
A Multi-server ORAM Framework with Constant Client
Bandwidth Blowup

THANG HOANG∗ and ATTILA A. YAVUZ, The Department of Computer Science and Engineering,

University of South Florida

JORGE GUAJARDO, Robert Bosch LLC, Research and Technology Center, USA

Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern when accessing sensitive

data on a remote server. It is known that there exists a logarithmic communication lower bound on any passive

ORAM construction, where the server only acts as the storage service. This overhead, however, was shown

costly for some applications. Several active ORAM schemes with server computation have been proposed to

overcome this limitation. However, they mostly rely on costly homomorphic encryptions, whose performance

is worse than passive ORAM. In this article, we propose S
3
ORAM, a new multi-server ORAM framework,

which features O(1) client bandwidth blowup and low client storage without relying on costly cryptographic

primitives. Our key idea is to harness Shamir Secret Sharing and a multi-party multiplication protocol on

applicable binary tree-ORAM paradigms. This strategy allows the client to instruct the server(s) to perform

secure and efficient computation on his/her behalf with a low intervention thereby, achieving a constant client

bandwidth blowup and low server computational overhead. Our framework can also work atop a general k-ary
tree ORAM structure (k ≥ 2). We fully implemented our framework, and strictly evaluated its performance

on a commodity cloud platform (Amazon EC2). Our comprehensive experiments confirmed the efficiency

of S
3
ORAM framework, where it is approximately 10× faster than the most efficient passive ORAM (i.e.,

Path-ORAM) for a moderate network bandwidth while being three orders of magnitude faster than active

ORAM with O(1) bandwidth blowup (i.e., Onion-ORAM). We have open-sourced the implementation of our

framework for public testing and adaptation.

ACM Reference Format:
Thang Hoang, Attila A. Yavuz, and Jorge Guajardo. 2019. A Multi-server ORAM Framework with Constant

Client Bandwidth Blowup.ACMTrans. Priv. Sec. 1, 1 (November 2019), 34 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Recent data breach incidents (e.g., Apple iCloud, Equifax, British Airways) have shown the impor-

tance of preserving user privacy on the cloud. An important aspect of enhancing user privacy is

applying encryption on sensitive data. For instance, standard encryption (e.g., AES) can provide data

confidentiality. However, this might not be sufficient to preserve user privacy. Specifically, sensitive

information can still be inferred by observing user access patterns, even when the query and the

outsourced data are both encrypted [24]. To conceal the access pattern, Oblivious Random Access

Machine (ORAM) has been proposed [19]. ORAM plays an important role for privacy-preserving

∗
Part of this work done while the first author was at Oregon State University.

Authors’ addresses: Thang Hoang; Attila A. Yavuz, The Department of Computer Science and Engineering, University of

South Florida, Tampa, Florida, 33620, hoangm@mail.usf.edu, attilaayavuz@usf.edu; Jorge Guajardo, Robert Bosch LLC,

Research and Technology Center, USA, Pittsburgh, PA, 15223, Jorge.GuajardoMerchan@us.bosch.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2471-2566/2019/11-ART $15.00

https://doi.org/0000001.0000001

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

2 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

cloud applications thanks to its strong privacy features (e.g., confidentiality, access pattern obfus-

cation). However, some state-of-the-art ORAM schemes might still be costly for certain real-life

applications due to their high communication and/or computation overhead [1, 6, 23, 30, 31]. In the

following, we outline the state-of-the-art ORAM schemes and their limitations, and then present

our research objective toward mitigating some of these limitations.

1.1 The Limitations of the State-of-the-art and Our Objectives
The first ORAM scheme was proposed by Goldreich et al. [19], who later proved that any ORAM

construction must incur an asymptotically logarithmic communication lower bound of Ω(logN),
where N is the number of outsourced data blocks. Since then, a number of ORAM schemes have

been proposed in attempts to achieve the established lower bound (e.g., [17, 33, 36, 40]). The most

efficient and simple ORAM is Path-ORAM [41], whose bandwidth overhead met the Goldreich and

Ostrovsky’s ORAM lower bound (i.e., O(logN) transmitted blocks per access). Despite its merits,

Path-ORAM has been shown costly for some cloud applications [6, 31, 37]. It has recently been

re-confirmed that there is a logarithmic communication lower bound in any secure passive ORAM
construction, where the server offers only the storage facility (i.e., no computation). Therefore,

to bypass this communication barrier, several active ORAM schemes with server computation

have been proposed (e.g., [11, 27, 34]). However, most of these ORAM designs cannot surpass

the logarithmic bandwidth overhead asymptotically, some of which [11, 27] incur a significant

computation cost such as single-server Private-Information Retrieval (PIR) [42]. To the best of our

knowledge, the state-of-the-art ORAM schemes with O(1) bandwidth overhead rely on either Fully

or Partially Homomorphic Encryption (HE) (e.g., [32]). (e.g., Onion-ORAM [12], Bucket-ORAM

[14], and [3]). Unfortunately, it has been shown that [1, 29] HE computation takes much longer

execution time than streaming O(logN) blocks in Path-ORAM.

To avoid costly computation, ORAM in the distributed setting has been explored. Although

the first multi-server ORAM scheme [38] can achieve O(1) client-server communication with

the cost of O(logN) server-server communication, it requires the client to store O(
√
N) blocks,

which might not be suitable for storage-constraints clients such as mobile devices. Later multi-

server ORAM schemes leveraged multi-server PIR (e.g., [9]) to reduce the bandwidth overhead

asymptotically without using costly HE operations. Abraham et al. [1] indicated that there exists

an asymptotically sub-logarithmic communication lower bound of Ω(logcD N) for the ORAM and

PIR composition, where c,D are the numbers of blocks stored by the client and performed by PIR

operations, respectively. As a result, although the scheme in [28] claimed to achieve O(1) bandwidth

overhead under O(1) blocks of client storage, it has been shown to violate the bound with two

concrete attacks [1] .

Our objectives. In many practical scenarios, it may not be possible to guarantee a reliable and

high bandwidth network connection between the client and server. This is particularly true in

the case of home networks and mobile devices with wireless network connectivity (e.g., Wi-Fi,

LTE). Given that ORAM with O(logN) client bandwidth overhead (e.g., Path-ORAM [41]) may not

be suitable for such contexts, there is a significant need to design a new ORAM scheme that can

achieve O(1) client bandwidth overhead. It is also important that the proposed ORAM is suitable

for resource-limited clients and only incurs a low delay to provide a desirable quality of service.

Our objective is to create an efficient ORAM scheme that simultaneously achieves (i) a low client
communication overhead (i.e., O(1) bandwidth overhead), (ii) low computational overhead at both
client- and server-side, and (iii) low storage.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 3

Table 1. Summary of S3ORAM schemes and some of their counterparts.

Scheme Bandwidth Overhead† Block
Size∗

Server
Computation

Client
Block Storage‡ # serversClient-server Server-server

Path-ORAM [41] O(logN) - Ω(1) - O(logN) 1

Ring-ORAM [34] O(logN) - Ω(1) XOR O(logN) 1

Onion-ORAM [12] O(1) - Ω(log
5 N) Additively HE [10] O(1) 1

Dist. OblivStore [38] O(1) O(logN) Ω(1) Permutation and IND-CPA encryption O(
√
N) 2

2-Server ORAM [25] O(logN) - Ω(1) Permutation and cuckoo hashing O(1) 2

S
3
ORAM

O O(1) O(logN) Ω(log
2 N)

Secure addition and

multiplication of SSS values

O(1)

3

S
3
ORAM

C O(1) O(logN) Ω(logN) O(logN)

•We refer reader to §7 for the detail experimental and analytical comparisons between S
3
ORAM schemes and their counterparts.

† Bandwidth overhead denotes the number of blocks being transmitted between the client and the server(s) or between the servers. Due to the

eviction, the server-server bandwidth overhead of S
3
ORAM

O
is O(λ logN), where λ is the statistical security parameter. Since the eviction is

performed every λ/2 access requests, the amortized server-server bandwidth overhead of S
3
ORAM

O
is O(logN).

∗ This indicates the minimal block size needed to absorb the transmission cost of the retrieval query and the eviction data, thereby meeting the

expected client-bandwidth overhead. In this table, we consider all the ORAM schemes in the non-recursive form, where the position map is stored

at the client.

‡ Client block storage is defined as the number of data blocks being temporarily stored at the client. This is equivalent to the stash component

used in [34, 41], which, therefore, does not include the cost of storing the position map of size O(N logN). Notice that all the ORAM schemes in

this table, except the one in [25], require the position map component.

1.2 Our Contribution
In this paper, we present S

3
ORAM, a new distributed ORAM framework, which features O(1) client

bandwidth blowup, low storage and efficient computation at both client- and server-side. Our

proposed framework consists of two multi-server active ORAM schemes including S
3
ORAM

O
and

S
3
ORAM

C
, in which the former minimizes the client storage requirement while the latter optimizes

the computation and storage overhead at the server-side. We first present our main idea and then

outline the desirable properties of our proposed framework as follows.

Main idea. Most efficient ORAM schemes to-date follow the tree paradigm by Shi et al. [36].
In this paradigm, there are two main procedures for each ORAM access: retrieval and eviction.

Our intuition is to harness the homomorphic properties of Shamir secret sharing along with a

secure multi-party multiplication protocol to perform these procedures in an oblivious manner. To

achieve O(1) client-bandwidth overhead, it is imperative to ensure that each procedure only incurs

a small constant number of data blocks to be transmitted between the client and the server(s). In the

standard (single-server) ORAM setting, we observe that both Onion-ORAM [12] and Circuit-ORAM

[43] schemes require low client storage and offer elegant retrieval and eviction strategies that can

be further implemented with SSS homomorphic computation to achieve O(1) client-bandwidth

overhead. Therefore, themain idea of S
3
ORAM

O
and S

3
ORAM

C
schemes in our S

3
ORAM framework

is to harness SSS and SMM protocol to perform the retrieval and eviction operations in the line

of Onion-ORAM and Circuit-ORAM, respectively, but in a significantly more computation- and

client bandwidth-efficient manner. By doing this, S
3
ORAM

O
(resp. S3ORAMC

) inherits all desirable

properties of Onion-ORAM (resp. Circuit-ORAM) regarding the low client storage cost, while

achieving O(1) client-bandwidth overhead without the costly homomorphic operations but instead

requiring only a lightweight computation and suitability for small block sizes. Table 1 outlines a

high-level comparison of S
3
ORAM and its counterparts.

Desirable properties. Our S3ORAM framework offers the following properties.

• Low client-server communication: All schemes in S
3
ORAM framework offer O(1) client band-

width blowup, compared with O(logN) of Path-ORAM [41] and Ring-ORAM [34] (with a fixed

number of servers). S
3
ORAM schemes feature a smaller block size (i.e., Ω(log

2 N) in S
3
ORAM

O
,

Ω(logN) in S
3
ORAM

C
), than state-of-the-art O(1) bandwidth blowup ORAM schemes that

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

4 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

require Fully or Partially HE operations (e.g., Ω(log
5 N) in Onion-ORAM [12], Ω(log

6 N) in
Bucket-ORAM [14]).

• Low client and server computation: S3ORAM schemes require the servers to perform only light-

weight modular additions and multiplications, which are much more efficient than partial HE

operations (e.g., [10]). In particular, we show in §7 that, the server computation of S
3
ORAM

schemes is three orders of magnitude faster than that of Onion-ORAM.

The client in S
3
ORAM schemes only performs lightweight computations for retrieval and evic-

tion operations. Thus, it is more efficient than Onion-ORAM, which requires a number of HE

operations. For example, S
3
ORAM requires only a few milliseconds compared to minutes of

Onion-ORAM to generate an encrypted access query (see §7). Moreover, since data blocks in

S
3
ORAM schemes are single-layered “encrypted”, the “decryption” process is less costly so that

it is faster than other ORAMs (e.g., [12, 38]), whose blocks are multi-layered encrypted.

• Low end-to-end delay: Due to low bandwidth and computation overhead, S
3
ORAM schemes are

approximately three orders of magnitude faster than Onion-ORAM, while it is one order of

magnitude faster than Path-ORAM in networks with moderate client bandwidth. We notice

that for S
3
ORAM to provide all its advantages, it is assumed that good network throughput is

available between the servers. In our detailed analysis in §7.2.3, we show that if the inter-server

bandwidth is limited and the client has access to a high-speed Internet connection, state-of-

the-art (single-server) ORAM schemes (i.e., Path-ORAM, Ring-ORAM) are more efficient than

S
3
ORAM (see §7.2.3 for a detailed analysis).

• Low client storage: S3ORAMO
scheme features O(1) blocks of client storage, compared with O(λ)

blocks in Path-ORAM/Ring-ORAM, and O(
√
N) blocks in [40]. S

3
ORAM

C
scheme achieves the

same block of client storage with Path-ORAM/Ring-ORAM (i.e., O(λ))

• High security: All S3ORAM schemes achieve information-theoretic statistical security. The sta-

tistical bit comes from the tree-paradigm by Shi et al. [36]. The information-theoretic property

comes from SSS and its multi-party multiplication protocol.

• Full-fledged implementation and experiments: We fully implemented S
3
ORAM

C
and S

3
ORAM

O

schemes in our S
3
ORAM framework and evaluated their performance in an actual cloud envi-

ronment (i.e., Amazon EC2). The detailed experiments in §7 showed that both S
3
ORAM schemes

are efficient in practice and they can be deployed on mobile devices with a limited computation

capacity and low network connection. We have released the source code of S
3
ORAM framework

for public use and testing (see §6).

Security limitations of S3ORAM. S3ORAM harnesses the distributed setting to achieve constant

client bandwidth overhead with efficient computation and the server-side simultaneously. It should

be clear, however, that the use of standard secret sharing techniques and, in particular, Shamir

secret sharing, renders our protocol vulnerable to collusion attacks (as it is standard in this setting).

It should be observed that this vulnerability does not exist in the standard single-server ORAM

model. Therefore, as it is also standard in this model, we note that S
3
ORAM cannot offer any

security guarantee if the number of colluding servers exceeds the privacy threshold. Another

limitation of S
3
ORAM is that it only offers security in the semi-honest setting (see [12] for the

exemplified active attack). To make S
3
ORAM secure against malicious adversaries, we can apply

the “cut-and-choose” trick proposed in [12]; however, this may incur very high communication

and computation overhead at the client. We leave the efficient extension of S
3
ORAM to malicious

security as an open research question.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 5

Improvements over the CCS’17 conference version [22]. This article is the extended version

of [22], which includes the following improvements. First, from the algorithmic point of view, we

introduce a new S
3
ORAM variant called S

3
ORAM

C
, which reduces the storage and computation

overhead at the server side at the cost of small client storage. Second, following recent optimizations

on tree-ORAM (e.g., [1, 17]), we show that our S
3
ORAM schemes can be extended to work on top

of k-ary tree layout, where k ≥ 2 is a free parameter, to achieve sub-logarithmic overhead. We also

show that although allowing the tree degree to be adjusted provides asymptotic improvements in

the complexity of the algorithm, it turns out that the practical improvement is not significant, in

which the tree-ORAM only works best with the small k (i.e., k ∈ {2, 3}). Third, we improved the

implementation of S
3
ORAM and revised all the experiments with more appropriate parameters to

better capture the security and the performance of S
3
ORAM in real-world applications. In summary,

our main objective in this article is to harness state-of-the-art efficient eviction strategies proposed

for Tree-ORAM paradigm (i.e., [12, 43]) with multi-party computation techniques (i.e., Shamir secret

sharing [35]), and demonstrate via extensive experiments that this integration with optimizations

offers one of the most efficient ORAM frameworks for data outsourcing. Finally, we have released

the improved source-code of all S
3
ORAM schemes for public use and adaptation. The code is

publicly available at

https://github.com/thanghoang/S3ORAM

2 PRELIMINARIES AND BUILDING BLOCKS

Notation. x
$

← S denotes that x is randomly and uniformly selected from set S. |S| denotes the

cardinality of set S. |x | denotes the size of variable x . For any integer l , (x1, . . . ,xl)
$

← S denotes

(x1

$

← S, . . . ,xl
$

← S). We denote a finite field as Fp , where p is a prime. Given u and v as vectors

with the same length, u · v denotes the dot product of u and v. Given an n-dimensional vector u and

a matrix I of size n×m, v = u · I denotes the matrix product of u and I resulting in anm-dimensional

vector v. u[i] denotes accessing the i-th component of vector u. I[i][∗] and I[∗][j] denote accessing
the row i and column j of matrix I, respectively. I[∗][i . . . j] denotes accessing the columns from i
to j of matrix I.

2.1 Model of Computation
Following the literature in distributed secure computation (e.g., [5, 18]), we assume a synchronous

network, which consists of a client and ℓ ≥ 2t + 1 semi-honest servers S = {S1, . . . ,Sℓ}. It is also
assumed that the channels between all the players are pairwise-secure, i.e., no player can tamper

with, read, or modify the contents of the communication channel of other players. We assume that

all parties behave in an “honest-but-curious” manner in which parties always send messages as

expected but try to learn as much as possible from the shared information received or observed.

Notice that in this paper, we do not allow parties to provide malicious inputs, i.e., parties are not

allowed to behave in a Byzantine manner.

