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Privacy-Critical Cloud Storage Services
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Abstract—Searchable encryption has received a significant attention from the research community with various constructions being
proposed, each achieving asymptotically optimal complexity for specific metrics (e.g., search, update). Despite their elegance, the
recent attacks and deployment efforts have shown that the optimal asymptotic complexity might not always imply practical
performance, especially if the application demands a high privacy. In this article, we introduce a novel Dynamic Searchable Symmetric
Encryption (DSSE) framework called Incidence Matrix (IM)-DSSE, which achieves a high level of privacy, efficient search/update, and
low client storage with actual deployments on real cloud settings. We harness an incidence matrix along with two hash tables to create
an encrypted index, on which both search and update operations can be performed effectively with minimal information leakage. This
simple set of data structures surprisingly offers a high level of DSSE security while achieving practical performance. Specifically,
IM-DSSE achieves forward-privacy, backward-privacy and size-obliviousness simultaneously. We also create several DSSE variants,
each offering different trade-offs that are suitable for different cloud applications and infrastructures. We fully implemented our
framework and evaluated its performance on a real cloud system (Amazon EC2). We have released IM-DSSE as an open-source
library for wide development and adaptation.

Index Terms—Privacy-enhancing technologies, private cloud services; dynamic searchable symmetric encryption.
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1 INTRODUCTION

The rise of cloud storage and computing services provides
vast benefits to the society and IT industry. One of the
most important cloud services is data Storage-as-a-Service
(SaaS), which can significantly reduce the cost of data
management via continuous service, expertise and main-
tenance for resource-limited clients such as individuals or
small/medium businesses. Despite its benefits, SaaS also
brings significant security and privacy concerns to the user.
That is, once a client outsource his/her own data to the
cloud, sensitive information (e.g., email) might be exploited
by a malicious party (e.g., malware). Although standard
encryption schemes such as Advanced Encryption Standard
(AES) can provide confidentiality, they also prevent the
client from querying encrypted data from the cloud. This
privacy versus data utilization dilemma may significantly
degrade the benefits and usability of cloud systems. There-
fore, it is vital to develop privacy-enhancing technologies
that can address this problem while retaining the practical-
ity of the underlying cloud service.

Searchable Symmetric Encryption (SSE) [1] enables a
client to encrypt data in such a way that they can later
perform keyword searches on it. These encrypted queries
are performed via “search tokens” [2] over an encrypted in-
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dex which represents the relationship between search token
(keywords) and encrypted files. A prominent application of
SSE is to enable privacy-preserving keyword search on the
cloud (e.g., Amazon S3), where a data owner can outsource a
collection of encrypted files and perform keyword searches
on it without revealing the file and query contents [3].
Preliminary SSE schemes (e.g., [1], [4]) only provide search-
only functionality on static data (i.e., no dynamism), which
strictly limits their applicability due to the lack of update
capacity. Later, several Dynamic Searchable Symmetric En-
cryption (DSSE) schemes (e.g., [3], [5]) were proposed that
permit the user to add and delete files after the system is set
up. To the best of our knowledge, there is no single DSSE
scheme that outperforms all the other alternatives in terms
of all the aforementioned metrics: privacy (e.g., information
leakage), performance (e.g., search, update delay), storage
efficiency and functionality. In the following, we first
provide an overview on DSSE research and then, outline
our research objectives and contributions toward addressing
some of the limitations of the state-of-the-arts.

1.1 Related Work

SSE was first introduced by Song et al. [4]. Curtmola et
al. [1] proposed a sublinear SSE scheme and introduced
the security notion for SSE called adaptive security against
chosen-keyword attacks (CKA2). Refinements of [1] have been
proposed which offer extended functionalities (e.g., [6], [7]).
However, the static nature of those schemes limited their
applicability to applications that require dynamic file collec-
tions. Kamara et al. were among the first to develop a DSSE
scheme in [3] that could handle dynamic file collections via
an encrypted index. However, it leaks significant informa-
tion for updates and it is not parallelizable. Kamara et al.
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[8] proposed a DSSE scheme, which leaked less information
than that of [3] and it was parallelizable. Recently, a series
of new DSSE schemes (e.g., [2], [5], [9], [10], [11], [12]) have
been proposed which offer various trade-offs between se-
curity, functionality and efficiency properties such as small
leakage (e.g., [2]), scalable searches with extended query
types (e.g., [12], [13], [14], [15]), or high efficiency (e.g., [9]).
Inspired by the work from [5], Kamara et al. in [12] pro-
posed a new sublinear DSSE scheme which supports more
complex queries such as disjunctive and boolean queries.

Forward-private DSSE schemes. Zhang et al. in [16]
showed that new DSSE constructions should offer the
forward-privacy property to mitigate the impact of prac-
tical attacks. After the preliminary IM-DSSE scheme was
introduced in [17], several forward-private DSSE schemes
achieving high efficiency in terms of asymptotic complexity
and actual performance have been proposed. Specifically,
Bost et al. in [11] proposed Sophos, which offers forward-
privacy using an asymmetric primitive (i.e., trapdoor per-
mutation). Rizomiliotis et al. in [18] leverages Oblivious
Random Access (ORAM) techniques (e.g., [19]) to enable
forward-privacy.

Recently, several forward-private DSSE schemes only
relying on symmetric primitives have been proposed (e.g.,
[20], [21], [22], [23]), some of which offer parallelism (e.g.,
[20], [21], [23]), and improved I/O access with computation
efficiency using a caching strategy (e.g., [20], [21], [22]). For
example, Lai et al. in [20] modeled the relationship between
keywords and files in DSSE as bipartite graphs. The authors
also proposed a novel data structure called cascaded triangles,
which offers parallelism and efficient update (add/delete).
Kim et al. in [21] leveraged two hash tables to integrate
forward index and inverted index together in the form of
encrypted index, which offers efficient update with direct
deletion. Several forward-private DSSE schemes, which of-
fer extended query functionalities such as boolean query
[12], similarity search [15] were also proposed. Bost et al.
in [24] proposed some (single-keyword) DSSE schemes that
achieve both forward-privacy and backward-privacy with
optimal asymptotic complexity using asymmetric primi-
tives. In Table 1, we outline the asymptotic complexity
and the security of typical standard (single-keyword) DSSE
schemes.
Access Pattern Leakage in DSSE. Due to the deterministic
keyword-file relationship, most traditional DSSE schemes
(including our framework in this article) leak search and access
patterns defined in §4 which are vulnerable to statistical
inference attacks. A number of attacks (e.g., [16], [25], [26],
[27], [28]) have been demonstrated. Several DSSE schemes
have been proposed to deal with such leakages (e.g., [29],
[30]) but they are neither efficient nor provably secure.
ORAM techniques (e.g., [19]) can hide search and access
patterns in DSSE. Despite a lot of progress on these tech-
niques, their costs are still extremely high to be applied to
DSSE in practice [31].

1.2 Motivation and Research Objectives

Although a number of DSSE schemes have been intro-
duced in the literature, most of them only provide a theoret-

ical asymptotic analysis1 and, in some cases, merely a proto-
type implementation. The lack of experimental performance
evaluations on real platforms poses a significant difficulty in
assessing the application and practicality of proposed DSSE
schemes, as the impacts of security vulnerability, hidden
computation costs, multi-round communication delay and
storage blowup might be overlooked. For instance, most
efficient DSSE schemes (e.g., [5], [10]) are vulnerable to
file-injection attacks, which have been shown to be easily
conducted even by a semi-honest adversary in practice,
especially in the personal email scenario. Although several
forward-secure DSSE schemes with an optimal asymptotic
complexity have been proposed, they incur either very high
delay due to public-key operations (e.g., [11]), or significant
storage blow-up at both client and server side (e.g., [2]), and
therefore, their ability to meet actual need of real systems in
practice is still unclear.

There is a significant need for a DSSE scheme that
can achieve a high level of security with a well-
quantified information leakage, while maintaining a
performance and functionality balance between the
search and update operations. More importantly, it is
critical that the performance of proposed DSSE should be
experimentally evaluated in a realistic cloud environment
with various parameter settings, rather than merely relying
on asymptotic results. The investigation of alternative
data structures and their optimized implementations on
commodity hardware seem to be the key factors towards
achieving these objectives.

1.3 Our Contributions

In this article, towards filling the gaps between the-
ory and practice in DSSE research community, we intro-
duce IM-DSSE, a fully-implemented Incidence Matrix-based
DSSE framework which favors desirable properties for real-
istic privacy-critical cloud systems including high security
against practical attacks and low end-to-end delay. In this
framework, we provide the full-fledged implementation of
our preliminary DSSE scheme proposed in [17], as well as
extended schemes, which are specially designed to meet
various application requirements and cloud data storage-
as-a-service infrastructures in practice.

