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Abstract—Spectrum database-based cognitive radio networks
(CRNs) have become the de facto approach for enabling un-
licensed secondary users (SUs) to identify spectrum vacancies
in channels owned by licensed primary users (PUs). Despite its
merits, the use of spectrum databases incurs privacy concerns for
both SUs and PUs. Single-server private information retrieval
(PIR) has been used as the main tool to address this problem.
However, such techniques incur extremely large communication
and computation overheads while offering only computational
privacy. Besides, some of these PIR protocols have been broken.

In this paper, we show that it is possible to achieve high
efficiency and (information-theoretic) privacy for both PUs and
SUs in database-driven CRN with multi-server P/R. Our key
observation is that, by design, database-driven CRN's comprise
multiple databases that are required, by the Federal Commu-
nications Commission, to synchronize their records. To the best
of our knowledge, we are the first to exploit this observation
to harness multi-server P/R technology to guarantee an optimal
privacy for both SUs and PUs, thanks to the unique properties of
database-driven CRN. We showed, analytically and empirically
with deployments on actual cloud systems, that multi-server
PIR is an ideal tool to provide efficient location privacy in
database-driven CRN.

Keywords—Database-driven cognitive radio networks, location
privacy, dynamic spectrum access, private information retrieval.

I. INTRODUCTION

The rapid growth of connected wireless devices has dra-
matically increased the demand for wireless spectrum and
led to a serious shortage in spectrum resources. Cognitive
radio networks (CRNs) [1] have emerged as a promising
technology for solving this shortage problem by enabling dy-
namic spectrum access (DSA), which improves the spectrum
utilization efficiency by allowing unlicensed/secondary users
(SUs) to exploit unused spectrum bands (aka spectrum holes
or white spaces) of licensed/primary users (PUs).

Currently, two approaches are being adopted to iden-
tify these white spaces: spectrum sensing and geolocation
spectrum databases. In the spectrum sensing-based approach,
SUs need to sense the PU channel to determine whether
the channel is available for opportunistic use. The spectrum
database-based approach, on the other hand, waives the sens-
ing requirement and instead enables SUs to query a database
(DB) to learn about spectrum opportunities in their vicinity.
This approach, already promoted and adopted by the Federal
Communications Commission (FCC), was introduced as a
way to overcome the technical hurdles faced by the spectrum
sensing-based approaches, thereby enhancing the efficiency
of spectrum utilization, improving the accuracy of available
spectrum identification, and reducing the complexity of ter-
minal devices [2]. Moreover, it pushes the responsibility and
complexity of complying with spectrum policies to DB and
eases the adoption of policy changes by limiting updates to
just a handful number of databases, as opposed to updating
large numbers of devices [3].

FCC has designated nine entities (e.g. Google [4], iconec-
tiv [5], and Microsoft [6]) as TV bands device database
administrators which are required to follow the guidelines
provided by PAWS (Protocol to Access White Space) stan-
dard [3]. PAWS sets guidelines and operational requirements
for both the spectrum database and the SUs querying it.
These include: SUs need to be equipped with geo-location
capabilities, SUs must query DB with their specific location
to check channel availability before starting their transmis-
sions, DB must register SUs and manage their access to the
spectrum, DB must respond to SUs’ queries with the list of
available channels in their vicinity along with the appropriate
transmission parameters. As specified by PAWS standard, SUs
may be served by several spectrum databases and are required
to register to one or more of these databases prior to querying
them for spectrum availability. The spectrum databases are
reachable via the Internet, and SUs querying these databases
are expected to have some form of Internet connectivity [7].

FCC has established a new service in the 3.5 GHz
band, known as Citizens Broadband Radio Service (CBRS),
in which the spectrum is also managed through a central
database-driven CRN, aka spectrum access system (SAS),
to enable spectrum sharing between military and federal
incumbents and SUs. A separate entity with Environmental
Sensing Capability (ESC) is responsible of populating DBs
with data regarding PUs that do not wish to reveal their
operational information such as their location or transmission
characteristics. A similar concept, named licensed shared ac-
cess (LSA), for the 2.3-3.4 GHz band is also being developed
in Europe to enable SUs to opportunistically access spectrum
resources in this band owned by incumbent military aircraft
services and police wireless communications. A major differ-
ence compared to SAS, is that in LSA, PUs are responsible
for populating DBs by providing their a priori information;
i.e. their activities and, therefore the spectrum availability
information, are known upfront [§].