A protocol is t-private [5] (see [18] for similar definitions in the context of distributed PIR) if

any set of at most t parties cannot compute after the protocol execution more than they could

compute individually from their set of private inputs and outputs. Alternatively, the parties have

not “learned” anything. Our protocols in general, offer information-theoretic guarantees unless

something is said explicitly to the contrary. This implies that our solutions are secure against

computationally unbounded adversaries. As it is standard, we require that all computations by the

servers and client be polynomial time and efficient. Finally notice that in this paper, not only is

the interaction between the servers and client performed in such a way that information-theoretic

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

https://github.com/thanghoang/S3ORAM

6 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

SSS.Create(α, t):

1: (a1, . . . , at)
$

← Fp
2: for i = 1, . . . , ℓ do
3: Jα Ki ← α +

∑t
j=1

aj · x
j
i ▷ xi ∈ F∗p : public identifier of party Pi

4: return (Jα K1, . . . , Jα Kℓ)

SSS.Recover(A, t):
1: Randomly pick t + 1 ≤ ℓ shares {Jα Kx1

, . . . , Jα Kxt+1
} in A

2: д(x) ← LagrangeInterpolation
(
{(xi , Jα Kxi)}

t+1

i=1

)
3: α ← д(0)
4: return α

Fig. 1. Shamir secret sharing scheme [35].

security is guaranteed but also the database being accessed is shared among the servers in a way

that no coalition of up to t servers can find anything about the database contents (also in an

information-theoretic manner).

2.2 Shamir Secret Sharing
We recall (t , ℓ)-threshold Shamir Secret Sharing (SSS) scheme [35], which comprises two algorithms

SSS.Create and SSS.Recover as presented in Figure 1. To share a secret α ∈ Fp among ℓ parties,
a dealer generates a random polynomial f , where f (0) = α and evaluates f (xi) for party Pi for
1 ≤ i ≤ ℓ, where xi ∈ F

∗
p is a deterministic non-zero element of Fp that uniquely identifies party

Pi and it is considered public information (SSS.Create algorithm). f (xi) is referred to as the share

of party Pi , and it is denoted by JαKi . To reconstruct the secret α , the shares of at least t + 1 parties

have to be combined via Lagrange interpolation (SSS.Recover algorithm).

We extend the notion of secret share for a value into the share for a vector in a natural way as

follows: Given a vector v = (v1, . . . ,vn), JvKi = (Jv1Ki , . . . , JvnKi) indicates the share of v for party

Pi , which is a vector whose elements are the shares of the elements in v. Similarly, given a matrix

I, JIK denotes the share of I, which is also a matrix with each cell JI[i, j]K being the share of the cell

I[i, j]. In some cases, to ease readability, we drop the subscript i , when the party is understood from

the context.

Shamir [35] showed that SSS is information-theoretic secure and t-private in the sense that

no set of t or less shares reveals any information about the secret. More precisely, ∀m,m′ ∈ Fp ,
∀I ⊆ {1, . . . , ℓ} such that |I | ≤ t and for any set A = {a1, . . . ,a |I |} where ai ∈ Fp , the

probability distributions of

{
si ∈I : (s1, . . . , sℓ) ← SSS.Create(m, t)

}
and

{
s ′i ∈I : (s ′

1
, . . . , s ′

ℓ
) ←

SSS.Create(m′, t)
}
are identical and uniform:

Pr({si ∈I} = A) = Pr({s ′i ∈I} = A).

Ben-Or et al. [5] showed that SSS can be used to obtain t-private protocols. Lemma 1 summarizes

the homomorphic properties of SSS and it was first described in [5].

Lemma 1 (SSS homomorphic properties [5]). Let JαK(t)i be the Shamir share of value α ∈ Fp with
privacy level t for Pi . SSS offers additively and multiplicatively homomorphic properties:
• Addition of two shares

Jα1K(t)i + Jα2K(t)i = Jα1 + α2K(t)i . (1)

• Multiplication w.r.t a scalar c ∈ Fp

c · JαK(t)i = Jc · αK(t)i . (2)

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 7

• Input: Pi owns Jα1K
(t)
i , Jα2K

(t)
i and wants to compute Jα1 · α2K

(t)
i

• Output: Each Pi obtains JβK(t)i , where β = α1 · α2

1: for each Pi ∈ {P1, . . . , P2t+1 } do
2: JβK(2t)i ← Jα1K

(t)
i · Jα2K

(t)
i

3: (JβK(t)j)
ℓ
j=1
← SSS.Create(JβK(2t)i , t)

4: Distribute JβK(t)j to all Pj ∈ {P1, . . . , P2t+1 } \ Pi

5: for each Pi ∈ {P1, . . . , P2t+1 } do

6: JβK(t)i ←
2t+1∑
j=1

V−1[1, j] · JβK(t)j

Fig. 2. Multi-party multiplication protocol on SSS shares [16].

• Partial share multiplication

Jα1K(t)i · Jα2K(t)i = Jα1 · α2K(2t)i . (3)

The two-share partial multiplication (Eq. 3) in Lemma 1 results in a share of α1 · α2, which is

t-private and represented by a 2t-degree polynomial. It was first observed in [5] that the resulting

polynomial is not uniformly distributed. In order to achieve the uniform distribution and computa-

tion consistency over Jα1 · α2K, it is required to reduce the degree of the polynomial representation

of Jα1 · α2K from 2t to t and re-share the polynomial. This multiplication operation with degree

reduction can be achieved via a secure multiplication protocol shown in the following section
1
.

2.3 Secure Multi-party Multiplication
Gennaro et al. [16] presented a Secure Multi-pary Multiplication (SMM) protocol for two Shamir

secret-shared values among multiple parties. Given α1,α2 ∈ Fp shared by (t , ℓ)-threshold SSS as

Jα1K(t)i and Jα2K(t)i for 1 ≤ i ≤ ℓ respectively, 2t + 1 parties Pi among ℓ parties would like to

compute the multiplication of α1,α2 without revealing the value of α1 and α2. The protocol requires

a Vandermonde matrix V{xi } of size (2t + 1) × (2t + 1) having the following structure.

V{x1, ...,x2t+1 } =


x0

1
x1

1
. . . x2t

1

x0

2
x1

2
. . . x2t

2

...
...

. . .
...

x0

2t+1
x1

2t+1
. . . x2t

2t+1


, (4)

where xi ∈ Fp are unique identifiers of participating party Pi . We refer to V−1
as the inverse

of Vandermonde matrix. Each party Pi locally multiplies Jα1K(t)i and Jα2K(t)i yielding Jα1 · α2K(2t)i ,

and creates shares of Jα1 · α2K(2t)i by a new random polynomial of degree t for 2t + 1 parties and

distributes them to other 2t parties. Finally, each party locally performs the dot product between

the received shares and V−1

{xi }
[1, ∗] to obtain a new share of α1 · α2, which is now represented by a

polynomial of degree t as Jα1 · α2K(t)i . Figure 2 presents this multiplication protocol.

Lemma 2 (SMM protocol privacy [16]). The SMM protocol in [16] (denoted as ⋆ operator) offers homo-
morphic property for full multiplication between two SSS-shares, whose result is t-private as:

Jα1 · α2K(t)i = Jα1K(t)i ⋆ Jα2K(t)i (5)

1
Benor et al. [5] proposed a secure multiplication protocol, however the protocol of Gennaro et al. [16] is more efficient and

thus, is the subject of §2.3.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

8 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

Table 2. Notations.

Symbol Description
T S

3
ORAM tree structure.

Z Bucket size.

T[i], T[i][j] i-th bucket of S
3
ORAM tree T and j-th slot in the i-th bucket of T.

|b |, b, c Block size, block and block chunk, respectively.

N ,m Number of blocks and number of chunks in a block.

H Height of the S
3
ORAM tree.

pm Position map.

(pID, pIdx) ← pm[id] Precise location (i.e., path ID and path index) of the block id.
I ← P(pID) Set of indexes of buckets residing in the path pID.

2.4 Multi-server Private Information Retrieval
Private Information Retrieval (PIR) enables retrieval of a data item from an (unencrypted) public

database without revealing which item being fetched. We follow the presentation of [4, 18] as

follows.

Definition 1 (Multi-server PIR [4, 9, 18]). Let DB = (b1, . . . ,bn) be a database consisting of n items

being stored in ℓ servers. Amulti-server PIR protocol consists of three algorithms: PIR.CreateQuery,
PIR.Retrieve and PIR.Reconstruct. Given an item bi in DB to be retrieved, the client creates queries

(e1, . . . , eℓ) ← PIR.CreateQuery(i) and distributes ej to server Sj . Each server responds with an

answer aj ← PIR.Retrieve(ej ,DB). Upon receiving ℓ answers, the client computes the value of

item bi by invoking the reconstruction algorithm b ← PIR.Reconstruct(a1, . . . ,aℓ).

The security of the protocol is defined in terms of correctness and privacy. A multi-server PIR pro-

tocol is correct if the client computes the correct value of b from any ℓ answers via PIR.Reconstruct
algorithm with probability 1. The concept of t-privacy for protocols is applied naturally to the PIR

setting and follows directly from the t-privacy of SSS and the fact that among the servers they only

have access to t shares of the query vector [18].

2.5 Multi-server ORAM Security
We now define the security of multi-server ORAM in the semi-honest setting proposed in [1] as a

straightforward extension of the definition in [1] to the multi-server setting.

Definition 2 (Multi-server ORAMwith server computation). Let x =
(
(op

1
, id1, data1), . . . , (opq , idq , dataq)

)
be a data request sequence of length q, where opj ∈ {Read,Write}, idj is the identifier to be

read/written and dataj is the data identified by idj to be read/written. Let ORAMj (x) represent the
ORAM client’s sequence of interactions with the server Si given a data request sequence x.
Correctness.Amulti-server ORAM is correct if for any access sequence x,

{
ORAM1(x), . . . ,ORAMℓ(x)

}
returns data consistent with x except with a negligible probability.

t-security. A multi-server ORAM is t-secure if ∀I ⊆ {1, . . . , ℓ} such that |I | ≤ t , for any two

data access sequences x, y with |x| = |y|, their corresponding transcripts

{
ORAMi ∈I(x)

}
and{

ORAMi ∈I(y)
}
observed by a coalition of up to t servers {Si ∈I} are (perfectly/statistically/computationally)

indistinguishable.

3 THE PROPOSED S3ORAM FRAMEWORK
S
3
ORAM follows the typical procedure of tree-based ORAMs [36]. Specifically, given a block to be

accessed, the client first retrieves it from the outsourced ORAM structure via a secure retrieval

operation. The retrieved block is then assigned to a random path, and written back to the root

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 9

7
4

8

5
2

3

6

1

H

Path ID
7 8 9 10 11 12 13 14

3 4 5 6

1 2

0

0 1 2 3 4 5 6 7

Z

Block ID Path ID Path Location

1 1 1

2 4 4

3 6 5

4 0 6

5 2 5

6 3 3

7 1 7

POSITION MAP

Fig. 3. Tree-ORAM paradigm by Shi et al. [36].

bucket. Finally, an eviction operation is performed in order to percolate data blocks to lower levels in

the ORAM structure. The intuition behind S3ORAM access protocol is as follows: (1) We integrate SSS

with a multi-server PIR protocol to perform a private retrieval operation with some homomorphic

properties; (2) We leverage these homomorphic properties of SSS and a SMM protocol to perform

block permutation and to preserve t-privacy level of ORAM structure in the eviction phase, without

relying on costly partial HE operations. Notice that the idea of using PIR to implement the ORAM

retrieval phase was first suggested in [27], and later in some subsequent works such as [1, 11, 12, 21].

In Table 2, we outline the notation used in the S
3
ORAM schemes and throughout the rest of the

paper.

3.1 Overview of S3ORAM Framework
3.1.1 Data Structure. S3ORAM schemes follow the tree paradigm proposed by Shi et al. [36], in
which the outsourced database is split into size-equal blocks and then organized to a balanced

binary tree (T) with a height of H (Figure 3). Each node in T is called a bucket with Z slots so that it

can store up to Z data blocks. Thus, T can store up to N < Z · 2H data blocks.

At the client-side, the client maintains a position map component (pm) to keep track of the

assigned path (pID) for each data block in the tree. Additionally, the client stores the location of

each data block in its assigned path. Hence, pm is of structure pm := (id, ⟨pID, pIdx⟩), where id is

the block ID, 1 ≤ pID ≤ 2
H
is the assigned path of the block, and 1 ≤ pIdx ≤ Z · (H + 1) is the

location of the block in its path. The client also maintains a so-called stash component (denoted as

S) to temporarily store accessed block(s) from the tree.

In the S
3
ORAM framework, the tree structure is SSS-shared among ℓ servers. Figure 4 presents

the Setup algorithm to construct data structures in S
3
ORAM schemes given a database input DB.

First, the client organizes DB into N data blocks, and then initializes every slot in each bucket of

the tree (T) with a 0’s string of length |b | (lines 1-2). The client arranges all blocks into T, wherein
each block (bi) is independently assigned to a random leaf bucket of T. Notice that |b | can be larger

than ⌈log
2
p⌉ and therefore, it might not be suitable for arithmetic computation over Fp . To address

this, the client splits the data in each slot of T into equal-sized chunks c j ∈ Fp (line 9)
2
. Finally, the

client creates shares of T via SSS.Create algorithm for each chunk in each slot in T (line 10). The

S
3
ORAM distributed data structure consists of ℓ shares of T as {JTK1, . . . , JTKℓ}.
Figure 5 presents the general access operation of S

3
ORAM schemes following the tree-ORAM

paradigm. Basically, there are two main subroutines in the S
3
ORAM.Access algorithm: Retrieve

(line 1) and Evict (line 6). The former is to obliviously retrieve the block of interest from the

2
We assume implicitly that we choose an appropriate prime p such that every string c j when interpreted as an element of

Fp is less than p .

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

10 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

S
3
ORAM.Setup(DB):

1: Split DB into blocks (b1, . . . , bN) with corresponding IDs (id1, . . . , idN)
2: T[i][j] ← {0} |b | for 1 ≤ i < 2

H+1
and 1 ≤ j ≤ Z

3: for i = 1, . . . , N do
4: zi

$

← {1, . . . , 2
H }

5: Put bi into an empty slot indexed y of the leaf bucket in path zi
6: pm[idi] ← (zi , H · Z + y)
7: for i = 1, . . . , 2

H+1 − 1 do
8: for j = 1, . . . , Z do
9: (c (1)i, j , . . . , c

(m)
i, j) ← T[i, j], where c (k)i, j ∈ Fp

10: (Jc (k)i, j K1, . . . , Jc
(k)
i, j Kℓ) ← SSS.Create(c (k)i, j , t) for 1 ≤ k ≤ m

11: JT[i, j]Kl ← (Jc
(1)

i, j Kl , . . . , Jc
(m)
i, j Kl) for 1 ≤ l ≤ ℓ

12: return (JTK1, . . . , JTKℓ) ▷ Send JTKi to Si for 1 ≤ i ≤ ℓ

Fig. 4. S3ORAM setup algorithm.

S
3
ORAM.Access(op, id, b∗):

1: b ← S
3
ORAM.Retrieve(id)

2: pm[id].pID
$

← {1, . . . , kH+1 }

3: if op = write then
4: b ← b∗

5: S ← S ∪ b
6: Execute S

3
ORAM.Evict()

7: return b

Fig. 5. General access procedure in S3ORAM schemes.

ORAM-tree stored on the cloud, while the latter is to obliviously write the retrieved block back to

the ORAM-tree. Once the block is retrieved, it is assigned to a new random path (line 2), updated if

needed (line 3), and then stored in the stash (line 5) to be pushed back later via the Evict protocol.
In our S

3
ORAM framework, we select the eviction path deterministically, which follows the

reverse lexicographical order proposed in [17]. Specifically, given a binary tree of height H , where

edges in each level are indexed by either 0 (left) or 1 (right) as exemplified in Figure 3, the collection

of edges of the eviction path at the ne -th eviction operation is calculated by the following formula.

v = DigitReverse
2
(ne mod 2

H), (6)

where DigitReverse
2
denotes the order-reversal of the binary string representation of the decimal

integer input.

In the following, we present the main scheme in our S
3
ORAM framework called S

3
ORAM

O
,

which features the low client storage overhead. We describe another S
3
ORAM scheme called

S
3
ORAM

C
, which offers efficient computation and low server storage overhead with the cost of

client storage afterward.

3.2 S3ORAMO: S3ORAM with Low Client Storage
We introduce S

3
ORAM

O
, an S

3
ORAM scheme that does not require the client to maintain the stash

component, thereby saving a factor of O(λ) client storage overhead. To achieve this, S
3
ORAM

O

follows the Triplet Eviction strategy in [12]. To enable O(1) client-bandwidth blowup, S
3
ORAM

O

harnesses homomorphic properties of SSS, which allows the client to “instruct” the servers to

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 11

PIR.CreateQuery(j):
1: Let e := (e1, . . . , en), where ej ← 1, ei ← 0 for 1 ≤ i , j ≤ n
2: for i = 1, . . . , n do
3: (Jei K

(t)
1
, . . . , Jei K

(t)
ℓ
) ← SSS.Create(ei , t)

4: JeK(t)i := (Je1K
(t)
i , . . . , JenK(t)i), for 1 ≤ i ≤ ℓ

5: return (JeK(t)
1
, . . . , JeK(t)

ℓ
)

PIR.Retrieve(JeK(t)i , JDBK(t)i):

6: JbK(2t)i ← JeK(t)i · JDBK(t)i
7: return JbK(2t)i

PIR.Reconstruct(JbK(2t)
1

, . . . , JbK(2t)
ℓ
):

8: b ← SSS.Recover(JbK(2t)
1

, . . . , JbK(2t)
ℓ

, 2t)
9: return b

Fig. 6. SSS-based PIR scheme.

perform efficient retrieval and eviction operations in a secure manner without having to download

and upload O(logN) data blocks.
In the following, we describe in detail the retrieval and eviction protocol of S

3
ORAM

O
scheme.

