
Journal of Computer Security 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

A Multi-server Oblivious Dynamic
Searchable Encryption Framework

Thang Hoang a,∗, Attila A. Yavuz a, F. Betül Durak b, Jorge Guajardo c

a Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
E-mails: hoangm@mail.usf.edu, attilaayavuz@usf.edu
b LASEC - Security and Cryptography Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
E-mail: betul.durak@epfl.ch
c Robert Bosch LLC, Pittsburgh, PA, USA
E-mail: jorge.guajardomerchan@us.bosch.com

Abstract. Data privacy is one of the main concerns for data outsourcing on the cloud. Although standard encryption can
provide confidentiality, it also prevents the clients from searching/retrieving meaningful information on the outsourced data
thereby, degrading the benefits of using cloud services. To address this data utilization vs. privacy dilemma, Dynamic Searchable
Symmetric Encryption (DSSE) has been proposed, which enables encrypted search and update functionality over the encrypted
data via a secure index. Despite a lot of efforts, state-of-the-art DSSE constructions still leak significant information from the
access pattern, making them vulnerable against various practical attacks. While generic Oblivious Random Access Machine
(ORAM) can hide the access pattern, it incurs a logarithmic communication overhead, which was shown costly to be directly
used in the DSSE setting.

In this article, by exploiting the multi-cloud infrastructure, we develop a comprehensive Oblivious Distributed DSSE (ODSE)
framework that allows oblivious search and updates on the encrypted index with high security and improved efficiency over
the use of generic ORAM. Our framework contains a series of ODSE schemes each featuring different levels of performance
and security required by various types of real-life applications. ODSE offers desirable security guarantees such as information-
theoretic security and robustness in the presence of a malicious adversary. We fully implemented ODSE framework and eval-
uated its performance in a real cloud environment (Amazon EC2). Our experiments showed that ODSE schemes are 3×-57×
faster than using generic ORAMs on a DSSE encrypted index under real network settings.

Keywords: Searchable encryption, Write-only ORAM, Multi-server PIR, Privacy-preserving clouds

1. Introduction

The concept of storage-as-a-service provides a comprehensive storage architecture for companies or
individuals to store data on the cloud, thereby reducing the data management and maintenance cost.
Despite its usefulness, recent data breach incidents on such systems have shown the imperative of pre-
serving the confidentiality of sensitive data stored on the cloud. Although standard encryption (e.g.,
AES) can preserve data privacy, it also prevents the users from searching or retrieving meaningful infor-
mation from outsourced data, which completely invalidates the benefits of using cloud storage services.
To address the data utilization vs. privacy dilemma, the concept of searchable symmetric encryption

*Corresponding author. E-mail: hoangm@mail.usf.edu.

0926-227X/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:hoangm@mail.usf.edu
mailto:attilaayavuz@usf.edu
mailto:betul.durak@epfl.ch
mailto:jorge.guajardomerchan@us.bosch.com
mailto:hoangm@mail.usf.edu

2 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(SSE) was introduced [1]. Since then, many SSE schemes have been developed in attempts to offer prac-
tical query functionality while, at the same time, preserving user privacy and data confidentiality. In the
following sections, we first review the ongoing research on SSE and outline the security limitations of
state-of-the-art approaches.

1.1. State-of-the-arts and Limitation

SSE. Song et al. were the first to propose the concept of SSE [1]. Later, Curtmola et al. [2] defined
indistinguishability under the adaptive chosen keyword attack (IND-CKA2) as a formal security notion
for SSE, and presented an IND-CKA2-secure scheme supporting single keyword search. The security
is achieved by constructing a secure index (I) representing the relationship between keywords and en-
crypted files (F), both of which (〈I,F〉) are outsourced to the cloud. Several refinements based on this
index model have been proposed to offer more functionality and query diversity such as ranked query
[3] and/or multi-keyword search [4, 5]. The main limitation of these constructions is that they are only
static, meaning that they can only perform a search on the encrypted data with no update allowed after
the setup. Kamara et al. were among the first to propose Dynamic Searchable Symmetric Encryption
(DSSE) [6], which enables both search and update functionalities on encrypted files. After their studies,
many DSSE schemes have been proposed, each offering distinct performance, functionality and security
trade-offs [6–12].
Information Leakages in SSE and Limitations of Other Approaches. SSE without relying on the
encrypted index has been shown to be vulnerable against many attacks [13, 14]. On the other hand,
although the encrypted index-based SSE is known to be more secure, it still leaks a lot of information that
the adversary can exploit to conduct statistical attacks [15–17]. For instance, when the client performs
a search on the encrypted index, the search token in DSSE might reveal the content files to be updated
in the future as well as all of the historical updates on files matching with the token. These leakages
are defined as forward-privacy and backward-privacy, respectively [18]. Zhang et al. showed that it
is possible to learn which keywords have been searched in forward-insecure DSSE schemes through
file-injection attacks [17]. Most efficient DSSE schemes [6, 7, 19, 20] do not provide forward- and
backward-privacy when searching on I. Although there are some forward- and backward-private DSSE
schemes being proposed recently (e.g., [8, 21]), they rely on costly public key operations [22]. More
severely, since the search, update and retrieval queries in DSSE are deterministic, all standard DSSE
schemes leak access patterns on both I and F . In particular, the client leaks the file-access pattern
when updating a file or when retrieving a set of files matching with the search query performed on
the encrypted index. Similarly, the client leaks the index-access pattern when performing the search or
update on the encrypted index. Liu et al. [16] demonstrated a practical attack that can determine which
keywords being searched by observing the search pattern.

To seal most of the access pattern leakage in DSSE, one can use a generic1 Oblivious Random Access
Machine (ORAM) technique [23] to conduct oblivious access on I and F . Garg et al. [24] proposed
TWORAM, which optimizes the use of ORAM to hide file access patterns in DSSE2. Despite its merits,
prior studies such as [7, 25] stated that generic ORAM [23] is too expensive to be used in DSSE setting
due to its logarithmic client-bandwidth overhead. Although ORAM schemes with a constant bandwidth

1By generic ORAM, we mean the technique that can hide whether the access is to read or to write as opposed to read-only
Private Information Retrieval or Write-Only ORAM.

2It differs from the objective of this paper, where we focus on hiding access patterns on the encrypted index in DSSE (see §8
for clarification).

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Keyword search

File update ODSE

Encrypted
Files ℱ

Generic
ORAM

CLIENT

Encrypted
Index 𝐈1

Encrypted
Index 𝐈ℓ

𝑆1

⋮

𝑆ℓ

⋮

𝑆′

DISTRIBUTED CLOUD

File Retrieval/ Update

Multi-server PIR
Write-Only ORAM

Improved communication efficiency

The focus of this paper

Oblivious accesses

Fig. 1. Our research objective and high-level approach.

complexity have been introduced recently [26], they rely on costly cryptographic protocols (i.e., homo-
morphic encryption [27]), whose performance was shown worse than bandwidth-logarithmic ORAMs
[28]. Alternative solutions trying to avoid generic ORAM are either very costly or unable to seal access
pattern leakage in DSSE [29, 30].

1.2. Our Contributions

In DSSE, it is necessary to seal access pattern leakages when accessing the encrypted index (I) and
encrypted files (F).

Since the size of individual files in F can be arbitrarily large and each search/update query might
involve with a different number of files, to the best of our knowledge, generic ORAM seems to be the
only option for oblivious access on F . In this paper, we focus more on oblivious access techniques on
the index (I) that are more bandwidth-efficient than using generic ORAM (Figure 1). Specifically, we
propose ODSE, a comprehensive oblivious encrypted index framework in the multi-server setting with
the application to DSSE. The framework contains three ODSE schemes including ODSEwo

xor, ODSEwo
ro

and ODSEwo
it each offering various performance and security properties as follows.

• Full obliviousness with information-theoretic security: ODSE seals significant information leak-
ages when accessing the encrypted index that lead into statistical attacks. Strictly speaking, our con-
structions hide the index-access pattern, provide forward- and backward-privacy and secrecy of the
query types (search/update). ODSEwo

xor and ODSEwo
ro offers computational security for the encrypted

index as well as access operations on it. On the other hand, ODSEwo
it provides information-theoretic

statistical security (see §5).
• Low end-to-end delay: All ODSE schemes offer low end-to-end-delay, which are 3×-57× faster than

using generic ORAM atop the DSSE encrypted index (with optimization [24]) under real network
settings (see §8).
• Robustness against malicious adversary: In the present work, we provide secure methods not only

in the honest-but-curious setting but also in the malicious environment. Our ODSE schemes offer
various levels of robustness in the distributed setting. In the semi-honest setting, ODSEwo

ro and ODSEwo
it

are robust against corrupted servers that do not respond due to system/network failure. All ODSE
schemes can be extended to be secure against malicious adversary. Specifically, the extended ODSEwo

xor
scheme can detect if there exists any malicious server (but without knowing which server it is). The

4 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

extended ODSEwo
ro and ODSEwo

it schemes can not only detect which server(s) is malicious, but also be
robust against incorrect replies by malicious servers.
• Full-fledged implementation and open-sourced framework: We fully implemented all the proposed

ODSE schemes in both semi-honest and malicious settings, and evaluated their performance on real-
cloud infrastructure. To the best of our knowledge, we are among the first to open-source an oblivious
access framework for the encrypted index in DSSE, which can be publicly used for comparison and
adaptation (see §8).