A. Location Privacy Issues in Database-Driven CRN s

Despite their benefits, database-driven CRN's suffer from
serious security and privacy threats. Since they could be seen
as a variant of of location based service (LBS), the disclosure
of location information of SUs represents the main threat
to SUs when it comes to obtaining spectrum availability
from DBs. The fine-grained location, when combined with
publicly available information, can easily reveal other personal
information about an individual including his/her behavior,
health condition, personal habits or even beliefs. For instance,
an adversary can learn some information about the health
condition of a user by observing that the user regularly goes to
a hospital for example. The frequency and duration of these
visits can even reveal the seriousness of a user illness and
even the type of illness if the location corresponds to that of
a specialty clinic. Matters get worse when SUs are mobile.



As per the PAWS requirements, SUs need to query DBs
whenever they change their location by at least 100 meters.
This will make SUs constantly share their location as they
move which could be exploited by a malicious service provider
for tracking purposes.

The location privacy of SUs is not the only privacy
concern that database-driven CRN's suffer from. Indeed, the
location privacy of PUs may also be critical in CRN systems
such as SAS, in the 3.5 GHz CBRS band, and LSA, in
the 2.3-2.4 GHz band, where PUs are not commercial but
rather military and governmental entities. To achieve efficient
spectrum sharing without interference to military and federal
incumbents, these systems require PUs, or entities with
sensing capabilities such as ESC, to report PUs’ operational
data (including their location, frequencies time of use, etc.)
to be included in the spectrum databases which may present
serious privacy risks to these PUs.

Being aware of such potential privacy threats, both SUs
and PUs may refuse to share their sensitive information with
DBs, which may present a serious barrier to the adoption of
database-based CRN's, and to the public acceptance and pro-
motion of the dynamic spectrum sharing paradigm. Therefore,
there is a critical need for developing techniques to protect
the location privacy of both PUs and SUs while allowing
the latter to harness the benefits of the CRN paradigm
without disrupting the functionalities that these techniques are
designed for to promote dynamic spectrum sharing.

B. Research Gap and Objectives

Despite the importance of the location privacy issue in
CRNs, only recently has it started to gain interest from the
research community [9]. Some works focus on addressing this
issue in the context of collaborative spectrum sensing [10]—
[14]; others address it in the context of dynamic spectrum
auction [15]. Protecting SUs’ location privacy in database-
driven CRN's is a more challenging task, merely because SU's
are required, by protocol design, to provide their physical
location to DB to learn about spectrum opportunities in
their vicinity. The heterogeneity of wireless devices and the
versatility of services relying on the CRN technology [16]
could also present some challenges in designing privacy-
preserving mechanisms for users in CRNs. In fact, privacy-
preserving solutions need to embrace the different resource
constraints of each SU device and the various requirements
of each service in terms of data rates and delay sensitivities.
This makes it hard to leverage general purpose public key
encryption-based techniques due to their high cost in terms
of computation and communication overheads especially on
resource-constrained devices. It is therefore crucial to design
cost-effective protocols that offer strong privacy guarantees
to users and also adapt to different systems requirements
regardless of the constraints of the users.

The existing location privacy preservation techniques for
database-driven CRN (e.g., [2], [17]-[21]) generally rely on
three main lines of privacy preserving technologies, (i) k-
anonymity [22], (ii) differential privacy [23] and (iii) single-
server Private Information Retrieval (PIR) [24]. However, the
direct adaptation of k-anonymity based techniques have been
shown to yield either insecure or extremely costly results [25].
The solutions adapting differential privacy (e.g., [20]) not only
incur a non-negligible overhead, but also introduce a noise

over the queries, and therefore they may negatively impact
the accuracy of spectrum availability information.

Among these alternatives, single-server PIR seems to
be the most popular. PIR technology is a suitable choice
for database-driven CRN's, as it permits privacy preserving
queries on a public database, and therefore can enable a SU to
retrieve spectrum availability information from the database
without leaking its location information. However, single-
server PIR protocols rely on highly costly partial homomor-
phic encryption schemes, which need to be executed over the
entire database for each query. Indeed, as we also demon-
strated with our experiments in Section IV, the execution of
a single query even with some of the most efficient single-
server PIR schemes [26] takes approximately 20 seconds with
a 80 Mbps/ 30Mbps bandwidth on a moderate size database
(e.g., 10% entries). An end-to-end delay with the orders of 20
seconds might be undesirable for spectrum sensing needs of
SUs in real-life applications. Also, some of the state-of-the-
art efficient computational PI/R schemes [27] that are used
in the context of CRN's have been shown to be broken [26].
Thus, there is a significant need for practical location privacy
preservation approaches for database-driven CRN's that can
meet the efficiency and functionality requirements of SUs.

