree, etc.). For instance, given a binary
search-sorted array as illustrated in Figure 4, the ORAM
block is augmented with k+1 additional slots that hold the
position of the block along with the positions and identifiers
of its children as b := (id, data, pos, childmap), where id is
the block identifier, data is the block data, pos is its position
in ORAM structure, and childmap is a miniature position
map with entries (idi, posi) for k children. To ensure that
the childmap is up to date, a child block must be accessed
through at most one parent at any given time. If a block
does not have a parent (e.g., the root of a tree), its position
will be stored in the client. A parent block should never be
written back to the server without updating positions of its
children blocks.

2.3 ORAM Implementation Framework

One of the most reliable and complete ORAM frameworks
is CURIOUS [26], which gives a complete implementation of
the state-of-the-art ORAM schemes (e.g., Path-ORAM [21])
in Java. In this paper, we chose CURIOUS to implement our
oblivious data structures as it can be adopted with database
drivers such as MongoDB or MySQL.

3 PROPOSED TECHNIQUES

statistical queries

(e.g., SUM, AVG)

CLIENT

OMAT

OTREE

Tree-based
ORAM protocol

Tree-based
ORAM protocolconditional queries

range queries

SERVER

Fig. 5: Overview of our proposed techniques.

5

ID 1 2 3 4 5

1 1 2 3 4 5

2 6 7 8 9 10

3 11 12 13 14 15

4 16 17 18 19 20

… C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28

… R1

… R2

… 16 20 17 18 19 R3

… R4

… 1 5 2 3 4 R5

… R6

… 6 10 7 8 9 R7

… R8

… 11 15 12 13 14 R9

… R10

… R11

… R12

(b) OMAT representation of Table A(a) Table A (c) Tree-ORAM based layout for oblivious row and column accesses

Oblivious row access (OROW)

Oblivious column access (OCOL)

1 C13
C14

5 C15
C16

C17
2 C18

C19
C20

C21
3 C22

C23
C24

C25
C26
C27

4 C28

C5
C6
C7
C8

C9
C10
C11
C12

C1
C2
C3
C4

3 R9
R10
R11
R12

1 R5
R6

2 R7
R8

R1
R2

4 R3
R4

Fig. 6: OMAT structure for oblivious access on table.

We now present our proposed oblivious data struc-
tures, which are specially designed for efficient opera-
tions in database settings. We propose two schemes in-
cluding Oblivious Matrix Structure (OMAT) and Oblivious
Tree Structure (OTREE). OMAT supports efficient obliv-
ious statistical queries on generic table instances, while
OTREE supports range and conditional queries on tree-
indexed instances. Figure 5 outlines the overview of our
proposed techniques. For our oblivious data structures, we
choose Path-ORAM [21] as the underlying ORAM for the
following reasons: (i) It is simple yet achieves asymptotic
efficiency. (ii) Unlike some recent ORAMs [24], [25] that
require computations at the server side, it requires only
read/write operations. This is useful since such advanced
cryptographic operations might not be readily offered by
well-known database instances (e.g., MongoDB, MySQL).
(iii) The availability of Path-ORAM implementations on
existing frameworks (e.g., CURIOUS [26]) enables a fair
experimental comparison of the proposed techniques with
the state-of-the-art.

3.1 Oblivious Access on Table Structures
The direct application of tree-based ORAMs to access en-
crypted tables in general [26] and database systems in
specific [28] have been shown to be inefficient for large
datasets. Specifically, if each row in the table is packaged
into an ORAM block as in [28], then performing queries to
fetch a column in such a table (e.g., statistics) would require
the client to stream all blocks in the ORAM structure, which
might be impractical. On the other hand, packaging each
cell in the table into an ORAM incurs a high network delay
and client storage overhead. Thus, we investigate on how
to translate the table into an oblivious data structure so that
each row and column of it can be both accessed efficiently
by a given ORAM scheme. Below, we first describe our
oblivious data structure and then present our OMAT access
scheme on top of it.

• Oblivious Data Structure for OMAT. The main data struc-
ture that we use for oblivious access on a table is a matrix.
Given an input table T of size M ×N , we allocate a matrix
M of size Z · 2dlog2(M)e−1 × Z · 2dlog2(N)e−1. We arrange
tree-based ORAM building blocks for oblivious access as
follows:

The layout of OMAT matrix M can be interpreted as two
logical tree-based ORAMs defined as oblivious rows (de-

Algorithm 1 data← OMAT.Access(op, dim, id)

1: b← pmdim[id].pathID
2: if dim = col then
3: pmdim[id].pathID

$←− {1, . . . , 2dlog2(N)e−1}
4: H ← dlog2(N)e
5: else
6: pmdim[id].pathID

$←− {1, . . . , 2dlog2(M)e−1}
7: H ← dlog2(M)e

. Read all rows/columns on the path P(b)
8: for each ` ∈ {0, . . . , H} do
9: Sdim ← Sdim ∪ ReadBucket(dim,P(b, `))

10: data← Read row/column with id from Sdim
11: data← FilterDummy(data,S¬dim)
12: S¬dim ← Update(S¬dim, pmdim)
13: if op = write then
14: Sdim ← (Sdim \ {(id, data)}) ∪ {(id, data∗)}

. Evict blocks from the stash
15: for each ` ∈ {H, . . . , 0} do
16: S ′dim ← {(id′, data′) ∈ Sdim|P(b, `) = P(pmdim[id