Improvements over Preliminary Version: This article is the
extended version of [17] which includes the following im-
provements: (i) We propose extended DSSE schemes which
are more compatible with the cloud SaaS infrastructure and
offer backward-privacy at the cost of bandwidth overhead.
(ii) As a significant improvement over the preliminary ver-
sion, we provide a comprehensive DSSE framework, where
our preliminary DSSE scheme in [17] and all its variants
are fully implemented. We fully deployed our framework
on Amazon EC2 cloud and provided a much more com-
prehensive performance analysis of each scheme with dif-
ferent hardware and network settings. (iii) Finally, we have
released our framework for public use and improvement.

Desirable properties: IM-DSSE offers ideal features for
privacy-critical cloud systems as follows.

1One noticeable outlier is [5], which provides a standalone implemen-
tation.
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• Highly secure against File-Injection Attacks: IM-DSSE offers
forward privacy (see [2] or §4 for definition) which is
an imperative security feature to mitigate the impact of
practical file-injection attacks [11], [16]. Only a limited
number of DSSE schemes offer this property (i.e., [2],
[11], [15], [18], [20], [21], [22], [23]), some of which incur
high client storage with costly update (e.g., [2]) or high
delay, due to oblivious access techniques (e.g., [18]) and
public-key operations (e.g., [11]). Additionally, IM-DSSE
offers size-obliviousness property, where it hides all size
information involved with the encrypted index and up-
date query including (i) update query size (i.e., number
of unique keywords in the updated file); (ii) and the
number of keyword-file pairs in the database. One of
the IM-DSSE variants achieves backward privacy defined
in [2]. We notice that Bost et al. in [24] have recently
proposed a new DSSE scheme that can achieve all these
security properties with padding. This scheme leverages
asymmetric primitives (e.g., puncturable encryption [32]),
which might incur high computation cost. Our scheme
relies on symmetric primitives but with the cost of an
extra communication overhead.

• Updates with Improved Features: (i) IM-DSSE allows to
directly update keywords of an existing file without
invoking the file delete-then-add operation sequence. The
update in IM-DSSE also leaks minimal information, where
it does not leak timing information (i.e., all updates take
the same amount of time) and how many keywords
are being added/deleted in the updated file. (ii) The
encrypted index of our schemes does not grow with
update operations and, therefore, it does not require re-
encryption due to frequent updates. This is more efficient
than some alternatives (e.g., [2]) in which the encrypted
index can grow linearly with the number of deletions.

• Fully Parallelizable: IM-DSSE also supports parallelization
(as in [5], [20], [21], [23]) for both update and search
operations and, therefore, it takes full advantage of mod-
ern computing architecture to minimize the delay of
cryptographic operations. Experiments on Amazon cloud
indicates that the search latency of our framework is
highly practical and mostly dominated by the client-
server communication (see §5).

• Detailed experimental evaluation and open-source framework:
We deployed IM-DSSE in a realistic cloud environment
(i.e., Amazon EC2) to assess the practicality of our frame-
work. We experimented with different database sizes and
investigated the impacts of network condition and storage
unit on the overall performance. We also evaluated the
performance of IM-DSSE on a resource-limited mobile
client. We give a comprehensive cost breakdown anal-
ysis to highlight the main factors contributing to the
overall delay in all these settings. We have released the
implementation of our framework to public to provide
opportunities for broad adaptation and testing (see §5).

2 IM-DSSE FRAMEWORK

2.1 DSSE for Cloud Storage Applications
Recent data breach incidents (e.g., Equifax, Apple iCloud,
Ashley Madison) have shown that it is extremely impor-
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Fig. 1: IM-DSSE framework for file-storage services.

tant to achieve data confidentiality on the cloud. While a
number of DSSE schemes have been introduced, we ob-
served that they are not ready to be deployed on current
cloud storage architecture due to their vulnerability against
practical attacks (as discussed in §1). Moreover, most prior
schemes require special computation services, which might
significantly increase the monetary cost of deployment and
are incompatible with storage-only cloud services such as
Dropbox, Google Drive. In this paper, we focus on address-
ing these problems by proposing a new DSSE framework
which can achieve a high security and be compatible with
current cloud infrastructure. Potential applications of our
framework include, but not limited to, privacy-preserving
email and file storage services, where the client can be
able to store, search and update their sensitive data (e.g.,
email, photos, transactions) on the cloud without the service
provider knowing what have been stored and retrieved.
Figure 1 illustrates the overview of our IM-DSSE framework
for file-storage applications.

2.2 System and Threat Models
Our system model comprises one server and one client,
which can be mobile resource-constrained (e.g., cell phone)
as illustrated in Figure 1. Our model can be extended into
multiple clients that share the same keys.

In our threat model, the client is trusted and the server
is honest-but-curious, meaning that it follows the protocol
faithfully but attempts to extract sensitive information dur-
ing the client’s search/update operations. The server can
know the encrypted files, the encrypted index and record
the transcripts of the protocol. Our objective is to allow the
client to perform search and update operations in a secure
manner, in which files can be securely retrieved/updated
while leaking least information to the server. Specifically,
once the server is compromised, the client should only leak
the query content and no file contents or specific keywords
are ever compromised. Since search and update tokens are
deterministic, our IM-DSSE framework leaks search, and file-
access patterns as in all other DSSE schemes. We present the
formal security model in §4.

2.3 Notation and Data Structure
Notation. Operators || and |x| denote the concatenation
and the bit length of variable x, respectively. ⊕ denotes
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the Exclusive-OR (XOR) operation. x $← S denotes vari-
able x is randomly and uniformly selected from set S .
(x1, . . . , xn)

$← S denotes (x1
$← S, . . . , xn

$← S ). We de-
note {0, 1}∗ as a set of binary strings of any finite length. bxc
and dxe denote the floor and the ceiling of x, respectively.
Given a matrix I, I[i, j] denotes the cell indexing at row i
and column j. I[∗, j] and I[i, ∗] denote accessing column
j and row i of matrix I, respectively. I[∗, a . . . b] denotes
accessing columns from a to b of matrix I. u[i] denotes
accessing the i’th component of vector u.

We denote an encryption scheme with
Indistinguishability against Chosen Plaintext Attack (IND-
CPA) as a triplet E = (Gen,Enc,Dec): k ← E .Gen(1κ), where
κ is a security parameter and k is a key; c ← E .Enck(M,u)
takes as input a secret key k, a counter u and a message
M and returns a ciphertext c; M ← E .Deck(c, u) takes as
input a key k, a counter u and ciphertext c, and returns
M if k and u were the key and the counter under which c
was produced. The function G is a keyed Pseudo Random
Function (PRF), denoted by τ ← Gk (x), which takes as
input a secret key k $← {0, 1}κ and a string x, and returns a
token/key r. We denote H : {0, 1}|x| → {0, 1} as a Random
Oracle (RO), which takes an input x and returns a bit.

IM-DSSE Data Structures. Our encrypted index is an in-
cidence matrix I, in which I[i, j].v ∈ {0, 1} stores the
(encrypted) relationship between keyword indexing at row
i and file indexing at column j, and I[i, j].st ∈ {0, 1} stores
a bit indicating the state of I[i, j].v. Particularly, I[i, j].st is
set to 1 or 0 if I[i, j].v is last accessed by update or search,
respectively. For simplicity, we write I[i, j] to denote I[i, j].v,
and be explicit about the state bit as I[i, j].st.

The encrypted index I is augmented by two static hash
tables Tw and Tf that associate a keyword and file to a
unique row and a column, respectively. Specifically, Tf is a
file static hash table whose key-value pair is (sidj , 〈yj , uj〉),
where sidj ← Gk2 (idj) for file with identifier idj , column
index yj ∈ {1, . . . , n} is equivalent to the index of sidj in
Tf and uj is a counter value. We denote access operations
by yj ← Tf (sidj ) and uj ← Tf [yj ].ct. Tw is a keyword
static hash table whose key-value pair is {swi , 〈xi, ui〉},
where token swi ← Gk2 (wi) for keyword wi, row index
xi ∈ {1, . . . ,m} is equivalent to the index of swi in Tw
and ui is a counter value. We denote access operations
by xi ← Tw(swi) and ui ← Tw[xi].ct. All counter values
are incremental and initially set to 1. So, the client state
information is in the form of Tw and Tf , that offers (on
average) O (1) access time.

2.4 IM-DSSEmain Algorithms
We present the detailed algorithmic construction for the
main scheme (denoted IM-DSSEmain) in IM-DSSE framework
in Scheme 1, which consists of nine algorithms with high-
level ideas as follows.