3.2.1 Retrieval subroutine. To achieve O(1) client bandwidth blowup, the retrieval protocol in

S
3
ORAM

O
scheme requires an efficient PIR protocol to privately retrieve the block of interest. We

first describe the PIR protocol based on SSS as follows.

SSS-based PIR scheme. Our objective is to privately retrieve a block of interest residing in the

queried path on the S
3
ORAM

O
tree. Recall that in the single-server HE-based ORAM schemes

(e.g., [3, 12]), the PIR query is encrypted with additive/fully HE. In S
3
ORAM

O
, the tree is SSS-

shared among ℓ servers, which features highly efficient additive and multiplicative homomorphic

properties. We observe that the multi-server PIR scheme in [4, 18] relies on SSS to create PIR queries

and, therefore, it can serve as a suitable private retrieval tool to be used for S
3
ORAM

O
scheme. We

describe SSS-based PIR scheme in Figure 6, and further outline it as follows:

Assume that each server Si stores a share of the database DB containing n blocks denoted as

JDBKi , which can be interpreted as a vector with each i-th component being the share of the i-th
item in DB. Let j be the index of the block in DB to be privately retrieved. The client executes the

PIR.CreateQuery algorithm, which creates an n-dimensional unit vector with all zero coordinates

except the j-th coordinate being set to 1 (line 1) and then, secret-shares it with SSS (lines 2–3).

The client then distributes these shares to the corresponding servers, each answering with the

result of the dot product between the received share vector and its share of DB by executing the

PIR.Retrieve algorithm (line 6). Finally, the client executes the PIR.Reconstruct algorithm, which

invokes the SSS.Recover algorithm over ℓ answers to recover the desired block (line 8). Since DB
in this context is SSS-secret shared instead of plaintext as in [4, 18], our PIR.Reconstruct algorithm
requires at least 2t + 1 shares (instead of t + 1) to recover the item correctly.

We present the retrieval protocol in S
3
ORAM

O
in Figure 7, which employs three algorithms

of the above SSS-based PIR scheme. Given the block to be read, the client first determines its

location in the S
3
ORAM

O
tree via the position map pm (line 1) and then, privately retrieves it

using the SSS-based PIR protocol. In this case, the server interprets all slots in the retrieval path as

the database input DB in the PIR.Retrieve algorithm. Hence, the size of DB and the length of the

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

12 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

S
3
ORAM

O .Retrieve(id):
Client:
1: (s, j) ← pm[id]
2: (JeK(t)

1
, . . . , JeK(t)

ℓ
) ← PIR.CreateQuery(j)

3: Send (s, JeK(t)i) to server Si , for 1 ≤ i ≤ ℓ

Server: each Si ∈ {S1, . . . , Sℓ } receiving (s, JeK(t)i) do
4: I ← P(s)
5: for j = 1, . . . ,m do
6: Let Jcj K

(t)
i contain j-th chunk of Z slots in JT[i′]K(t)i , ∀i′ ∈ I

7: Jc j K
(2t)
i ← PIR.Retrieve(JeK(t)i , Jcj K

(t)
i)

8: Send (Jc1K
(2t)
i , . . . , JcmK(2t)i) to client

Client: On receive ({Jc1K
(2t)
i }ℓi=1

, . . . , {JcmK(2t)i }ℓi=1
)

9: c j ← PIR.Reconstruct(Jc j K
(2t)
1

, . . . , Jc j K
(2t)
ℓ
) for 1 ≤ j ≤ m

10: b ← (c1, . . . , cm)
11: return b

Fig. 7. S3ORAMO retrieval subroutine.

S
3
ORAM

O .Evict():

1: (c1, . . . , cm) ← b , where b is the block that has just been retrieved

2: (Jc j K1, . . . , Jc j Kℓ) ← SSS.Create(c j , t) for 1 ≤ j ≤ m
3: Write (Jc1Ki , . . . , JcmKi) to slot JT[1, nr + 1]Ki in server Si for 1 ≤ i ≤ ℓ

4: nr ← nr + 1 mod A ▷ nr is initialized with 0

5: if nr = 0 then
6: v ← DigitReverse

2
(ne mod 2

H)

7: Execute S
3
ORAM

O .EvictAlongPath(v) protocol
8: ne ← ne + 1 mod 2

H ▷ ne is initialized with 0

Fig. 8. S3ORAMO eviction subroutine.

query vector is n = Z · (H + 1). Since there arem separate chunks in each slot, the servers execute

the PIR.Retrieve algorithmm times with the same PIR query but over different DBj , where each

DBj contains the j-th chunk of all slots in the retrieval path (lines 5–7). Finally, the client obtains

the desired block by recovering all chunks upon receiving their corresponding shares using the

PIR.Reconstruct algorithm (line 9).

3.2.2 Eviction subroutine. To eliminate the need of maintaining the stash component at the client-

side, S
3
ORAM

O
follows the Triplet Eviction strategy proposed in [12]. The S

3
ORAM

O.Evict algo-
rithm in Figure 8 presents the eviction procedure in S

3
ORAM

O
scheme. Specifically, after the block

is privately retrieved via the S
3
ORAM

O.Retrieve protocol, the client creates new SSS-shares for

it (lines 1–2), and then writes the share to an empty slot in the root bucket of the correspond-

ing server (lines 3). After A ≤ Z successive retrievals, the client selects a deterministic eviction

path following the reverse lexicographical order (line 5) as presented in §3.1, and executes the

S
3
ORAM

O.EvictAlongPath protocol, to obliviously percolate the blocks from upper levels (e.g., root

bucket) to deeper levels (e.g., leaf buckets).

According to the Triplet Eviction policy, for each level in the eviction path, all blocks from the

source bucket (T[i]) will be obliviously moved to all its children (i.e., T[2i], T[2i + 1]). We follow the

same terminology used in [12] to denote the buckets involved in each Triplet Eviction operation: If

the child of the source bucket resides in the eviction path, it is called the destination bucket while

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 13

(2) SMM Protocol (3): Blocks in source bucket are copied to (non-leaf) sibling bucket

Server 1

(2): Blocks in source bucket are pushed down via matrix product

Server 2 Server 3

Triplet Eviction

Source bucket

Destination bucket

Sibling bucket

Eviction path

Triplet Eviction

(3)(2)

Triplet Eviction

Client

(1) Send permutation matrices

(3)(2) (3)(2)

{JIhK(t)2 }H
h=1{JIhK(t)1 }H

h=1 {JIhK(t)3 }H
h=1, JI0HK1 , JI0HK2 , JI0HK3

Fig. 9. The Triplet Eviction using SSS and SMM protocol.

the other child is called the sibling bucket (see Figure 9 for clarification). In our S
3
ORAM

O
scheme,

the move is performed by computing the matrix product, in which the client creates permutation

matrices and requests the servers to jointly perform the matrix product between such matrices and

vectors containing data along the eviction path in the S
3
ORAM

O
tree. We present the algorithmic

description of this strategy in the S
3
ORAM

O.EvictAlongPath protocol in Figure 10 with details as

follows.

Source to destination. Let JuK be a 2Z -dimensional share vector formed by concatenating all

data in the source bucket and the destination bucket. The client creates a permutation matrix

I ∈ {0, 1}2Z×Z (line 2) such that the matrix product between JuK and I will result in a Z -dimensional

vector JvK, in which data at position i in JuK is moved to position j in JvK. That is, I is a matrix,

where I[i, j] ← 1 if the block at position i in JuK is expected to move to position j in JvK (line 7).
As a result, I[i + Z , i] ← 1 if the block currently at position i in JvK remains (line 12). To hide the

location information of real blocks after permutation, the client “encrypts” every single element of

I with SSS resulting in a share matrix JIK ∈ F2Z×Z
p (line 13). Note that the matrix product between

these two shares results in a share vector with each element being represented by a degree-2t
polynomial. To maintain the consistency and privacy of the S

3
ORAM

O
tree structure, servers will

jointly perform the SMM protocol in §2.3 to reduce the degree of the polynomial of each component

in JvK from 2t to t (line 22 and line 26).

Source to sibling. We can apply the same trick as in the source-to-destination above to obliviously

move real blocks in source buckets to their sibling buckets. However, since the non-leaf sibling

buckets are guaranteed to be empty due to previous evictions passing on them (see Lemma 3),

this process can be further optimized as discussed in [12] as follows. For each non-leaf sibling

bucket in the eviction path, the client simply requests servers to copy all the data in the source

bucket to the sibling bucket (line 19) and then, updates locally the path location of blocks in the

position map (pm) accordingly (line 9–10). For the leaf sibling bucket, since it is not guaranteed to

be empty at any time, we use the matrix permutation to move blocks from the source bucket to it as

described above. This optimization can halve the client-server and server-server bandwidth cost as

well as the server computation. Generally, we can see that our eviction approach requires only one

client-server communication and guarantees that all data after eviction are consistently “encrypted”

by degree-t polynomials. Figure 9 visualizes this new SSS-based Triplet Eviction strategy.

3.2.3 Asymptotic cost analysis. We analyze the cost of S
3
ORAM

O
pertaining to the block size (|b |),

number of blocks (N), and statistical security parameter (λ). We consider other system parameters

(e.g., prime field Fp , number of servers ℓ) to be fixed.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

14 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

S
3
ORAM

O .EvictAlongPath(v):
Let (u1, . . . , uH) be the (ordered) indexes of source buckets along the eviction path v
Client:
1: for h = 1, . . . , H do
2: Let Ih be a 2Z × Z matrix, set Ih [∗, ∗] ← 0

3: for each real block with id in the source bucket T[uh] do
4: if id can legally reside in the destination bucket of T[uh] then
5: (pID, pIdx) ← pm[id]
6: Let y (1 ≤ y ≤ Z) be the index of an empty slot in the destination bucket of T[uh]
7: Ih [x][Z + y] ← 1, where x ← pIdx mod Z
8: pm[id′].pIdx← Z · h + y ▷ Update the new location of the block in the path

9: else ▷ id can legally reside in the sibling bucket of T[uh]
10: pm[id].pIdx← pm[id].pIdx + Z
11: for each real block with id′ in the destination bucket of T[uh] do
12: Ih [x + Z][x] ← 1, where x ← pm[id′].pIdx mod Z
13: JIh [x, y]K

(t)
1
, . . . , JIh [x, y]K

(t)
ℓ
← SSS.Create(Ih [x, y], t) for 1 ≤ x ≤ 2Z , 1 ≤ y ≤ Z

14: Repeat lines 2–13 (excluded lines 9-10) to create JI′H K, the share of permutation matrix for source to sibling bucket
at the leaf level (h = H)

15: Send

(
JI′H K(t)i , JI1K

(t)
i , . . . , JIH K(t)i

)
to Si , for 1 ≤ i ≤ ℓ

Server: each Si ∈ {S1, . . . , Sℓ } receiving
(
JI′H K(t)i , JI1K

(t)
i , . . . , JIH K(t)i

)
do

18: for h = 1, . . . , H do
19: Copy all data from source bucket JT[uh]K

(t)
i to its non-leaf sibling bucket

20: for j = 1, . . . ,m do
21: Let Jch, j K

(t)
i be a vector containing j-th chunks of JT[uh]K

(t)
i and its destination bucket

22: Jĉh, j K
(t)
i ← Jch, j K

(t)
i ⋆ JIhK(t)i

23: Update j-th chunks of the destination bucket of JT[uh]K
(t)
i with Jĉh, j K

(t)
i

24: for j = 1, . . . ,m do
25: Let Jc′H , j K

(t)
i be a vector containing j-th chunks of source bucket JT[uH]K

(t)
i and its (leaf) sibling bucket

26: Jĉ′H , j K
(t)
i ← Jc′H , j K

(t)
i ⋆ JI′H K(t)i

27: Update j-th chunks of the sibling bucket of JT[uH]K
(t)
i with Jĉ′H , j K

(t)
i

Fig. 10. S3ORAMO Triplet Eviction with SSS scheme and SMM protocol.

Communication. In the S
3
ORAM

O
retrieval phase, each PIR query being sent to ℓ servers is of

size (Z · (H + 1) · ⌈log
2
p⌉) bits. The client exchanges one block of size |b | with each server. The

Triplet Eviction is performed after every A subsequent retrievals. In this operation, the client sends

H + 1 permutation matrices to ℓ servers. Each matrix is of size 2Z 2 · ⌈log
2
p⌉ bits. The servers

exchange the shares ofH +1 buckets with each other, each being of size Z · |b | bits. Therefore, given
H = O(logN),Z = A = O(λ) and ℓ,p are constants, the amortized client-server communication

complexity isO(|b |+λ·logN). The amortized server-server communication overhead isO(|b | ·logN).
• Achieving O(1) client-server bandwidth blowup: The client bandwidth blowup is defined as the

ratio between the cost of client-server communication by using ORAM to access the block vs. the
base case where the block is insecurely accessed without ORAM. Our analyzed communication

complexity of S
3
ORAM

O
above indicates that the size of the PIR query and the permutation matrices

is independent of the block size parameter |b |. Therefore, the O(1) client bandwidth blowup can be

achieved in S
3
ORAM

O
by selecting a suitable value of |b |. That is, by selecting |b | = Ω(λ · logN)3,

S
3
ORAM achieves O(1) client bandwidth blowup.

3
In the ORAM community, λ = O(logN) is commonly used. With this assumption, the block size in S

3
ORAM

O
is Ω(log

2 N)

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 15

Computation. In the retrieval phase, the servers compute the dot product between the Z · (H + 1)-

dimensional PIR query vector and the block vector containing Z · (H + 1) blocks of size |b |. In
the Triplet Eviction phase, the servers compute H + 1 times the matrix product between a vector

containing 2Z blocks of size |b | and a permutation matrix of size 2Z ×Z . The matrix product incurs

re-sharing and computing the degree reduction in the SMM protocol on Z · (H + 1) blocks each

being of size |b |. In total, the amortized server computation complexity is O(|b | · λ · logN).
The client executes the SSS.Create algorithm Z · (H + 1) times and 2Z 2 · (H + 1) times to create

the PIR query and H + 1 permutation matrices, respectively. The client executes the SSS.Recover
and SSS.Create algorithms to reconstruct and re-share a block of size |b |, respectively. Thus, the
amortized client computation complexity is O(|b | + logN).

Storage. S
3
ORAM

O
layout is a full binary tree of height H , which has a total of Z · (2H+1 − 1)

slots and can store up to N ≤ A · 2H−1
real blocks. Given A = Z = Θ(λ) for statistical security (see

Lemma 3), the server storage blowup cost is O(1). Notice that the share of the value has the same

size as the value (i.e., no ciphertext expansion as in Onion-ORAM), the server storage of S
3
ORAM

is constant and does not increase after a sequence of access operations.

Similar to Onion-ORAM, S
3
ORAM

O
does not require the stash component since the retrieved

block is immediately written back to the root bucket. Hence, the client block storage in S
3
ORAM

O

is O(1). The client locally stores the position map whose cost is O(N · (logN + log logN)).
• Achieving O(1) client storage via recursion: For theoretical interest, S3ORAMO

can achieve (in

total) O(1) client storage by storing the position map in smaller ORAMs using the recursion

technique in [40] and the bucket metadata structure in [12]. Specifically, for each bucket in the

S
3
ORAM

O
tree, we create a metadata that stores the current index (pIdx) and the assigned path (pID)

of blocks residing in it. For each S
3
ORAMaccess, themetadata of buckets along the retrieval/eviction

path will be read first to get the path and the location of blocks of interest. This information will be

used to create the PIR query and permutation matrices. Next, we construct a series of S
3
ORAM

O

structures S
3
ORAM

O

0, . . . , S
3
ORAM

O

logr N , where S
3
ORAM

O

0 stores database blocks and each

block j in S3ORAMO

i+1 stores the path information (pID) of the blocks (j−1)r , . . . , jr in S3ORAMO

i
and r ≥ 2 is the compression ratio. We refer the reader to [12, 40] for the detailed descriptions.