Improvement over the IFIP DBSec’18 Conference Version [31]. This article is the extended version
of [31], which includes the following improvements. First, we introduce a new ODSE scheme called
ODSEwo

it , which is a hybrid scheme between ODSEwo
xor and ODSEwo

it originally presented in [31]. ODSEwo
it

inherits the best of both worlds, in which it features low search/update delay and robustness in the
distributed setting simultaneously. Second, we fully extended all the proposed ODSE schemes into the
malicious-setting, which was only discussed briefly in [31]. Third, we conducted more experiments to
evaluate the performance of the new ODSEwo

it scheme as well as all the extended ODSE schemes in
the malicious setting with different number of corrupted servers. Finally, we have made our improved
source-code publicly available at https://github.com/thanghoang/ODSE.

2. Preliminaries and Building Blocks

2.1. Notation

We denote a finite field as Fp where p is a prime. Operators || and ⊕ denote the concatenation and
XOR, respectively. 〈·〉bin denotes the binary representation. [N] denotes {1, . . . ,N}. u · v denotes the

dot product of two vectors u and v. x $← S denotes that x is randomly and uniformly selected from S.
Given I as a row/column of a matrix, I[i] denotes accessing the i-th component of I. Given a matrix I,
I[∗, j . . . j′] denotes accessing columns j to j′ of I. I[i, ∗] and I[∗, j] denotes accessing the entire row i
and column j of I, respectively. Let E = (Gen,Enc,Dec) be an IND-CPA symmetric encryption [32]:
κ ← E .Gen(1λ) generating key with security parameter λ; C ← E .Encκ(M, c) encrypting plaintext M
with key κ and counter c; M ← E .Decκ(C, c) decrypting ciphertext C with key κ and counter c. Let
Σ = (Gen,Mac,Vrfy) be a secure Message Authentication Code (MAC) scheme [32]: θ ← Σ.Gen(1λ)
generating a MAC key with security parameter λ; τ ← Σ.Macθ(m) generating a tag for message m ∈
{0, 1}∗ with key θ; {0, 1} ← Σ.Vrfyθ(m, τ) verifying if the tag (τ) associated with the message (m) is
either valid (1) or invalid (0).

2.2. Shamir Secret Sharing

We present (t, `)-threshold Shamir Secret Sharing (SSS) scheme [33] in Figure 2. Given a secret
b ∈ Fp to be shared, the dealer generates a random t-degree polynomial f and evaluates f (xi) for each
party Pi ∈ {P1, . . . ,P`}, at point xi which is a non-zero element of Fp. xi is used to identify party
Pi (SSS.CreateShare algorithm). We denote the share for Pi as JbKi for 1 6 i 6 `. The secret can
be reconstructed by combining at least t + 1 correct shares via Lagrange interpolation (SSS.Recover
algorithm).

SSS is a t-private secret sharing scheme in the sense that any combinations of t shares leak no infor-
mation about the secret. SSS offers homomorphic properties including addition, scalar multiplication,

https://github.com/thanghoang/ODSE

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(JbK1, . . . , JbK`)← SSS.CreateShare(b, t): Create ` shares of value b

1: {a1, . . . , at}
$← Fp # Creates the coefficients of the polynomial

2: {x1, . . . , x`} ← Fp − {0} # Pick the evaluation points of the polynomial
3: for i = 1, . . . , ` do
4: JbKi ← b +

∑t
u=1 au · xu

i # Evaluate the polynomial at each point
5: return B = (JbK1, . . . , JbK`)

b← SSS.Recover(B, t): Recover the value b from its shares

1: Randomly select t + 1 shares {JbKi j}
t+1
j=1 in B, where i j ∈ {1, . . . `}

2: g(x)← LagrangeInterpolation
(
{(xi j , JbKi j)}

t+1
j=1

)
3: return b, where b← g(0)

Fig. 2. Shamir Secret Sharing (SSS) scheme [33].

and partial multiplication. We extend the notion of SSS-share of value to indicate the share of a vector.
That is, given a vector v = (v1, . . . , vn), JvKi = (Jv1Ki, . . . , JvnKi) indicates the share of v for party Pi, in
which each components in JvK is the SSS-share of the corresponding components in v.

2.3. Private Information Retrieval

Private Information Retrieval (PIR) technique enables private retrieval of a data item from a (unen-
crypted) public database server. PIR in the distributed setting is defined as follows.

Definition 1 (multi-server PIR [34, 35]). Let b = (b1, . . . , bn) be a database consisting of n items being
stored in ` servers. A multi-server PIR protocol consists of three algorithms as follows. Given an item
b j in b to be retrieved, the client creates queries (ρ1, . . . , ρ`) ← PIR.CreateQuery(j) and distributes ρi

to server Si for each i ∈ {1 . . . `}. Each server Si responds with an answer ri ← PIR.Retrieve(ρi,b).
Upon receiving R = {r1, . . . , r`} answers, the client computes the value of item b by invoking the
reconstruction algorithm b← PIR.Reconstruct(R).

A multi-server PIR is correct if the client can obtain the correct value of b from ` answers
via PIR.Reconstruct algorithm with the probability 1. A multi-server PIR is t-private if ∀ j, j′ ∈
{1, . . . , n}, ∀L ⊆ {1, . . . , `} s.t. |L| 6 t, the probability distributions of

{
ρ j∈L : (ρ1, . . . , ρ`) ←

PIR.CreateQuery(j)
}

and
{
ρ′j′∈L : (ρ′1, . . . , ρ

′
`)← PIR.CreateQuery(j′)

}
are identical.

We recall two efficient multi-server PIR protocols as follows.

• XOR-based PIR [36]. It relies on XOR trick to perform the private retrieval, in which the database
b contains n items bi, each being interpreted as a m-bit string (Figure 3).

• SSS-based PIR [34, 35]. It relies on SSS to improve the robustness of multi-server PIR, in which the
database b contains n items bi, each being interpreted as an element of Fp (Figure 4).

Write-Only ORAM. ORAM allows the user to hide access patterns when accessing their encrypted data
on the cloud. In contrast to generic ORAM where both read and write operations are hidden, Blass et al.
[37] proposed a Write-Only ORAM scheme, which only hides the write pattern in the context of hidden
volume encryption. Intuitively, 2n memory slots are used to store n blocks, each assigned to a distinct
slot and a position map is maintained to keep track of block’s location. Given a block to be rewritten, the
client reads O(λ) slots chosen uniformly at random and writes the block to a dummy slot among O(λ)
slots. Data in all slots are encrypted to hide which slot is updated. By selecting λ sufficiently large, one

6 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(ρ1, . . . , ρ`)← PIRxor.CreateQuery(j): Create select query for a database size n
1: Initialize binary string e← 0n and set e[j]← 1
2: for i = 1, . . . , ` − 1 do
3: ρi

$← {0, 1}n

4: ρ` ← ρ1 ⊕ · · · ⊕ ρ`−1 ⊕ e
5: return (ρ1, . . . , ρ`)

ri ← PIRxor.Retrieve(ρi, b): Retrieve an item in the DB b
1: Parse b as (b1, . . . bn)

2: Initialize ri ← {0}|b1|
3: for j = 1, . . . , n do
4: if ρi[j] = 1 then
5: ri ← ri ⊕ b j

6: return ri

b← PIRxor.Reconstruct(R): Reconstruct the item
1: ParceR as {r1, . . . , r`}
2: b← r1 ⊕ · · · ⊕ r`
3: return b

Fig. 3. XOR-based PIR [36].

(JeK1, . . . , JeK`)← PIRsss.CreateQuery(j): Create select queries
1: Let e := (e1, . . . , en), where e j ← 1, ei ← 0 for 1 6 i 6= j 6 n
2: for i = 1, . . . , n do
3: (JeiK1, . . . , JeiK`)← SSS.CreateShare(ei, t)
4: for l = 1, . . . , ` do
5: JeKl ← (Je1Kl, . . . , JenKl)

6: return (JeK1, . . . , JeK`)

JbKi ← PIRsss.Retrieve(JeKi, b): Retrieve the item
1: JbKi ← JeKi · b
2: return JbKi

b← PIRsss.Reconstruct(B, t): Recover the retrieved item from the set of answers B
1: Parse B as {JbK1, . . . , JbK`}
2: b← SSS.Recover(B, t)
3: return b

Fig. 4. SSS-based PIR [34, 35].

can achieve a negligible failure probability, which might occur when all λ slots are non-dummy. It is
also possible to select a small λ. In this case, the client maintains a stash component S of size O(log n)

to temporarily store blocks that cannot be rewritten when all read slots are full.

3. System and Security Models

In this section, we present the system and security models of our framework.