C. Our Observation and Contribution

The objective of this paper is to develop efficient tech-
niques for database-driven CRN's that preserve the location
privacy of SUs during their process of acquiring spectrum
availability information. We also try to protect the operational
privacy of PUs in systems that require incumbents to provide
spectrum availability information to DBs. Specifically, we will
aim for the following design objectives: (i) (location privacy
of SUs) Preserve the location privacy of SUs, whether fixed or
mobile, while allowing them to receive spectrum availability
information; (i¢) (efficiency and practicality) Incur minimum
computation, communication and storage overhead. The cryp-
tographic delay must be minimum to permit fast spectrum
availability decision for the SUs, and storage/processing cost
must be low to enable practical deployments. (iii) (fault-
tolerance and robustness) Mitigate the effects of system
failures or misbehaving entities (e.g., colluding databases).
(iv) (location privacy of PUs) The location information of
PU's needs to be protected while still able to provide spectrum
availability information to DBs. It is very challenging to meet
all of these seemingly conflicting design goals simultaneously.

The main idea behind our proposed approaches is to
harness special properties and characteristics of the database-
driven CRN systems to employ private query techniques that
can overcome the significant performance, robustness and pri-
vacy limitations of the state-of-the-art techniques. Specifically,
our proposed approach is based on the following observation:

Observation: FCC requires that all of its certified
databases synchronize their records obtained through regis-
tration procedures with one another [28], [29] and need to
be consistent across the other databases by providing exactly
the same spectrum availability information, in any region, in
response to SUs’ queries [30]. That is, the same copy of spec-
trum database is available and accessible to the SUs via mul-
tiple (distinct) spectrum database administrators/providers.
Is it possible exploit this observation to achieve efficiency
location preservation techniques for database-driven CRN ?



In practice, as stated in PAWS standard [3], SUs have the
option to register to multiple spectrum databases belonging to
multiple service providers. Currently, many companies (e.g.
Google [4], iconectiv [5], etc) have obtained authorization
from FCC to operate geo-location spectrum databases upon
successfully complying to regulatory requirements. Several
other companies are still underway to acquire this authoriza-
tion [31]. Thus, it is more natural and realistic to take this fact
into consideration when designing privacy preserving proto-
cols for database-based CRN's. Based on this observation, our
main contribution is as follows:

TABLE I: Performance Comparison

Delay .
Scheme Comm. Privacy
DB | sU | twtal
LP-Chor 753 KB 0.48s | 0.0077s | 0.62s (¢ — 1)-private
LP-Goldberg 6000 KB 1.21s 0.32s 1.78 s t-private {-comp.-private
RAID-LP-Chor 125 KB 0.022s | 0.00041s | 0.21s (m — 1)-private

PriSpectrum [2] || 5128 KB 2ls 0.084 s 24.2 underlying PIR broken

Troja et al [19] 84KB 11760 s 5.62 s 11766 s || computationally-private

Troja et al [18] 12120 KB || 11760 s 48 s 11820 s computationally-private

XPIR [26] 4321 KB 17.66 s 0.34 s 20.53 s computationally-private

SealPIR [32] 512KB 11.03 s 0.008 s 11.35s computationally-private

Parameters: n = 560 M B, b =560B, r =10% (=6, w=28, k=6

Our Contribution: To the best of our knowledge, we are
the first to exploit the fact that multiple copies of spectrum
DBs are available by nature in database-driven CRN's, and
therefore it is possible to harness multi-server PIR tech-
niques [24], [33] that offer information-theoretic privacy
with substantial efficiency advantages over single-server PIR.
This is achieved by relying on Shamir secret sharing-based
techniques to either divide the content of SUs’ queries or the
spectrum availability information, or both, among the different
DBs to prevent these DBs from inferring SUs’ location from
their queries or from learning PU s’ sensitive operational data
from the spectrum availability information.

We show, analytically and experimentally with deploy-
ments on cloud systems, that our adaptation of multi-server
PIR techniques significantly outperforms the state-of-the-art
location privacy preservation methods as demonstrated in
Table I and detailed in Section IV. Moreover, our adaptations
achieve information theoretical privacy while existing alterna-
tives offer only computational privacy. This feature provides
an assurance against even post-quantum adversaries [34] and
can avoid recent attacks on computational PIR [26].

Notice that, multi-server PIR techniques require the avail-
ability of multiple (synchronized) replicas of the database.
Therefore, despite their high efficiency and security, they
received a little attention from the practitioners. For instance,
in traditional data outsourcing settings (e.g., private cloud
storage), the application requires a client to outsource only a
single copy of its database. The distribution and maintenance
of multiple copies of the database across different service
providers brings additional architectural and deployment costs,
which might not be economically attractive for the client.