′].pathID, `)}
17: S ′dim ← Select min(|S ′dim|, Z) blocks from S ′dim
18: Sdim ← Sdim \ S ′dim
19: o← 1
20: for each (id′, data′) ∈ S ′dim do
21: pm[id′].level← `
22: pm[id′].order← o , o← o+ 1

23: WriteBucket(dim,P(b, `),S ′dim)
24: return data

noted as OROW) and oblivious columns (denoted as OCOL)
as illustrated in Figure 6. That is, the ORAM for row access
on OROW is formed by a set of blocks bi := (idi, datai),
where idi is either a unique identifier if bi contains the
content of a row of the table T or null otherwise, and
datai ← M[i, ∗]. We group Z subsequent rows in M to
form a bucket (i.e., node) in the OROW structure. Simi-
larly, the ORAM for column access on OCOL is formed by
bj = (idj , dataj). Each (bucket) node in OCOL is formed by
grouping Z subsequent blocks.

We assign each row T[i′, ∗] (i′ = 1, . . . ,M) and each
column T[∗, j′] (j′ = 1, . . . , N) with a random leaf node
IDs ui′ and vj′ in OROW and OCOL, respectively. That
is, the data of T[i, ∗] and T[∗, j] reside in some rows
and columns of M along the assigned paths P(ui) in
OROW and P(vj) in OCOL, respectively. In other words,
M[i, j] ← T[i′, j′], where M[i, ∗] ∈ P(ui′) in OROW and
M[∗, j] ∈ P(vj′) in OCOL. Our construction requires two

6

position maps (pmrow and pmcol) to store the assigned path
for each row T[i′, ∗] and each column T[∗, j′] of table T
in OROW and OCOL, respectively. Our position maps store
all necessary information to locate the exact position of a
row/column data in the tree-based ORAM structures as
pm := (id, 〈pathID, level, order〉), where 0 ≤ level ≤ log2(N)
indicates the level of the bucket, in which the row/column
with id resides, and 1 ≤ order ≤ Z indicates its order in the
bucket.

• The Proposed OMAT Access Scheme. We present our
OMAT scheme, which is instantiated with Path-ORAM, in
Algorithm 1. Specifically, given a column (resp. row) identi-
fier (id) to be accessed1, the client retrieves its location from
the column (resp. row) position map (step 1). The client then
assigns the column (resp. row) to a new location selected
uniformly at random (steps 2–7). The client reads all columns
(resp. rows) residing on the same path according to tree-
based ORAM layout (as depicted in Figure 6-(c) to the stash
(steps 8–9). In this case, we modify the original ReadBucket
subroutine of Path-ORAM, where it now takes an extra
parameter (dim) that indicates the dimension to be read, and
outputs the corresponding Z columns/rows in the bucket.
The client retrieves the column (resp. row) with id from the
stash (step 10). One might observe that according to OMAT
structure, the retrieved column (resp. row) will contain data
from dummy rows (resp. columns) as depicted by empty blue
cells in Figure 6-(b). Therefore, to obtain only the real data
of the requested column (resp. row), the client filters all data
from dummy rows (resp. columns) (step 11). Moreover, since
the position of the retrieved column (resp. row) is moved to
a new random position (steps 2–7), it is required to update
all rows (resp. columns) that are currently stored in the stash
at this column (resp. row) position to achieve the consistency
(step 12). If the access is to update, the client then updates
the column (resp. row) with new data (steps 13–14) Finally,
the client performs eviction as described in Path-ORAM to
flush columns (resp. rows) from the stash back to the OMAT
structure in the server (steps 15–23).

Notice that all columns/rows are IND-CPA decrypted
and re-encrypted as they are read and written to/from the
server, respectively. We assume that it is not required to
hide the information whether a column or a row is being
accessed. However, this can be achieved with the cost of
performing oblivious accesses on both row and column (one
of them is dummy selected randomly) for each access.

• Use Case: Statistical and Conditional Queries. Recall that,
in row-oriented packaging, implementing secure statisti-
cal queries on a column requires downloading the entire
ORAM blocks from the database. In contrast, OMAT struc-
ture allows queries such as add, delete, update not only
on its row but also on its column dimension. Thus, we
can implement statistical queries (e.g., MAX, MIN, AVG, SUM,
COUNT, etc.) over a column in an efficient manner via OMAT.
Note that OMAT can also permit conditional query on rows
with WHERE statement. Similar to statistical queries, the
query can be implemented by reading the attribute column
on which the WHERE clause looks up OCOL first to de-

1. The access can be any types of operation such as
read/add/delete/modify.

termine appropriate records that satisfy the condition, and
then obliviously fetching such records on OROW structure.
For example, assume that we have the following SQL-like
conditional search.

SELECT * FROM A WHERE C > k

It can be implemented by:
1) Read the column C with id′ on OCOL as

C[∗, id′]← OMAT.Access(read, col, id′).
2) Get IDs of rows whose value larger than k, and such

IDs are in pmrow as
I ← {id|id ∈ pmrow.id ∧C[id, id′] > k}

3) Access on OROW to get the desired result as
R[id, ∗]← OMAT.Access(read, row, id), for each id ∈ I .

The aforementioned approach can work with any unin-
dexed columns. In the next section, we propose an alter-
native approach that can offer a better performance if the
columns can be indexed with certain restrictions.