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

3.1. System Model

Our system model comprises a client and ` servers S = (S1, . . . ,S`), each storing a version of the
encrypted index. The encrypted files are stored on a separate server different from S (as in [29]), which
can be obliviously accessed via a generic ORAM scheme [23, 38]. In this paper, we focus only on
oblivious access on distributed encrypted index I on S. We present the definition of ODSE as follows.

Definition 2. An Oblivious Distributed Dynamic Searchable Symmetric Encryption (ODSE) scheme is a
tuple of one algorithm and two protocols ODSE = (Setup,Search,Update) where input and output for
the client and servers are separated with semicolon such that:

(1) (σ, I)← Setup(F): Given a set of files F as input, the algorithm outputs a distributed encrypted
index I and a client state σ.

(2) (R;⊥)← Search(w, σ; I): The client inputs a keyword w to be searched and the state σ; the servers
input the distributed encrypted index I. The protocol outputs to the client a set R containing file
identifiers, in which w appears.

(3) (σ′; I ′)← Update(fid, σ; I): The client inputs the updated file fid and a state σ; the servers input
the distributed encrypted index I. The protocol outputs a new state σ′ and the updated index I ′ to
the client and servers, respectively.

3.2. Security Model

In our system, the client is trusted and the set of servers S are untrusted. We first consider the servers to
be semi-honest, meaning that they follow the protocol faithfully, but can record the protocol transcripts
to learn information regarding the client’s access pattern. Later, we show that our framework can be
extended to be secure against malicious servers that can tamper with the input data to compromise the
correctness and the security of the system (§6). We allow up to t < ` (privacy parameter) servers among
S to be colluding, meaning that they can share their own recorded protocol transcripts with each other.
Formally, the security of ODSE in the semi-honest setting can be defined as follows.

Definition 3 (ODSE security w. r. t. semi-honest adversary). Let ~o = (op1, . . . , opq) be an operation
sequence, where opi ∈

{
Search(w, σ; I),Update(fid, σ; I)

}
, w is a keyword to be searched and fid is

a file with identifier id whose relationship with unique keywords in the distributed encrypted index I
need to be updated, and σ denotes a client state information. Let ODSE j(~o) represent the ODSE client’s
sequence of interactions with server S j, given an operation sequence ~o.
Correctness: An ODSE is correct if for any operation sequence ~o,

{
ODSE1, . . . ,

ODSE`} returns data consistent with ~o, except with negligible probability.
t-security: An ODSE is t-secure if ∀L ⊆ {1, . . . , `} such that |L| 6 t, for any two operation sequences
~o1 and ~o2 where |~o1| = |~o2|, the views {ODSEl∈L(~o1)} and {ODSEl∈L(~o2)} observed by a coalition of
up to t servers are (perfectly/statistically/computationally) indistinguishable.

ODSE operation obliviousness. By Definition 2, keyword search and file update are the two main op-
erations in searchable encryption. Given that these operations might incur different procedures, we can
trigger both search and update protocols for any actual action to achieve the operation obliviousness ac-
cording to Definition 3. In this case, the server can guess (at best) with a probability of 1

2 what operation
the client is performing “in real” i.e. either search or update.

8 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 1
ODSE Symbols and Notations.

Symbol Description
N, M Maximum number of files and keywords in DB.
I Incidence Matrix Index
N′ Number of (dlog2 pe − 1)-bit blocks (N′ = d N

dlog2 pe−1e).
T f , Tw Static hash tables for files and keywords.
D Set of dummy (empty) columns
S Stash to (temporarily) store column data
c Column counter vector

4. The Proposed (Semi-Honest) ODSE Schemes

Intuition. In DSSE, keyword search and file update on I are read-only and write-only operations, re-
spectively. This property permits us to leverage specific bandwidth-efficient oblivious access techniques
for each operation such as multi-server PIR (for search) and Write-Only ORAM (for update) rather than
using a generic ORAM. The second requirement is to identify a suitable data structure for I so that these
bandwidth-efficient techniques can be adapted. In DSSE, forward index and inverted index are the ideal
choices for the file update and keyword search operations, respectively as proposed in [19]. However,
performing search and update on two isolated indexes will lead to inconsistency. The server might per-
form a synchronization to make two indices consistent; however, this will leak significant information
regarding the client query and file content. Therefore, to avoid this problem, it is mandatory to seek a
data structure, where both search index and update index can be integrated together. Fortunately, this can
be achieved by harnessing a two-dimensional index (i.e., matrix), which allows keyword search and file
update to be performed in two separate dimensions without creating any inconsistency at their intersec-
tions. This strategy permits us to perform computation-efficient (multi-server) PIR on one dimension,
and communication-efficient (Write-Only) ORAM on the other dimension to achieve oblivious search
and update, respectively.

In the following, we first describe the data structures used in ODSE framework, and then present semi-
honest ODSE schemes in details. We analyze the security of ODSE schemes and present their extension
into malicious setting in §5 and §6, respectively.

4.1. ODSE Data Structures

Our index to be stored at the server(s) is an incidence matrix (I), where each cell (I[i, j] ∈ {0, 1})
represents the relationship between the keyword indexed at row i and the file indexed at column j. So,
each row of I represents the search result of a keyword and each column represents the content of a
file. Since we use Write-Only ORAM for file update, the number of columns in I are doubled to the
maximum number of files that can be stored in the outsourced database. In other words, given N distinct
files and M unique keywords in the database, our index is of size M×2N. At the client side, we leverage
two position maps Tw, T f to keep track of location of keywords and files in I, respectively. They are of
structure T := 〈key, value〉, where key is a keyword or file ID and value ← T [key] is the (row/column)
index of key in I. Due to Write-Only ORAM, the client maintains a stash component (S) to temporarily
store columns that might not be written back during the update due to the overflow.

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(σ, I)← ODSEwo
xor.Setup(F):

1: I′[∗, ∗]← 0, initialize counter c← (c1, . . . , c2N) where ci ← 1 for i = 1, . . . , 2N
2: Let Π and Π′ be a random permutation on {1, . . . , 2N} and {1, . . . , M} respectively
3: κ← E .Gen(1λ)
4: Extract keywords (w1, . . . ,wm) from files F = { fid1 , . . . , fidn}
5: for i = 1, . . . ,m do
6: Tw[wi]← Π′(i)
7: for j = 1, . . . , n do
8: T f [id j]← Π(j)
9: if wi appears in fid j then

10: I′[xi, y j]← 1, where xi ← Tw[wi], y j ← T f [id j]

11: for i = 1, . . . , M do
12: τi ← KDFκ(i) # Generating an encryption key for each row
13: for j = 1, . . . , 2N do
14: I[i, j]← E .Encτi(I′[i, j], j||c j) # Ciphertext I[i, j] is one-bit long
15: Let I contain ` copies of I and σ← (κ, Tw, T f , c)
16: return (σ, I)

Fig. 5. ODSEwo
xor setup algorithm.

4.2. ODSEwo
xor: Fast ODSE

We introduce ODSEwo
xor, an ODSE scheme that offers a low search delay by using XOR trick. We

present the setup algorithm in ODSE as well as its oblivious search and update protocols as follows.
Setup. Figure 5 presents setup algorithm to construct the encrypted index in ODSE. Specifically, it first
initializes an unencrypted incidence matrix (I′) of size M×2N (line 1), and generates a master key to be
used for generating row keys to encrypt each row of I′ (line 3). It extracts unique keywords from input
files (line 4), assigns each keyword and file into a row and column of I′ selected randomly (lines 6, 9),
and then sets the value for each cell of I′ corresponding to the relationship between keywords and files
(line 10). Finally, the algorithm generates a distinct key for each row of I′ by the master key (line 14),
and encrypts each cell of I′ by a distinct pair of row key and column counter resulting in an encrypted
index I (line 14). We encrypt the index bit-by-bit and the resulting ciphertext of each input bit is also one
bit long. This can be implemented by, for example, AES with CTR mode, where we generate 128-bit
pseudorandom stream key by a master row key (τi) and the column counter (j||c j), but only XOR the
plaintext bit with the most significant bit of the stream key. To this end, the client sends a replica of I to
` servers and keeps some information (i.e., κ,Tw,T f , c) private.
Search. ODSEwo

xor harnesses XOR-based PIR on the row dimension of I to conduct the oblivious keyword
search as shown in Figure 6. The client first looks up the keyword position map to get the row index of
the searched keyword (line 1). The client then creates XOR-PIR queries (line 2) and sends them to
corresponding servers, each answering the client with the output of the PIR retrieval algorithm (line 4).
Notice that the data is IND-CPA encrypted rather than being public as in the traditional PIR model.
Therefore, after recovering the row from the PIR retrieval (line 6), the client generates the row key (line
7) and then decrypts the row to obtain the search result (line 9).
Update. Recall that the content (i.e., keywords) of a file is represented by a column in I. Given a file
fid to be updated, ODSEwo

xor applies Write-Only ORAM mechanism on the column dimension of I to
update keyword-file pairs in fid as shown in Figure 7. The client creates a new column representing the
relationship between the updated file and keywords in the database (lines 2-3), and stores it in the stash
(line 4). The client then randomly selects λ column indexes and requests an arbitrary server to transmit

10 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(R;⊥)← ODSEwo
xor.Search(w, σ; I):

Client:
1: i← Tw[w]
2: (ρ1, . . . , ρ`)← PIRxor.CreateQuery(i)
3: Send ρl to Sl for l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . ,S`} receiving ρl do
4: Îi ← PIRxor.Retrieve(ρi, Ii)

5: Send Îi to the client
Client: On receive (Î1, . . . , Î`) from ` servers
6: I[i, ∗]← PIRxor.Reconstruct(Î1, . . . , Î`)
7: τi ← KDFκ(i)
8: for j = 1, . . . , 2N do
9: I′[i, j]← E .Decτi(I[i, j], j||c j)

10: Let J :=
{

j : (I′[i, j] = 1) and
(
(j is not dummy) or (I′[i, j] ∈ S)

)}
11: return (R;⊥), whereR contains file IDs at column indexes in J

Fig. 6. ODSEwo
xor search protocol.

the corresponding columns of I (lines 5-6). The client generates row keys and decrypts λ columns (lines
7-10). The client overwrites dummy columns among λ columns with columns stored in the stash (lines
11-12). Finally, the client re-encrypts λ columns and sends them to ` servers for index update (lines
18-20).