• Setup: The client first executes IM-DSSEmain.Gen Algorithm
to generate secret keys (K). Based on the generated keys
K, the client executes IM-DSSEmain.Enc Algorithm to create
encrypted data structures to be outsourced to the cloud.
In IM-DSSEmain.Enc Algorithm, it first extracts m′ unique
keywords (w1, . . . , wm′) from n′ files F = {fid1 , . . . , fidn′}

with unique IDs (id1, . . . , idn′ ) (step 3). It then constructs an
(unencrypted) incidence matrix δ (steps 4–9), by setting each
cell value δ[i, j] to {0, 1}, where i, j are the row and column
indexes of keyword and file derived from their hash table
indexes, respectively (steps 5, 13). Next, it encrypts each cell
δ[i, j] with a unique 〈key-counter〉 pair, where the key (ri) is

Scheme 1 IM-DSSEmain Scheme
K ← IM-DSSEmain.Gen(1

κ): Given security parameter κ, generate
secret key K

1: k1 ← E .Gen(1κ) and (k2, k3)
$← {0, 1}κ

2: return K, where K ← {k1, k2, k3}

f ← IM-DSSEmain.DecK(c): Decrypt encrypted file c with key κ
1: f ← E .Deck1(c′, y||u) where u← Tf [y].ct, (c′, y)← c
2: return f

(γ, C)← IM-DSSEmain.EncK(δ,F): Given index δ and plaintext
files F , generate corresponding encrypted index γ and en-
crypted files C

1: Tw[i].ct← 1, Tf [j].ct← 1, for 0 ≤ i ≤ m, 0 ≤ j ≤ n
2: I[∗, ∗].st← 0 and δ[∗, ∗]← 0
3: Extract (w1, . . . , wm′) from F = {fid1 , . . . , fidn′ }
4: for i = 1, . . . ,m′ do
5: swi ← Gk2 (wi), xi ← Tw(swi)
6: for j = 1, . . . , n′ do
7: if wi appears in fidj then
8: sidj ← Gk2 (idj) and yj ← Tf (sidj )
9: δ[xi, yj ]← 1

10: for i = 1, . . . ,m do
11: ri ← Gk3 (i||ui), where ui ← Tw[i].ct
12: for j = 1, . . . , n do
13: I[i, j]← δ[i, j]⊕H(ri||j||uj), where uj ← Tf [j].ct

14: for j = 1, . . . , n′ do
15: cj ← (c′j , yj), where c′j ← E .Enck1(fidj , yj ||uyj )
16: return (γ, C), where γ ← (I, Tf ) and C ← {c1, . . . , cn′}

τw ← IM-DSSEmain.SearchToken(K, w): Generate search token τw
from keyword w and key K

1: sw ← Gk2 (w), i← Tw(sw)
2: u← Tw[i].ct, ri ← Gk3 (i||u)
3: if u = 1 then
4: τw ← (i, ri)
5: else
6: ri ← Gk3 (i||u− 1) and τw ← (i, ri, ri)

7: Tw[i].ct← u+ 1
8: return τw

(Iw, Cw)← IM-DSSEmain.Search(τw, γ): Given search token τw
and encrypted index γ, return sets of file identifiers Iw and
encrypted files Cw ⊆ C matching with τw

1: for j = 1, . . . , n do
2: uj ← Tf [j].ct
3: if (τw = (i, ri) or I[i, j].st = 1) then
4: I′[i, j]← I[i, j]⊕H(ri||j||uj)
5: I[i, j].st← 0
6: else
7: I′[i, j]← I[i, j]⊕H(ri||j||uj)
8: I[i, j]← I′[i, j]⊕H(ri||j||uj)
9: l← 0

10: for each j ∈ {1, . . . , n} satisfying I′[i, j] = 1 do
11: l← l + 1 and yl ← j

12: Iw ← {y1, . . . , yl}
13: γ ← (I, Tf ), Cw ← {(cy1 , y1), . . . , (cyl , yl)}
14: return (Iw, Cw)
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Scheme 1 IM-DSSEmain Scheme (continued)

(τf , c)← IM-DSSEmain.AddToken(K, fid): Given key K and file
fid, generate addition token τf and ciphertext c of fid

1: sid ← Gk2 (id), j ← Tf (sid), Tf [j].ct ← Tf [j].ct + 1 and
uj ← Tf [j].ct

2: for i = 1, . . . ,m do
3: ri ← Gk3 (i||ui), where ui ← Tw[i].ct

4: Extract (w1, . . . , wt) from fid and set I[∗, j]← 0
5: for i = 1, . . . , t do
6: swi ← Gk2 (wi), xi ← Tw(swi), I[xi, j]← 1

7: for i = 1, . . . ,m do
8: I′[i, j]← I[i, j]⊕H(ri||j||uj)
9: c← (c′, j), where c′ ← E .Enck1(fid, j||uj)

10: return (τf , c) where τf ← (I′, j)

(γ′, C′)← IM-DSSEmain.Add(γ, C, c, τf ): Add addition token τf
and ciphertext c to encrypted index γ and ciphertext set C, resp.

1: Set I[i, j]← I′[i, j] and I[i, j].st← 1, for 1 ≤ i ≤ m
2: Tf [j].ct← Tf [j].ct+ 1
3: return (γ′, C′), where γ′ ← (I, Tf ) and C′ ← C ∪ {(c, j)}

τ ′f ← IM-DSSEmain.DeleteToken(K, f): Given key K and deleted
file fid, generate deletion token τ ′f

1: Execute steps 1–3 of IM-DSSEmain.AddToken Algorithm to
produce (j, uj , 〈r1, . . . , rm〉) and increase Tf [j].ct to 1

2: for i = 1, . . . ,m do
3: I′[i, j]← H(ri||j||uj)
4: return τ ′f , where τ ′f ← (I′, j)

(γ′, C′)← IM-DSSEmain.Delete(γ, C, τ ′f ): Update deletion token τ ′f
to encrypted index γ′ and delete a file from ciphertext set C′

1: Set I[i, j]← I′[i, j] and I[i, j].st← 1, for 1 ≤ i ≤ m
2: Tf [j].ct← Tf [j].ct+ 1
3: return (γ′, C′), where γ′ ← (I, Tf ), C′ ← C \ {(c, j)}

uniquely derived for each row (i) from K (step 11), and the
counter (uj) is distinct for each column (j) (step 13). Finally,
it encrypts each file in F resulting in encrypted files C (steps
14–15). Once C and the encrypted matrix (I) are constructed,
the client sends them to the cloud server along with the file
hash table (Tf ).

• Search: To search for keyword w, the client executes
IM-DSSEmain.SearchToken Algorithm to generate a search
token τw to be sent to the server. The token contains the
row index (i) of w and row keys (ri, r̄i) derived from K, i,
and the row counter (u) (steps 3–6). r̄i and ri are the old and
new keys that are used to decrypt the row being searched
for the first and latter times, respectively. Upon receiving τw,
the server executes IM-DSSEmain.Search Algorithm to decrypt
the row and retrieve the search result. Specifically, if the
cell I[i, j] is previously updated (indicated via the state bit
I[i, j].st), or being searched for the first time (step 3), it uses
the new key (ri) to decrypt the cell (step 4) and set the state
to be 0 (step 5). Otherwise, it uses the old key (r̄i) to decrypt
the cell (step 7) and re-encrypts it with the new key (ri) (step
8). Finally, the server determines column indexes j such
that I[i, j] = 1, and returns the corresponding j-labeled
ciphertexts to the client (steps 9–13). The client executes
IM-DSSEmain.Dec Algorithm on each ciphertext to decrypt
the files and obtain the search result.

• Add a file: The client executes IM-DSSEmain.AddToken Algo-
rithm to generate an addition token (τf ). It gets the column

index (j) of the file to be added from the file hash table (Tf )
(step 1), and then, derives fresh row keys from the keyword
hash table (Tw) to be used for encrypting the column (steps
2–3). It then extracts unique keywords (w1, . . . wt) from the
file, and constructs an (unencrypted) column Ī[∗, j] with val-
ues being set to {0, 1} (steps 4–6). Finally, it encrypts Ī[∗, j]
with row keys (steps 7–8) and the file with K (step 9). The
client sends τf containing the ciphertext and the encrypted
column to the server. Upon receiving τf , the server executes
IM-DSSEmain.Add Algorithm to update the column j and its
state in I (step 1). It increases the column counter (step 2),
and adds the ciphertext to the set of encrypted files (step 3).
• Delete a file: It is similar to the file addition protocol,
where the client executes IM-DSSEmain.DeleteToken Algo-
rithm to generate the deletion token, and the server executes
IM-DSSEmain.Delete Algorithm to update the column and
delete the file from the set of encrypted files.
Keyword update for existing files. Some existing schemes
(e.g., [9]) allow file addition/deletion, but do not permit
updating keywords in an existing file directly. This can be
easily achieved in our scheme as follows. Assume the client
wants to update file fid by adding (or removing) some
keywords, they will prepare a new column I′[i, j] ← bi
for 1 ≤ i ≤ m, where bi = 1 if wi is added and bi = 0
otherwise and j ← Tf (sid) with sid ← Gk2 (id) as in
IM-DSSEmain.AddToken algorithm (steps 4-6). The rest of the
algorithm remains the same.
High-level Performance Analysis. For keyword search,
IM-DSSEmain incurs n invocations of hash function H and
n XOR operations. Although IM-DSSEmain has linear search
complexity which is asymptotically less efficient than other
DSSE schemes (e.g., [5], [11]), we show in our experiments
that, this impact is insignificant in practice for personal
cloud usage with moderate database size where all opti-
mizations are taken into account. Since IM-DSSEmain is fully
parallelizable, the search and update computation times can
be reduced to n/p and m/p, respectively, where p is the
number of processors. Therefore, cryptographic operations
in IM-DSSEmain only contribute a small portion to the overall
end-to-end search delay which is dominated by the network
communication latency between client and server. Notice
that all sub-linear DSSE schemes [2], [5] are less secure and
sometimes incur more costly updates than IM-DSSEmain. For
file update, IM-DSSEmain incurs m invocations of H and m
XOR operations along with m bits of transmission.