3.2 Oblivious Access on Tree Structures

In the unencrypted database setting, conditional queries
can be performed more efficiently, if column values can be
indexed by a search-efficient tree data structure (e.g., Range
tree, B+ tree, AVL tree). Figure 10 illustrates an example of
a column indexed by a range tree for (non)-equality/range
queries, in which each leaf node points to a node in another
linked-list structure that stores the list of matching IDs. We
propose an oblivious tree structure called OTREE, in which
indexed data for such queries are translated into a balanced
tree structure. As in OMAT, OTREE can be instantiated from
any tree-based ORAM scheme. Notice that oblivious access on
a tree was previously studied in [23]. Our method requires
less amount of data to be transmitted and processed, since
the structure of indexed values (i.e., the tree data structure)
is not required to be hidden, and the client is merely re-
quired to traverse an arbitrary path of the tree. We present
the construction of OTREE as follows.

• Oblivious Data Structure for OTREE: Given a tree-indexed
data T of height H as input, we first construct the OTREE
structure of height H with ORAM buckets as illustrated in
Figures 7-(a,b). Then, each node of T at level ` is assigned
to a random path and placed into a bucket of OTREE which
resides on the assigned path at level `′ where `′ ≤ `. In
other words, any node of T at level 0 ≤ ` ≤ H will reside in a
bucket at level ` or lower in OTREE. If there is no empty slot
in the path, the node will be stored in the stash if OTREE is
instantiated with stash-required ORAM schemes (e.g., Path-
ORAM).

We assume T is sorted by nodes’ id and the position of
nodes at level ` is stored in its parent node at level `−1 using
the pointer technique proposed in [23]. Hence, each node
of T is considered as a separate block in OTREE structure
as: b := (id, data, childmap), where id is the node identifier
sorted in T (e.g., indexed column value), data indicates the
node data, and childmap is of structure 〈id, pos〉 that stores
the position information of node’s children.

• The Proposed OTREE Access Scheme: OTREE can be instanti-
ated with any tree-based ORAM schemes (e.g., Ring-ORAM
[25], Circuit-ORAM [22]) , as similar to OMAT in Section 3.1,

7

1
3 4

2

2

4

OTREE

4
4

4321

42

(a) Tree-like data T (b) OTREE representation of T

L1 L2 L3 L4

Fig. 7: The OTREE layout for a tree data.

by modifying corresponding retrieval/eviction procedures
while preserving the constraints of OTREE regarding the
deepest level of nodes. OTREE also receives a significant
benefit from caching mechanisms like top-tree caching [29],
which can speed up bulk access requests.

We give the proposed OTREE scheme instantiated with
Path-ORAM in Algorithm 2. Specifically, given the node
identifier id to be accessed in the id-sorted tree structure, the
client first reads the root bucket of Path-ORAM structure to
obtain the root node of the tree (steps 1–3). The client then
compares the requested id with the root id to decide which
child of the root node should be accessed in the next step.
The client accesses this child by reading its path in the Path-
ORAM structure from level 0 to level 1. We notice that for
each node at level l in the tree to be accessed, the client only
accesses the path in the Path-ORAM structure up to level l.
The process repeats until the desired id is found (steps 4–16).
Finally, the client performs eviction to flush read nodes back
to the Path-ORAM structure, wherein nodes at level l in the
tree must reside somewhere in the Path-ORAM structure

Algorithm 2 (data)← OTREE.Access(op, id, data∗)

1: x0 ← RootPos
2: S ← S ∪ ReadBucket(P(x0, 0), 0)

3: b0 ← Read block with id0 = 0 from S
4: for each ` ∈ {0, . . . , H − 1} do
5: if compare(id, id`) = go right then
6: (id`+1, x`+1)← b`.child[1]

7: b`.child[1].pos $←− {0, . . . , 2` − 1}
8: else
9: (id`+1, x`+1)← b`.child[0]

10: b`.child[0].pos $←− {0, . . . , 2`}

11: S ← S ∪ ReadBucket(P`+1(x`+1, `+ 1))
12: b` ← Read block id` from S
13: if id = id` then
14: data← b`.data
15: if op = write then
16: S ← (S \ {b`}) ∪ {(id, data∗, child)}

17: for each `′ ∈ {`, . . . , 0} do
18: S ′ ← {b′ ∈ S : P`(b

′.pos, `′) = P`(b`.pos, `′) ∧ b′.level = `}
19: S ′ ← Select min(|S ′|, z) blocks from S ′
20: S ← S \ S ′
21: WriteBucket(P`(x`, `

′),S ′)
22: return data

from level 0 to level l (steps 17–21).
The construction and constraints of OTREE require a

stability analysis to ensure that tree-based ORAM scheme
on OTREE behaves similarly to ODS in terms of the stash
overflow probability. We provide an empirical stability anal-
ysis of OTREE with Path-ORAM as follows.

• Stability Analysis of OTREE: We analyze the stability of
OTREE in terms of the average bucket load in each level of
the ORAM tree. Intuitively, one would expect an increase in
average bucket load near the top of the ORAM tree, and a
possible increase in the average client stash size if a Path-
ORAM variant (e.g., [25], [29]) is used. We show empirically
by our simulations, that OTREE behaves almost similar to
ODS with a bucket size of Z ≥ 4 with Path-ORAM. With
Z = 5, bucket usage with OTREE structure approaches that
of the stationary distribution when using an infinitely large
bucket size.