(σ′; I′)← ODSEwo
xor.Update(fid , σ; I):

Client:
1: Initialize a column Î[i]← 0 for i ∈ {1, . . . , 2N}
2: for each keyword wi ∈ fid do
3: Î[xi]← 1, where xi ← Tw[wi]

4: S ← S ∪ {(id, Î)} and T f [id]← 0
5: Let J contain λ random-selected column indexes, send J to an arbitrary server Sl
Server Sl: On receive J do
6: Send {Il[∗, j]} j∈J to the client
Client: On receive {Il[∗, j]} j∈J do
7: for i = 1, . . . , M do
8: τi ← KDFκ(i)
9: for each index j ∈ J do

10: I′[i, j]← E .Decτi(Il[i, j], j||c j)

11: for each dummy index ĵ ∈ J do
12: I′[∗, ĵ]← Î and T f [id]← ĵ, where (id, Î) is picked from S
13: for each index j ∈ J do
14: c j ← c j + 1
15: for i = 1, . . . , M do
16: Î[i, j]← E .Encτi(I′[i, j], j||c j)

17: Send {Î[∗, j]} j∈J to ` servers
Server: each Sl ∈ {S1, . . . ,S`} receiving {Î[∗, j]} j∈J do
18: for each j ∈ J do
19: Il[∗, j]← Î[∗, j]
20: return (σ′; I′) where I′ is Il updated at ` servers, and σ′ is updated client state

Fig. 7. ODSEwo
xor update protocol.

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

4.3. ODSEwo
ro : Robust ODSE

The described ODSEwo
xor scheme requires all ` servers in the system to answer the client. If one server

does not reply due to system/network failure, the correctness of ODSEwo
xor will not be hold anymore.

We propose ODSEwo
ro , an ODSE scheme that can achieve the robustness against unresponsive servers.

ODSEwo
ro harnesses the t-out-of-` property of SSS, which allows to maintain the correctness given that

some servers (i.e., up to `− t− 1) do not answer. We define the setup algorithm along with the oblivious
search and update protocols in ODSEwo

ro scheme as follows.
Setup. ODSEwo

ro works over the index encrypted with IND-CPA encryption. Therefore, the setup algo-
rithm of ODSEwo

ro is identical to that of ODSEwo
xor scheme as shown in Figure 8.

Search. ODSEwo
ro harnesses SSS-based PIR protocol on the row dimension of I to conduct keyword

search as shown in Figure 9. Specifically, the client first retrieves the row index of the searched keyword
from the keyword position map (line 1). The client then creates SSS-based PIR queries (line 2) and sends
to corresponding servers, each replying with the output of the SSS-based PIR retrieval algorithm. Notice
that the SSS-based PIR retrieval algorithm performs the dot product between the client query and the
database input via scalar multiplication and additive homomorphic properties of SSS. This requires the
database input to be elements in Fp. Since each row in I is a uniformly random binary string of length
2N due to IND-CPA encryption, the servers split each row of I into 2N′ chunks (ck) with the equal size
such that |ck| < log2 p (line 6). The dot product is performed iteratively between the search query and
divided chunks from all rows of I (lines 7-8). After receiving answers from ` servers, the client recovers
all chunks of the searched row (lines 10-12) and finally, decrypts the row to obtain the search result
(lines 13-17).
Update. ODSEwo

ro harnesses Write-Only ORAM mechanism on the column dimension of I to perform
file update. Since the index I in ODSEwo

ro is identical to ODSEwo
xor the update protocol of ODSEwo

ro is also
identical to that of ODSEwo

xor (Figure 10).

4.4. ODSEwo
it : Robust and Information-Theoretically Secure ODSE

ODSEwo
ro scheme relies on IND-CPA encryption for the encrypted index so that it only offers (at most)

computational security. In this section, we introduce ODSEwo
it , an ODSE scheme that can achieve the

highest level of security (i.e., information-theoretic) for the index as well as any operations (search and
update) on it. The main idea is to share the index with SSS, and harness SSS-based PIR to conduct
private search. We describe the algorithms of ODSEwo

it as follows.
Setup. Figure 11 presents the setup algorithm to construct the distributed index in ODSEwo

it . Specifically,
it first constructs an (unencrypted) index (I′) representing keyword-file relationships as in other ODSE
schemes. Instead of encrypting I′ with an IND-CPA encryption scheme, it creates the shares of I′ with
SSS and distributes them to corresponding servers. As discussed above, SSS operates over elements in
Fp. Therefore, it is required to split each row of I′ into blog2 pc-bit chunks (line 4), and compute SSS
share for each chunk (line 5). Therefore, the “encrypted” index (I) in ODSE is the SSS share of I′, which

(σ, I)← ODSEwo
ro .Setup(F): Generate encrypted index

1: (σ, I)← ODSEwo
xor.Setup(F)

2: return (σ, I)

Fig. 8. ODSEwo
ro setup algorithm.

12 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(R;⊥)← ODSEwo
ro .Search(w, σ; I):

Client:
1: i← Tw[w]
2: (JeK1, . . . , JeK`)← PIRsss.CreateQuery(i)
3: Send JeKl, to Sl for l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . ,S`} receiving JeKl do:
4: for j = 1 . . . , 2N′ do
5: for k = 1, . . . , M do
6: 〈c(l)

jk 〉bin ← Il[k, (j− 1) · blog2 pc+ 1 . . . j · blog2 pc] # jth batch of kth row

7: c(l)
j ← (c(l)

j1 , . . . , c
(l)
jM)

8: Jb jKl ← PIRsss.Retrieve(JeKl, c
(l)
j)

9: Send (Jb1Kl, . . . , Jb2N′Kl) to the client
Client: On receive {B j = {Jb jK1, . . . , Jb jK`}}2N′

j=1 from ` servers
10: for j = 1 . . . , 2N′ do
11: b j ← PIRsss.Reconstruct(B j, t)
12: I[i, ∗]← 〈b1〉bin|| . . . ||〈b2N′〉bin
13: τi ← KDFκ(i)
14: for j = 1, . . . , 2N do
15: I′[i, j]← Decτi(I[i, j], j||c j)

16: Let J :=
{

j : (I′[i, j] = 1) and
(
(j is not dummy) or (I′[i, j] ∈ S)

)}
17: return (R;⊥), whereR contains file IDs at column indices in J

Fig. 9. ODSEwo
ro search protocol.

(σ′; I′)← ODSEwo
ro .Update(fid , σ; I): Update a file

1: (σ′; I′)← ODSEwo
xor.Update(fid , σ; I)

2: return (σ′; I′)

Fig. 10. ODSEwo
ro update protocol.