IM-DSSEmain costs
(

2m · n+n ·
(
κ+ |u|

))
bits of storage

at the server for encrypted index I and file hash table Tf . At
the client side, IM-DSSEmain requires (n + m)

(
κ + |u|

)
+ 3κ

bits for two hash tables Tw, Tf and secret key K.

3 IM-DSSE EXTENDED SCHEMES

We present extended schemes derived from IM-DSSEmain

presented above that IM-DSSE framework also supports.

3.1 IM-DSSEI: Minimized search latency
In IM-DSSEmain, we encrypt each cell of I with a unique
key-counter pair, which requires n invocations of H dur-
ing keyword search. This might not be ideal for some
applications that require extremely prompt search delay.
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Scheme 2 IM-DSSEI Scheme
(τf , c)← IM-DSSEI.AddToken(K, fid): Given key K and file fid,
generate addition token τf and ciphertext c of fid

1: sid ← Gk2 (id), j ← Tf (sid), l← b j−1
b
c, ul ← u[l]

2: a← (l · b) + 1, a′ ← b · (l + 1)
3: Extract (w1, . . . , wt) from fid
4: for i = 1, . . . , t do
5: swi ← Gk2 (wi), xi ← Tw(swi)

6: Get from server (I[∗, a . . . a′]) and I[∗, l].st
7: for i = 1, . . . ,m do
8: ui ← Tw[i].ct
9: if (ui > 1 and I[i, l].st = 0) then

10: ui ← ui − 1
11: ri ← Gk3 (i||ui)†
12: I′[i, a . . . , a′]← E .Decri(I[i, a . . . a′], l||ul)
13: I′[i, j]← 0 for 1 ≤ i ≤ m and I′[xi, j]← 1 for 1 ≤ i ≤ t
14: u[l]← u[l] + 1, ul ← u[l]
15: for i = 1, . . . ,m do
16: if (ui > 1 and I[i, l].st = 0) then
17: ri ← Gk3 (i||ui + 1)

18: I[i, a . . . a′]← E .Encri(I′[i, a . . . a′], l||ul)
19: Tf [j].ct← Tf [j].ct+ 1 and u′j ← Tf [j].ct
20: c← (c′, j) where c′ ← E .Enck1(fid, j||u′j)
21: return (τf , c) where τf ← (I, j)

(γ′, C′)← IM-DSSEI.Add(γ, C, c, τf ): Add addition token τf and
ciphertext C to encrypted index γ and ciphertext set C, resp.

1: l← b j−1
b
c, a← (l · b) + 1, a′ ← b(l + 1)

2: I[i, j′]← I[i, j′], for 1 ≤ i ≤ m and a ≤ j′ ≤ a′
3: u[l]← u[l] + 1 and I[∗, l].st← 1
4: return (γ′, C′), where γ′ ← (I, Tf ) and C′ ← C ∪ {c}

†G should generate a suitable key for E (e.g., 128-bit key for AES-CTR)

Hence, we introduce an extended scheme called IM-DSSEI,
which aims at achieving a very low search latency with
the cost of increasing update delay. Specifically, instead of
encrypting the index bit-by-bit as in IM-DSSEmain scheme,
IM-DSSEI leverages b-bit block cipher encryption to encrypt
b successive cells with the same key-counter pair. This is
achieved by interpreting columns of I as D = dnb e blocks,
each being IND-CPA encrypted using AES-CTR mode with
block cipher size b. The counter will be stored via a block
counter array (denoted as u) instead of Tf [·].u as in the
main scheme. The update state is maintained for each block
rather than each cell of I[i, j]. Hence, I is decomposed into
two matrices with different sizes: I.v ∈ {0, 1}m×n and
I.st ∈ {0, 1}m×D.

IM-DSSEI requires some algorithmic modifications from
the main scheme. Scheme 2 presents IM-DSSEI.AddToken
Algorithm and IM-DSSEI.Add Algorithm for file addition
procedure in IM-DSSEI (modifications for file deletion follow
the same principle). Specifically, we substitute encryption
and decryption using random oracle H(ri||j||uj) with block
cipher encryption E .Encri(·, l||u′l) and E .Decri(·, l||u′l), re-
spectively, where ul is a block counter (see steps 12, 20).
Since I is encrypted by blocks, to update a column during
the file update, the client needs to retrieve a whole block
and its state from the server first (step 6). The client then
decrypts the block (steps 7–12), updates a column within
it (step 13), re-encrypts the entire block (steps 15–18), and
finally sends the encrypted block to the server for replace-
ment. So, the reduction of search cost increases the cost of

communication overhead for the update as a trade-off.
Since the modifications for IM-DSSEI.Gen, IM-DSSEI.Enc,

IM-DSSEI.SearchToken and IM-DSSEI.Search algorithms are
straightforward, where only the underlying encryption is
changed from random oracle to block cipher (e.g., AES-CTR)
as exemplified in IM-DSSEI.AddToken Algorithm, we will not
present those algorithms in detail due to space limitation.
High-level Performance Analysis. For keyword search,
IM-DSSEI requires n/b invocations of E , which is theoreti-
cally b times faster than the main scheme. Given the CTR
mode, the search time can be reduced to n/(b ·p), where p is
the number of processors. For file update, IM-DSSEI requires
transmission of (2b + 1) · m bits along with decryption
and encryption operations at the client side, compared with
m non-interactive transmission and encryption-only in the
main scheme. Thus, the keyword search speed in IM-DSSEI

is increased by a factor of b (e.g., b = 128) with the cost of
transmitting (2b+ 1) ·m bits in the file update.

IM-DSSEI reduces the server storage to
(
n·|u|+m·n·(b+1)

b

)
bits. The client storage remains the same as in IM-DSSEmain.

3.2 IM-DSSEII: Achieving cloud SaaS infrastructure with
backward privacy
All DSSE schemes introduced so far require the server
to perform some computation (i.e., encryption/decryption)
during keyword search, which might not be fully compati-
ble with typical storage-only clouds (e.g., Dropbox, Google
Drive, Amazon S3). Hence, we propose an extended scheme
derived from IM-DSSEmain called IM-DSSEII, where all com-
putations are performed at the client side while the server
does nothing rather than serving as a storage unit. This
simple trick makes IM-DSSEII not only compatible with
with storage-only clouds, but also more importantly, achieve
the backward-privacy property. This is because the server
now cannot decrypt any part of encrypted index to keep
track of historical update operations. Moreover, IM-DSSEII

also reduces the storage at both client and server sides by
eliminating the state matrix and keyword counters that are
needed in IM-DSSEmain and IM-DSSEI to perform correct
decryption and achieve forward-privacy during search and
update, respectively.

We present the keyword search procedure of IM-DSSEII

in Scheme 3, which combines SearchToken and Search al-
gorithms in DSSE. To search for keyword w, the client
sends to the server the w’s row index (i) and receives the

Scheme 3 IM-DSSEII Scheme
(Iw, Cw)← Search(K, w): Given keyword w and key K, return
sets of file identifiers Iw and encrypted files Cw ⊆ C matching
with w

1: swi ← Gk2 (w), i← Tw(swi), ri ← Gk3 (i), l← 0
2: Fetch the i-th row data I[i, ∗] from server
3: for j = 1, . . . , n do
4: uj ← Tf [j].ct
5: I′[i, j]← I[i, j]⊕H(ri||j||uj)
6: for each j ∈ {1, . . . , n} satisfying I′[i, j] = 1 do
7: l← l + 1 and yl ← j

8: Iw ← {y1, . . . , yl}
9: Send Iw to server and receive Cw = {(cy1 , y1), . . . , (cyl , yl)}

10: fi ← DecK(cyi) for 1 ≤ i ≤ l
11: return (Iw,Fw), where Fw ← {f1, . . . , fl}
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corresponding row I[i, ∗] (step 2). The client decrypts I[i, ∗],
extracts column indexes j such that I[i, j] = 1. Since the
client computes everything, it is not required to derive new
row keys for forward-privacy and therefore, state matrix
I[∗, ∗].st as well as file hash table Tf at the server and
keyword counters Tw.ct at the client are not needed in
IM-DSSEII (see steps 3–5 for example). The client then fetches
and decrypts encrypted files indexed at j to obtain the
search result (step 9).