Our empirical study considered experiments with an
ORAM tree of height H = 14 storing N = 215−1 blocks. We
ran the experiments with different bucket sizes to observe
its effect on the stash size and bucket usage. We treated
ORAM blocks as nodes in a full binary tree of H = 14. We
inserted nodes into storage according to the breadth-first
order via access functions followed by a series of (H + 1)-
length access requests, each of which consists of accessing
a path of nodes from the root to a random leaf node in the
binary tree. A single-round experiment was the execution of
214 random root-to-leaf access sequences as described.

Figures 8 - 9 show the results of these experiments for
ODS and OTREE with different bucket sizes. The results
were generated by first running 1000 warm-up rounds after
the initialization, and then collecting statistics over 1000 test
rounds. Figure 8 depicts that with a bucket size Z = 5, buck-
ets near the root of the OTREE structure contain roughly
two non-empty blocks (one more than the average number
of blocks assigned to them). Figure 9 illustrates that with
Z ≤ 4, the probability of the stash size exceeding O(H)
for OTREE diminishes quickly. These results suggest that
using Z = 5 for OTREE in order to make underlying ORAM
scheme in OTREE behaves similarly to that with Z = 4 on
ODS.

• Use Case: Conditional Query on Columns: We exemplify an
implementation of a database index structured as OTREE
for conditional queries as follows: Consider a column whose
values are indexed by a sorted tree T of height h by putting
distinct values as keys on leaf nodes as depicted in Figure
10. The leaf nodes of T points to a node ID in a linked-
list structure that contains a list of matching IDs with the
key. We translate T into OTREE, where each node at level
` < H stores the position maps of its children. We store a list
of IDs in each linked-list node using an inverted index with
compression. As the data structure for the linked-list, we
employ ODS to store it in another ORAM structure (see [23]
for details). Hence, each leaf node of T stores the position
map of a linked-list node in ODS it points to. An example
of a given conditional query as follows.

SELECT ∗ FROM A WHERE C = k

where the column C is indexed into OTREE. It can be
executed obliviously as follows.

8

0 2 4 6 8 10 12 14
0

20

40

60

80

100

Level Index

Le
ve

lL
oa

d
(%

)
OTREE
ODS [23]

(a) Z = 4

0 2 4 6 8 10 12 14
0

20

40

60

80

100

Level Index

Le
ve

lL
oa

d
(%

)

OTREE
ODS [23]

(b) Z = 5

Fig. 8: Average bucket load within each level of the ORAM tree for different bucket sizes, where y-axis shows the average
percentage of bucket being used and x-axis shows the bucket levels from 0 (root) to 14 (leaf).

100 101 102 103
10−9

10−8

10−7

10−6

10−510−5

10−4

10−3

10−2

10−1

100

m

P
r

(b
lo

ck
s

in
st

as
h
≥

m
)

OTREE, Z = 4

OTREE, Z = 5

ODS [23], Z = 4

ODS [23], Z = 5

Fig. 9: Probability of stash size exceeding the threshold.

ID Name National ID # k

1 … … 20

2 … … 40

3 … … 40

4 … … 20

5 … … 80

6 … … 60

7 … … 20

8 … … 40

(a) Table A

80

4020

40

(b) Database Index as Range Tree for Values of k

8060

80

{1,4,7} {2,3} {6} {5}

Fig. 10: Values in a column indexed as a tree, and a linked
list to retrieve matching IDs for conditional queries.

1) Traverse a path with OTREE to get a leaf node as b ←
OTREE.Access(k).

2) Get ID and position map of linked-list node which b
points to as (id, pos)← b.childmap

3) Access on ODS to get the desired result as
R ← ODS.Access(id, pos, ·)

The overall cost for this approach is: O(log2 N + k ·
O(log(N)), where k is the distance from the first element of
the linked-list. The first part is the overhead of OTREE and
the second part is the overhead of ODS (without padding).

4 SECURITY ANALYSIS

Our security analysis, as in Path-ORAM [21], is concise as
the security of our proposed schemes are evident from their
base ORAM.

Definition 1 (ORAM security [21]). Let ~y :=
((op1, id1, data1), . . . , (opM , idM , dataM)) be a data request
sequence of length M , where each opi denotes a read(idi) or
a write(idi, data) operation. Let A(~s) denote the sequence of
accesses made to the server that satisfies the user data request
sequence ~s. An ORAM construction is secure if: (i) For any two
data request sequences ~x and ~y of the same length, the access
patterns A(~x) and A(~y) are computationally indistinguishable
to an observer, and (ii) it returns the data that is consistent with
the input ~s with probability ≥ 1− negl(|~s|). That is, the ORAM
fails with only a negligible probability.

Corollary 1. Accessing OMAT leaks no information beyond (i)
the size of rows and columns, (ii) whether the row or column
dimension being accessed, given that the ORAM scheme being
used on top is secure by Definition 1.

Proof. Let M be an OMAT structure consisting of two logical
tree-based ORAM structures OROW and OCOL as described
in Section 3.1 with dimensions M and N , respectively. Let
the bit B = 0 if the query is on OROW and B = 1, other-
wise. A construction providing OMAT leaks no information
about the location of a node u being accessed in M beyond
the bit B and dimensions (M,N). This is due to the fact
that OMAT uses a secure ORAM that satisfies Definition 1
to access each block of OROW and OCOL in M. Thus, as
long as the node accessed within OROW or OCOL is not
distinguishable from any other node within that OROW and
OCOL through the number of access requests, it is indistin-
guishable by Definition 1.