For simplicity, we assume that r = 2 and letH = logN be the height of S
3
ORAM

O

0. In S
3
ORAM

O

i
(i ≥ 1), the size of meta-data is λ(H − i), the block size is 2(H − i + 1), and the path length is H − i .
There are logN recursive levels so that the total bandwidth overhead for each recursive S

3
ORAM

O

retrieval is λ
∑H−1

i=0
i2 +

∑H
i=1

2(H − i + 1) = O(λ log
3 N). Due to amortization, the asymptotic cost

of eviction is similar to the retrieval as analyzed above. Therefore, to achieve O(1) client bandwidth

blowup, the block size of S
3
ORAM

O

0 needs to be Ω(λ · log
3 N). So, using the recursion technique to

get rid of the client position map increases the regular block size a factor of O(log
2 N) and O(logN)

communication rounds.
The regular block size in recursive S

3
ORAM

O
is a factor of log

2 N times larger than other

(recursive) tree-based ORAM schemes featuring O(logN) bandwidth (e.g., Path ORAM, Ring-

ORAM, Tree-ORAM) and (at least) logN times smaller than (recursive) tree-based ORAMwith O(1)

bandwidth (e.g., Onion-ORAM [12], Bucket-ORAM [14], OVS [3]) due to the following reasons. As

analyzed above, to keep the original asymptotic communication overhead intact when applying the

recursion technique, the regular block size must be large enough to absorb the cost of transmitting

the blocks and the meta-data components from O(logN) small (recursive) ORAM structures. In

ORAM schemes with O(logN) bandwidth, since the size of small blocks in their recursive structures

is O(logN), the regular block size is Ω(log
2 N) to absorb the cost of downloading O(log

2 N) small

blocks (there is no meta-data component in these schemes). On the other hand, the regular block

size of O(1)-bandwidth ORAM schemes does not increase when applying the recursion, since it is

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

16 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

already larger than the total amount needed to absorb the cost of downloading the blocks and the

meta-data of small ORAM structures (e.g., Ω(log
5 N)-Ω(log

6 N) block size vs. Ω(log
3 N) needed).

Given that the recursion technique significantly increases the regular block size, it is recom-

mended to maintain the position map locally assuming that its size is small enough. This choice

allows the implementor to gain the full performance advantages that S
3
ORAM offers in practice.

3.3 S3ORAMC: S3ORAM with Low Server Storage and Computation Overhead
In this section, we present S

3
ORAM

C
, a S

3
ORAM scheme that achieves lower computational

complexity than S
3
ORAM

O
due to its smaller bucket size parameter Z (e.g., O(1) vs. O(λ)). The

price to pay for such achievement is that it requires maintaining the stash at the client-side to

temporarily store blocks that cannot be pushed back to the tree due to the small bucket size. The

intuition of S
3
ORAM

C
is to implement the access protocol of Circuit-ORAM proposed by Wang et

al. [43] using the homomorphic properties of SSS as follows.

3.3.1 Retrieval subroutine. S3ORAMC
has the same retrieval procedure like S

3
ORAM

O
scheme,

where we leverage SSS-based PIR Scheme presented in §3.2.1 to privately retrieve the block in the

retrieval path of the S
3
ORAM

C
tree (Figure 11).

S
3
ORAM

C .Retrieve(id)

1: b ← S
3
ORAM

O .Retrieve(id)
2: return b

Fig. 11. S3ORAMC retrieval subroutine.

3.3.2 Eviction subroutine. S3ORAMC
implements the eviction principle in Circuit-ORAM scheme

with additive and multiplicative homomorphic properties of SSS. Similar to S
3
ORAM

O
scheme,

S
3
ORAM

C
selects a deterministic eviction path following the reverse lexicographical order (Eq. 6)

proposed in [17] (Figure 12), which was proven to achieve the negligible overflow probability with

a lower bucket size parameter compared with the random path (e.g., 2 vs. 3).
Intuitively, the client first scans the position map to prepare the target array that indicates which

blocks to be pushed down to which levels in the eviction path. Afterward, the client goes through

each level of the eviction path, picks the desired block and drops it to the target level. Notice that

at any time, the client holds and drops at most one block. This policy is guaranteed by computing a

target array that indicates whether to pick/drop the block in each level by scanning the position

map. We refer the reader to [43] for the detailed description and explanation.

Figure 13 visualizes the high-level idea of the eviction in S
3
ORAM

C
, which implements the

push-down strategy in [43] using SSS and SMM protocol. Figure 14 describes the detailed algorithm

with the high-level idea as follows. For each level (h) in the eviction path, the client creates a

permutation matrix (Ih) of size (Z + 1) × (Z + 1). We use the last column of the matrix (Ih[∗][Z + 1])

S
3
ORAM

C .Evict():

1: v ← DigitReverse
2
(ne mod 2

H)

2: Execute S
3
ORAM

C .EvictAlongPath(v) protocol
3: ne ← ne + 1 mod 2

H

4: Repeat lines 1-3

Fig. 12. S3ORAMC eviction subroutine.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 17

Server 1

Client

(1) Send
permutation

matrices and
one block

(2)

(2)

Server 2(2)

(2)

Server 3(2)

(2)

+{JIhK(t)2 }H+1
h=1<latexit sha1_base64="GepqADNPMvnG6bAu0GXwIfqN/uM=">AAABgXicZY1LTwIxFIVvwQfia9SlGyIsICqZzsaFISFxgztM5LGoTjqlQEPnkbZjQpr+Gn+NW135bxx1Nsq3Ovfce8+JMim08f1PVKlube/s1vbq+weHR8feyelYp7lifMRSmappRDWXIuEjI4zk00xxGkeST6LV3fd+8sKVFmnyaNYZf4rpIhFzwagprNDrtYglUkaKshU3DRJTs4zm9t6FS6JUaYc2cM+2bTqOuNAue7iYBpfYtUKv6Xf9HxqbApeiCSXD0Lsms5TlMU8Mk1RrS5URTHJXJ7nmWdFGF9xqE1O1VjNX5OP/aZtiHHSx38UPQbN/VTbV4BwuoA0YbqAPAxjCCBi8whu8wweqog7yUfB7WkHlzxn8Ad1+AeYXY8E=</latexit><latexit sha1_base64="GepqADNPMvnG6bAu0GXwIfqN/uM=">AAABgXicZY1LTwIxFIVvwQfia9SlGyIsICqZzsaFISFxgztM5LGoTjqlQEPnkbZjQpr+Gn+NW135bxx1Nsq3Ovfce8+JMim08f1PVKlube/s1vbq+weHR8feyelYp7lifMRSmappRDWXIuEjI4zk00xxGkeST6LV3fd+8sKVFmnyaNYZf4rpIhFzwagprNDrtYglUkaKshU3DRJTs4zm9t6FS6JUaYc2cM+2bTqOuNAue7iYBpfYtUKv6Xf9HxqbApeiCSXD0Lsms5TlMU8Mk1RrS5URTHJXJ7nmWdFGF9xqE1O1VjNX5OP/aZtiHHSx38UPQbN/VTbV4BwuoA0YbqAPAxjCCBi8whu8wweqog7yUfB7WkHlzxn8Ad1+AeYXY8E=</latexit><latexit sha1_base64="GepqADNPMvnG6bAu0GXwIfqN/uM=">AAABgXicZY1LTwIxFIVvwQfia9SlGyIsICqZzsaFISFxgztM5LGoTjqlQEPnkbZjQpr+Gn+NW135bxx1Nsq3Ovfce8+JMim08f1PVKlube/s1vbq+weHR8feyelYp7lifMRSmappRDWXIuEjI4zk00xxGkeST6LV3fd+8sKVFmnyaNYZf4rpIhFzwagprNDrtYglUkaKshU3DRJTs4zm9t6FS6JUaYc2cM+2bTqOuNAue7iYBpfYtUKv6Xf9HxqbApeiCSXD0Lsms5TlMU8Mk1RrS5URTHJXJ7nmWdFGF9xqE1O1VjNX5OP/aZtiHHSx38UPQbN/VTbV4BwuoA0YbqAPAxjCCBi8whu8wweqog7yUfB7WkHlzxn8Ad1+AeYXY8E=</latexit><latexit sha1_base64="GepqADNPMvnG6bAu0GXwIfqN/uM=">AAABgXicZY1LTwIxFIVvwQfia9SlGyIsICqZzsaFISFxgztM5LGoTjqlQEPnkbZjQpr+Gn+NW135bxx1Nsq3Ovfce8+JMim08f1PVKlube/s1vbq+weHR8feyelYp7lifMRSmappRDWXIuEjI4zk00xxGkeST6LV3fd+8sKVFmnyaNYZf4rpIhFzwagprNDrtYglUkaKshU3DRJTs4zm9t6FS6JUaYc2cM+2bTqOuNAue7iYBpfYtUKv6Xf9HxqbApeiCSXD0Lsms5TlMU8Mk1RrS5URTHJXJ7nmWdFGF9xqE1O1VjNX5OP/aZtiHHSx38UPQbN/VTbV4BwuoA0YbqAPAxjCCBi8whu8wweqog7yUfB7WkHlzxn8Ad1+AeYXY8E=</latexit>

{JIhK(t)1 }H+1
h=1<latexit sha1_base64="UQSUoGuygXDGOCxvzo5UoRMFDmI=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkysaFISFxgztMHGBRnXRKgYbOI20xIU1/jb/Gra78Nw46G+VbnXvuvedEmRTa+P4XKpV3dvf2KwfVw6Pjk5p3ejbS6UoxHrBUpmoSUc2lSHhghJF8kilO40jycbS83+zHr1xpkSZPZp3x55jOEzETjJrcCr1ek1giZaQoW3JTJzE1i2hmH1y4IEoVdmixe7Et03bEhXbR20yDK+yaodfwO/4P9W2BC9GAgmHo3ZBpylYxTwyTVGtLlRFMclclK82zvI3OudUmpmqtpi7Px//TtsWo28F+Bz92G/3roqkCF3AJLcBwC30YwBACYPAG7/ABn6iM2shH3d/TEip+zuEP6O4b5SJjwA==</latexit><latexit sha1_base64="UQSUoGuygXDGOCxvzo5UoRMFDmI=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkysaFISFxgztMHGBRnXRKgYbOI20xIU1/jb/Gra78Nw46G+VbnXvuvedEmRTa+P4XKpV3dvf2KwfVw6Pjk5p3ejbS6UoxHrBUpmoSUc2lSHhghJF8kilO40jycbS83+zHr1xpkSZPZp3x55jOEzETjJrcCr1ek1giZaQoW3JTJzE1i2hmH1y4IEoVdmixe7Et03bEhXbR20yDK+yaodfwO/4P9W2BC9GAgmHo3ZBpylYxTwyTVGtLlRFMclclK82zvI3OudUmpmqtpi7Px//TtsWo28F+Bz92G/3roqkCF3AJLcBwC30YwBACYPAG7/ABn6iM2shH3d/TEip+zuEP6O4b5SJjwA==</latexit><latexit sha1_base64="UQSUoGuygXDGOCxvzo5UoRMFDmI=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkysaFISFxgztMHGBRnXRKgYbOI20xIU1/jb/Gra78Nw46G+VbnXvuvedEmRTa+P4XKpV3dvf2KwfVw6Pjk5p3ejbS6UoxHrBUpmoSUc2lSHhghJF8kilO40jycbS83+zHr1xpkSZPZp3x55jOEzETjJrcCr1ek1giZaQoW3JTJzE1i2hmH1y4IEoVdmixe7Et03bEhXbR20yDK+yaodfwO/4P9W2BC9GAgmHo3ZBpylYxTwyTVGtLlRFMclclK82zvI3OudUmpmqtpi7Px//TtsWo28F+Bz92G/3roqkCF3AJLcBwC30YwBACYPAG7/ABn6iM2shH3d/TEip+zuEP6O4b5SJjwA==</latexit><latexit sha1_base64="UQSUoGuygXDGOCxvzo5UoRMFDmI=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkysaFISFxgztMHGBRnXRKgYbOI20xIU1/jb/Gra78Nw46G+VbnXvuvedEmRTa+P4XKpV3dvf2KwfVw6Pjk5p3ejbS6UoxHrBUpmoSUc2lSHhghJF8kilO40jycbS83+zHr1xpkSZPZp3x55jOEzETjJrcCr1ek1giZaQoW3JTJzE1i2hmH1y4IEoVdmixe7Et03bEhXbR20yDK+yaodfwO/4P9W2BC9GAgmHo3ZBpylYxTwyTVGtLlRFMclclK82zvI3OudUmpmqtpi7Px//TtsWo28F+Bz92G/3roqkCF3AJLcBwC30YwBACYPAG7/ABn6iM2shH3d/TEip+zuEP6O4b5SJjwA==</latexit>