IM-DSSEII.Gen is identical to IM-DSSEmain.Gen Algo-
rithm. IM-DSSEII.Enc, IM-DSSEII.Add, IM-DSSEII.AddToken,
IM-DSSEII.Delete, IM-DSSEII.DeleteToken can be easily de-
rived from their version in the main scheme (IM-DSSEmain)
by (1) substituting row key generation ri ← Gk3 (i, ui) with
ri ← Gk3 (i), (2) omitting all keyword counters ui, block
states I[∗, ∗].st, (3) and removing Tf from the server storage.
Due to space limitation and repetition, we will not present
them in detail.

High-level Performance Analysis. The computation cost of
IM-DSSEII is identical to IM-DSSEmain (i.e., n and m invoca-
tions of H for search and update resp.). IM-DSSEII requires
two-round communication with n bits being transmitted
during keyword search.

IM-DSSEII reduces the client and server storage costs to
n
(
κ+ |u|

)
+m · κ+ 3κ and m · n bits, respectively.

3.3 IM-DSSEI+II: Low search latency, backward-privacy
and compatibility with cloud SaaS infrastructure

Our IM-DSSE framework also supports IM-DSSEI+II, an ex-
tended DSSE scheme which is the combination of IM-DSSEI

and IM-DSSEII schemes. In IM-DSSEI+II, the incidence matrix
I is encrypted with b-bit block cipher encryption, and the
decryption is performed by the client during search. Since
IM-DSSEI+II inherits all properties of IM-DSSEI and IM-DSSEII

schemes, IM-DSSEI+II is highly desirable for cloud SaaS
infrastructure that requires a very low search latency and
backward-privacy with the costs of more delayed update
and an extra communication round during search.

4 SECURITY ANALYSIS

In this section, we analyze the security and update privacy
of all the DSSE schemes provided in our IM-DSSE frame-
work. Most known efficient SSE schemes (e.g., [2], [5], [9])
reveal the search and file-access patterns defined as follows.

• Given search query w at time t, the search pattern
P(δ,Query, t) is a binary vector of length t with a 1 at
location i if the search time i ≤ t was for w, and 0
otherwise. The search pattern indicates whether the same
keyword has been searched in the past or not.

• Given search query w at time t, the file-access pattern
∆(δ,F , w, t) is identifiers Iw of files F containing w.

We consider leakage functions in the line of [8] that cap-
tures dynamic file addition/deletion in its security model,
but we leak much less information compared to [8].

Definition 1 (Leakage Function). We define leakage functions
(L1,L2,L3) as follows:

1) (m,n, I, 〈|fid1 |, . . . , |fidn |〉)← L1(δ,F): Given the index δ
and the set of files F (including their identifiers), L1 outputs
the maximum number of keywords m, the maximum number
of files n, the identifiers I = {id1, . . . , idn} of F and the size
of file |fidj | for 1 ≤ j ≤ n (which also implies the size of its
corresponding ciphertext |cidj |).

2) (P(δ,Query, t),∆(δ,F , w, t)) ← L2(δ,F , w, t): Given the
index δ, the set of files F and a keyword w for the search
operation at time t, it outputs the search pattern P and file-
access pattern ∆.

3) |fid| ← L3(δ,F , id, t, op): Given the index δ, the set of
files F , a file identifier id, and the update type op ∈
{〈Add, |fid|〉,Delete} at time t, it outputs the size of updated
file fid (which also implies the size of its corresponding cipher-
text |cid|).

Definition 2 (IND-CKA2 Security [1], [3]). Let A be a stateful
adversary and S be a stateful simulator. Consider the following
probabilistic experiments:

RealA(κ): The challenger executes K ← Gen(1κ). A
produces (δ,F) and receives (γ, C) ← EncK(δ,F) from the
challenger. A makes polynomially bounded number of adaptive
queries Query ∈ (w, fid, fid′) to the challenger. If Query = w
is a keyword search query then A receives a search token
τw ← SearchToken(K, w) from the challenger. If Query = fid
is a file addition query then A receives an addition token
(τf , c) ← AddToken(K, fid) from the challenger. If Query =
fid′ is a file deletion query then A receives a deletion token
τ ′f ← DeleteToken(K, fid′) from the challenger. Eventually, A
returns a bit b that is the output of the experiment.

IdealA,S(κ): A produces (δ,F). Given L1(δ,F), S gen-
erates and sends (γ, C) to A. A makes a polynomial number of
adaptive queries Query ∈ (w, fid, fid′) to S . For each query, S
is given L2(δ,F , w, t). If Query = w then S returns a simulated
search token τw. If Query = fid or Query = fid′ , S returns
a simulated addition token τf or deletion token τ ′f ,respectively.
Eventually, A returns a bit b that is the output of the experiment.

A DSSE is said to be (L1,L2,L3)-secure against adaptive
chosen-keyword attacks (CKA2-security) if for all PPT adversaries
A, there exists a PPT simulator S such that
|Pr[RealA(κ) = 1]− Pr[IdealA,S(κ) = 1]| ≤ neg(κ)

Remark 1. In Definition 2, we adopt the dynamic CKA2-
security notion in [8] that captures the file addition and deletion
by simulating corresponding tokens τf and τ ′f , resp.

The security of IM-DSSE can be stated as follows.

Theorem 1. If E .Enc is IND-CPA secure, G is PRF and H
is a RO then IM-DSSE is (L1,L2,L3)-secure in ROM by
Definition 2 (CKA-2 security with update capacity).

Proof. We prove the IND-CKA2 for IM-DSSEmain proposed
in §2. The proof for extended schemes in §3 can be easily
derived from this proof (see Remark 2 below for argument)
and therefore, we will not repeat it.

To begin with, we construct a simulator S that interacts
with an adversary A in an execution of an IdealA,S(κ)
experiment as described in Definition 2. In this experiment,
S maintains lists LR, LK and LH to keep track of query
results, states and history information, respectively. Initially,
all lists are set to empty. LR is a list of key-value pairs
and is used to keep track of RO(·) queries. We denote
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value ← LR(key) and ⊥ ← LR(key) if key does not exist
in LR. LK is to keep track of random values generated
during the simulation and it is similar to LR. LH is to
keep track of search and update queries, S’s replies to those
queries and their leakage output from (L1,L2). S executes
the simulation as follows.

I. Handle RO(·) Queries: b ← RO (x) takes an input x and

returns a bit b as output. Given x, if ⊥ = LR(x) set b $←
{0, 1}, insert (x, b) into LR and return b as the output. Else,
return b← LR(x) as the output.

II. Simulate (γ, C): Given (m,n, 〈id1, . . . , idn′〉, 〈|c1|, . . . ,
|cn′ |〉)← L1(δ,F), S simulates (γ, C) as follows.
1) (sidj , k)

$← {0, 1}κ, yj ← Tf (sidj ), insert (idj , sidj , yj)

into LH and cyj ← E .Enck({0}
|cidj |) for 1 ≤ j ≤ n′.

2) For j = 1, . . . , n and i = 1, . . . ,m

a) Tw[i].ct← 1 and Tf [j].ct← 1.

b) zi,j
$← {0, 1}κ, I[i, j]← RO (zi,j) and I[i, j].st← 0.

3) Output (γ, C), where γ ← (I, Tf ) and C ← {〈ci, yi〉}n
′

i=1

Correctness and Indistinguishability of the Simulation: C has
the correct size and distribution, since L1 leaks 〈|cid1 |, . . . ,
|cidn′ |〉 and E .Enc(·) is a IND-CPA secure scheme, respec-
tively. I and Tf have the correct size since L1 leaks (m,n).
Each I[i, j] for 1 ≤ j ≤ n and 1 ≤ i ≤ m has random
uniform distribution, since RO(·) is invoked with random
value zi,j . Tf has the correct distribution, since each sidj has
random uniform distribution, for 1 ≤ j ≤ n′. Hence,A does
not abort due to A’s simulation of (γ, C). The probability
that A queries RO(·) on any zi,j before S provides I to A is
negligible (i.e., 1

2κ ). Hence, S also does not abort.

III. Simulate τw: Simulator S receives a search query for an
arbitrary keyword w on time t. S is given

(
P(δ,Query, t),

∆(δ,F , w, t)
)
← L2(δ,F , w, t). S adds these to LH. S then

simulates τw and updates lists (LR,LK) as follows.
1) If w is in LH, then fetch sw. Else, sw

$← {0, 1}κ, i ←
Tw(swi), ui ← Tw[i].ct, insert (w,L1(δ,F), sw) into LH.

2) If ⊥ = LK(i||ui), then ri
$← {0, 1}κ and insert (ri, i, ui)

into LK. Else, ri ← LK(i||ui).
3) If ui > 1, then ri ← LK(i||ui − 1), τw ← (i, ri, ri). Else,
τw ← (i, ri).

4) Tw[i].ct← ui + 1.
5) Given L2(δ,F , w, t), S knows identifiers Iw = {y1, . . . ,
yl}. Set I′[i, y] ← 1 for each y ∈ Iw and the rest of the
elements as I′[i, j]← 0 for each j ∈

{
{1, . . . , n} \ Iw

}
.

6) If ((τw = (i, ri) ∨ I[i, j].st) = 1), then V[i, j]← I[i, j]′ ⊕
I[i, j] and insert tuple (ri||j||uj ,V[i, j]) into LR, where
uj ← Tf [j].ct for 1 ≤ j ≤ n.