(σ, I)← ODSEwo
it .Setup(F):

1: (I′, Tw, T f)← Execute lines 2–10 in Figure 5
2: for i = 1, . . . , M do
3: for j = 1, . . . , 2N′ do
4: 〈bi j〉bin ← I[i, (j− 1) · blog2 pc+ 1 . . . j · blog2 pc] # Puts each row into a batch of size blog2 pc
5: (I1[i, j], . . . , I`[i, j])← SSS.CreateShare(〈bi j〉bin, t)
6: return (σ, I) , where I ← {I1, . . . , I`} and σ← (Tw, T f)

Fig. 11. ODSEwo
it setup algorithm.

is a matrix of size M × 2N′, where Ii[i, j] ∈ Fp and N′ = N/blog2 pc. To this end, the client sends Il to
server Sl and keep position maps (i.e., Tw,T f) secret.
Search. Similar to ODSEwo

ro , ODSEwo
it harnesses the SSS-based PIR protocol on the row dimension of I

to conduct the keyword search as presented in Figure 12. General speaking, the client gets the row index
to be searched from the keyword position map, creates SSS-based PIR queries and send them to the
corresponding servers, each replying with the outputs of the SSS-based PIR retrieval algorithm (lines
1-6). Notice that since the index stored on Sl is a share matrix, each dot product computation in the SSS-
based PIR retrieval algorithm will result in a share represented by a 2t-degree polynomial. Therefore,

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(R;⊥)← ODSEwo
it .Search(w, σ; I):

Client:
1: i← Tw[w]
2: (JeK1, . . . , JeK`)← PIRsss.CreateQuery(i)
3: Send JeKl, to Sl for l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . ,S`} receiving JeKl do
4: for j = 1 . . . , 2N′ do
5: Jb jKl ← PIRsss.Retrieve(JeKl, Il[∗, j])
6: Send (Jb1Kl, . . . , Jb2N′Kl) to the client
Client: On receive {B j = {Jb jK1, . . . , Jb jK`}}2N′

j=1 from ` servers
7: for j = 1 . . . , 2N′ do
8: b j ← PIRsss.Reconstruct(B j, 2t)
9: I′[i, ∗]← 〈b1〉bin|| . . . ||〈b2N′〉bin

10: Let J :=
{

j : (I′[i, j] = 1) and
(
(j is not dummy) or (I′[i, j] ∈ S)

)}
11: return (R;⊥), whereR contains file IDs at column indices in J

Fig. 12. ODSEwo
it search protocol.

the client needs to call the SSS-based recover algorithm with the privacy parameter of 2t (vs. t as in
ODSEwo

ro) to obtain the correct search result (line 8).
Update. Similar to other ODSE schemes, ODSEwo

it harnesses Write-Only ORAM mechanism on the col-
umn dimension of the index for the oblivious file update as outlined in Figure 13. Specifically, the client
creates a column representing the relationship between the updated file and keywords in the database,
and temporarily stores it in the stash (lines 1-4). In ODSEwo

it , each column of the share index Il on Sl
actually contains the share of blog2 pc columns of the unencrypted index I′. Therefore, it suffices to
read λ′ = d λ

blog2 pce random columns of Il from t + 1 arbitrary servers to reconstruct λ columns of I′

(lines 5-10). The update is similar to other ODSE schemes, in which the client aggressively over-writes
dummy columns of I′ with columns stored in the stash (lines 11- 12). Finally, the client creates new SSS
shares for the retrieved columns (lines 13-16) and writes them back to ` servers (lines 18-20).

5. Security Analysis

Remark 1. One might observe that search and update operations in ODSE schemes are performed on
rows and columns of the encrypted index, respectively. This access structure might enable the adversary
to learn whether the operation is search or update, even though each operation is secure. Therefore,
to achieve security as in Definition 3, where the query type should also be hidden, we can trigger both
search and update protocols (one of them is the dummy operation) regardless of whether the intended
action is search or update.

We argue the security of our proposed schemes as follows.

Theorem 1. ODSEwo
xor scheme is computationally (` − 1)-secure by Definition 3.

Proof. (Sketch) (i) Oblivious Search: ODSEwo
xor leverages XOR-based PIR and therefore, achieves (`−1)-

privacy for keyword search as proven in [36]. (ii) Oblivious Update: ODSEwo
xor employs Write-Only

ORAM which achieves negligible write failure probability and therefore, it offers the statistical security
without counting the encryption. The index in ODSEwo

xor is IND-CPA encrypted, which offers computa-
tional security. Therefore in general, the update access pattern of ODSEwo

xor scheme is computationally

14 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(σ′; I′)← ODSEwo
it .Update(fid , σ; I):

Client:
1: Initialize a column Î[i]← 0 for i = 1, . . . , 2N
2: for each keyword wi ∈ fid do
3: Î[xi]← 1, where xi ← Tw[wi]

4: S ← S ∪ {(id, Î)} and T f [id]← 0
5: Let J contain λ random-selected column indexes, send J to (t + 1) arbitrary servers Sl1 , . . . ,Slt+1

Server: each Sl ∈ {Sl1 , . . . ,Slt+1
} receiving J do

6: Send {Il[∗, j]} j∈J to the client
Client: On receive {Bi j = {Il1 [i, j], . . . , Ilt+1

[i, j]}} j∈J ,i∈[M] do
7: for i = 1, . . . , M do
8: for each index j ∈ J do
9: bi j ← SSS.Recover(Bi j, t)

10: I′[i, j · blog2 pc+ 1, ...(j + 1) · blog2 pc]← 〈bi j〉bin

11: for each dummy column I′[∗, ĵ] do
12: I′[∗, ĵ]← Î and T f [id]← ĵ, where (id, Î) is picked from S
13: for each index j ∈ J do
14: for i = 1 . . . , M do
15: 〈b′i j〉bin ← I′[i, j · blog2 pc+ 1, . . . , (j + 1) · blog2 pc]
16: (̂I1[i, j], . . . , Î`[i, j])← SSS.CreateShare(b′i j, t)

17: Send {Îl[∗, j]} j∈J to Sl for l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . ,S`} receiving {Îl[∗, j]} j∈J do
18: for each j ∈ J do
19: Il[∗, j]← Î[∗, j]
20: return (σ′; I′) where I′ are Il updated at ` servers and σ′ is updated client state

Fig. 13. ODSEwo
it update protocol.

indistinguishable. ODSEwo
xor performs Write-Only ORAM with an identical procedure on ` servers (e.g.,

the indexes of accessed columns are the same in ` servers), and therefore, the server coalition does not
affect the update privacy of ODSEwo

xor. (iii) ODSE Security: By Remark 1, ODSEwo
xor performs both search

and update regardless of the actual operation. As analyzed, search is (`−1)-private and update pattern is
computationally secure. Therefore, ODSEwo

xor achieves computational (`−1)-security by Definition 3. �

Theorem 2. ODSEwo
ro scheme is computationally t-secure by Definition 3.

Proof. (Sketch)
(i) Oblivious Search: ODSEwo

ro leverages a SSS-based PIR protocol and therefore, achieves t-privacy
for keyword search due to the t-privacy property of SSS as proven in [34, 35]. (ii) Oblivious Update:
Similar to ODSEwo

xor, ODSEwo
ro leverages Write-Only ORAM over IND-CPA encrypted database, which

offers computational security as shown in [37]. (iii) ODSE Security: By Remark 1, for each actual
operation, the client triggers both search and update protocols. Given that search is t-private and update
pattern is computationally oblivious, the access pattern in ODSEwo

ro is a computationally indistinguishable
in the presence of t colluding servers. �

Theorem 3. ODSEwo
it scheme is information-theoretically (statistically) t-secure by Definition 3.

Proof. (Sketch) (i) Oblivious Search: ODSEwo
it leverages an SSS-based PIR protocol and therefore,

achieves t-privacy for keyword search due to the t-privacy property of SSS [34]. (ii) Oblivious Up-

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

date: The index in ODSEwo
it is SSS-shared, which is information-theoretically secure in the presence of

t colluding servers. ODSEwo
it also employs Write-Only ORAM, which offers statistical security due to

negligible write failure probability. Therefore in general, the update access pattern of ODSEwo
it scheme

is information-theoretically (statistically) indistinguishable in the coalition of up to t servers. (iii) ODSE
Security: By Remark 1, ODSEwo

it performs both search and update protocols regardless of the actual
operation. As analyzed above, search is t-private and update pattern is statistically t-indistinguishable.
Therefore, ODSEwo

it is information-theoretically (statistically) t-secure by Definition 3. �

6. Maliciously-Secure ODSE

In previous sections, we have shown that ODSE schemes offer a certain level of collusion-resiliency
and robustness in the semi-honest setting where the servers follow the protocol faithfully. In some
privacy-critical applications, it is necessary to achieve data integrity and robustness in the malicious
environment, where the adversary can tamper with the query and data to compromise the correctness
and privacy of the protocol. In this section, we show that our proposed semi-honest ODSE schemes can
be extended to be secure and robust against malicious adversaries.

6.1. MD-ODSEwo
xor: Maliciously-Detectable ODSEwo

xor

We present MD-ODSEwo
xor, the extended version of ODSEwo

xor from §4.2, which offers security against
malicious adversary. Our main idea is to apply the message authentication code (MAC) to verify the
integrity of the encrypted index. The verification allows the client to abort the protocol if he/she de-
tects any malicious behaviors attempting to tamper with the encrypted index and/or the search/update
query. Let Σ = (Gen,Mac,Vrfy) contain message authentication code algorithms for key generation, tag
computation and verification of a tag respectively. Our MD-ODSEwo

xor protocols are defined as follows.

(σ, I)← MD-ODSEwo
xor.Setup(F):

1: (I, T f , Tw, c, κ)← Execute lines 1-14 in Figure 5
2: θ← Σ.Gen(1λ)
3: for i = 1, . . . , M do
4: for j = 1, . . . , 2N/|τ| do # |τ| :(pre-defined) length of the MAC tag.
5: T[i, j]← Σ.Macθ(I[i, (j− 1) · |τ|+ 1 . . . j · |τ|])
6: Let I contain ` copies of (I, T) and σ← (θ, κ, Tw, T f , c)
7: return (σ, I)

Fig. 14. MD-ODSEwo
xor setup algorithm. Extensions from its semi-honest version are highlighted.