+ {JIhK(t)3 }H+1
h=1<latexit sha1_base64="rVoarBjBQtdqhRsIzOx/ZaYZ/KE=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkOi5cGBISN7jDRB6L6qRTCjR0HmmLCWn6a/w1bnXlv3HU2Sjf6txz7z0nyqTQxvc/Uam8tb2zW9mr7h8cHtW845ORTleK8SFLZaomEdVcioQPjTCSTzLFaRxJPo6Wd9/78QtXWqTJo1ln/Cmm80TMBKMmt0Kv2ySWSBkpypbc1ElMzSKa2XsXLohShR3aa/dsW6btiAvtoovzqX+BXTP0Gn7H/6G+KXAhGlAwCL0rMk3ZKuaJYZJqbakygknuqmSleZa30Tm32sRUrdXU5fn4f9qmGAUd7HfwQ9DoXRZNFTiDc2gBhhvoQR8GMAQGr/AG7/CByqiNfBT8npZQ8XMKf0C3X+cMY8I=</latexit><latexit sha1_base64="rVoarBjBQtdqhRsIzOx/ZaYZ/KE=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkOi5cGBISN7jDRB6L6qRTCjR0HmmLCWn6a/w1bnXlv3HU2Sjf6txz7z0nyqTQxvc/Uam8tb2zW9mr7h8cHtW845ORTleK8SFLZaomEdVcioQPjTCSTzLFaRxJPo6Wd9/78QtXWqTJo1ln/Cmm80TMBKMmt0Kv2ySWSBkpypbc1ElMzSKa2XsXLohShR3aa/dsW6btiAvtoovzqX+BXTP0Gn7H/6G+KXAhGlAwCL0rMk3ZKuaJYZJqbakygknuqmSleZa30Tm32sRUrdXU5fn4f9qmGAUd7HfwQ9DoXRZNFTiDc2gBhhvoQR8GMAQGr/AG7/CByqiNfBT8npZQ8XMKf0C3X+cMY8I=</latexit><latexit sha1_base64="rVoarBjBQtdqhRsIzOx/ZaYZ/KE=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkOi5cGBISN7jDRB6L6qRTCjR0HmmLCWn6a/w1bnXlv3HU2Sjf6txz7z0nyqTQxvc/Uam8tb2zW9mr7h8cHtW845ORTleK8SFLZaomEdVcioQPjTCSTzLFaRxJPo6Wd9/78QtXWqTJo1ln/Cmm80TMBKMmt0Kv2ySWSBkpypbc1ElMzSKa2XsXLohShR3aa/dsW6btiAvtoovzqX+BXTP0Gn7H/6G+KXAhGlAwCL0rMk3ZKuaJYZJqbakygknuqmSleZa30Tm32sRUrdXU5fn4f9qmGAUd7HfwQ9DoXRZNFTiDc2gBhhvoQR8GMAQGr/AG7/CByqiNfBT8npZQ8XMKf0C3X+cMY8I=</latexit><latexit sha1_base64="knMdPMu1dVQmrZDSb+bXWba18l4=">AAABI3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8XLxy/AE1acX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKBcQLKBvoGYCBAibDEMpQZoCCeAHdmJT85NLc1LyS5JzE4uLqxKKSzOSc1FqumNLi1ILE5OzE9NTq4pLcxKLKopRaoPGG6IZhMsKM9AwN9AwDDTiklTQMzR08AkKTU7omH375AWIrIyPUekEGVPAJAIVNTL8=</latexit><latexit sha1_base64="olsggKQY5NeEXnFfIVP6TambCKw=">AAABdnicZY7NTgIxFIXvgD+IqKNbN0RYQIyTFheuSEzc4A4TB1hUJ51SoKHzk7ZjQpo+jU/jVle+jaPORjmr756TnHviXAptEPr0avWd3b39xkHzsHV0fOKftiY6KxTjIctkpmYx1VyKlIdGGMlnueI0iSWfxuu773z6wpUWWfpoNjl/SugyFQvBqCmtyB92iSVSxoqyNTdtklCzihf23kUrolRlR/baPdue6TviIrsa4vIaXWLXjfwOCtCP2tuAK+hApXHkX5F5xoqEp4ZJqrWlyggmuWuSQvO8/EaX3GqTULVRc1f24/9t2zAZBBgF+AFBA87hAnqA4QZuYQRjCIHBK7zBO3x4da/vod8lNa+adAZ/5A2+AKLqYu4=</latexit><latexit sha1_base64="olsggKQY5NeEXnFfIVP6TambCKw=">AAABdnicZY7NTgIxFIXvgD+IqKNbN0RYQIyTFheuSEzc4A4TB1hUJ51SoKHzk7ZjQpo+jU/jVle+jaPORjmr756TnHviXAptEPr0avWd3b39xkHzsHV0fOKftiY6KxTjIctkpmYx1VyKlIdGGMlnueI0iSWfxuu773z6wpUWWfpoNjl/SugyFQvBqCmtyB92iSVSxoqyNTdtklCzihf23kUrolRlR/baPdue6TviIrsa4vIaXWLXjfwOCtCP2tuAK+hApXHkX5F5xoqEp4ZJqrWlyggmuWuSQvO8/EaX3GqTULVRc1f24/9t2zAZBBgF+AFBA87hAnqA4QZuYQRjCIHBK7zBO3x4da/vod8lNa+adAZ/5A2+AKLqYu4=</latexit><latexit sha1_base64="y90DtCUW7f5beX0w3h+mz6BiKis=">AAABgXicZY1LTwIxFIVvwQfia9SlGyIsICppceHCkJC4wR0m8lhUJ51SoLHzSFtMSNNf469xqyv/jaPORvlW55577zlRpqSxGH+iUnljc2u7slPd3ds/OAyOjkcmXWouhjxVqZ5EzAglEzG00ioxybRgcaTEOHq+/d6PX4Q2Mk0e7CoTjzGbJ3ImObO5FQbdBnVUqUgz/ixsjcbMLqKZu/Phgmpd2KG78k+uaVue+tAtuiSf+ufEN8Kgjtv4h9q6IIWoQ8EgDC7pNOXLWCSWK2aMY9pKroSv0qURWd7G5sIZGzO90lOf55P/aeti1GkT3Cb3uN67KJoqcApn0AQC19CDPgxgCBxe4Q3e4QOVUQth1Pk9LaHi5wT+gG6+AOZsY8A=</latexit><latexit sha1_base64="rVoarBjBQtdqhRsIzOx/ZaYZ/KE=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkOi5cGBISN7jDRB6L6qRTCjR0HmmLCWn6a/w1bnXlv3HU2Sjf6txz7z0nyqTQxvc/Uam8tb2zW9mr7h8cHtW845ORTleK8SFLZaomEdVcioQPjTCSTzLFaRxJPo6Wd9/78QtXWqTJo1ln/Cmm80TMBKMmt0Kv2ySWSBkpypbc1ElMzSKa2XsXLohShR3aa/dsW6btiAvtoovzqX+BXTP0Gn7H/6G+KXAhGlAwCL0rMk3ZKuaJYZJqbakygknuqmSleZa30Tm32sRUrdXU5fn4f9qmGAUd7HfwQ9DoXRZNFTiDc2gBhhvoQR8GMAQGr/AG7/CByqiNfBT8npZQ8XMKf0C3X+cMY8I=</latexit><latexit sha1_base64="rVoarBjBQtdqhRsIzOx/ZaYZ/KE=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkOi5cGBISN7jDRB6L6qRTCjR0HmmLCWn6a/w1bnXlv3HU2Sjf6txz7z0nyqTQxvc/Uam8tb2zW9mr7h8cHtW845ORTleK8SFLZaomEdVcioQPjTCSTzLFaRxJPo6Wd9/78QtXWqTJo1ln/Cmm80TMBKMmt0Kv2ySWSBkpypbc1ElMzSKa2XsXLohShR3aa/dsW6btiAvtoovzqX+BXTP0Gn7H/6G+KXAhGlAwCL0rMk3ZKuaJYZJqbakygknuqmSleZa30Tm32sRUrdXU5fn4f9qmGAUd7HfwQ9DoXRZNFTiDc2gBhhvoQR8GMAQGr/AG7/CByqiNfBT8npZQ8XMKf0C3X+cMY8I=</latexit><latexit sha1_base64="rVoarBjBQtdqhRsIzOx/ZaYZ/KE=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkOi5cGBISN7jDRB6L6qRTCjR0HmmLCWn6a/w1bnXlv3HU2Sjf6txz7z0nyqTQxvc/Uam8tb2zW9mr7h8cHtW845ORTleK8SFLZaomEdVcioQPjTCSTzLFaRxJPo6Wd9/78QtXWqTJo1ln/Cmm80TMBKMmt0Kv2ySWSBkpypbc1ElMzSKa2XsXLohShR3aa/dsW6btiAvtoovzqX+BXTP0Gn7H/6G+KXAhGlAwCL0rMk3ZKuaJYZJqbakygknuqmSleZa30Tm32sRUrdXU5fn4f9qmGAUd7HfwQ9DoXRZNFTiDc2gBhhvoQR8GMAQGr/AG7/CByqiNfBT8npZQ8XMKf0C3X+cMY8I=</latexit><latexit sha1_base64="rVoarBjBQtdqhRsIzOx/ZaYZ/KE=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkOi5cGBISN7jDRB6L6qRTCjR0HmmLCWn6a/w1bnXlv3HU2Sjf6txz7z0nyqTQxvc/Uam8tb2zW9mr7h8cHtW845ORTleK8SFLZaomEdVcioQPjTCSTzLFaRxJPo6Wd9/78QtXWqTJo1ln/Cmm80TMBKMmt0Kv2ySWSBkpypbc1ElMzSKa2XsXLohShR3aa/dsW6btiAvtoovzqX+BXTP0Gn7H/6G+KXAhGlAwCL0rMk3ZKuaJYZJqbakygknuqmSleZa30Tm32sRUrdXU5fn4f9qmGAUd7HfwQ9DoXRZNFTiDc2gBhhvoQR8GMAQGr/AG7/CByqiNfBT8npZQ8XMKf0C3X+cMY8I=</latexit><latexit sha1_base64="rVoarBjBQtdqhRsIzOx/ZaYZ/KE=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkOi5cGBISN7jDRB6L6qRTCjR0HmmLCWn6a/w1bnXlv3HU2Sjf6txz7z0nyqTQxvc/Uam8tb2zW9mr7h8cHtW845ORTleK8SFLZaomEdVcioQPjTCSTzLFaRxJPo6Wd9/78QtXWqTJo1ln/Cmm80TMBKMmt0Kv2ySWSBkpypbc1ElMzSKa2XsXLohShR3aa/dsW6btiAvtoovzqX+BXTP0Gn7H/6G+KXAhGlAwCL0rMk3ZKuaJYZJqbakygknuqmSleZa30Tm32sRUrdXU5fn4f9qmGAUd7HfwQ9DoXRZNFTiDc2gBhhvoQR8GMAQGr/AG7/CByqiNfBT8npZQ8XMKf0C3X+cMY8I=</latexit><latexit sha1_base64="rVoarBjBQtdqhRsIzOx/ZaYZ/KE=">AAABgXicZY1LTwIxFIVvwQfig1GXboiwgKhkOi5cGBISN7jDRB6L6qRTCjR0HmmLCWn6a/w1bnXlv3HU2Sjf6txz7z0nyqTQxvc/Uam8tb2zW9mr7h8cHtW845ORTleK8SFLZaomEdVcioQPjTCSTzLFaRxJPo6Wd9/78QtXWqTJo1ln/Cmm80TMBKMmt0Kv2ySWSBkpypbc1ElMzSKa2XsXLohShR3aa/dsW6btiAvtoovzqX+BXTP0Gn7H/6G+KXAhGlAwCL0rMk3ZKuaJYZJqbakygknuqmSleZa30Tm32sRUrdXU5fn4f9qmGAUd7HfwQ9DoXRZNFTiDc2gBhhvoQR8GMAQGr/AG7/CByqiNfBT8npZQ8XMKf0C3X+cMY8I=</latexit>

+

(2) SMM Protocol

(2): Blocks are pushed
down via matrix product
done by SMM Protocol

Uploaded Block

Push-down Block

?JI1
K(t

)

1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

?JI2
K(t

)

1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

?JI2
K(t

)

2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

?JI1
K(t

)

2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

?JI1
K(t

)

3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

?JI2
K(t

)

3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fig. 13. S3ORAMO eviction based on [43] using SSS and SMM protocol.

to indicate the block to be picked, while the other columns Ih[∗][j] (1 ≤ j ≤ Z) is to indicate the

block to be moved to or hold at j-th slot of the h-leveled bucket. The data vector JchK, which will

be computed the matrix product with Ih , is of size Z + 1 containing the holding block (Jch[1]K)
and the data from Z slots of the h-leveled bucket (Jvh[2]K . . . , Jvh[Z + 1]K). So, the client sets

Ih[x][Z + 1] ← 1 to pick the block at slot x (line 15), and Ih[1][x] ← 1 to drop the holding block to

the x-th slot of the h-leveled bucket (line 10). If the currently holding block is moved to the next

level (i.e., no pickup/drop-off at this level), the client sets Ih[1][Z + 1] ← 1 (line 13). Similar to

S
3
ORAM

O
scheme, the client sets Ih[x + 1][x] ← 1 to keep blocks indexed x in the h-leveled bucket

in position (lines 17-20). Finally, the client creates the SSS-shares for such permutation matrices

(line 21) and for the block being picked-up in the stash (if any) (line 22), and distributes the shares

to the corresponding servers (line 23). Similar to S
3
ORAM

O
, for each level in the eviction path,

the servers jointly perform the matrix product between the share of data vector and the share of

permutation matrix via local addition and the secure multiplication protocol (line 23), and update

the bucket with the newly computed vector (line 25).

3.3.3 Asymptotic cost analysis. Similar to S
3
ORAM

O
, we analyze the cost of S

3
ORAM

C
regarding

the block size (|b |), number of blocks (N), and statistical security parameter (λ), while other system
parameters (e.g., prime field Fp , number of servers ℓ) are treated as constants. S

3
ORAM

O
has the

same tree layout, an identical retrieval phase and a similar eviction procedure with the S
3
ORAM

O

scheme. S
3
ORAM

C
only differs from S

3
ORAM

O
in terms of the bucket size parameter (Z) and the

eviction frequency, which happens after every retrieval instead of A as in S
3
ORAM

O
. S

3
ORAM

C

also incurs at most three blocks (one for retrieval and two for eviction) to be transmitted in each

ORAM access. Given Z = O(1) in S
3
ORAM

C
, we summarize the asymptotic cost of S

3
ORAM

O
as

follows.

Communication. The client-server communication complexity is O(|b | + logN). The server-
server communication overhead is O(|b | · logN). To achieve O(1) client-server bandwidth blowup,

the minimal block size is Ω(logN), which is a factor of λ times smaller than that of S
3
ORAM

O
.

Computation. The server computation is O(|b | · logN). The client computation complexity is

O(|b | + logN).

Storage. S3ORAMC
layout is a full binary tree of height H , which has a total of Z · (2H+1 − 1) slots

and can store up to N ≤ 2
H
real blocks. Since Z = O(1), the server storage blowup in S

3
ORAM

C

is O(1) similar to S
3
ORAM

O
asymptotically, but its constant overhead factor is smaller (i.e., 2

vs. 8). The client requires to maintain the stash, which costs O(λ) to achieve negligible overflow
probability. The position map costs O(N (logN + log logN)). Therefore, the total client storage is
O(λ + N (logN + log logN)). It is possible to achieve O(1) client storage by storing the stash (via

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

18 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

S
3
ORAM

C .EvictAlongPath(v):
Let (u1, . . . , uH+1) be the (ordered) bucket indexes along the eviction path v from the root to the leaf level

Client:
1: (deepest, deepestIdx) ← PrepareDeepest(v); target← PrepareTarget(v)
2: hold← ⊥, dest← ⊥, (c1, . . . , cm) ← 0

|b |

3: if target[0] , ⊥ then ▷ target[0] and deepestIdx[0] denote the stash component

4: hold← deepestIdx[0], dest← target[0]
5: (c1, . . . , cm) ← S [hold], S [hold] ← {}
6: for h = 1, . . . , H + 1 do
7: Let Ih be a (Z + 1) × (Z + 1) matrix, set Ih [∗, ∗] ← 0.

8: if hold , ⊥ then
9: if i = dest then ▷ Drop the holding block to this level

10: Ih [1][x] ← 1 where x is the index of an empty slot in the bucket T[uh]
11: hold← ⊥, dest← ⊥
12: else ▷ Move the holding block to the next level

13: Ih [1][Z + 1] ← 1

14: if target[i] , ⊥ then ▷ Pick a block at this level

15: Ih [x][Z + 1] ← 1 where x ← deepestIdx[h]
16: hold← x, dest← target[i]
17: for each real block id in T[uh] do ▷ Hold the position of other real blocks at this level

18: x ← pm[id].pIdx mod Z
19: if x , deepestIdx[h] then
20: Ih [x + 1][x] ← 1

21: JIh [∗, ∗]K
(t)
1
, . . . , JIh [∗, ∗]K

(t)
ℓ
← SSS.Create(Ih [∗, ∗], t) for 1 ≤ h ≤ H + 1

22: (Jc j K
(t)
1
, . . . , Jc j K

(t)
ℓ
) ← SSS.Create(c j , t) for 1 ≤ j ≤ m

23: Send

(
⟨Jc1K

(t)
i , . . . , JcmK(t)i ⟩, ⟨JI1K

(t)
i , . . . , JIH+1K

(t)
i ⟩

)
to Si , for 1 ≤ i ≤ ℓ

Server: each S ∈ {S1, . . . , Sℓ } receiving
(
⟨Jc1K, . . . , JcmK⟩, ⟨JI1K, . . . , JIH+1K⟩

)
do

18: JxKj ← JcKj for 1 ≤ i ≤ m
19: for h = 1, . . . , H + 1 do
20: for j = 1, . . . ,m do
21: Let Jch, j K be a Z -dimensional vector containing j-th chunks of bucket JT[uh]K
22: Jĉh, j K := (Jx j K, Jch, j K) ▷ Concatenate Jx j K with Jch, j K resulting in a (Z + 1)-dimensional vector

23: Jĉ′h, j K← Jĉh, j K ⋆ JIhK
24: (Jc′h, j K, Jx j K) := Jĉ′h, j K ▷ Assign the last component of vector Jĉ′Kh, j to Jx j K
25: Update j-th chunks of bucket JT[uh]K with Jc′h, j K

Fig. 14. S3ORAMC eviction protocol based on [43]. The details of PrepareDeepest(v) and PrepareTarget(v)
subroutines (line 1) are presented in Figure 21 in Appendix.

SSS shares) on the servers and using the recursion technique to keep the position map in smaller

ORAMs. However, this will significantly increase the computation and communication overhead

for oblivious access to the stash and the position map, respectively.

4 SECURITY ANALYSIS
In this section, we analyze the security of two S

3
ORAM schemes as follows.

S3ORAMO. It follows the Triplet Eviction strategy originally proposed in Onion-ORAM [12].

Therefore, it achieves the same failure probability with Onion-ORAM. We refer the reader to [12]

for the detail of the proof.

Lemma 3 (S3ORAMO Bucket Overflow Probability). If Z ≥ A and N ≤ A · 2H−1, the probability that a

bucket overflows after a Triplet Eviction operation is bounded by e−
(2Z−A)2

6A , where Z = A = Θ(λ).

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 19

Proof. We refer the reader to [12]. □

It is easy to see that Lemma 3 implies the following fact.

Corollary 1 (Non-leaf Destination Bucket Load). All non-leaf destination buckets are always empty
after the Triplet Eviction takes place, except with a negligible probability.

We present the main security of S
3
ORAM

O
as follows.

Theorem 1 (S3ORAMO Security). S3ORAMO is correct and information-theoretically (statistically)
t-secure by Definition 2.

Proof. S
3
ORAM

O
is correct iff (i) the S3ORAMO.Retrieve(·) protocol returns the correct value

of the retrieved block and (ii) the S3ORAMO.Evict(·) function is consistent.

• Correctness of S3ORAMO.Retrieve(·). For each data request x , let b be the block to be retrieved and

j be the location of b in its path (i.e., j := pm[id].pIdx where id is the identifier of b). The share of

the PIR query for server Si is of form: JeK(t)i = (JeK
(t)
1
, . . . , JeK(t)n), where n = Z · (H + 1) and ei = 0

for 1 ≤ i , j ≤ n, ej = 1. Let JcuK = (Jcu1K, . . . , JcunK) be the vector consisting of the share of u-th
chunks taken from Z slots in every bucket residing in the retrieval path. For 1 ≤ u ≤ m, the answer

of each server Si is of form:

JeK(t)i · JcuK(t)i =
n∑

k=1

(
Jek K(t) · Jcu,k K(t)

)
=

n∑
k=1

Jek · cu,k K(2t) by Eq. 3

= Jcu, jK(2t) by Eq. 1

By SSS scheme, at least 2t + 1 shares are required to recover the secret hidden by a random 2t-
degree polynomial. Our system model presented in §2 follows this and, therefore, the client always

computes the correct value of chunk ct by ct ← SSS.Recover(Jct K(2t)
1
, . . . , Jct K(2t)ℓ

, 2t). Since all

chunks of b are correctly computed, b is properly retrieved with the probability 1.

• Consistency of S3ORAMO.Evict(·) Corollary 1 shows that the root bucket is empty after the triplet

eviction. The client writes the retrieved block to an empty slot in the root bucket sequentially (line

3, Figure 8). Since Z ≥ A, the root always has enough empty slots to contain all the blocks to be

written before the triplet eviction happens, thereby avoiding the overwritten and inconsistency

issues. After A accesses, the client executes the triplet eviction algorithm (Figure 10) to move

blocks from upper levels (e.g., root) to deeper levels (e.g., leaf). Corollary 1 also shows that non-leaf

sibling buckets are empty due to previous triplet evictions and, therefore, they can contain all data

moved from their source bucket without creating any inconsistency issue. Real blocks from source

buckets are moved to destination buckets via matrix products. These computations are correct due

to homomorphic properties of two-share addition and multiplication offered by SSS and the SMM

protocol, respectively, which were proven correct in [16].

We now prove the security of S
3
ORAM

O
as follows.