Note that the information on whether the row or column
was accessed can be hidden by performing a simultaneous
row and column access on both dimensions for each query.
This poses a security-performance trade-off. One can also
hide the size of row and column by setting OMAT matrix
with equal dimensions, but this may introduce some cost
for certain applications.

9

Corollary 2. Accessing OTREE leaks no information about the
actual path being traversed, given that the ORAM scheme being
used on top is secure by Definition 1.
Proof. Let T be a tree data structure of height H . Let T`

be the set of nodes at level 0 ≤ ` ≤ H in the tree. A
construction providing OTREE leaks no information about
the location of a node u ∈ T` being accessed in the tree
beyond that it is from T`. This is due to OTREE uses
a secure ORAM that satisfies Definition 1 to access each
level of the tree. Thus, as long as a node accessed within
level ` is not distinguishable from any other node within
that level through the number of access requests, it will be
indistinguishable according to Definition 1.

Side-channel leakages in Path-ORAM. There are several
side-channel attacks on Path-ORAM (e.g., [32], [33]) when
it is executed by the secure CPU playing on behalf of the
ORAM client. In this context, since the secure CPU resides
in the untrusted party, the adversary has a partial view on
it to exploit the timing leakage (e.g., [32]). In our model, we
assume that the client is fully trusted and it is totally apart
from the adversary view (i.e., untrusted database server).
Therefore, we do not consider these side-channel leakages
due to the difference between our model and the secure
CPU context.

5 PERFORMANCE EVALUATION

5.1 Configurations

• Implementation: We implemented our schemes and their
counterparts on CURIOUS framework [26]. We integrated
additional functionalities into the framework to perform
batch read/write operations to prevent unnecessary round-
trip delays, and also to communicate with MongoDB in-
stance via MongoDB Java Driver. We chose MongoDB as our
database and storage engine. We preferred MongoDB since
its Java Driver library is well-documented and easy to use.
Moreover, it supports batch updates without restrictions,
which is important for consistent performance analysis.

• Data Formatting: We created our database table with ran-
domly generated data with a different number of rows,
columns, and field sizes. We then used the table to construct
tree-based ORAMs for compared schemes. For instance, in
OMAT, we created OROW and OCOL structures from this
table, while an oblivious tree structure is created for OTREE,
as described in Section 3.

• Experimental Setup and Configurations: For our experiments,
we used two different client machines on two different
network settings: (i) A desktop computer that runs CentOS
7.2 and is equipped with Intel Xeon CPU E3-1230, 16 GB
RAM; (ii) A laptop computer that runs Ubuntu 16.04 and is
equipped with Intel i7-6700HQ, 16 GB RAM. For our remote
server, we used AmazonEC2 with t2.large instance type that
runs Ubuntu Server 16.04. While the connection between
the desktop and the server was a high-speed network with
download/upload speeds of 500/400 Mbps and an average
latency of 11 ms, the connection between the laptop and the
server was a moderate-speed network with download/upload
speeds of 80/6 Mbps and an average latency of 30 ms.

• Evaluation Metrics: We evaluated the performance of our
schemes and their counterparts based on the following
metrics: (i) The Response time (i.e., end-to-end delay) in-
cluding decryption, re-encryption and transmission times
to perform a query; (ii) Client storage including the size of
stash and position map; (iii) Server storage including the
size of OMAT or OTREE. We compared the response times
of OMAT and its counterparts for both row- and column-
related queries (e.g., statistical, conditional). For OTREE and
ODS-Tree, we compared the response times of traversing an
arbitrary path on the tree-indexed database. To measure the
end-to-end delay, we used the std::chrono C++ library
to get the actual duration at the client side, from the time
the client sends the first command until he receives the
last response from the Amazon server. For each experiment,
we ran 50 times and took the average number as the final
response time reported in this section. We now describe our
experimental evaluation results and compare our schemes
with their counterparts.

5.2 Experimental Results
• Statistical and Conditional Queries (Column-Related): We first
analyze the response time of column-related queries for
OMAT, ODS-2D and RowPKG. With these queries, the client
can fetch a column from the encrypted database for statisti-
cal analysis or a conditional search. Given a column-related
query, the total number of bytes to be transmitted and
processed by each scheme are shown in Table 1. RowPKG’s
transmission cost is the size of all ORAM buckets, where
Z ·(B ·N) and (2M−1) denote the bucket size and the total
number of buckets, respectively. As for OMAT, its oblivious
data structure OCOL allows efficient queries on column di-
mension with O(log(N)) communication overhead, which
outperforms the linear overhead of O(N) of RowPKG.
While OMAT and RowPKG can fetch the whole column with
one request, it requires M/4 synchronous requests for ODS-
2D where each request costs Z · (16 · B1) · log2(M · N/16)
bytes due to 4× 4 clustering of the cells.