Setup. Figure 14 presents the setup of MD-ODSEwo
xor scheme with the MAC tag generation for the

encrypted index. Generally speaking, it first generates the encrypted index I similar to semi-honest
ODSEwo

xor (line 1), and then generates a MAC key (line 2), followed by computing a matrix T containing
the MAC tag for each |τ|-bit blocks of each row of I (lines 3-5). In this context, each server in the system
stores two matrices including the encrypted index I and the MAC matrix T.
Search. Figure 15 presents the search protocol of MD-ODSEwo

xor, which is extended from the search
protocol of semi-honest ODSEwo

xor to be secure against malicious adversary. Specifically, the client gen-
erates XOR-PIR queries for ` servers similar to the semi-honest ODSEwo

xor scheme (line 1). Each server
performs the XOR-PIR retrieval on both the encrypted index (line 3) and the MAC components (line

16 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(R;⊥)← MD-ODSEwo
xor.Search(w, σ; I):

Client:
1: (ρ1, . . . , ρ`) ← Execute lines 1-2 in Figure 6 (to learn that the keyword w corresponds to ith row

and request retrieval of ith row privately)
2: Send ρl to Sl for l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . ,S`} receiving ρl do
3: Îl ← Execute line 4 in Figure 6
4: T̂l ← PIRxor.Retrieve(ρl,Tl)

5: Send (Îl, T̂l) to the client
Client: On receive (〈Î1, . . . , Î`〉, 〈T̂1, . . . , T̂`〉) from ` servers
6: I[i, ∗]← Execute line 6 in Figure 6
7: T[i, ∗]← PIRxor.Reconstruct(T̂1, . . . , T̂`)
8: for j = 1 . . . 2N/|τ| do
9: if Σ.Vrfyθ(I[i, (j− 1) · |τ|+ 1 . . . j · |τ|],T[i, j]) = 0 then

10: return abort
11: J ← Execute lines 7-10 in Figure 6
12: return (R;⊥), whereR contains file IDs at column indexes in J

Fig. 15. MD-ODSEwo
xor search protocol. Extensions from its semi-honest version are highlighted.

4) using the same query received, and sends the result to the client. The client recovers the row of the
encrypted index (line 6) as well as its corresponding tag (line 7). The client verifies each |τ|-bit block
with its corresponding tag (lines 8-10). If all the tags are valid, the client continues to decrypt the row
to obtain the search result as in the semi-honest ODSEwo

xor scheme (line 11). Otherwise, the client aborts
and notifies that at least one of the servers is malicious (line 10).
Update. Figure 16 presents the update protocol of MD-ODSEwo

xor extended from the semi-honest ODSEwo
xor

for malicious security. Instead of downloading λ random 1-bit columns as in the semi-honest ODSEwo
xor,

the client downloads λ random columns of |t|-bits as well as their corresponding MAC tag. Before
decryption, the client verifies the integrity of the retrieved data by the MAC (lines 5-8). If there exists
one invalid tag, the client aborts and notifies that at least one server is malicious (line 8). Otherwise, the
client performs the update following the same line with the semi-honest ODSEwo

xor (line 9). Finally, the
client creates new MAC tags for re-encrypted columns and send all of them to ` servers to be updated
(lines 10-14).

6.2. MR-ODSEwo
ro : Maliciously-Robust ODSEwo

ro

Since ODSEwo
ro relies on SSS for oblivious search, we can extend it in various ways to not only detect

but also be robust against malicious adversary. One straightforward extension is to consider SSS as
a particular instance of Reed Solomon Code, and then implement Reed Solomon Decoding techniques
[39, 40] to handle incorrect server replies. However, this approach can only handle a small number of the
malicious servers in the system (e.g., t < `/3 if using [40]), which might increase the deployment cost.
Another approach is to harness the t-out-of-` threshold property of SSS along with the MAC technique
presented in the previous section. The main idea is to select (t + 1) answers among ` answers from the
servers to recover the encrypted search result and its MAC tags. If there exists one invalid MAC, we
repeat the recover process by selecting a different set of (t + 1) answers until we find that all the tags
are valid. This strategy offers the detection capability and robustness against malicious behaviors given
that the majority of the servers is honest (i.e., t < `/2). Therefore, we opt-to this approach to design
MR-ODSEwo

ro , the maliciously-robust version of ODSEwo
ro as follows.

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(σ′; I′)← MD-ODSEwo
xor.Update(fid , σ; I):

Client:
1: (S , T f)← Execute lines 2-4 in Figure 7
2: J ′ ← Select λ random indexes of |τ|-bit columns in I
3: Send J ′ to an arbitrary server Sl
Server Sl: On receive J ′ do
4: Send {Il[∗, (j′ − 1) · |τ|+ 1 . . . j′ · |τ|], Tl[∗, j′] } j′∈J ′ to the client
Client: On receive {Il[∗, (j′ − 1) · |τ|+ 1 . . . j′ · |τ|],Tl[∗, j′]} j′∈J ′ do
5: for each j′ ∈ J ′ do
6: for i = 1, . . . , M do
7: if Σ.Vrfyθ(I[i, (j′ − 1) · |τ|+ 1 . . . j′ · |τ|],Tl[i, j]) = 0 then
8: return abort
9: (̂I, S , T f , c)← Execute lines 7-16 in Figure 7 with J = { j′, . . . , j′ · |τ| − 1} j′∈J ′

10: T̂[i, j′]← Σ.Macθ (̂I[i, (j′ − 1) · |τ|+ 1 . . . j′ · |τ|]) for each j′ ∈ J ′ and i = 1, . . . , M
11: Send {Î[∗, (j′ − 1) · |τ|+ 1 . . . j′ · |τ|], T̂[∗, j′] } j′∈J ′ to ` servers
Server: each Sl ∈ {S1, . . . ,S`} receiving {Î[∗, (j′ − 1) · |τ|+ 1 . . . j′ · |τ|], T̂[∗, j′]} j′∈J ′ do
12: Il ← Execute lines 18-19 in Figure 7
13: Tl[∗, j′]← T̂[∗, j′] for each j′ ∈ J ′
14: return (σ′; I′) where I′ are (I, T) updated at ` servers, and σ′ is the updated client state

Fig. 16. MD-ODSEwo
xor update protocol. Extensions from its semi-honest version are highlighted.

Setup. The index structure of MR-ODSEwo
ro is identical to that of MD-ODSEwo

xor. Thus, its setup algorithm
is identical to that of MD-ODSEwo

xor, where the MAC tag is created for each |t|-bit blocks in each row of
the encrypted index (Figure 17).

(σ, I)← ODSEwo
xor.Setup(F):

1: (σ, I)← MD-ODSEwo
xor.Setup(F)

2: return (σ, I)

Fig. 17. MR-ODSEwo
ro setup algorithm.

Search. Figure 18 outlines the search protocol of MR-ODSEwo
ro extended from that of ODSEwo

ro for
malicious security. For each time of oblivious keyword search, the client creates SSS-based PIR query
as in the semi-honest ODSEwo

ro (line 1), and the servers perform the SSS-based PIR retrieval on both the
encrypted index (line 3) and MAC components (line 4). Once receiving answers from ` servers, the client
picks t + 1 out of ` replies (lines 6-7), and performs the SSS recover via the Lagrange interpolation to
obtain the encrypted search row (line 8) as well its MAC tag (lines 9-14) . The client verifies the integrity
of the encrypted row and decrypts it if all MAC tags are valid. If there exists one invalid tag, the client
selects another set of t + 1 replies, and repeats the verification process. If the client tries all possible
sets, which incurs (in total)

(
`

t+1

)
verification tests, but none produces all valid tags, the client aborts the

protocol and notifies that a majority of servers (t > `/2) is corrupted (line 13).
Update. The update protocol in MR-ODSEwo

ro is similar to that of MD-ODSEwo
xor (Figure 19). To improve

the robustness against malicious adversary, the client can request ` servers to transfer λ |t|-bit columns,
and selects one of ` replies to verify the integrity and performs the update.

18 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(R;⊥)← MR-ODSEwo
ro .Search(w, σ; I):

Client:
1: (i, 〈JeK1, . . . , JeK`〉)← Execute lines 1-2 in Figure 9
2: Send JeKl to Sl for each l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . ,S`} receiving JeKl do:
3: (Jb1Kl, . . . , Jb2N′Kl)← Execute lines 4-8 in Figure 9
4: Jτ jKl ← PIRsss.Retrieve(JeKl,Tl[∗, j]) for j = 1 . . . , 2N/|τ|
5: Send ({Jτ jKl}

2N/|τ|
j=1 , {Jb jKl}2N′

j=1) to the client

Client: On receive { (Jτ1Kl, . . . , Jτ2N/|τ|Kl), (Jb1Kl, . . . , Jb2N′Kl)}`l=1 from ` servers
6: X ← Select t + 1 servers among ` servers
7: B j ← {Jb jKx}x∈X , j∈[2N′], T j ← {Jτ jKx}x∈X , j∈

[
2N
|τ|

]
8: I[i, ∗]← Execute lines 10-12 in Figure 9
9: for j = 1 . . . , 2N/|τ| do

10: T[i, j]← PIRsss.Reconstruct(T j, t)
11: if Σ.Vrfyθ(I[i, (j− 1) · |τ|+ 1 . . . j · |τ|],T[i, j]) = 0 then
12: if all distinct subset X have been processed then
13: return abort
14: X ← Select another set of t + 1 servers and goto line 7
15: J ← Execute lines 13 -17 in Figure 9
16: return (R;⊥), whereR contains file IDs at column indexes in J

Fig. 18. MR-ODSEwo
ro search protocol. Extensions from its semi-honest version are highlighted.