7) I[i, j].st← 0 for 1 ≤ j ≤ n.
8) I[i, j]← I′[i, j]⊕ RO (ri||j||uj), where uj ← Tf [j].ct for

1 ≤ j ≤ n.
9) Output τw and insert (w, τw) into LH.
Correctness and Indistinguishability of the Simulation: Given
any ∆(δ,F , w, t), S simulates the output of RO(·) such
that τw always produces the correct search result for Iw ←
Searchτw, γ. S needs to simulate the output of RO(·) for
two conditions (as in III-Step 6): (i) The first search of w (i.e.,
τw

?
= (i, ri)), since S did not know δ during the simulation

of (γ, C). (ii) If any file fid containing w has been updated

after the last search on w (i.e., I[i, j].st ?
= 1), since S does

not know the update content. S sets the output of RO(·)
for those cases by inserting tuple (ri||j||uj ,V[i, j]) into
LR (as in III-Step 6). In other cases, S just invokes RO(·)
with (ri||j||uj), which consistently returns the previously
inserted bit from LR (as in III-Step 8).

During the first search on w, each RO(·) outputs
V[i, j] = RO (ri||j|uj) that has the correct distribution,
since I[i, ∗] of γ has random uniform distribution (see
II-Correctness and Indistinguishability argument). Let J =
{j1, . . . , jl} be the set of indexes of files containing w, which
are updated after the last search on w. If w is searched again
after being updated, then each RO(·)’s output V[i, j] =
RO (ri||j|uj) has the correct distribution, since τf ← (I′, j)
for indexes j ∈ J has random uniform distribution (see
IV-Correctness and Indistinguishability argument). Given that
S’s τw always produces correct Iw for given ∆(δ,F , w, t),
and relevant values and RO(·) outputs have the correct
distribution, A does not abort during the simulation due
to S’s search token. The probability thatA queries RO(·) on
any (ri||j|uj) before querying S on τw is negligible (i.e., 1

2κ )
and, therefore, S does not abort due to A’s search query.

IV. Simulate (τf ,τ ′f ): S receives an update request op ∈
{〈Add, |c|〉,Delete} for an arbitrary file having id at time t.
Given |cid| ← L3(δ,F , id, t, op), S simulates update tokens
(τf , τ

′
f ) as follows.

1) If id is in LH, then fetch (id, sid, j). Else set sid
$←

{0, 1}κ, j ← Tf (sid) and insert (id, sid, j) into LH.
2) Tf [j].ct← Tf [j].ct + 1, uj ← Tf [j].ct.

3) If ⊥ = LK(i||ui), then ri
$← {0, 1}κ and insert (ri, i, ui)

into LK, where ui ← Tw[i].ct for 1 ≤ i ≤ m.
4) I′[i, j]← RO (zi), where zi

$← {0, 1}2κ for 1 ≤ i ≤ m.
5) Set I[i, j]← I′[i, j] and I[i, j].st← 1 for 1 ≤ i ≤ m.
6) If op = 〈Add, |c|〉, then simulate cj ← E .Enck({0}|c|)

add cj into C, set τf ← (I′, j) and output τf . Else, set
τ ′f ← (I′, j), remove cj from C and output τ ′f .

Correctness and Indistinguishability of the Simulation: Given
access pattern (τf , τ

′
f ) for a file fid, A checks the correctness

of update by searching all keywordsW = {wi1 , . . . , wil} in
fid. Since S is given access pattern ∆(δ,F , w, t) for a search
query (which captures the last update before the search), the
search operation always produces a correct result after an
update (see III-Correctness and Indistinguishability argument).
Hence, S’s update tokens are correct and consistent.

It remains to show that (τf , τ
′
f ) have the correct prob-

ability distribution. In the real algorithm, the counter uj is
increased for each update as simulated in IV-Step 2. If fid
is updated after the keyword w at row i is searched, a new
ri is generated for w as simulated in IV-Step 3 (ri remains
the same for consecutive updates but uj increases). Hence,
the real algorithm invokes H(.) with a different (ri||j||uj)
for 1 ≤ i ≤ m. S simulates this step by invoking RO(·)
with zi and I′[i, j] ← RO (zi), for 1 ≤ i ≤ m. (τf , τ

′
f ) have

random uniform distribution since I′ has random uniform
distribution and update operations are correct and consis-
tent as shown above. cj also has the correct distribution
since E .Enc(·) is an IND-CPA encryption. Hence,A does not
abort during the simulation due to S’s update tokens. The
probability that A queries RO(·) on any zi prior querying S
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on (τf , τ
′
f ) is negligible (i.e., 1

22·κ ) and, therefore, S does not
abort due to A’s update query.
V. Final Indistinguishability Argument: (swi , sidj , ri) for 1 ≤
i ≤ m and 1 ≤ j ≤ n are indistinguishable from real
tokens and keys since they are generated by PRFs that are
indistinguishable from random functions. E .Enc(·) is a IND-
CPA scheme, the answers returned by S to A for RO(·)
queries are consistent and appropriately distributed, and all
query replies of S toA during the simulation are correct and
indistinguishable as discussed in I-IV Correctness and Indis-
tinguishability arguments. Hence, for all PPT adversaries, the
outputs of RealA(κ) and IdealA,S(κ) experiment are:

|Pr[RealA(κ) = 1]− Pr[IdealA,S(κ) = 1]| ≤ neg(κ),

where neg(·) is a negligible function.

We argue the security of extended schemes as follows.

Remark 2. IM-DSSEI, IM-DSSEII and IM-DSSEI+II are secure
by Definition 2, and their proofs can be easily derived from the
security analysis of IM-DSSEmain presented above.

Specifically, IM-DSSEI only differs from IM-DSSEmain in
terms of b-bit encryption, compared with 1-bit encryption.
This modification does not impact the IND-CKA2 security of
IM-DSSEI over IM-DSSEmain. Given that we use ROs and an
IND-CPA encryption scheme (e.g., AES with CTR mode), the
security of IM-DSSEI is not affected in our model, and in par-
ticular, there is no additional leakage. The price that is paid
for this performance improvement is that the scheme becomes
interactive. Since the block data exchanged between client and
server are encrypted with an IND-CPA encryption scheme, there
is no additional leakage due to this operation.

IM-DSSEII only differs from IM-DSSEmain in terms of where
the decryption during keyword search takes place. Performing
decryption at the client (instead of at the server) does not impact
the IND-CKA2 security of IM-DSSEII over IM-DSSEmain. Given
that we, respectively, use ROs and PRF for H and G as in
IM-DSSEmain, the security of IM-DSSEII remains the same.

IM-DSSEI+II is merely the combination of IM-DSSEI and
IM-DSSEII, where block cipher encryption and client decryption
during search are both implemented. As analyzed, each of these
strategies does not impact the security and therefore, IM-DSSEI+II

still preserve the IND-CKA2 security.

The leakage definition and formal security model imply
various levels of privacy for different DSSE schemes. We
summarize some important privacy notions based on the
various leakage characteristics discussed in [2] as follows.

• Size pattern: The number of actual keyword-file pairs.
• Forward privacy: A search on a keyword w does not leak

the IDs of files being updated in the future and having w.
• Backward privacy: A search on a keyword w does not leak

all historical update operations (e.g., addition /deletion)
on the identifiers of files having this keyword.

Since keyword-file relationships are represented by an en-
crypted incidence matrix, IM-DSSE framework hides the size
pattern (i.e., number of ‘1’ in I), so that it is size-oblivious.

Corollary 1. IM-DSSE framework offers forward-privacy.

Proof. In IM-DSSE framework, the update involves recon-
structing a new column/block of encrypted index I. The

column/block is always encrypted with row keys that have
never been revealed to the server (Step 2–4 in Simulate
(τf ,τ ′f ))). This is achieved in IM-DSSEmain and IM-DSSEI

schemes by increasing the row counter after each keyword
search operation (e.g., Step 4 in Simulate (τw)) so that fresh
row keys will be used for subsequent update operations.
In IM-DSSEII scheme, since all cryptographic operations are
performed at the client side where no keys are revealed to
the server, it is unable for the server to infer any information
in the update, given that the encryption scheme is IND-CPA
secure. These properties enable our IM-DSSE framework to
achieve forward privacy.

Corollary 2. IM-DSSEII and IM-DSSEI+II achieve backward-
privacy.

Proof. In most DSSE schemes, the client sends a key that
allows the server to decrypt a small part of the encrypted
index during keyword search. The server can use this key
to backtrack historical update operations on this part and
therefore, compromise the backward-privacy. In IM-DSSEII

and IM-DSSEI+II schemes, instead of sending the key to
the server, the client requests this part and decrypts it
locally. This prevents the server from learning information
about historical update operations on the encrypted index
and therefore, allows both schemes to achieve backward-
privacy.