Given a request sequence x of length q, where x j = (opj , idj , dataj) as in Definition 2, let

S
3
ORAM

O

i (x) be the S
3
ORAM

O
client’s sequence of interactions with the server Si including

a sequence of retrievals (Figure 7), write-to-root (line 3, Figure 8) and triplet eviction operations

(Figure 10). We have that the write-to-root operation is deterministic, which is performed right after

the retrieval. In this operation, the previously retrieved block is written to a publicly known slot in

the root bucket as shown above. The triplet eviction is also deterministic, which is performed after

every A successive accesses regardless of any data being requested. Since all these operations (i.e.,

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

20 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

retrieval, write-to-root, triplet eviction) are independent of each other, they can be considered as

separate sequences observed by Si in S
3
ORAM

O

i (x) as follows

S
3
ORAM

O

i (x) =


®Ri (x) =

(
R(x1)

i , . . . ,R
(xq)
i

)
®Wi (x̃) =

(
W (x̃1)

i , . . . ,W
(x̃q)
i

)
®Ei (x̄) =

(
E(x̄1)

i , . . . ,E
(x̄q/A)
i

) , (7)

where ®Ri (x̃), ®Wi (x̃) and ®E(x̄) denote the retrieval, write-to-bucket and triplet eviction sequences,

given a data access sequence x, respectively.
Assume that there is a coalition of up t servers {Si ∈I} sharing their own transcripts with each

other. Let I ⊆ {1, . . . , ℓ} such that |I | ≤ t . The view of {Si ∈I} can be derived from Eq. 7 as

{
S
3
ORAM

O

i ∈I(x)
}
=


{ ®Ri ∈I(x)} =

(
{R(x1)

i ∈I}, . . . , {R
(xq)
i ∈I }

)
{ ®Wi ∈I(x̃)} =

(
{W (x̃1)

i ∈I }, . . . , {W
(x̃q)
i ∈I }

)
{ ®Ei ∈I(x̄)} =

(
{E(1)i ∈I}, . . . , {E

(q/A)
i ∈I }

) ,
We show that for any two access sequences x and x′ of the same length (i.e., |x| = |x′ |), the
pairs

〈
{ ®Ri ∈I(x)}, { ®Wi ∈I(x̃)}, { ®Ei ∈I(x)}

〉
and

〈
{ ®Ri ∈I(x′)}, { ®Wi ∈I(x̃′)}, { ®Ei ∈I(x̄′)}

〉
are identically

distributed.

• Retrieval transcripts: For each access request x j ∈ x, {Si ∈I} observes a transcript {R
(x j)
i ∈I} consist-

ing of a retrieval path Px j (access pattern), which is identical for all servers (line 4, Figure 7) and all

data generated by the SSS-based PIR scheme (lines 5-7).

The access pattern of S
3
ORAM

O
is identical to all other secure tree-based ORAM schemes. Specif-

ically, each block in S
3
ORAM

O
is assigned to a leaf bucket selected randomly and independently

from each other. Once a block is accessed, it is assigned to a new bucket leaf selected randomly and

independently. Such random assignment along with the selected bucket size parameter (Z) may

result in the bucket(s) in the S
3
ORAM

O
tree being overflowed with a negligible probability thereby,

impacts the security (see Lemma 3). Therefore, access patterns generated by any data request

sequences of the same length are statistically indistinguishable. We next analyze the probability

distribution of data observed at the server side in each S
3
ORAM

O
retrieval as follows. For each

retrieval, the client sends to the servers PIR queries generated by PIR.CreateQuery algorithm. Such

queries are SSS shares and, therefore, is t-private. The inner product is also t-private due to Lemma 1

with addition and partial multiplicative homomorphic properties by Eq. 3 and Eq. 1, respectively. So,

any data generated in S
3
ORAM

O
retrievals are identically distributed in the presence of t colluding

servers.

By these properties, for any data request sequence x, the corresponding transcripts (including ac-
cess patterns) generated in the S

3
ORAM

O
retrieval phase are information-theoretically (statistically)

indistinguishable from random access sequence in the presence of up to t colluding servers.

•Write-to-root transcripts: Data are written to slots in the root bucket according to the sequential

order and, therefore, the write pattern is deterministic and public. Such written data are SSS-shared

with new random polynomials so that they are t-private. Therefore, the write-to-root transcripts
are identically distributed.

• Triplet eviction transcripts: the access patterns of {E(j)i ∈I} and {E
(j′)
i ∈I} are public because the triplet

eviction is deterministic, which follows reverse lexicographical order like Onion-ORAM (e.g., [12]),

We show that data generated in such triplet evictions are identically distributed as follows. For

each triplet eviction, the client sends (H + 1) permutation matrices, which are SSS-shares and,

therefore, they are all t-private and uniformly distributed. Data in sibling buckets are t-private
and uniformly distributed because they are merely copied from source buckets deterministically

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 21

(line 19, Figure 10). The matrix product (line 22, Figure 10) is also t-private due to the security

of SMM protocol by Lemma 2 . Therefore, given two request sequences x, y with |x| = |y|, the
corresponding deterministic triplet eviction sequences observed by {Si ∈I} are

{ ®Ei ∈I(x̄)} =
(
{E(x̄1)

i ∈I}, . . . , {E
(x̄q/A)
i ∈I }

)
{ ®Ei ∈I(ȳ)} =

(
{E
(ȳ1)

i ∈I}, . . . , {E
(ȳq/A)
i ∈I }

)
where (x̄ j , ȳj) ∈ {0, . . . ,H } for 1 ≤ j ≤ q/A. Since data yielded in {E

(j̄j)
i ∈I} and {E

(x̄ j′)
i ∈I } are identically

distributed for all (j, j ′) ∈ {x̄1, . . . , x̄q/A} ∪ {ȳ1, . . . , ȳq/A} as shown above, { ®Ei ∈I(x̄)} and { ®Ei ∈I(ȳ)}
are identically distributed.

• Final indistinguishability argument: Given any data request sequence, S
3
ORAM

O
generates (i)

access patterns statistically indistinguishable from a random request sequence of the same length,

and (ii) identically (uniform) distributed data in the presence of up to t colluding servers. This

indicates that S
3
ORAM

O
scheme achieves information-theoretic statistical t-security according to

Definition 2. □

S3ORAMC. It follows the Circuit-ORAM eviction strategy [1] so that it inherits the same failure

probability as Circuit-ORAM as follows.

Lemma 4 (S3ORAMC Stash Overflow Probability). Let the bucket size Z ≥ 2. Let st(S3ORAMC[s]) be a
random variable denoting the stash size of S3ORAMC scheme after an access sequence s . Then, for any
access sequence s , Pr[st(S3ORAMC[s]) ≥ R] ≤ 14 · e−R .

Proof. We refer the reader to [43]. □

The security of S
3
ORAM

C
is given in the following theorem.

Theorem 2 (S3ORAMC Security). S3ORAMC is correct and information-theoretically (statistically) t-
secure by Definition 2.

Proof. The correctness and security proof of S
3
ORAM

C
can be easily derived from that of

S
3
ORAM

O
scheme so that we will not present it in detail due to the space constraint and the

significant overlap with the proof of Theorem 1. Intuitively, S
3
ORAM

C
leverages the same principles

as S
3
ORAM

O
, i.e., SSS-based PIR scheme and permutation matrix, to implement the retrieval and

eviction phases, which were proven correct and consistent due to homomorphic properties of

SSS and SMM protocol. We also proved that all the data generated by these operations are t-
private. The access pattern in S

3
ORAM

C
is statistically indistinguishable due to its negligible stash

overflow probability by Lemma 4. All these properties indicate that S
3
ORAM

C
scheme achieves

information-theoretic statistical t-security by Definition 2. □

5 GENERALIZATION OF S3ORAM OVER k-ARY TREE
It is possible to execute ORAM over a general k-ary tree layout to achieve a sub-logarithmic

asymptotic overhead (i.e., O(logk N), where k is a free parameter). Our proposed S
3
ORAM schemes

can also be easily extended to work over a general k-ary ORAM layout. However, we later show

that increasing the value of k does not bring much benefit to the actual performance of tree-based

ORAM schemes. We present S
3
ORAM schemes on the general k-ary tree layout, and then provide

the analytical analysis to show that their cost achieves the best at k ∈ {2, 3} as follows.

k-ary S3ORAMO. We can leverage the concepts of SSS homomorphic computation and the

permutation matrix presented in §3.2 to implement the eviction strategy in [1], which is the

generalization of the Triplet Eviction used in S
3
ORAM

O
. Generally speaking, this strategy requires

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

22 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

to organize each bucket in the S
3
ORAM

O k-ary tree layout into k slides, each being of size as a

function of the security parameter (i.e., O(λ)). In other words, Z = O(k · λ). Each bucket at the leaf

level is connected with a so-called auxiliary bucket of size O(λ). The eviction path for k-ary tree is

determined by modifying Eq. 6 to output the order-reversal of base-k digits instead of the binary

string. Once the eviction path is determined, we travel from the root to the leaf and obliviously

move all blocks from the (non-leaf) source bucket to a deterministic slide of all of its children. At the
leaf level, we obliviously move all blocks from the leaf bucket to its corresponding auxiliary bucket.

All these oblivious moves can be implemented using the SSS matrix product principle described in

§3.2. Notice that in this context, the retrieval phase in S
3
ORAM

O
scheme remains unchanged.

k-ary S3ORAMC. S
3
ORAM

C
scheme in §3.3 supports the k-ary tree layout naturally without

modifying the retrieval and the eviction subroutines. We only need to change Eq. 6 as similar to the

k-ary S
3
ORAM

O
scheme as discussed above to get the eviction path in the k-ary tree layout. It also

only requires to adjust the bucket size parameter (Z) to be a function of the tree degree to achieve

a negligible stash overflow probability. In other words, Z = O(k) for the statistical security.

Cost analysis. We now treat k as a parameter in the asymptotic cost. The cost of k-ary S3ORAMO

can be derived from §3.2.3, where the bucket size parameter (Z) in this context is O(κ · λ) instead
of O(λ). The k-ary S

3
ORAM

O
layout is a tree of height O(logk N). The eviction in each level

move all blocks from the source bucket of size O(κ · λ) to a slide (sized O(λ)) of its k children

buckets. Thus, the (amortized) client-server and server-server bandwidth is O(|b |+λ ·k · logk N) and
O(|b | ·λ ·k ·logk N), respectively. The (amortized) server and client computation is O(|b | ·λ ·k ·logk N)
and O(|b | + k · logk N), respectively.

Similarly, we can easily derive the cost of k-ary S3ORAMC
scheme from §3.3.3 , where the bucket

size now becomes Z = O(k). So, the client-server- and server-server-bandwidth of k-ary S3ORAMC

are O(|b | + k · logk N) and O(|b | · k · logk N), respectively. The server- and client-computation are

O(|b | · k · logk N) and O(|b | + k · logk N), respectively.
So, given that |b |, λ,N are unchanged in this context, the computation/bandwidth overhead of

k-ary S
3
ORAM schemes can be written as a function of k as

f (k) = α + β · k · logk N = α + β ·
k

lnk
· lnN (8)

where α ∈ {0, |b |}, β ∈ {1, |b |, λ, λ · |b |}. Since k ≥ 2 and k ∈ N, it is easy to see that f (k) is
minimal at k = 3.

For k = 2, our S
3
ORAM

O
using the Triplet Eviction outperforms a constant factor of two

compared with using the generalization strategy in [1]. This is because in this case, each source

bucket only has one sibling bucket. Due to Eq. 6, once a bucket is being treated as the sibling

bucket, it will be later considered as the destination bucket before being treated as the sibling

bucket again. Meanwhile, once the (non-leaf) bucket is treated the destination bucket, it is always

guaranteed to be empty after the eviction (see Corollary 1). In other words, the bucket is always

empty before being considered as the sibling bucket and, therefore, given a fixed size of O(λ), it
always has enough slots to keep the expected load below its capacity. The eviction in [1] does

not exploit this special role-switching when k = 2, but focuses on the general case for any k > 2,

where one bucket must serve as the sibling bucket k − 1 times before being empty. As a result, each

bucket must have k slides each being of size O(λ), and the eviction only touches one slide of the

bucket to achieve the sub-logarithmic overhead. Therefore, when k = 2, its (eviction and retrieval)

overhead is doubled compared with that of the Triplet Eviction. Moreover, given the fact that the

generalization eviction with k = 3 only gains 6% improvement over k = 2, while its k = 2 case is

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 23

two times less efficient than the Triplet Eviction as shown above, we conclude that the S
3
ORAM

O

achieves the best performance with k = 2 and the Triplet Eviction strategy.

For S
3
ORAM

C
scheme, it achieves the best performance at k = 3 according to Eq. 8. This is

because it supports k-ary layout naturally without modifying eviction and retrieval subroutine but

only adjusting the bucket size parameter. We further demonstrate empirical results to support such

analytical analyses in §7.2.4.

6 IMPLEMENTATION
We fully implemented two S

3
ORAM schemes in C++ consisting of roughly 5,000 lines of code. We

used two external libraries in our implementation: (1) The Shoup’s NTL library v9.10.0
4
for the

pseudo-random number generation and arithmetic operations due to its low-level optimization for

modular multiplication and cross product functions; (ii) the ZeroMQ library
5
for the network com-

munication. Our implementation supports parallelization via multi-threading to take full advantage

of multi-core CPUs at the server side. We also implemented k-ary tree layout generalization for

both S
3
ORAM schemes. The implementation of our S

3
ORAM framework is publicly available at

https://github.com/thanghoang/S3ORAM

7 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of S

3
ORAM framework in comparison with its coun-

terparts on commodity cloud environments. Our main evaluation metric is the end-to-end delay

and we seek to answer the following questions.

• How is the end-to-end delay of S
3
ORAM schemes compared with recent ORAM schemes for

different database and block sizes? (§7.2.1)

• What factors impact the overall delay of S
3
ORAM schemes? (§7.2.2)

• In which context S
3
ORAM will be outperformed by other ORAM schemes? (§7.2.3)

• Does increasing the tree degree help enhance the end-to-end delay of S
3
ORAM in practice?

(§7.2.4)

• What is the storage overhead of S
3
ORAM schemes? (§7.2.5)

We first describe the configuration and methodology to conduct our experiments as follows.

7.1 Configuration and Methodology

Hardware setting.We used a 2015 Macbook Pro laptop as the client, which was equipped with

an Intel Core i5-5287U CPU @ 2.90GHz and 16 GB RAM. On the server-side, we used Amazon EC2

with c4.4xlarge type to deploy three server instances. Each server was running Ubuntu 16.04 and

equipped with 16 vCPUs Intel Xeon E5-2666 v3 @2.9 GHz, 30 GB RAM and 1TB SSD.

Network setting. We located three servers to be geographically close to each other (same region)

as well as to our client machine, which results in the network latency between them being approxi-

mately 15 ms. The servers were connected to each other via a dedicated network whose throughput

for both download and upload is approximately 1 Gbps. The client used Wi-Fi connecting to

the Internet via a home data plan, which offers the latency of 20 ms and the download/upload

throughput of 55/6 Mbps to the servers.

Database size.We evaluated the performance of all ORAM schemes with a randomly generated

database of size from 0.5 GB to 40 GB and block sizes from 4 KB to 1024 KB.

4
Available at http://www.shoup.net/ntl/download.html

5
Available at http://zeromq.org

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

https://github.com/thanghoang/S3ORAM
http://www.shoup.net/ntl/download.html
http://zeromq.org

24 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

Selected S3ORAM counterparts. We selected Path-ORAM [41] and Onion-ORAM [12] as the

main counterparts of S
3
ORAM framework since the former is the most optimal O(logN)-bandwidth

ORAM (without server computation) while the latter achieves O(1) bandwidth blowup (with

server computation). We also chose Ring-ORAM [34] as it is an efficient O(logN)-bandwidth
ORAM scheme with server computation. We consider all ORAM schemes (including our S

3
ORAM

framework) under their non-recursive form, where the position map is stored locally at the client.

This is because storing the position map at the server will incur O(logN) number of communication

rounds of accessing O(logN) smaller S
3
ORAM, which may result in high overhead. In practice, it

is likely that the position map is small enough to be stored locally at the client. Moreover, since

S
3
ORAM is only secure in the semi-honest setting, we only compared its performance with the semi-

honest version of Path-ORAM, Ring-ORAM and Onion-ORAM. We did not consider alternatives

that (i) failed to achieve O(1) client communication blowup but incurred more delay (e.g., [11, 27]),

(ii) were shown to be insecure (e.g., [28, 30]), or (iii) incurred more cost than the selected ORAM

counterparts above regarding to our configuration and experimental settings (e.g., [3]). We also

did not explicitly compare the performance of S
3
ORAM against the multi-server ORAM scheme

in [38] because of the major difference in terms of client block storage between the two schemes

(O(1) vs. O(
√
N)). Given a very large outsourced database, the storage required by [38] might not

be suitable for resource-limited devices such as a mobile phone. Moreover, if O(
√
N) block storage

is acceptable, then the lower bound in [1] might imply a better ORAM strategy than our S
3
ORAM

schemes, in which leveraging only PIR technique suffices to achieve O(1) client bandwidth blowup.

Evaluation methodology. We present the parameter choice and methodology to measure the

performance of S
3
ORAM schemes and their counterparts as follows.

• S3ORAM: For the S
3
ORAM

O
scheme, we selected the bucket size Z = 74 and A = Z/2 = 37 and

to achieve the negligible overflow probability of 2
−80

by Lemma 3. We measured the cost for

each S
3
ORAM

O
access as the retrieval delay plus the write-to-root delay plus the amortized

delay of the eviction operation. For the S
3
ORAM

C
scheme, we selected the bucket size Z = 2

suggested in [43] for the negligible stash overflow probability by Lemma 4. We also investigated

the performance of S
3
ORAM framework with k-ary structure, where k > 2. In this case, we fixed

the database size and varied the tree height (H) and the bucket size (Z) parameters. (see §7.2.4

for the detailed configuration).