(σ′; I′)← MR-ODSEwo
ro .Update(fid , σ; I):

1: (σ′; I′)← MD-ODSEwo
xor.Update(fid , σ; I)

2: return (σ′; I′)

Fig. 19. MR-ODSEwo
ro update protocol.

6.3. MR-ODSEwo
it : Maliciously-Robust and IT-Secure ODSEwo

it

In this section, we present MR-ODSEwo
it , the extended version of ODSEwo

it that inherits all properties
of ODSEwo

it (e.g., information-theoretic security) along with the robustness against malicious adversary.
To preserve the information-theoretic security, we create an information-theoretic MAC for each block.

The main idea is to create a global MAC key θ $← Fp, which is known only by the client. The MAC tag
(τ) for each block (b) of the index is computed as τ = θ · b (over Fp). Given that the client maintains
a consistent relationship between τ, b and θ while keeping them hidden from the adversary (which can
be achieved via SSS), the adversary cannot change b without changing τ and/or α. The details are as
follows.

(σ, I)← MR-ODSEwo
it .Setup(F):

1: (〈I1, . . . , I`〉, Tw, T f , 〈b11, . . . , bM2N′〉)← Execute lines 1-5 in Figure 12

2: α $← Fp
3: (T1[i, j], . . . ,T`[i, j])← SSS.CreateShare(α · bi j, t) for i = 1, . . . , M and for j = 1, . . . , 2N′

4: return (σ, I) , where I ← {〈I1, . . . , I`〉, 〈T1, . . . ,T`〉} and σ← (α, Tw, T f)

Fig. 20. MR-ODSEwo
it setup algorithm. Extensions from its semi-honest version are highlighted.

Setup. MR-ODSEwo
it follows the principles in the semi-honest ODSEwo

it scheme to create the share index
(Figure 20, line 1). It then creates a global MAC key by selecting a random element in Fp (line 2).

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

It multiplies the representative element in Fp of each index block with the global MAC key over Fp

yielding the MAC tag, and then creates the SSS shares for each tag (line 3). The SSS shares of MAC
tags are distributed along with the share index across ` servers.

(R;⊥)← MR-ODSEwo
it .Search(w, σ; I):

Client:
1: (i, 〈JeK1, . . . , JeK`〉)← Execute lines 1-2 in Figure 12
2: Send JeKl, to Sl for each l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . ,S`} receiving JeKl do
3: (Jb1Ki, . . . , Jb2N′Ki)← Execute lines 4 -5 in Figure 12
4: Jτ jKl ← PIRsss.Retrieve(JeKl,Tl[∗, j]) for each j ∈ {1 . . . , 2N′}
5: Send (〈Jτ1Kl, . . . , Jτ2N′Kl〉, 〈Jb1Kl, . . . , Jb2N′Kl〉) to the client

Client: On receive {〈JτkK1, . . . , JτkK`〉, 〈JbkK1, . . . , JbkK`〉}2N′
k=1 from ` servers

6: X ← Select 2t + 1 servers among ` servers
7: B j ← {Jb jKx}x∈X , j∈[2N′], T j ← {Jτ jKx}x∈X , j∈[2N′]
8: (b1, . . . , b2N′)← Execute lines 7-8 in Figure 12
9: for j = 1 . . . , 2N′ do

10: τ j ← PIRsss.Reconstruct(T j, 2t)
11: if (α · β j 6= τ j) then
12: if (all distinct subset X have been processed) then
13: return abort
14: X ← Select another set of 2t + 1 servers and goto line 7
15: J ← Execute lines 9-10 in Figure 12
16: return (R;⊥), whereR contains file IDs at column indexes in J

Fig. 21. MR-ODSEwo
it search protocol. Extensions from its semi-honest version are highlighted.

Search. Figure 21 presents the search protocol of MR-ODSEwo
it extended from that of ODSEwo

it for
malicious security. The extension follows the line of the MR-ODSEwo

ro scheme. Specifically, the servers
perform SSS-based PIR retrieval on both index and the MAC components (lines 3-4). The client picks
2t + 1 out of ` replies to recover and verify the integrity of the search result (lines 6-7). If after

(
`

2t+1

)
trials with different subsets but none producing the valid tags, the client aborts the protocol and notifies
that more than `/3 servers are malicious (line 7). Otherwise, the client continues to process the recovered
data as in the semi-honest MR-ODSEwo

it scheme to obtain the final search result (line 15).
Update. Figure 22 presents the update protocol of MR-ODSEwo

it . Basically, the client downloads λ
columns of the share index and their corresponding MAC from ` servers. The client selects t + 1 replies
to recover and verify the integrity of downloaded data before performing update. If all tags are valid, the
client performs the write-only ORAM procedure as in ODSEwo

it scheme, re-calculates the MAC tag for
each block, and then creates new SSS shares for each tag. Otherwise, the client aborts the protocol and
notifies that a majority of servers is malicious.

7. Implementation

We fully implemented all ODSE schemes in C++ with approximately 4,000 lines of code for each
scheme. We used Google Sparsehash library [41] to implement position maps T f and Tw. We utilized
Intel AES-NI library [42] to implement AES-CTR encryption/decryption in ODSEwo

xor and ODSEwo
ro

schemes. We leveraged Shoup NTL library [43] for pseudo-random number generator and arithmetic
operations over finite field. We used ZeroMQ library [44] for client-server communication. We used

20 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(σ′; I′)← ODSEwo
it .Update(fid , σ; I):

Client:
1: (J , S , T f)← Execute lines 1-5 in Figure 13
2: Send J to ` servers (S1, . . . ,S`)
Server: each Sl ∈ {S1, . . . ,S`} receiving J do
3: Send {Il[∗, j],Tl[∗, j] } j∈J to the client
Client: On receive {〈I1[∗, j], . . . , I`[∗, j]〉, 〈T1[∗, j], . . . ,T`[∗, j]〉 } j∈J do
4: X ← Select t + 1 servers among ` servers
5: Bi j ← {I[i, j]x}x∈X , j∈J ,i∈[M]

6: {I′[∗, j], 〈b1 j, . . . , bM j〉} j∈J ← Execute lines 7-10 in Figure 13
7: for i = 1 . . . M do
8: for each j ∈ J do
9: if (α · I[i, j] 6= T[i, j]) then

10: if (all distinct subset X have been processed) then
11: return abort
12: X ← Select another set of t + 1 servers and goto line 5
13: {〈̂I1[∗, j], . . . Î`[∗, j]〉, 〈b′1 j, . . . , b

′
M j〉} j∈J ← Execute lines 11-16 in Figure 13

14: (T̂1[i, j], . . . , T̂`[i, j])← SSS.CreateShare(α · b′i j, t) for each j ∈ J and for i = 1 . . . M
15: Send {Îl[∗, j], T̂l[∗, j] } j∈J to Sl for l = 1, . . . , `

Server: each Sl ∈ {S1, . . . ,S`} receiving {Îl[∗, j], Tl[∗, j] } j∈J do
16: {Il[∗, j]} j∈J ← Execute lines 18-19 in Figure 13
17: Tl[∗, j]← Î[∗, j] for each j ∈ J
18: return (σ′; I′) where I′ are (Il, Tl) updated at ` servers and σ′ is updated client state

Fig. 22. ODSEwo
it update protocol. Extensions from its semi-honest version are highlighted

multi-threading technique to accelerate PIR computation at the server. The full implementation of our
framework is publicly available at https://github.com/thanghoang/ODSE.