5 PERFORMANCE ANALYSIS AND EVALUATION

We evaluate the performance of our IM-DSSE framework
in real-life networking and system settings. We provide a
detailed cost breakdown analysis to fully assess the criteria
that constitute the performance overhead of our construc-
tions. Given that such analysis is generally missing in the
literature, this is the main focus of our performance evalua-
tion. Finally, we give a brief asymptotic comparison of our
framework with several DSSE schemes in the literature.

Implementation Details. We implemented our frame-
work using C/C++. For cryptographic primitives, we used
libtomcrypt library [33]. We modified low level routines to
call AES hardware acceleration instructions (via Intel AES-NI
library [34]) if they are supported by the underlying hard-
ware platform. We used AES-128 Cipher-based Message
Authentication Code (CMAC) for hash function. Our ran-
dom oracles were all implemented via 128-bit AES CMAC.
For hash tables, we employed Google’s C++ sparse hash map
library [35] with the hash function being implemented by
the CMAC-based random oracles truncated to 80 bits. We
implemented the IND-CPA encryption E using AES with
CTR mode. For network communication, we used ZeroMQ
library [36].

IM-DSSE framework contains the full implementation of
all schemes presented in this article including IM-DSSEmain,
IM-DSSEI, IM-DSSEII and IM-DSSEI+II, which can be freely
accessed via our following Github repository [37].

https://github.com/thanghoang/IM-DSSE/

Our implementation supports the encrypted index
stored on either memory or local disk. Therefore, our

https://github.com/thanghoang/IM-DSSE/
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Fig. 2: The latency of our schemes with fast network.
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Fig. 3: The latency of our schemes with moderate network.

schemes can be directly deployed in either storage-as-
a-service (e.g., Amazon S3) or infrastructure-as-a-service
clouds (e.g., Amazon EC2). For this experimental evalua-
tion, we selected block cipher size b = 128 for IM-DSSEI and
IM-DSSEI+II schemes.

Dataset. We used subsets of the Enron email dataset
[38], ranging from 50,000 to 250,000 files with 240,000–
940,000 unique keywords to evaluate the performance of
our schemes with different encrypted index sizes. These
selected sizes surpass the experiments in [3] by three orders
of magnitude and are comparable to the experiments in [2].

Hardware. We conducted the experiment with two settings:
(i) We used HP Z230 Desktop as the client and built the

server using Amazon EC2 with m4.4xlarge instance type.
The desktop was equipped with Intel Xeon CPU E3-1231v3
@ 3.40GHz, 16 GB RAM, 256 GB SSD and CentOS 7.2 was
installed. The server was installed with Ubuntu 14.04 and
equipped with 16vCPUs @2.4 GHz Intel Xeon E5-2676v3, 64
GB RAM and 500 GB SSD hard drive.

(ii) We selected LG G4 mobile phone to be the client
machine running Android OS, v5.1.1 (Lollipop) and was
equipped with Qualcomm Snapdragon 808 64-bit Hexa-core
CPU @1.8 GHz, 3GB RAM and 32 GB internal storage.
Notice that AES-NI library cannot be used to accelerate
cryptographic operations on this mobile device due to its
incompatible CPU, which affects the performance of our
schemes in the mobile environment as will be shown in the
following section.

We disabled the slow-start TCP algorithm and maxi-
mized initial congestion window parameters in Linux (i.e.,
65535 bytes) (see [39] for more insights) to reduce the
network impact during the initial phase in case the scheme
requires low amount of data to be transmitted.

Performance Results. Figure 2 presents the overall perfor-
mance in terms of end-to-end cryptographic delay of all

the schemes in IM-DSSE framework. In this experiment, we
located client and server in the same geographical region,
resulting in a network latency of 11.2 ms and a through-
put of 264 Mbps. We refer to this configuration as a fast
network setting. Notice that we only measured the delay
due to accessing the encrypted index I, and omitted the
time to access encrypted files (i.e., set C) as it is identical
for all searchable encryption and non-searchable encryption
schemes. For instance, in keyword search, we measured
the delay of IM-DSSEmain scheme and IM-DSSEI scheme
by the time the client sends the request and the server
finishes decrypting an entire row of the encrypted index
and gets cells whose value is 1. The IM-DSSEmain scheme
and its extended versions took less than 100 ms to perform
a keyword search, while it took less than 2 seconds to update
a file. The cost per keyword search depends linearly on the
maximum number of files in the database (i.e., O(n)) and
yet it is highly practical even for very large numbers of
keyword-file pairs (i.e., more than 1011 pairs). Indeed, we
confirm that the search operation in IM-DSSE is very fast
and most of the overhead is due to network communication
delay as it will be later analyzed in this section. Note that
the costs for adding and deleting files (updates) over the
encrypted index are highly similar since their procedure is
almost identical.

The keyword search operation delay of IM-DSSEmain is
higher than that of extended schemes and the difference
increases as the size of the encrypted index increases due
to two reasons: First, the encrypted index I in IM-DSSEmain

scheme is bit-by-bit encrypted compared with 128-bit block
encryption in IM-DSSEI. Hence, the server needs to de-
rive more AES keys than in IM-DSSEI to decrypt a whole
row. Thus, the gap between IM-DSSEmain and IM-DSSEI

represents the server computation cost required for this
key derivation and encryption. Second, the processes in
IM-DSSEmain scheme are performed subsequently, in which
the server needs to receive some information sent from
the client first before being able to derive keys to decrypt
a row. Such processes in IM-DSSEI and IM-DSSEII can be
parallelized, where the client generates the AES-CTR keys
while receiving a row of data transmitted from the server.
We can see that the delay is similar between IM-DSSEI and
IM-DSSEII and IM-DSSEI+II. This indicates that using 128-bit
encryption significantly reduces the server computation cost
to a point, where it becomes negligible as being later shown.

Considering the file update operation, our IM-DSSEmain

and IM-DSSEII schemes leverage 1-bit encryption and, there-
fore, it does not require to transfer a 128-bit block to the
client first prior to updating the column as in IM-DSSEI and
IM-DSSEI+II schemes. Hence, they are faster and less affected
by the network latency than IM-DSSEI and IM-DSSEI+II. So,
the gap between such schemes reflects the data down-
load delays, which will be significantly higher on slower
networks as shown in the next experiment. Update in
IM-DSSEI+II is considerably faster than in IM-DSSEI because
it allows for parallelization, in which the client can pre-
compute AES-CTR keys while receiving data from the
server. In IM-DSSEI, such keys cannot be pre-computed as
they need some information from the server beforehand
(i.e., state data I[∗, j].st).
The impact of network quality. The previous experiments
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Fig. 4: The latency of IM-DSSE framework with SSD server-storage and (a,b) fast and (c,d) moderate networks.
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Fig. 5: Detailed costs of IM-DSSE framework with moderate network and SSD server-storage.

were conducted on a high-speed network, which might
not be widely available in practice. Hence, we additionally
investigated how our schemes perform when the network
speed is degraded. We setup the server to be geographically
located distant from the client machine, resulting in the
network latency and throughput to be 67.5 ms and 46
Mbps, respectively. Figure 3 shows the end-to-end cryp-
tographic delay of our schemes in this moderate network
setting. Due to the high network latency, search operation of
each scheme is slower than that of fast network by 230ms.
The impact of the network latency is clearly shown in the
update operation as reflected in Figure 3b. The delays of
IM-DSSEI, IM-DSSEI+II are significantly higher than those of
IM-DSSEmain and IM-DSSEII. As explained previously, this
gap actually reflects the download delay incurred by such
schemes.

Storage location of encrypted index: RAM vs. disk. An-
other important performance factor for DSSE is the en-
crypted index storage access delay. Hence, we investigated
the impact of the encrypted index storage location on the
performance of our schemes. Clearly, the ideal case is to
store all server-side data on RAM to minimize the delay
introduced by storage media access as shown in previous
experiments. However, deploying a cloud server with a very
large amount of RAM capacity can be very costly. Thus, in
addition to the RAM-stored results shown previously, we
stored the encrypted index on the secondary storage unit
(i.e., SSD drive), and then measured how overall delays of
our scheme were impacted by this setting. Figure 4 presents
the results with two aforementioned network quality envi-
ronments (i.e., fast and moderate speeds). In IM-DSSEmain

and IM-DSSEI schemes, the disk I/O access is incurred by
loading a part of the encrypted index including value I.v
and state I.st . It is clear that the disk I/O access time
incurred an insignificant latency to the overall delay in
terms of keyword search operation as shown in Figure 4a
and Figure 4d, since our schemes achieve perfect locality as

defined by Cash et al. [40]. However, in the file update op-
eration, the delay in IM-DSSE framework was 1–4 seconds
more, compared with RAM-based storage. That is because
we stored all cells in each row of the encrypted matrix I
in contiguous memory blocks. Therefore, keyword search
invokes accessing subsequent memory blocks while update
operation results in accessing scattered blocks which incurs
much higher disk I/O access time. Due to the incidence
matrix data structure and this storage strategy, our search
operation was not affected as much by disk I/O access time
as other non-local DSSE schemes (e.g., [5], [13], [41]), which
require accessing random memory blocks for security.