We measured the performance of OMAT and its counter-
parts with arbitrary column queries. In this experiment, we
set parameters as B = 64 bytes and Z = 4. The number of
columns N varies from 24 to 29, where the number of rows
is fixed to be M = 215 . Figures 11a and 12a illustrate the per-
formance of the schemes on two different network settings
with two different client machines as described in Section
5.1. For a database table with 210 rows and 29 columns,
OMAT’s average query times are 60 s and 475 s compared to
RowPKG’s 775 s and 6100 s, and ODS-2D’s 292 s and 1245 s
on high- and moderate-speed networks, respectively. This
makes OMAT about 13× faster than RowPKG. While OMAT
performs 2.6× faster than ODS-2D on the moderate-speed
network, it becomes 4.9× on high-speed network since the
latency starts to dominate the response time of ODS-2D with
M/4 requests due to its construction with pointers.

• Single Row-Related Queries: We now analyze the response
time of row-related queries for OMAT and its counterparts.
Given a row-related query, the total number of bytes to be
transmitted and processed by OMAT and its counterparts
are summarized in Table 1. For OMAT and RowPKG, (B ·N)
and Z · log2(M) denote the total row size and the overhead

10

102 103
0

2

4

6

8

·102

of Columns

R
es

po
ns

e
Ti

m
e

(s
)

OMAT
RowPKG [28]
ODS-2D [23]

(a) Column-related queries with 215 rows

103 104 105 106
0

2

4

·102

of Rows

R
es

po
ns

e
Ti

m
e

(m
s)

OMAT
RowPKG [28]
ODS-2D [23]

(b) Row-related queries with 25 columns

Fig. 11: End-to-end delay of queries for OMAT and counterparts with high-speed network setting.

102 103
0

2

4

6

·103

of Columns

R
es

po
ns

e
Ti

m
e

(s
)

OMAT
RowPKG [28]
ODS-2D [23]

(a) Column-related queries with 215 rows

103 104 105 106
0

1

2

3
·103

of Rows

R
es

po
ns

e
Ti

m
e

(m
s)

OMAT
RowPKG [28]
ODS-2D [23]

(b) Row-related queries with 25 columns

Fig. 12: End-to-end delay of queries for OMAT and counterparts with moderate-speed network setting.

of Path-ORAM, respectively. Due to OMAT’s OCOL and
OROW structures, OMAT is always a constant factor of
Z = 4 more costly than RowPKG. Clustering strategy of
ODS-2D also introduces more cost and makes ODS-2D 4.2×
more costly than RowPKG when N = 32.

We measured the performance of OMAT and its coun-
terparts with arbitrary row queries, where the number of
rows M varies from 210 to 220. The block size is B = 128
bytes and the number of columns is fixed as N = 32. By this
setting, the total row/record size is B ·N = 4096 KB. Figures
11b and 12b illustrate the performance of the compared
schemes for both network settings. We can see that OMAT
performs slower than RowPKG by a constant factor of
approximately 2.3× and 3.6× on high and moderate-speed
network, respectively. As for ODS-2D, Figure 11b explicitly
shows the effect of the round-trip delay introduced by net-
work latency on ODS-2D due to N/4 synchronous requests.
Although ODS-2D has similar cost with OMAT, it performs
approximately 220ms and 380ms slower than OMAT.

• Traversal on Tree-indexed Database: We analyze the response
time of oblivious traversal on database index that is con-
structed as a range tree by putting distinct values of a

column to the leaf of the tree. Figure 10 exemplifies the
constructed range tree, and this structure is used along with
its linked list to perform conditional queries (e.g., equality,
range) on an indexed column, and fetch matching IDs.
We compare our proposed OTREE and ODS-Tree with no
caching and half-top caching strategies.

Given a database index tree constructed with values of
the column, the total number of bytes to be transmitted and
processed by OTREE and ODS-Tree without caching are
Z2 ·B · (H+1) · (H+2) and 2 ·Z1 ·B · (H+1)2, respectively,
where H is the height of tree data structure. While ODS
traverses the tree with O(H), the additional overhead of
Path-ORAM makes the total overhead to be O(H2). As
for OTREE, its level restriction on ORAM storage reduces
the transmission overhead by 1.6×. With half-top caching
strategy, overheads of both schemes reduce as shown in
Table 1, however, OTREE’s construction benefits more from
caching by performing traversal 3.2× less costly than ODS-
Tree.

For this experiment, we set the block size B = 4 KB, the
number of blocks inside a bucket for ODS-Tree is Z1 = 4,
and the number of blocks inside a bucket for OTREE is Z2 =

11

103 104 105 106
0

0.5

1

1.5
·103

of Leaves (Indexed Values)

R
es

po
ns

e
Ti

m
e

(m
s)

ODS-Tree [23]

ODS-Tree [23] with Caching

OTREE

OTREE with Caching

(a) Moderate-Speed Network Setting

103 104 105 106
0

2

4

6

8

·103

of Leaves (Indexed Values)

R
es

po
ns

e
Ti

m
e

(m
s)

ODS-Tree [23]

ODS-Tree [23] with Caching

OTREE

OTREE with Caching

(b) High-Speed Network Setting

Fig. 13: End-to-end delay of traversal on tree-indexed database for OTREE and ODS-Tree.

5 (see Section 3.2 for the stability analysis). We benchmarked
OTREE and ODS-Tree with arbitrary equality queries when
the number of indexed values varies from 29 to 219. The
number of indexed values is set to 219 for large database
setting. For both network settings, Figure 13 demonstrates
the effect of half-top caching strategy and how the structure
of OTREE gives more leverage in response time. While
OTREE without caching performs around 2× faster than its
counterpart, caching allows OTREE to perform 3.6× faster
than ODS-Tree with caching for both network settings.