• Path-ORAM :We selected the bucket sizeZ = 4 to achieve the negligible stash overflow probability

of 2
−80

. We measured the delay of Path-ORAM as the time to download and upload 4 · log
2
N

blocks plus the delay of IND-CPA decryption and re-encryption of these blocks at the client. We

used libtomcrypt6 to implement AES-CTR as the IND-CPA encryption.

• Ring-ORAM: We selected Ring-ORAM parameters (i.e., Z = 16, S = 25 and A = 20) as stated in

[34] for a negligible stash overflow probability of 2
−80

. We measured the delay of Ring-ORAM

as the total time of (i) one block transmission, (ii) XOR and IND-CPA encryption/decryption

operations at the client, (iii) XOR operations at the server and (iv) the amortized cost of eviction

and early shuffles based on the formula (H + 1)(2Z + S)/A · (1 + PoissCDF(S,A)) given in [34].

• Onion-ORAM : We selected the size of RSA modulus to be 1024 bits for AHE according to [2]. We

selected the bucket size and the eviction frequency of Onion-ORAM as Z = 74 andA = Z/2 = 37

for the negligible bucket overflow probability of 2
−80

. We measured the overall delay of Onion-

ORAM as the time to (1) perform homomorphic computations at the client and server and (2)

6
Available at https://github.com/libtom/libtomcrypt

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

https://github.com/libtom/libtomcrypt

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 25

Table 3. The amount of data to be sent by the client and processed by the server(s) in the retrieval and
eviction phases of S3ORAMO and S3ORAMC schemes.

Blocks
Retrieval Phase Eviction Phase

Query Size (KB) # Computed Blocks Permutation Matrix Size (KB) # Computed Blocks
S3ORAMO S3ORAMC S3ORAMO S3ORAMC S3ORAMO S3ORAMC S3ORAMO S3ORAMC

10
3

4.05 0.17 518 20 598.93 1.55 76,664 198

10
4

6.36 0.23 814 28 941.19 2.11 120,472 270

10
5

8.09 0.28 1,036 34 1,197.88 2.53 153,328 324

10
6

9.82 0.33 1,258 40 1,454.56 2.95 186,184 378

10
7

12.14 0.39 1,554 48 1,796.81 3.52 229,992 450

10
8

13.88 0.44 1,776 54 2,053.50 3.94 262,848 504

10
9

15.61 0.48 1,998 60 2,310.19 4.36 295,704 558

transfer O(1) blocks and PIR queries, plus the amortized cost of eviction operation. Since Onion-

ORAM is extremely computationally costly, measuring its delay even on a medium database

takes an insurmountable amount of time. Therefore, we only measured its delay on a small

database (i.e., 1 MB) first, and then extrapolate the delay for larger database sizes.

7.2 Experimental Results
7.2.1 End-to-end delay. We first present the analytical communication and computation overhead

of S
3
ORAM schemes with databases containing a various number of data blocks in Table 3. We

can see that the size of the retrieval query and permutation matrices by the client as well as the

amount of the data to be computed by the server are much lower than S
3
ORAM

O
for each access.

This is mainly because S
3
ORAM

C
has a much smaller bucket size than S

3
ORAM

O
(i.e., 2 vs. 74).

However, the eviction in S
3
ORAM

O
is only performed after every 37 accesses compared with one in

S
3
ORAM

C
scheme. In fact, this accumulative strategy allows S

3
ORAM

O
to be less impacted by the

network congestion control (i.e., TCP slow-start) and the client-server/ server-server communication

latency than S
3
ORAM

C
. Moreover, S

3
ORAM

O
incurs only one block to be uploaded per access

compared with two in S
3
ORAM

O
scheme. All these factors result in the amortized end-to-end

delay of S
3
ORAM

O
scheme being comparable with the actual delay of S

3
ORAM

C
as shown in

Figure 15, even though its analytical overhead looks worse than that of S
3
ORAM

C
. We also show

in Figure 15 the simulated delay of S
3
ORAM counterparts with different database sizes (from 0.5 to

40 GB) and block sizes (128 KB and 256 KB). Both S
3
ORAM schemes took only 1.3-1.4 (resp. 2.1-2.7)

seconds to access a 128 KB (resp. 256 KB) block in the database of size up to 40 GB. This resulted in

S
3
ORAM schemes being approximately 9.3 and 6.4 times faster than Path-ORAM and Ring-ORAM,

where they took 7-14 (resp. 14-26) seconds for each 128 KB (resp. 256 KB) block access. Compared

with Onion-ORAM, our S
3
ORAM schemes were three orders of magnitude faster. This is mainly

due to the fact that S
3
ORAM schemes only rely on simple arithmetic operations (e.g., modular

addition/ multiplication), while Onion-ORAM leverages Partially/Fully HE (see §7.2.2). One might

also observe from Figure 15 that choosing a larger block size has a small impact on the delay of

S
3
ORAM schemes. This is clearly illustrated in Figure 16, where we present the impact of block size

on the end-to-end delay of S
3
ORAM schemes compared with their counterparts. Given any block

size ranging from 4 KB to 1024 KB, S
3
ORAM schemes always maintain a constant factor of 9.3

and 6.4 times faster than Ring-ORAM and Path-ORAM, respectively. This presents an advantage

to S
3
ORAM schemes over their counterparts for applications requiring large block sizes such as

image or video storage services.

7.2.2 S3ORAM cost breakdown analysis. In this section, we dissect the overall delay of S
3
ORAM to

explore the factors that contribute the most to the total delay. Figure 17 shows the detailed cost

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

26 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

0 10 20 30 40

10
0

10
1

10
2

10
3

10
4

Database size (GB)

D
e
l
a
y
(
s
e
c
o
n
d
) Path-ORAM

Ring-ORAM

Onion-ORAM

S
3
ORAM

O

S
3
ORAM

C

(a) Block size = 128 KB

0 10 20 30 40

10
0

10
1

10
2

10
3

10
4

Database size (GB)

D
e
l
a
y
(
s
e
c
o
n
d
)

Path-ORAM

Ring-ORAM

Onion-ORAM

S
3
ORAM

O

S
3
ORAM

C

(b) Block size = 256 KB

Fig. 15. End-to-end delay of S3ORAM and its counterparts on a laptop with home network.

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

0

20

40

60

80

100

120

Block size (KB)

D
e
l
a
y
(
s
e
c
o
n
d
)

Path-ORAM

Ring-ORAM

S
3
ORAM

O

S
3
ORAM

C

2
2

2
3

2
4

2
5

2
6

2
7

0

2

4

6

*We excluded Onion-ORAM since its plot is far beyond the limit of y-axis.

Fig. 16. End-to-end for varying block sizes for a 40GB DB.

factors of two S
3
ORAM schemes according to 0.5-40 GB DB with 128KB blocks. There are five

factors that affect the overall delay of S
3
ORAM schemes as follows.

(1) Client computation: In both S
3
ORAM schemes, the client computed the SSS shares of the

retrieval query and the permutation matrices, recovered the requested block and re-shared the

block with SSS. All these incurred only some modular addition and multiplication operations.

These computations are extremely lightweight so that the client computation contributed

only a minimal amount to the total delay (i.e., < 1%), which is hard to observe in both

Figure 17a and Figure 17b.

(2) Server computation: In both S
3
ORAM schemes, the servers computed the ORAM tree data

with the retrieval query via the dot product and with permutation matrices via the matrix

product, which also incurred a series of modular addition and multiplication operations.

However, unlike the client computation, the cost of these operations at the server-side

depends on the block size. As a result, the server computation contributed a higher amount

to the total delay (i.e., 7-11%) than the client computation. Compared between two S
3
ORAM

schemes, we can see that S
3
ORAM

O
had a higher server computation delay than S

3
ORAM

C

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 27

0 0.5 1 1.5

0.5

1

2.5

5

10

20

40

Delay (s)

D
B
s
i
z
e
(
G
B
)

Client computation

Server computation

Client-server communication (query & matrix)

(a) S3ORAMC

0 0.5 1 1.5

0.5

1

2.5

5

10

20

40

Delay (s)

D
B
s
i
z
e
(
G
B
)

Client-server communication (block)

I/O Access

Server-server communication

(b) S3ORAMO

Fig. 17. Detailed cost breakdown of S3ORAM on a laptop with home network.

scheme. This is because the block size of S
3
ORAM

O
is much larger than S

3
ORAM

C
(i.e., 74

vs. 2), which significantly impacts the SSS-based PIR computation in the retrieval phase.

(3) Client-server communication: In both S
3
ORAM schemes, this operation contributed the most

to the total delay (over 90%). For each S
3
ORAM access, the client downloaded one block from

the servers and uploaded 1-2 blocks along with one retrieval query and some permutation

matrices. We can observe from Figure 17 that the time to upload the retrieval query and

permutationmatrices (yellow-patterned green bars) was much faster than the time to download

and upload a 128 KB data block (unpatterned green bars). This clearly reflects the theoretical

insight of S
3
ORAM schemes, where the client communication overhead is constant and

mostly dominated by the data block with the poly-logarithmic size. We can also observe that

S
3
ORAM

O
(Figure 17b) took a longer time to transmit the retrieval query and permutation

matrices than S
3
ORAM

C
(Figure 17a). This is because the bucket size parameter in S

3
ORAM

O

scheme is much larger than in S
3
ORAM

C
as explained above, which impacts the size of the

retrieval vector and the eviction matrices. On the other hand, the block transmission time in

S
3
ORAM

C
was doubly slower than in S

3
ORAM

C
. This is because the eviction in S

3
ORAM

C

requires to transmit two blocks for each access, compared with only one in S
3
ORAM

O
.

(4) I/O access: Due to the cache miss issue and the infrastructure of the selected Amazon EC2

instances (i.e., c4.4xlarge), the disk I/O access caused a considerable delay especially in

S
3
ORAM

O
scheme. Specifically, we stored the S

3
ORAM tree in a network storage unit called

“Elastic Block Storage” (EBS), which was connected to Amazon EC2 computing unit with

a maximum throughput of 160 MB/s. This resulted in the I/O access being limited by this

throughput, and therefore, causing a high delay. To reduce the I/O access overhead, one

solution is to store the S
3
ORAM tree structure on a local storage unit with high throughput

(e.g., NVMe). Another solution is to apply a caching strategy, where h-top levels of the

S
3
ORAM tree are stored directly on RAM. As explained above, S

3
ORAM

O
has a larger bucket

size than S
3
ORAM

C
so that its reported I/O delay was higher than S

3
ORAM

C
.

(5) Server-server communication: This overhead was caused by the SMM protocol when the

servers performed the matrix product operation in the eviction phase. In S
3
ORAM

O
scheme,

the reported communication delay between the servers was very low, and significantly faster

than in S
3
ORAM

C
scheme. This is because of the amortization in S

3
ORAM

O
scheme, where

the eviction was performed after every A = 37 subsequent retrievals. This context allowed

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

28 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

0 10 20 30 40

0

5

10

15

Database size (GB)

D
e
l
a
y
(
s
e
c
o
n
d
)

S
3
ORAM

O
S
3
ORAM

C

(a) Block size = 128 KB

0 10 20 30 40

10

20

30

Database size (GB)

D
e
l
a
y
(
s
e
c
o
n
d
)

S
3
ORAM

O
S
3
ORAM

C

(b) Block size = 256 KB

Fig. 18. The delay of S3ORAM schemes when servers were geographically distant from each other. The
blurred plots indicate the performance of S3ORAM and their counterparts in the original setting.

the network latency (i.e., 15 ms) to be amortized and minimized the impact of the TCP slow

start scheme. In S
3
ORAM

C
, the eviction must be performed right after each retrieval so that

its reported delay was significantly impacted by those factors.

7.2.3 The impacts of network quality. We first investigated the impact of inter-server network

quality on the performance of S
3
ORAM schemes. In this setting, we set up three Amazon EC2

servers to be geographically distant to each other (in the form of a triangle between California, Ohio

and Central Canada regions). The average network round-trip latency and throughput between

the servers were 78 ms and 295 Mbps, respectively. The round-trip latency between the client and

the farthest server was 80 ms, while the client throughput to all servers remained unchanged (i.e.,

55/6 Mbps of download/upload speed). Figure 18 presents the delay of S
3
ORAM in this setting

compared with the previous one. We can see that S
3
ORAM schemes performed 0.3–2 s (2× at

most) slower than in the original setting, where all servers were in the same region and close

to the client. This slowdown is mostly due to (i) the higher latency and lower throughput of the

inter-server network link and (ii) the latency when the client communicates with the farthest server.

However, as shown in Figure 18, S
3
ORAM still outperformed the performance of Path-ORAM and

Ring-ORAM in the original setting (i.e., server was placed close to the client). This is because

the server-server communication only contributed a small fraction in the total delay, especially

in S
3
ORAM

O
scheme (due to the amortization) as already analyzed in §7.2.2. On the other hand,

S
3
ORAM incurred only one communication round between the client and the servers so that

the impact of the client’s high round-trip latency was minimal. Moreover, the client throughput

remained unchanged and therefore, it did not impact much on the delay of S
3
ORAM schemes in

this context. We observed that S
3
ORAM

C
was more impacted by the inter-server high network

round-trip latency than S
3
ORAM

O
. This is because S

3
ORAM

C
performed eviction right after each

access, where the servers communicated with each other in O(logN) rounds. Meanwhile, these

rounds were performed once every A = 37 accesses in S
3
ORAM

O
and therefore, their total latency

was amortized.

Given that the low network quality at both client and inter-server sides did not impact much

on the delay of S
3
ORAM schemes, we now show that if the client can have a high-speed network

setting, our S
3
ORAM framework might no longer be an ideal choice. We conducted an experiment to

demonstrate that ORAM schemes featuring O(logN) bandwidth overhead are better than S
3
ORAM

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 29

0 100 200 300 400 500 600 700 800

10
0

10
1

Client network throughput (Mbps)

D
e
l
a
y
(
s
e
c
o
n
d
)

Path-ORAM Ring-ORAM

S
3
ORAM

O
S
3
ORAM

C

(a) 1 Gbps inter-server network throughput

0 100 200 300 400 500 600 700 800

10
0

10
1

Client network throughput (Mbps)

D
e
l
a
y
(
s
e
c
o
n
d
)

Path-ORAM Ring-ORAM

S
3
ORAM

O
S
3
ORAM

C

(b) 295 Mbps inter-server network throughput
Fig. 19. The impact of client network throughput.

after a certain threshold of network bandwidth. Figure 19 presents simulated performance of

S
3
ORAM schemes and their counterparts with different client network bandwidth settings regarding

40 GB database containing 128 KB blocks. With 1 Gbps inter-server network throughput (servers

were at the same region), Path-ORAM and Ring-ORAM surpassed S
3
ORAM schemes for a client

network throughput of approximately 720 Mbps and 380 Mbps, respectively (Figure 19a). Given

servers were set up geographically distant to each other, the corresponding numbers were 80-300

Mbps and 50-100 Mbps (Figure 19b). This is because Path-ORAM and Ring-ORAM feature O(logN)
bandwidth overhead so that they receive a more benefit from the high network speed. On the

other hand, S
3
ORAM schemes feature O(1) bandwidth overhead and therefore, get less benefit.

7.2.4 The Impact of k-ary tree layout. We performed an empirical analysis to confirm our finding

in §5 that increasing the degree of the ORAM tree receives very little benefit if not worse than the

default setting (i.e., binary tree).

Figure 20 presents the actual end-to-end delay of S
3
ORAM schemes with varied tree degrees

under the fixed 1TB DB with 128 KB blocks configuration. We can see that the actual delay of k-ary
S
3
ORAM schemes likely matched with the expected overhead (the dash-dotted line). As discussed,

the performance of S
3
ORAM

O
following the generalized eviction in [1] achieved the best at k = 3

(the solid purple line). Remark that for the special case where k = 2, such generalized eviction did

0 2 4 6 8 10

1

2

3

4

k

D
e
l
a
y
(
s
e
c
o
n
d
)

Expected overhead by Eq. 8

S
3
ORAM

O
with generalized eviction in [1]

S
3
ORAM

O

S
3
ORAM

C

Fig. 20. The impact of tree degree.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

30 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

not take into account the bucket load characteristic after each eviction for optimization. Meanwhile,

this characteristic was fully exploited in the Triplet Eviction strategy, which allowed reducing the

end-to-end delay by half (the solid purple point with the dashed purple line). In summary, considering

a little gain that k = 3 can offer and the optimization that can be done with k = 2, we can see that

S
3
ORAM

O
scheme achieved the best performance at the default setting (i.e., binary tree layout

with the Triplet Eviction). In S
3
ORAM

C
scheme, the actual performance followed closely to the

analytical result, which achieved the best performance at around k ∈ {3, 4, 5}. However, the gain
was not so considerable compared with k = 2 (i.e., < 6.5%). At k > 5, the delay of S

3
ORAM

C
scheme

started to increase and became worst than k = 2.