In this paper, we showcased one of the first natural use-
cases of multi-server PIR, in which the multiple copies of
synchronized databases are already available by the original
design of application (i.e., spectrum availability information in

multi-database CRN's), and therefore multi-server PIR does
not introduce any extra overhead on top of the application. Ex-
ploiting this synergy between multi-database CRN and multi-
server PIR permitted us to provide informational theoretical
location privacy for SUs with a significantly better efficiency
compared to existing single-server PIR approaches.

Desirable Properties: We outline the desirable properties

of our approaches below.

Computational efficiency: The adapted approaches are much
more efficient than existing location privacy preserving
schemes. For instance, as shown in Table I, LP-Chor and
LP-Goldberg are more than 3 orders of magnitudes faster
than the schemes proposed by Troja et al. [18], [19], and
10 times faster than XPIR [26] and PriSpectrum [2].
Information Theoretical Privacy Guarantees: They can
achieve information-theoretic privacy which is the optimal
privacy level that could be reached as opposed to computa-
tional privacy guarantees offered by existing approaches. In
fact some of these approaches are prone to recent attacks
on computational-PIR protocols [26] and are not secure
against post-quantum adversaries [34].

Low communication overhead: Our approaches incur a
reasonable communication overhead that is a middle ground
between the fastest computational PIR [26] and the most
communication efficient computational PIR [35].
Fault-Tolerance and Robustness: Our proposed approaches
are resilient to the issues that are associated with multi-
server architectures: failures, byzantine behavior, and col-
lusion. Even though the collusion of all of the service
providers is unlikely to happen due to the competing nature
of these companies and due to regulatory enforcement
from bodies such as FCC to protect users’ data, we have
however considered collusion in our system and security
model. All proposed approaches can handle collusion of
multiple DBs up to certain limit that is different for each
approach. In addition, some of the proposed approaches
can also handle faulty and byzantine DBs. Besides, simply
hacking DBs, when the proposed approaches are in place,
will not be sufficient to learn users’ information since
some of these protocols offer hybrid privacy protection
by combining both computational and information-theoretic
PIR protocols enabling them to offer computational privacy
even when all of the DBs are compromised.

Experimental evaluation on actual cloud platforms: We
deploy our proposed approaches on a real cloud platform,
GENI [36], to show their feasibility. In our experiment,
we create multiple geographically distributed VMs each
playing the role of a DB. A laptop plays the role of a
SU that queries DBs, i.e. VM s. Our experiments confirm
the superior computational advantages of the adoption of
multi-server PIR over the existing alternatives.

D. Differences Compared to the Preliminary Version

The main differences between this paper and its prelimi-

nary versions [37], [38] are as follows: (i) We further consider
the location privacy issue of mobile SUs and offer a way to
amortize the cost incurred by mobility. (ii) We also leverage
multi-server PIR to address the location privacy issue of
PUs in database-CRN systems that require PUs to provide
spectrum availability to DDBs. (iii)) We discuss also a way to
reduce the cost of LP-Chor by partitioning the spectrum



database instead of simply replicating it using the RAID-
PIR protocol [39] and we discuss the privacy-performance
tradeoff of relying on such approach. (iv) We provide a
more detailed performance evaluation that takes into account
the latest advances in PIR technology, namely SealPIR [32]
which relies on fully homomorphic encryption.

II. PRELIMINARIES AND MODELS
A. Notation and Building Blocks

We summarize our notations in Table II. Our adaptations
of multi-server PIR rely on the following building blocks.

TABLE II: Notations

DB Spectrum database

SU Secondary user

CRN  Cognitive radio network

l Number of spectrum databases

D Matrix modeling the content of DB

T Number of records in D

n Size of the database in bits

b Size of one record of the database in bits
w Size of one word of the database in bits

s Number of words per block

B8 Index of the record sought by SU

t Privacy level (tolerated number of colluding DBs)
k Number of responding DBs

9 Number of byzantine DBs

Private Information Retrieval (PIR): PIR allows a user
to retrieve a data item of its choice from a database, while
preventing the server owning the database from gaining infor-
mation on the identity of the item being retrieved [40]. One
trivial solution to this problem is to make the server send an
entire copy of the database to the querying user. Obviously,
this is a very inefficient solution to the PIR problem as
its communication complexity may be prohibitively large.
However, it is considered as the only protocol that can provide
information-theoretic privacy, i.e. perfect privacy, to the user’s
query in single-server setting. There are two main classes of
PIR protocols according to their privacy level: information-
theoretic PIR (itPIR) and computational PIR (cPIR).

o Information-theoretic or multi-server PIR: It guarantees
information-theoretic privacy to the user, i.e. privacy against
computationally unbounded servers. This could be achieved
efficiently only if the database is replicated at £ > 2 non-
communicating servers [24], [33]. The main idea behind
these protocols consists on decomposing each user’s query
into several sub-queries to prevent leaking any information
about the user’s intent.

o Computational or single-server PIR: It guarantees privacy
against computationally bounded server(s). In other words,
a server cannot get any information about the identity of
the item retrieved by the user unless it solves a certain
computationally hard problem (e.g. prime factorization of
large numbers), which is common in modern cryptography.
Thus, they offer weaker privacy than their ¢P/R counter-
parts [27], [41].