5.3 Client and Server Storage

We now analyze the client storage overhead of our schemes
and their counterparts. The position map of OMAT requires
O((M +N) · log(M +N)) storage, while RowPKG requires
O(M · log(M)), since only the position map of rows are
stored. However, the dominating factor is M , since large
databases have more rows than columns. ODS’s pointer
technique allows it to operate with O(1) storage for po-
sition map. Moreover, the worst-case stash size changes
with the query type, because stash is also used to store
currently fetched data and the worst-case storage costs are
summarized in Table 1. For row-related queries, the worst-
case stash storage is the same for both OMAT and RowPKG
but ODS-2D requires more storage due to clustering. For
column-related queries, RowPKG requires storing O(M ·N)
that corresponds to all ORAM buckets. Besides the query
performance issues, this also makes RowPKG infeasible for
very large databases to perform column-related queries.
In addition, ODS-2D also requires O(log(M)) times more
client storage compared to OMAT. While RowPKG and
ODS-2D have the same server storage size, OMAT requires
constant Z×more storage due to additional dummy blocks.

Since OTREE and ODS do not require the position
map to operate, the client storage consists of the stash and
additionally cached block according to the caching strategy
used. For the worst-case, both schemes have the same client
storage with the same caching strategy; however, the stash
of OTREE may be more loaded than ODS as shown in
Figure 9 due to its level restriction. Moreover, server storage

of OTREE is 2× less than ODS, since Path-ORAM of ODS
requires one more level than OTREE.

6 CONCLUSIONS

In this paper, we introduced two new oblivious data struc-
tures called OMAT and OTREE. The proposed techniques
can be instantiated with any tree-based ORAM scheme
to enable efficient private queries on database instances.
OMAT enables various statistical and conditional queries
on generic database tables, which may be highly inefficient
for its counterparts relying rely on row-oriented packag-
ing. On the other hand, OTREE provides more efficient
range queries on tree-indexed database than existing ODS
techniques, and also receives more benefit from caching
optimizations. These properties allow OMAT and OTREE to
be ideal data structures to construct oblivious database
services on the cloud, which offers high security and privacy
guarantee for the users.

ACKNOWLEDGMENT

This work is supported by NSF CAREER Award CNS-
1652389.

REFERENCES

[1] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: protecting confidentiality with encrypted query pro-
cessing,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. ACM, 2011, pp. 85–100.

[2] ——, “Cryptdb: processing queries on an encrypted database,”
Communications of the ACM, vol. 55, no. 9, pp. 103–111, 2012.

[3] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu,
and M. Steiner, “Dynamic searchable encryption in very-large
databases: Data structures and implementation.” IACR Cryptology
ePrint Archive, vol. 2014, p. 853, 2014.

[4] A. A. Yavuz and J. Guajardo, “Dynamic searchable symmetric
encryption with minimal leakage and efficient updates on com-
modity hardware,” in Selected Areas in Cryptography – SAC 2015,
ser. Lecture Notes in Computer Science. Springer International
Publishing, August 2015.

[5] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security. ACM, 2012, pp. 965–
976.

12

[6] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” IEEE
Transactions on parallel and distributed systems, vol. 25, no. 1, pp.
222–233, 2014.

[7] B. Wang, Y. Hou, M. Li, H. Wang, and H. Li, “Maple: scalable
multi-dimensional range search over encrypted cloud data with
tree-based index,” in Proceedings of the 9th ACM symposium on
Information, computer and communications security. ACM, 2014,
pp. 111–122.

[8] B. Wang, M. Li, and H. Wang, “Geometric range search on en-
crypted spatial data,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 4, pp. 704–719, 2016.

[9] H. Yin, Z. Qin, J. Zhang, L. Ou, and K. Li, “Achieving secure,
universal, and fine-grained query results verification for secure
search scheme over encrypted cloud data,” IEEE Transactions on
Cloud Computing, 2017.

[10] R. Zhang, R. Xue, L. Liu, and L. Zheng, “Oblivious multi-keyword
search for secure cloud storage service,” in Web Services (ICWS),
2017 IEEE International Conference on. IEEE, 2017, pp. 269–276.

[11] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 668–679.

[12] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern dis-
closure on searchable encryption: Ramification, attack and mitiga-
tion.” in Annual Network and Distributed System Security Symposium
– NDSS, vol. 20, 2012, p. 12.

[13] C. Liu, L. Zhu, M. Wang, and Y.-a. Tan, “Search pattern leakage in
searchable encryption: Attacks and new construction,” Information
Sciences, vol. 265, pp. 176–188, 2014.

[14] D. Pouliot and C. V. Wright, “The shadow nemesis: Inference
attacks on efficiently deployable, efficiently searchable encryp-
tion,” in Proceedings of the 2016 ACM Conference on Computer and
Communications Security. ACM, 2016.

[15] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are
belong to us: The power of file-injection attacks on searchable
encryption,” in 25th USENIX Security Symposium (USENIX Security
16), Austin, TX, 2016, pp. 707–720.

[16] O. Goldreich and R. Ostrovsky, “Software protection and simula-
tion on oblivious rams,” Journal of the ACM (JACM), vol. 43, no. 3,
pp. 431–473, 1996.

[17] B. Pinkas and T. Reinman, “Oblivious ram revisited,” in Advances
in Cryptology–CRYPTO 2010. Springer, 2010, pp. 502–519.