7.2.5 S3ORAM storage overhead. At the client-side, S3ORAMO
does not require the stash compo-

nent similar to Onion-ORAM. On the other hand, S
3
ORAM

C
requires the stash of size O(λ · |b |)

similar to Path-ORAM and Ring-ORAM. Therefore, given a database containing 512 KB blocks,

S
3
ORAM

C
scheme needs around 32-33 MB of the client storage for the stash, while S

3
ORAM

O

requires nothing. The storage cost for the position map component in both (non-recursive) S
3
ORAM

schemes is slightly higher than their non-recursive counterparts. For instance, with a 16 TB data-

base of 512-KB blocks (N = 33, 554, 432), S
3
ORAM schemes cost 119 MB while the others (e.g.,

Onion-ORAM, Ring-ORAM, Path-ORAM) cost 100 MB. This is because we store not only the path

information but also the specific location of each block in its assigned path.

At the server side, each server storage overhead in S3ORAMO
scheme increases by a factor of eight

(i.e., (8N −A) · |b | bits) by Lemma 3. The server storage overhead for S
3
ORAM

C
scheme increases

by a factor of two (i.e., 2N · |b |), which is equal to Circuit-ORAM. Recall that all S
3
ORAM schemes

need at least three servers. The server storage for Path-ORAM and Ring-ORAM is 4N · |b | bits
and 6N · |b | bits, respectively. The server storage for Onion-ORAM is similar to S

3
ORAM

O
for one

server but will increase after a sequence of access operation due to the ciphertext expansion of

Additively HE.

Analytical comparison with other distributed ORAM schemes. We analytically compare

S
3
ORAM schemes with state-of-the-art multi-server ORAM schemes for data outsourcing. The

most notable ORAM relevant to our framework is Multi-Cloud Oblivious Storage (MCOS) [38] as it

also features O(1) client communication overhead at the cost of O(logN) server-server bandwidth
overhead like S

3
ORAM. MCOS is better than S

3
ORAM in the several aspects as follows. First, it

does not require a minimal block size to achieve the constant client communication overhead,

while S
3
ORAM requires Ω(log

2 N) - Ω(log
3 N) block size. Second, it needs two servers to operate

while S
3
ORAM requires at least three servers. The main downside of MCOS over S

3
ORAM is that it

requires the client to store O(
√
N) data blocks compared with O(1) − O(logN). For instance, with

256 TB database with 2
32
blocks, the client storage is 15 GB (vs. {0, 8} MB in S

3
ORAM). Another

distributed ORAM relevant to S
3
ORAM is the two-server ORAM scheme by Lu and Ostrovsky et al.

[25]. Due to the hierarchical ORAM paradigm [20], the main advantage of this scheme is that the

client does not need to maintain the position map and the stash components as in partition-based

and tree-based ORAM schemes including S
3
ORAM and MCOS. However, it incurs O(logN) client

communication overhead as opposed to S
3
ORAM and MCOS. As a result, it can operate on any

block size and all the servers do not need to communicate with each other.

8 RELATEDWORK
Single-server passive ORAM (without computation). The first ORAM proposed by Goldreich

et al. [19] was in the context of software protection and followed by refinements (e.g., [20]).

The recent ORAM schemes mainly have been considered in the client-server model to hide the

data access pattern over a remote server (e.g., [33]). Preliminary ORAMs were costly in terms

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 31

of both communication and storage overhead, but recent ORAMs (e.g., [36, 40, 41, 43]) showed

significant improvements. Path-ORAM [41], which follows the tree structure of [36], achieves

O(logN) communication blowup. Various ORAMs relying on Path-ORAM have been proposed

for specific applications such as oblivious data structure (i.e., [45]), secure computation (e.g., ([43],

[44]), Parallel ORAM [8]) and secure processor [26]. However, Path-ORAM based schemes inherit

its logarithmic communication blowup [6, 31].

Single-server active ORAM (with server computation). Ring-ORAM [34] reduced the com-

munication cost of Path-ORAM by 2.5x given that the server performs XOR computations. Some

other alternatives (e.g., [3, 12, 14, 27, 30]) leveraged single-server PIR or fully/partial HE to further

reduce the communication cost. For instance, Onion-ORAM [12] achieves O(1) bandwidth blowup,

where the client and server interactively run partial HE operations. Path-PIR scheme in [27] used

PIR scheme in [42] with Additively HE (AHE) (i.e., [32]) on top of tree ORAM structure [36].

Bucket-ORAM in [14] used AHE on top of the underlying ORAM structure composed of tree ORAM

and hierarchical ORAM. The scheme in [11] used PIR scheme in [42] on top of ObliviStore [39],

which is based on Partition-ORAM in [40]. The TWORAM scheme in [15] constructed a garbled

circuit [46] over the tree ORAM structure, which allows the client and server to perform the secure

computation to access the block.

Multi-server active ORAM. Multi-server ORAM schemes were proposed to eliminate highly

costly fully/partial HE operations. CHf-ORAM [28] attempted to use four non-colluding servers to

achieve O(1) bandwidth blowup under O(1) blocks of client storage. However, CHf-ORAM [28] (as

well as its predecessor [30]) was broken byAbraham et al. in [1] which also showed an asymptotically

tight sub-logarithmic communication bound for composing ORAM with PIR. Abraham et al. in
[1] also presented a scheme using two non-colluding servers to perform XOR computations for

block retrieval over a k-ary ORAM tree structure. Stefanov et al. were among the first to propose a

multi-server ORAM scheme [38] that leverages two non-colluding computational-capable servers

to reduce the client-server bandwidth of Partition ORAM [40]. Very recently, Chan et al. proposed
a perfectly secure 3-server ORAM scheme [7] based on the Hierarchical ORAM paradigm in [20].

Gordon et al. in [21] proposed a simple and efficient 2-server tree-based ORAM, which achieves

O(logN) bandwidth overhead with O(1) communication round. In this scheme, the position map

is static meaning that the path assigned for each data block is deterministic and unchanged, which

can be computed by a pseudo-random function. In a different line of research, distributed ORAM

schemes were proposed for secure multi-party computation (e.g., [13, 25]). In these works, the

access patterns are hidden from all parties so that such ORAM schemes are integrated with some

secure computation protocol (e.g., Yao’s garbled circuit [46]) and, therefore, their cost is higher

than classical client-server ORAM model.

9 CONCLUSION
We developed a new distributed ORAM framework called S

3
ORAM that is comprised of two multi-

server ORAM schemes. Our schemes achieve O(1) client bandwidth blowup with low client storage

and low end-to-end delay while avoiding costly HE operations. The main idea is to exploit the

homomorphic properties of Shamir secret sharing and a secure multi-party multiplication protocol

to efficiently realize retrieval and eviction in tree-based ORAMs. We assessed the efficiency of

S
3
ORAM schemes by measuring their actual delay when deployed on a commodity cloud system

(i.e., Amazon EC2) with various network settings and database sizes. Our experiments confirmed

the effectiveness of S
3
ORAM schemes compared with state-of-the-art ORAM schemes in many

practical settings.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

32 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

ACKNOWLEDGMENT
This work was supported by the NSF CAREER Award CNS-1652389 and an unrestricted gift from

Robert Bosch LLC.

REFERENCES
[1] Ittai Abraham, Christopher W Fletcher, Kartik Nayak, Benny Pinkas, and Ling Ren. 2017. Asymptotically Tight Bounds

for Composing ORAM with PIR. In IACR International Workshop on Public Key Cryptography. Springer, 91–120.
[2] Anastasov Anton. 2016. Implementing Onion ORAM: A Constant Bandwidth ORAM using AHE. https://github.com/

aanastasov/onion-oram/blob/master/doc/report.pdf.

[3] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. 2014. Verifiable oblivious storage. In

International Workshop on Public Key Cryptography. Springer, 131–148.
[4] Amos Beimel and Yoav Stahl. 2002. Robust information-theoretic private information retrieval. In International

Conference on Security in Communication Networks. Springer, 326–341.
[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. 1988. Completeness Theorems for Non-Cryptographic Fault-Tolerant

Distributed Computation (Extended Abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, Janos Simon (Ed.). ACM, 1–10.

[6] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and Yan Huang. 2015. Practicing oblivious

access on cloud storage: the gap, the fallacy, and the new way forward. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 837–849.

[7] T-H Hubert Chan, Jonathan Katz, Kartik Nayak, Antigoni Polychroniadou, and Elaine Shi. 2018. More is less: Perfectly

secure oblivious algorithms in the multi-server setting. In International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 158–188.

[8] Binyi Chen, Huijia Lin, and Stefano Tessaro. 2016. Oblivious parallel ram: Improved efficiency and generic constructions.

In Theory of Cryptography Conference. Springer, 205–234.
[9] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private information retrieval. Journal of the

ACM (JACM) 45, 6 (1998), 965–981.
[10] Ivan Damgård and Mads Jurik. 2001. A generalisation, a simpli. cation and some applications of paillier’s probabilistic

public-key system. In International Workshop on Public Key Cryptography. Springer, 119–136.
[11] Jonathan Dautrich and Chinya Ravishankar. 2015. Combining ORAM with PIR to minimize bandwidth costs. In

Proceedings of the 5th ACM Conference on Data and Application Security and Privacy. ACM, 289–296.

[12] Srinivas Devadas, Marten van Dijk, Christopher W Fletcher, Ling Ren, Elaine Shi, and Daniel Wichs. 2016. Onion

oram: A constant bandwidth blowup oblivious ram. In Theory of Cryptography Conference. Springer, 145–174.
[13] Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and Boyang Wei. 2015. Three-party ORAM for secure computation. In

International Conference on the Theory and Application of Cryptology and Information Security. Springer, 360–385.
[14] Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Stefanov. 2015. Bucket ORAM: single online

roundtrip, constant bandwidth oblivious RAM. Technical Report. IACR Cryptology ePrint Archive, Report 2015, 1065.

[15] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2015. TWORAM: round-optimal oblivious RAM with
applications to searchable encryption. Technical Report. IACR Cryptology ePrint Archive, 2015: 1010.

[16] Rosario Gennaro, Michael O Rabin, and Tal Rabin. 1998. Simplified VSS and fast-track multiparty computations with

applications to threshold cryptography. In Proceedings of the seventeenth annual ACM symposium on Principles of
distributed computing. ACM, 101–111.

[17] Craig Gentry, Kenny A Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova, and Daniel Wichs. 2013. Optimizing

ORAM and using it efficiently for secure computation. In International Symposium on Privacy Enhancing Technologies
Symposium. Springer, 1–18.

[18] Ian Goldberg. 2007. Improving the robustness of private information retrieval. In 2007 IEEE Symposium on Security and
Privacy (SP’07). IEEE, 131–148.

[19] Oded Goldreich. 1987. Towards a theory of software protection and simulation by oblivious RAMs. In Proceedings of
the nineteenth annual ACM symposium on Theory of computing. ACM, 182–194.

[20] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation on oblivious RAMs. Journal of the
ACM (JACM) 43, 3 (1996), 431–473.

[21] S Dov Gordon, Jonathan Katz, and Xiao Wang. 2018. Simple and efficient two-server ORAM. In International Conference
on the Theory and Application of Cryptology and Information Security. Springer, 141–157.

[22] Thang Hoang, Ceyhun D. Ozkaptan, Attila A. Yavuz, Jorge Guajardo, and Tam Nguyen. 2017. S3ORAM: A Computation-

Efficient and Constant Client Bandwidth Blowup ORAM with Shamir Secret Sharing. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security (CCS ’17). ACM, New York, NY, USA, 491–505.

https://doi.org/10.1145/3133956.3134090

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

https://github.com/aanastasov/onion-oram/blob/master/doc/report.pdf
https://github.com/aanastasov/onion-oram/blob/master/doc/report.pdf
https://doi.org/10.1145/3133956.3134090

A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 33

[23] Thang Hoang, Attila Altay Yavuz, and Jorge Guajardo. 2016. Practical and secure dynamic searchable encryption

via oblivious access on distributed data structure. In Proceedings of the 32nd Annual Conference on Computer Security
Applications. ACM, 302–313.

[24] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access Pattern disclosure on Searchable

Encryption: Ramification, Attack and Mitigation.. In NDSS.
[25] Steve Lu and Rafail Ostrovsky. 2013. Distributed oblivious RAM for secure two-party computation. In Theory of

Cryptography. Springer, 377–396.
[26] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John Kubiatowicz, and Dawn Song.

2013. Phantom: Practical oblivious computation in a secure processor. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security. ACM, 311–324.

[27] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. 2014. Efficient Private File Retrieval by Combining ORAM

and PIR.. In NDSS. Citeseer.
[28] Tarik Moataz, Erik-Oliver Blass, and Travis Mayberry. [n. d.]. CHf-ORAM: A Constant Communication ORAMwithout

Homomorphic Encryption. ([n. d.]).

[29] Tarik Moataz, Erik-Oliver Blass, and Travis Mayberry. 2015. Constant communication ORAM without encryption.
Technical Report. IACR Cryptology ePrint Archive, Report 2015/1116.

[30] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. 2015. Constant communication ORAM with small blocksize. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 862–873.

[31] Muhammad Naveed. 2015. The Fallacy of Composition of Oblivious RAM and Searchable Encryption. IACR Cryptology
ePrint Archive 2015 (2015), 668.

[32] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree residuosity classes. In International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 223–238.

[33] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM revisited. In Advances in Cryptology–CRYPTO 2010. Springer,
502–519.

[34] Ling Ren, Christopher W Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk, and Srinivas Devadas.

2014. Ring ORAM: Closing the Gap Between Small and Large Client Storage Oblivious RAM. IACR Cryptology ePrint
Archive 2014 (2014), 997.

[35] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[36] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious RAM with O ((logN) 3) worst-case cost.

In Advances in Cryptology–ASIACRYPT 2011. Springer, 197–214.
[37] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dynamic Searchable Encryption with Small

Leakage.. In NDSS, Vol. 71. 72–75.
[38] Emil Stefanov and Elaine Shi. 2013. Multi-cloud oblivious storage. In 2013 ACM SIGSAC conference on Computer &

communications security. ACM, 247–258.

[39] Emil Stefanov and Elaine Shi. 2013. Oblivistore: High performance oblivious cloud storage. In Security and Privacy
(SP), 2013 IEEE Symposium on. IEEE, 253–267.

[40] Emil Stefanov, Elaine Shi, and Dawn Song. 2011. Towards practical oblivious RAM. arXiv preprint arXiv:1106.3652
(2011).

[41] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2013.

Path ORAM: an extremely simple oblivious RAM protocol. In Proceedings of the 2013 ACM SIGSAC conference on
Computer and Communications security. ACM, 299–310.

[42] Jonathan Trostle and Andy Parrish. 2010. Efficient computationally private information retrieval from anonymity or

trapdoor groups. In International Conference on Information Security. Springer, 114–128.
[43] Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit oram: On tightness of the goldreich-ostrovsky lower bound. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 850–861.

[44] Xiao Wang, Yan Huang, TH Hubert Chan, Abhi Shelat, and Elaine Shi. 2014. SCORAM: oblivious RAM for secure

computation. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,

191–202.

[45] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Chan, Elaine Shi, Emil Stefanov, and Yan Huang. 2014. Oblivious

data structures. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,

215–226.

[46] Andrew C Yao. 1982. Protocols for secure computations. In 23rd Annual Symposium on Foundations of Computer Science,
1982. IEEE, 160–164.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

34 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

APPENDIX
Figure 21 presents the subroutines of Circuit-ORAM [43] that are called in the eviction of S

3
ORAM

C

scheme presented in Figure 13.

PrepareTarget(x):
1: dest← ⊥; src← ⊥, target← (⊥, . . . ,⊥)
2: for i = H , . . . , 0 do
3: if i = src then
4: target[i] ← dest; dest← ⊥; src← ⊥

5: if ((dest = ⊥ and P(x , i) has empty slot) or (target[i] , ⊥)) and (deepest[i] , ⊥) then
6: src← deepest[i]
7: dest← i
8: return target
PrepareDeepest(x):
1: deepest← (⊥, . . . ,⊥); deepestIdx← (⊥, . . . ,⊥); src← ⊥; goal← −1

2: if stash S is not empty then
3: src← 0

4: goal← Deepest level that a block in the stash S can legally reside on path P(x)
5: deepestIdx[0] ← j, where j is the index of the selected deepest block in S

6: for i = 1, . . . ,H do
7: if goal ≥ i then
8: deepest[i] ← src

9: ℓ ← Deepest level that a block in P(x , i) can legally reside on path P(x)
10: deepestIdx[i] ← j, where j is the index of the selected deepest block in P(x , i)
11: if ℓ > goal then
12: goal← ℓ
13: src← i
14: return (deepest, deepestIdx)

Fig. 21. Circuit-ORAM eviction subroutines.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.

	Abstract
	1 Introduction
	1.1 The Limitations of the State-of-the-art and Our Objectives
	1.2 Our Contribution

	2 Preliminaries and Building Blocks
	2.1 Model of Computation
	2.2 Shamir Secret Sharing
	2.3 Secure Multi-party Multiplication
	2.4 Multi-server Private Information Retrieval
	2.5 Multi-server ORAM Security

	3 The Proposed S3ORAM Framework
	3.1 Overview of S3ORAM Framework
	3.2 S3ORAMO: S3ORAM with Low Client Storage
	3.3 S3ORAMC: S3ORAM with Low Server Storage and Computation Overhead

	4 Security Analysis
	5 Generalization of S3ORAM Over k-ary Tree
	6 Implementation
	7 Experimental Evaluation
	7.1 Configuration and Methodology
	7.2 Experimental Results

	8 Related Work
	9 Conclusion
	References