Shamir Secret Sharing: This is a concept introduced by
Shamir et al. [42] to allow a secret holder to divide its secret
S into ¢ shares Si,---,Sy and distribute these shares to
¢ parties. In (t,¢)-Shamir secret sharing, where ¢ < £, if ¢ or
fewer combine their shares, they learn no information about S.

However, if more than ¢ come together, they can easily recover
S. Given a secret S chosen arbitrarily form a finite field,
the (¢, ¢)-Shamir secret sharing scheme works as follows: the
secret holder chooses ¢ arbitrary non-zero distinct elements
aq,--- ,ap € F. Then, it selects ¢t elements o1, -+ ,0; € F
uniformly at random. Finally, the secret holder constructs the
polynomial f(z) = o9 + 012 + 092? + -+ + opxt, where
09 = S. The /¢ shares S1,--- , Sy, that are given to each party,
are (a1, f(aq)), -+, (e, f(ap)). Any ¢t + 1 or more parties
can recover the polynomial f using Lagrange interpolation
and thus they can reconstruct the secret S = f(0). However,
t or less parties can learn nothing about S. In other words, if
t+1 shares of S are available then S can be easily recovered.

B. System Model and Security Definitions

We consider a database-driven CRN that contains ¢ DBs,
where ¢ > 2, and a SU registered to these DBs to learn
spectrum availability information in its vicinity. We assume
that these DBs share the same content and that they are
synchronized as mandated by PAWS standard [3]. We also
assume that DBs may collude in order to infer SU’s location.
In the following, we present our security definitions.

Definition 1. Byzantine DB: This is a faulty DB that runs
but produces incorrect answers, possibly chosen maliciously
or computed in error. This might be due to a corrupted or
obsolete copy of the database caused by a synchronization
problem with the other DBs.

Definition 2. t-private PIR: The privacy of the query is
information-theoretically protected, even if up to t of the
¢ DBs collude, where 0 < t < L.

Definition 3. ¥-Byzantine-robust PIR: Even if 9 of the re-
sponding DBs are Byzantine, SU can reconstruct the correct
database item, and determine which of the DDBs provided
incorrect response.

Definition 4. k-out-of-£ PIR: SU can reconstruct the correct
record if it receives at least k-out-of-{ responses, 2 < k < /.

Definition 5. Robust PIR: It can deal with DBs that do not
respond to SU’s queries and allows SU to reconstruct the
correct output of the queries in this situation.

Definition 6. 7-independent PIR: The content of the
database itself is information theoretically protected from the
coalition of up to T DBs, where 0 < 1 < k — t.

III. PROPOSED APPROACHES

In the proposed approaches, we tailor multi-server PIR to
the context of multi-DB CRNs. We start by illustrating the
structure of the spectrum database that we consider. Then, we
give several approaches, each adapts a multi-server PIR pro-
tocol with different security, performance properties, and use
cases. We model the content of each DB as an r X s matrix
D of size n bits, where s is the number of words of size
w in each record/block of the database and r is the number
of records in the database, i.e. 7 = n/b, where b = s x w is
the block size in bits. The k** row of D is the k*" record of
the database.

w11 w12 ... W1is

wa1 Wo2 ... Was
D =

Wr1 Wr2 ... Wrs



We further assume that each row of the database corresponds
to a unique combination of the tuple (I;,1,, C,ts), where
l; and [, represent one location’s latitude and longitude,
respectively, C' is a channel number, and ts is a time-
stamp. We also assume that SUs can associate their location
information with the index /3 of the corresponding record of
interest in the database using some inverted index technique
that is agreed upon with DBs. An SU that wishes to retrieve
record D g without any privacy consideration can simply send
to DB a row vector eg consisting of all zeros except at
position 3 where it has the value 1. Upon receiving eg,
DB multiplies it with D and sends record D g back to SU as
we illustrate below:

w11 w12 W1is
W21 W22 Was
0 ... 01 0 ... 0
Wr1 Wr2 ... Wrs
=[wpr  wp2 ey

This trivial approach makes it easy for DBs to learn SU’s
location from the vector eg as D is indexed based on location.
In the following we present two approaches that try to hide
the content of eg from DBs, and thus preserve SU’s location
privacy. The approaches present a tradeoff between efficiency,
and some additional security features.