[18] B. Chen, H. Lin, and S. Tessaro, “Oblivious parallel ram: Improved
efficiency and generic constructions,” in Theory of Cryptography
Conference. Springer, 2016, pp. 205–234.

[19] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram
with o ((logn) 3) worst-case cost,” in Advances in Cryptology–
ASIACRYPT 2011. Springer, 2011, pp. 197–214.

[20] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious
ram,” in Proceedings of 19th Annual Network & Distributed System
Security Symposium (NDSS). The Internet Society, 2012.

[21] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path oram: an extremely simple oblivious ram
protocol,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer and Communications security. ACM, 2013, pp. 299–310.

[22] X. Wang, H. Chan, and E. Shi, “Circuit oram: On tightness of
the goldreich-ostrovsky lower bound,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 850–861.

[23] X. S. Wang, K. Nayak, C. Liu, T. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious data structures,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 215–226.

[24] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and
D. Wichs, “Onion oram: A constant bandwidth blowup oblivious
ram,” in Theory of Cryptography Conference. Springer, 2016, pp.
145–174.

[25] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk,
and S. Devadas, “Ring oram: Closing the gap between small and
large client storage oblivious ram.” IACR Cryptology ePrint Archive,
vol. 2014, p. 997, 2014.

[26] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang,
“Practicing oblivious access on cloud storage: the gap, the fallacy,
and the new way forward,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 837–849.

[27] T. Hoang, A. Yavuz, and J. Guajardo, “Practical and secure dy-
namic searchable encryption via oblivious access on distributed
data structure,” in Proceedings of the 32nd Annual Computer Security
Applications Conference (ACSAC). ACM, 2016.

[28] Z. Chang, D. Xie, and F. Li, “Oblivious ram: a dissection and
experimental evaluation,” Proceedings of the VLDB Endowment,
vol. 9, no. 12, pp. 1113–1124, 2016.

[29] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic,
J. Kubiatowicz, and D. Song, “Phantom: Practical oblivious com-
putation in a secure processor,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM,
2013, pp. 311–324.

[30] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chap-
man & Hall/CRC, 2007.

[31] J. Dautrich and C. Ravishankar, “Combining oram with pir to min-
imize bandwidth costs,” in Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy. ACM, 2015, pp. 289–296.

[32] C. Bao and A. Srivastava, “Exploring timing side-channel attacks
on path-orams,” in 2017 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST). IEEE, 2017, pp. 68–73.

[33] C. W. Fletcher, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. Devadas,
“Suppressing the oblivious ram timing channel while making
information leakage and program efficiency trade-offs,” in High
Performance Computer Architecture (HPCA), 2014 IEEE 20th Interna-
tional Symposium on. IEEE, 2014, pp. 213–224.

Thang Hoang is currently a PhD student in the
School of Electrical Engineering and Computer
Science, Oregon State University (September
2015). He received his MS degree in Com-
puter Science from Chonnam National Univer-
sity, Gwangju, South Korea in February, 2014,
and BS degree in Computer Science from Uni-
versity of Natural Sciences, Saigon, Vietnam
in September, 2010. His research interest cur-
rently focuses on privacy-enhancing technolo-
gies (e.g., searchable encryption, ORAM) and

authentication mechanisms for mobile devices.

Ceyhun D. Ozkaptan is currently a PhD student
in the Department of Electrical and Computer
Engineering, The Ohio State University (August
2017). He received his BS degree from Bilkent
University in Ankara, Turkey (June 2016). His
research interest spans from signal processing
to security and applied cryptography.

Gabriel Hackebeil is currently a PhD student in
the Department of Industrial & Operations En-
gineering, University of Michigan (August 2017).
He received his MS degree from Oregon State
University in 2016, and BS degree from Texas
A&M University in 2012. He is interested in opti-
mization and cryptography.

13

Attila Altay Yavuz is an Assistant Professor in
the Department of Computer Science and En-
gineering, University of South Florida (August
2018). He was an Assistant Professor in the
School of Electrical Engineering and Computer
Science, Oregon State University (09/2014-
07/2018). He was a member of the security
and privacy research group at the Robert Bosch
Research and Technology Center North Amer-
ica (2011-2014). He received his PhD degree
in Computer Science from North Carolina State

University in August 2011. He received his MS degree in Computer Sci-
ence from Bogazici University (2006) in Istanbul, Turkey. He is broadly
interested in design, analysis and application of cryptographic tools and
protocols to enhance the security of computer networks and systems.
Attila Altay Yavuz is a recipient of NSF CAREER Award (2017). His
research on privacy enhancing technologies (searchable encryption)
and intra-vehicular network security are in the process of technology
transfer with potential world-wide deployments. He has authored more
than 40 research articles in top conferences and journals along with
several patents. He is a member of IEEE and ACM.

	Introduction
	Limitations of Existing Approaches
	Our Contributions

	Preliminaries
	Tree-based ORAM
	Oblivious Data Structure
	ORAM Implementation Framework

	Proposed Techniques
	Oblivious Access on Table Structures
	Oblivious Access on Tree Structures

	Security Analysis
	Performance Evaluation
	Configurations
	Experimental Results
	Client and Server Storage

	Conclusions
	References
	Biographies
	Thang Hoang
	Ceyhun D. Ozkaptan
	Gabriel Hackebeil
	Attila Altay Yavuz