Cost breakdown. We dissected the overall cost of our
schemes previously presented in Figure 2, Figure 3 and
Figure 4 to investigate which factors contribute a significant
amount to the total delay of each scheme. For analysis,
we selected the cost of our schemes when performing on
the largest encrypted index size being experimented (i.e.,
2.36 × 1011) with moderate network speed, where the en-
crypted index is stored on an SSD drive. Figure 5 presents
the major factors that contribute to the total delay of our
schemes during keyword search and file update operations.

Considering the search operation, it is clear that data
transmission occupied the largest amount of delay among
all schemes. In our IM-DSSEmain and IM-DSSEI schemes,
most of the computations were performed by the server
wherein cryptographic operations were accelerated by AES-
NI so that they only took a small portion of the total,
especially in IM-DSSEI scheme. Meanwhile, the client only
performed simple computations such as search token gen-
eration so that its cost was negligible. In IM-DSSEII and
IM-DSSEI+II schemes, encrypted data were decrypted at the
client side, while the server did nothing but transmission.
Therefore, the client computation cost took a small portion
of the total delay and the server’s cost was negligible.
However, as indicated in §3, the client computation and data
transmission in IM-DSSEII and IM-DSSEI+II are fully paral-
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Fig. 6: The latency of IM-DSSE framework on mobile and RAM server-storage with (a,b) fast and (c,d) moderate networks.
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Fig. 7: The latency of IM-DSSE framework on mobile and SSD server-storage with (a,b) fast and (c,d) moderate networks.
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Fig. 8: Detailed costs of IM-DSSE framework on mobile with moderate network and SSD server-storage.

lelizable where their partially parallel costs are indicated by
their overlapping area in Figure 5a. Hence, we can infer
that client computation was actually dominated by data
transmission and, therefore, the computation cost did not
affect the total delay of the schemes. As explained above,
we stored the encrypted matrix on disk with row-friendly
strategy so that the disk I/O access time due to keyword
search was insignificant, which contributed less than 3% to
the total delay.

In contrast, it is clear that disk I/O access time oc-
cupied a considerable proportion of the overall delay of
the update operation, especially in the IM-DSSEmain and
IM-DSSEII schemes due to non-contiguous memory access.
Data transmission was the second major factor contributing
to the total delay. As the server did not perform any expen-
sive computations, its cost was negligible in all schemes.
The client performed cryptographic operations which were
accelerated by AES-NI library so that it only contributed less
than 7% to the overall cost. Additionally, the client compu-
tation was mostly parallelized with the data transmission
and the server’s operations in IM-DSSEII and IM-DSSEI+II

schemes so that it can be considered not to significantly
impact the total delay.

Realization on mobile environments. We evaluated our
schemes’ performance when deployed on a mobile device

with limited computational resources. Similar to the desktop
experiments, we tested on fast and moderate network by
geographically locating the server close and distant from
the mobile, respectively. The phone was connected to a
local WiFi which, in turn, allowed the establishment of the
connection to the server via a wireless network resulting
in the latency and throughput of fast network case to be
18.8 ms, 136 Mbps while those of moderate case were 76.3
ms and 44 Mbps, resp. Figure 6 and Figure 7 present the
benchmark results with aforementioned network settings
when the data in the server were stored on RAM and
SSD, respectively. In the mobile environment, the IM-DSSEII

scheme performed considerably slower than others in terms
of keyword search. That is because, in this scheme, a number
of cryptographic operations (i.e., O (n)) were performed
by the mobile device. Moreover, these operations were
not accelerated by AES-NI library as in our Desktop ma-
chine because the mobile CPU did not have special crypto-
accelerated instructions. Considering the keyword search
performance of IM-DSSEII in the moderate network setting
(i.e., Figure 6c and Figure 7c), we can see that its delay
significantly increased when the size of encrypted index
exceeded 1011 keyword-file pairs. This is because starting
from this size of the encrypted index, the client compu-
tation began to dominate the data transmission cost. The
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TABLE 1: Security and asymptotic complexity of some state-of-the-art single-keyword DSSE schemes.

Property/ Forward Backward Client Storage Index Size Search Cost Update Cost Parallel?Scheme Privacy Privacy
KPR12 [3] 7 7 O (1) O (N ′ +m) O (rw) O (m′′) 7
KP13 [8] 7 7 O (1) O (m · n) O (rw logn) O (m logn) 3

CJK+14 [5] 7 7 O (1) O (N ′) O (aw + dw) O (m′′ + r′′) 3
HK14 [10] 7 7 O (m′) O (N ′) O (rw) O (m′′) 7

SPS14 [2] 3 7 O (N ′α) O (N ′) O
(
min

{
dw + logN ′

rw log3N ′

})
O

(
m′′ log2N ′

)
7

B16 [11] 3 7 O (m logn) O (N ′) O (aw + dw) O (m′′) 7
LC17 [20] 3 7 O (m logn+ n logm) O (N ′) O (rw) O (m′′) 3
BMO17 [24] 3 3 O (m logn) O (N ′) O (aw) O (m′′ log aw) 7

KKL+17 [21] 3 7 O (m) O (N ′) O (aw) O (m′′) 3

SDY+18 [22] 3 7 O (m) O (N ′) O (aw + dw) O (m′′) 7

IM-DSSE 3 3† O (m+ n) O (m · n) O (n) O (m) 3

• m and n denote the maximum number of keywords and files, respectively. m′ < m and n′ < n denote the actual number of keywords
and files, respectively. N ′ ≤ m′ · n′ is the number of keyword-file pairs. m′′ is the number unique keywords included in an updated file,
0 < α < 1, aw (resp. dw) is the number of historical addition (resp. deletion) operation on keyword w, rw is the number of files matching
keyword w and rw = aw − dw.
•We omitted the security parameter κ for analyzed complexity cost.
• This table only presents standard single-keyword DSSE schemes. DSSE schemes with extended query functionalities (e.g., [6], [7], [12],
[13], [14], [15]) are summarized in §1.1.
† In IM-DSSE framework, IM-DSSEII and IM-DSSEI+II schemes offer backward-privacy (see §4).

update delays of our schemes, especially the IM-DSSEmain

and IM-DSSEII schemes, were substantial in the mobile
environment because the mobile platform had to perform
intensive cryptographic operations.

Figure 8 shows the decomposition of the total end-
to-end delay of our schemes in the out-of-state network
setting when the server data were stored on an SSD drive.
For the search operation, the detailed costs of IM-DSSEmain

and IM-DSSEI schemes are the same as in the desktop
setting since computations were mostly performed by the
server while the client only performed some lightweight
computation to generate the token. In IM-DSSEII, the client
computation contributed almost 100% to the total delay due
to O (n) number of AES-CTR decryptions, compared with
O (n) /128 in IM-DSSEI+II which was all dominated by the
data transmission delay. The limitation of computational
capability of the mobile device is reflected clearly in Fig-
ure 8b, wherein the client computation cost accounted for a
considerable amount of the overall delay of most schemes
except for the IM-DSSEI+II scheme.

Caching Discussion. In this article, we reported the delays
of our framework without taking optimization into account.
Meanwhile, the performance of our framework can be fur-
ther optimized by applying several caching strategies to
minimize the computation, I/O access and communication
overhead at both client and server sides. Specifically, for
each search operation, one can observe that our framework
requires to decrypt and re-encrypt an entire row in the in-
cidence matrix This increases significantly the computation
overhead whereas it is not necessary to protect the row con-
fidentiality once its content is already revealed. Therefore,
given a keyword to be searched at the first time, the server
can decrypt the row, and cache all positions that indicate
the files containing the keyword in a compact index such
as encrypted dictionary. When the keyword is repeatedly
searched, the server can simply look up this index to obtain
the search result. This caching strategy reduces the server
computation overhead with the cost of maintaining an extra
data structure. Both client and server can also cache the con-
tent of keywords being searched/update frequently on local

persistent memory to reduce the network communication
and I/O access thereby, reducing the overall delay. We note
that the efficiency of this caching is application-specific since
it depends on the characteristics of the outsourced database
and the user query. By open-sourcing the implementation
of our framework, we leave its optimization to practitioners
when deployed on specific use-cases in practice.

6 CONCLUSIONS

In this article, we presented IM-DSSE, a new DSSE frame-
work which offers very high privacy, efficient updates, low
search latency simultaneously. Our constructions rely on
a simple yet efficient incidence matrix data structure in
combination with two hash tables that allow efficient and
secure search and update operations. Our framework offers
various DSSE constructions, which are specifically designed
to meet the needs of cloud infrastructure and personal
usage in different applications and environments. All of our
schemes in IM-DSSE framework are proven to be secure and
achieve the highest privacy among their counterparts. We
conducted a detailed experimental analysis to evaluate the
performance of our schemes on real Amazon EC2 cloud
systems. Our results showed the high practicality of our
framework, even when deployed on mobile devices with
large datasets. We have released the full-fledged implemen-
tation of our framework for public use and analysis.
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