A. Location Privacy with Chor (LP-Chor)

Our first approach, termed LP-Chor, harnesses the simple
and efficient ¢tPIR protocol proposed by Chor et al. [24]. We
describe the different steps of LP-Chor in Algorithm 1 and
highlight these steps in Fig. 1. Elements of D in this scheme
belong to GF'(2), i.e. w =1 bit and b = s.

DB; DBy DBy
Q i. Qr YIS
R o s
Tlien e pey |y
=N 2, s

1 1 1
1 1
—

SU

Ri@---®Ry=es-D

Fig. 1: Main steps of LP-Chor Algorithm

In LP-Chor, SU starts by invoking the inverted index
subroutine Invindex(ly,1,, C,ts) which takes as input the
coordinates of the user, its channel of interest, and a time-
stamp and returns a value (. This value corresponds to the
index of the record D g of D that SU is interested in. SU then

constructs eg, which is a standard basis vector ?g c 7z
having 0 everywhere except at position /3 which has the value
1 as we discussed previously. SU also picks ¢ —1 r-bit binary
strings p1,- - , pe—1 uniformly at random from GF'(2)", and
computes py = p1 @ - -- @ eg. Finally, SU sends p; to DB;,
for 1 <4 < /. Upon receiving the bit-string p; = p;1 D+ - - Pir
of length r, DB; computes R; = p;- D, which could be seen
also as the XOR of those blocks D; in D for which the j**
bit of p; is 1, then sends R; back to SU. SU receives R;s
from DB;s, 1 < ¢ < /¢, and computes Ry @ --- @ Ry =

Algorithm 1 Dg < LP-Chor(¢, r, b)

SU
B+ Invindex(ly, 1, C,ts)

. —
Sets standard basis vector eg <— 15 € Z"
Generates p1, - ,pr—1 €gr GF(2)"
Pe—p1D---Deg
Sends p; to DB;, for 1 <i </

A

Each DBZ
6: Receives p; = pi1 - - pir € {0,1}7

7. R; Dj, D; is the j** block of D
1<j<r
pij=1
8: Sends R; to SU
SU
9: Receives Ry, -, Ry

10 Dg+~ R ®--- D Ry

(pr®---®py)- D =ep- D, which is the 5 block of the
database that SU is interested in, from which it can retrieve
the spectrum availability information.

LP-Chor is very efficient thanks to its reliance on simple
XOR operations only as we discuss in Section IV. It is also
(¢ — 1)-private, by Definition 2, as collusion of up to ¢ — 1
DBs cannot enable them to learn eg, and consequently its
location. In fact, only if ¢ DBs collude, then they will be able
to learn ez by simply XORing their {p;}¢_;. However this
approach suffers from two main drawbacks. First, it is not
robust since even if one DB fails to respond, SU will not be
able to recover Dg. Second, it is not byzantine robust; if one
or more DBs return a wrong response, SU will reconstruct
a wrong block and also will not be able to recognize which
DB misbehaved so as not to rely on it for future queries. In
Section III-B we discuss a second approach that improves on
these two aspects but with some additional overhead.

B. Location Privacy with Goldberg (LP-Goldberg)

Our second approach, termed LP-Goldberg, is based on
Goldberg’s it PIR protocol [33] which uses Shamir secret shar-
ing to hide eg, i.e. SU’s query. It is a modification of Chor’s
scheme [24] to achieve both robustness and byzantine robust-
ness. Rather than working over GF(2) (binary arithmetic),
this scheme works over a larger field I, where each element
can represent w bits. The database D = (w;;) € F"** in this
scheme, is an 7 x s matrix of elements of F = GF'(2"). Each
row represents one block of size b bits, consisting of s words
of w bits each. Again, D is replicated among ¢ databases
DB;. We summarize the main steps of LP-Goldberg protocol
in Algorithm 2 and illustrate them in Fig. 2.

To determine the index (3 of the record that corre-
sponds to its location, SU starts by invoking the subroutine
InvIndex(l;,1,, C,ts) then constructs the standard basis
vector eg € F" as explained earlier. SU then uses (¢,t)-
Shamir secret sharing to divide the vector eg into ¢ inde-
pendent shares (aq,,p1) -, (g, pe) to ensure a t-private
PIR protocol as in Definition 2. That is, SU chooses ¢ distinct
non-zero elements o; € F* and creates r random degree-¢
polynomials fi,--- , f, satisfying f;(0) = eg[j]. SU then
sends to each DB; its share corresponding to the vector p; =
(f1(ai), -+, fr()). Each DB; then computes the product
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Fig. 2: Tllustration of LP-Goldberg

R, = pi- D = (3, fi(ai)w

gl 72;‘ filai)w;s) € F*
and sends R; to SU.

Some DBs may fail to respond to SU’s query and only k-
out-of-¢ send their responses to SU. SU collects k responses
from the k responding DBs and tries to recover the record
at index § from the R;s by using the EASYRECOVER()
subroutine from [33] which uses Lagrange interpolation to
recover Dy from the secret shares (o, Ri1), -+, (o, Ry).
This is possible thanks to the use of (¢, ¢)-Shamir secret
sharing as long as £ > ¢ and these k DBs are honest.
In fact, by the linearity property of Shamir secret sharing,
since {(;, pi)}_, is a set of (£, t)-Shamir secret shares of
es, then {(a;, R;)}i_, will be also a set of (¢,t)-Shamir
secret shares of eg - D, which is the Bth block of the
database. Thus, it is possible for SU to reconstruct D g using
Lagrange interpolation as explained in Section II, by relying
only on the k responses which makes LP-Goldberg robust by
Definition 5. Also, the EASYRECOVER can detect the DBs
that responded honestly, thus those that are byzantine as well,
which should discourage DBs from misbehaving. More details
about this subroutine could be found in [33].

Moreover, ¥ DBs among the k responding ones may
even be byzantine, as in Definition 1, and produce incorrect
response. In that case, it would be impossible for SU to
simply rely on Lagrange interpolation to recover the correct
responses. Since Shamir secret sharing is based on polyno-
mial interpolation, the problem of recovering the response
in the case of byzantine failures corresponds to noisy poly-
nomial reconstruction, which is exactly the problem of de-
coding Reed-Solomon codes [43]. Thus, SU would rather
rely on error correction codes and more precisely on the
Guruswami-Sudan list decoding [44] algorithm which can
correct ¥ < k — [v/kt] incorrect responses. In fact, the vector
(R1[q], R2lq],- - , R¢[q]) is a Reed-Solomon code-word en-
coding the polynomial g, = > j fjwjq, and the client wishes
to compute gq(O) for each 1 < ¢ < s to recover all the s words
forming the record Dg = (g1(0),-- -, ¢s(0)). This is done
through the HARDRECOVER() subroutine from [33]. This
makes LP-Goldberg also 9-Byzantine-robust, by Definition 3,
and solves the robustness issues that LP-Chor suffers from,
however, this comes at the cost of an additional overhead as
we discuss in Section IV.

Corollary 1. LP-Chor and LP-Goldberg directly inherit the
security properties of Chor’s [24] PIR and Goldberg’s [33]

Algorithm 2 Dg < LP-Goldberg(¢,r,b,t, w)
SU

1: B« Invindex(l,l,, C,ts)
2: Sets standard basis vector eg <~ 1 g € Z"
3: Chooses ¢ distinct oy, -+ ,ap € F*
4: Creates r random degree-t polynomials fi,---,f. €gr
F[‘T] s.t. f](o) = eﬁ[j], V] € [17 T 77']
50 P <f1(ai)7' o 7f7‘(ai)>’ Vi € [17 o 7£]
6: Sends p; to DB;, Vi € [1,--- (]
Each honest DB;
7: Receives pz
8 R; — pPi <Z fg(az)wjla"' 72]‘ fj(ai)sz>
9: Sends R to SU
SU
10: Receives Ry, -+, Ry,
11: if & > t then
12: for ¢ from 1 to s do
133 R+ Ril|Vie[l, - k]
14: Sc <~ <Rlca"' 7ch>
15 Dpg. <+~ EASYRECOVER(¢, w, [, - -+, o), Se)
16:  if Recovery fails and ¢ < k — |/kt| then
17: Sc <~ <Rlc7 Tty ch>
18: Dg. < HARDRECOVER(¢, w, [a1, -+, o), Se)

PIR respectively.

C. Location Privacy of Mobile SUs Through Batching

Thus far, we concerned only about non-mobile SUs that
periodically submit an individual query to DBs to learn
spectrum availability in their fixed location. However, things
get more interesting with mobility. In fact, a mobile SU will
need to query DBs multiple times as its location changes.
While the previous two approaches perform well for non-
mobile SUs, they will incur a significant overhead on both
SU and DBs especially when SU is moving at a relatively
high speed, which will require a large number of PIR queries.

Our third approach aims to protect the location privacy of
mobile SUs while reducing the mobility-associated overhead.
The idea is to exploit the fact that a mobile SU usually has
an a priori knowledge of its trajectory to make it query DBs
for its current and future locations by batching these queries
together instead of sending them separately. We achieve this
by relying on the i¢tPIR protocol of Lueks et al. [45] that
extends the scheme of Goldberg [33] to support batching
of the queries using fast matrix multplication mechanisms
inspired from batch codes [46]. We refer to this approach as
LP-BatchPIR and we describe it in the following.

Each DB; that receives ¢ simultaneous

queries

(1), . ,pgq) from an SU can process them using
LP-Goldberg by simply multiplying each query with D as
illustrated in Step 8 of Algorithm 2. Alternatively, it can also
group these queries into a matrix Q; of size q x r, where
each row j corresponds to a query pgj ), before computing
the matrix product @; - D. The careful reader will notice
that this naive multiplication method would cost around 2¢rs
operations (including multiplications and additions) which can
be prohibitively expensive especially for a large D or ¢. This
problem boils down to a fast matrix multiplication problem



and therefore can benefit from fast matrix multiplication
algorithms such as Strassen’s [47].

Strassen’s algorithm consists on simply dividing both ma-
trices (@; and D into four equally sized block matrices. Then
instead of naively multiplying these submatrices, which will
result in 8 submatrix multiplications (fundamentally equiv-
alent to simple matrix multiplication), Strassen’s algorithm
creates linear combinations of blocks in a way that reduces
the number of submatrix multiplications to 7. The exact
approach is then applied recursively to the multiplications of
the submatrices of the previous step. This simple yet powerful
matrix multiplication technique will significantly reduce the
overhead for DBs and therefore the delay that SUs experience
to learn spectrum availability while moving as illustrated in
Section IV.

A row j in the resulting matrix, R; = Q- D, corresponds
to DB;’s response to the j*" query. SU will then recover the
spectrum availability by combining same-index rows of the
different R ;s as in LP-Goldberg.

D. Location Privacy of PUs

As we mentioned earlier, in database-driven CRN's, DBS’
content comprises operational information of PUs which
may be very sensitive in systems such as SAS in the 3.5
GHz CBRS band where PUs are military and governmental
entities. The service providers use this operational data to
feed their models and populate the spectrum databases with
availability information but do not share the PUs’ location
information in response to SUs’ queries. Therefore, SUs do
not present a serious threat to PU's privacy as opposed to the
service providers which could be malicious, and could misuse
PUs’ sensitive operational data.

In this subsection, we present another approach to take into
account the privacy of these PUs as well. For this we make
use of another extension of the Goldberg PIR scheme known
as T-independence, to prevent DBs from learning the content
of D even if up to 7 DBs collude to learn D as defined
in Definition 6. This is achieved by making PUs populate
the DBs with spectrum availability information pertaining
to their respective channels instead of the service providers,
by secretly sharing each record they want to add, among
the different service providers using Shamir secret sharing
techniques, similar to how SUs secretly share their queries.
That way, each service provider will not be able to decode
this data, and only SUs which have access to the secret can
retrieve the record by combining the different shares from the
different DBs. This is motivated by the fact that DBs are
expected to be populated by PUs themselves as it is the case
in LSA systems, or by a highly trusted independent entity, the
ESC, as in SAS systems. Therefore, whenever a PU or an
ESC submits a PU activity record of index j to DBs it will
divide it into s words Wjy,--- ,W,, and distributes Shamir
secret shares of every word among the ¢ DBs as reflected
in (A)lgorithm 3. Each DB; will now have a different content
D\

where {w(-lc)}lgigg form a (7, ¢)-Shamir secret sharing of
word W;.. This requires that the random values s, used to
create Shamir secret shares as explained in Section II-A, are
shared beforehand among SUs and PUs. This could be done
by FCC during the registration phase, for instance, and must
not be communicated to DBs.

Algorithm 3 Dy < 7-LP-Goldberg({,r, b, t, w)

FCC
1: Chooses £ distinct avy,- -+, ap € F*,
2: Shares these «;s only with PUs and SUs.

PU

3: Divides its activity record j into s words Wjy,---, Wy,

4: Creates s random degree-7 polynomials g;1, -+ ,gjs €R
Flz] s.t. g;c(0) = W) Ve e [1,--- 5]

5. Sends w{c < gje(aw) to DBy, Vi € [1,--- {],Vc €
[1,--+ s

6: DB; adds j*" record formed by wﬁ?, e ,wgi) to DO

SU

7. f « Invindex(ly, 1, C,ts)

8: Sets standard basis vector eg < 1 g € Z"

9: Creates r random degree-¢{ polynomials fi,---
Flz] s.t. f;(0) = eglj] Vj € [1, -

10: p; < <f1(ai)7 T ,fr(ai»’ Vi € [17 t ,f]

11: Sends p; to DB;, Vi € [1,--- (]

7