8. Performance Evaluation

8.1. Configurations

Hardware and network settings. We used Amazon EC2 with r4.4xlarge instance for server(s), each
equipped with 16 vCPUs Intel Xeon @ 2.3 GHz and 122 GB RAM. We used a laptop with Intel Core
i5 @ 2.90 GHz and 16 GB RAM as the client. All machines ran Ubuntu 16.04. The client established a
network connection with the server via WiFi connection. We used a real network setting, in which the
download and upload throughputs are 27 and 5 Mbps, respectively.
Dataset. We used the subsets of the Enron dataset to build I containing from millions to billions of
keyword-file pairs. The largest dataset contain around 300,000 files with 320,000 unique keywords. Our
tokenization is identical to [25] so that our keyword distribution and query pattern are similar to [25].
Instantiation of compared techniques. We compared ODSE with a standard DSSE scheme [7], and
the use of generic ORAM atop the DSSE encrypted index. The performance of all schemes was mea-
sured under the same setting and configuration We configured ODSE schemes and their counterparts as
follows.
• ODSE: For the semi-honest setting, we deployed two servers for ODSEwo

xor and ODSEwo
ro schemes, and

three servers for ODSEwo
it scheme. We selected λ = 4 for ODSEwo

xor and ODSEwo
ro , and λ′ = 4 with Fp

where p is a 16-bit prime for ODSEwo
ro schemes ODSEwo

it . We note that selecting larger p (e.g., |p| = 64

https://github.com/thanghoang/ODSE

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

108 109 1010 1011
0

40

80

120

160

keyword-file pairs (log scale)

D
el

ay
(s

ec
on

d)
Path-ORAM [23]
Ring-ORAM [38]
ODSEwo

xor
ODSEwo

ro
ODSEwo

it

Πdyn
2lev [7] (search)

Πdyn
2lev [7] (update)

108 109 1010 1011

0

2

4

6

8

Fig. 23. Latency of semi-honest ODSE schemes and their counterparts.

bits) can reduce the PIR computation time with the cost of the bandwidth overhead due to the increase of
query size. We chose a 16-bit prime field to achieve a balanced computation and communication over-
head. For the malicious setting, we first fixed the number of servers for ODSEwo

xor and ODSEwo
ro schemes

to be two, three and four, respectively to handle one adversary. We then increased the number of servers
to allow more malicious servers (see §8.6 for details).
• Standard DSSE: We selected one of the most efficient DSSE schemes by Cash et al. in [7] (i.e., Πdyn

2lev
variant) to demonstrate the performance gap between ODSE and the standard DSSE. We estimated
the performance of Πdyn

2lev using the same software/hardware environments and optimizations as ODSE
(e.g., parallelization, AES-NI acceleration). Note that we did not use the Java implementation of this
scheme available in Clusion library [45] for comparison due to its lack of hardware acceleration support
(i.e., no AES-NI) and the difference between running environments (Java VM vs. C). Our estimation is
conservative in which, we used numbers that would be better than the Clusion library.
• Using generic ORAM atop DSSE encrypted index: We selected non-recursive Path-ORAM [23] and
Ring-ORAM [38], as ODSE counterparts since they are the most efficient generic ORAM schemes for
data outsourcing to date. Since we focus on encrypted index rather than encrypted files in DSSE, we
did not explicitly compare our schemes with TWORAM [24] but instead used one of their techniques to
optimize the performance of using generic ORAM on DSSE encrypted index. Specifically, we applied
the selected ORAMs on the dictionary index as in [25] along with the round-trip optimization as in [24].
Note that these estimates are also conservative, where memory access delays were excluded, and cryp-
tographic operations were optimized and parallelized to make a fair comparison between the compared
schemes.

8.2. Overall End-to-end Delay in the Semi-honest Setting

Figure 23 presents the end-to-end delays of ODSE schemes and their counterparts, where we per-
formed both search and update protocols in ODSE schemes to hide the actual type of operation (see
Remark 1). ODSE offers a higher security than standard DSSE at the cost of a longer delay. Neverthe-
less, ODSE schemes are 3×-57× faster than the use of generic ORAMs atop DSSE encrypted index to
hide the access patterns. Specifically, with an encrypted index consisting of ten billions of keyword-file
pairs, Πdyn

2lev cost 36 milliseconds and 600 milliseconds to finish a search and update operation, respec-
tively. ODSEwo

xor and ODSEwo
it , respectively, took 2.8 seconds and 8.6 seconds to accomplish both keyword

22 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 2
Comparison of ODSE and its counterparts for oblivious access on I.

Scheme
Security Delay (second) Distributed Setting†

Forward
privacy

Backward
privacy

Hidden access
pattern‡

Encrypted
index∗ Search Update Privacy

level
Improved

Robustness

Standard DSSE [7] 7 7 7 Computational 0.036 0.62 - -

Path-ORAM[23] 3 3 Computational Computational 160.6 - -
Ring-ORAM [38] 3 3 Computational Computational 137.4 - -

ODSEwo
xor 3 3 Computational Computational 0.48 2.32 ` − 1 7

ODSEwo
ro 3 3 Computational Computational 3.45 1.85 < ` 3

ODSEwo
it 3 3

Information
theoretic

Information
theoretic 4.54 4.08 < `/2 3

This delay is for semi-honest setting with encrypted index containing 300,000 files and 320,000 keywords under the network and configuration
presented in §8.1.
∗ The encrypted index in ODSEwo

it is information-theoretically secure because it is SSS. Other schemes employ IND-CPA encryption so that their
index is computationally secure (see §5).
‡ All ODSE schemes perform search and update protocols to hide the actual query type. In ODSEwo

xor, search is IT-secure due to SSS-based PIR
and update is computationally secure due to IND-CPA encryption. Hence, its overall security is computational.
† ` is # servers in the system. We define the robustness in distributed setting as the ability to tolerate unresponsive server(s) in the semi-honest
setting or incorrect replies in the malicious setting. In ODSEwo

it , encrypted index and search query are SSS with the same privacy level. Generic
ORAM solutions have a stronger adversarial model than ours because they are not vulnerable to collusion that arises in the distributed setting.

search and file update operations, compared with 160 seconds by using Path-ORAM with the round-trip
optimization [24].

We present the separate delay for the search and update operations in ODSE schemes in Table 2.
ODSEwo

xor is the most efficient in terms of search, whose delay was less than 1 second. This is due to the
fact that ODSEwo

xor only triggers XOR operations and the size of the search query is minimal (i.e., a binary
string). ODSEwo

ro and ODSEwo
it are more robust (e.g., malicious tolerant) and one of which is more secure

(e.g., information-theoretic security) than ODSEwo
xor at the cost of higher search delay (i.e., 4 seconds)

due to its larger search query and SSS arithmetic computations. ODSEwo
it is the slowest among the three

ODSE schemes since it requires three servers and, therefore, the client needs to transmit more data.
For the oblivious file update, ODSEwo

xor and ODSEwo
ro achieved a similar delay since they have the same

number of servers and incurred the same amount of data to be transmitted. ODSEwo
it is slightly slower

than ODSEwo
xor and ODSEwo

ro because the client transmitted data to three servers, instead of two. We can
see that in many cases, where it is not necessary to hide the operation types (search/update), using ODSE
to conduct individual oblivious operations, especially the keyword search, is much more efficient than
generic ORAMs. We further provide a comparison of ODSE schemes with their counterparts in Table 2.
In the following section, we dissect the end-to-end delay of ODSE schemes to understand which factors
contributing the most to their performance.

8.3. Detailed Cost Analysis

Figure 24 presents the detailed delays of separate keyword search and file update operations in ODSE
schemes. There are three main factors impacting the end-to-end delay of ODSE schemes as follows.
• Client processing: As shown in Figure 24, the client computation contributes the least amount to
the overall search delay (less than 10%) in all ODSE schemes. It comprises the following operations:
(i) Generate search queries with PRF in ODSEwo

xor or SSS in ODSEwo
ro and ODSEwo

it schemes; (ii) SSS
recovery (in ODSEwo

ro and ODSEwo
it) and/or IND-CPA decryption (in ODSEwo

xor and ODSEwo
ro); (iii) Filter

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

S S S S S S S SU U U U U U U U
0

1

2

3

4

5

keyword-file pairs (×109)

D
el

ay
(s

ec
)

Client computation

0.04 0.1 2.5 10 22 40 62 90

(a) ODSEwo
xor

S S S S S S S SU U U U U U U U
0

1

2

3

4

5

keyword-file pairs (×109)

D
el

ay
(s

ec
)

Communication

0.04 0.1 2.5 10 22 40 62 90

(b) ODSEwo
ro

S S S S S S S SU U U U U U U U
0

1

2

3

4

5

keyword-file pairs (×109)

D
el

ay
(s

ec
)

Server processing

0.04 0.1 2.5 10 22 40 62 90

(c) ODSEwo
it

Fig. 24. Detailed Search (S) and Update (U) costs of ODSE schemes.

dummy columns and collect columns in the stash. Note that the client delay of ODSE schemes can be
further reduced (by at least 50%-60%) via pre-computation of some values such as row keys and select
queries (only contain shares of 0 or 1). For the file update, the client performs either decryption followed
by re-encryption on λ columns (in ODSEwo

xor and ODSEwo
ro), or SSS over λ′ blocks (in ODSEwo

it). Since we
used crypto acceleration (i.e., Intel AES-NI) and highly optimized number theory libraries (i.e., NTL),
all these computations only contributed to a small fraction of the total delay.
• Client-server communication: Data transmission is the most dominating factor in the delay of ODSE
schemes. The communication cost of ODSEwo

xor is the smallest among all ODSE schemes since the size
of search query and the data transmitted from servers are only binary strings. In ODSEwo

ro and ODSEwo
it

schemes, the size of components in the search query vector is 16 bits. Their communication overhead
can be reduced by using a smaller finite field at the cost of increased PIR computation on the server side.
• Server processing: The cost of PIR operations in ODSEwo

xor is negligible as it uses XOR tricks. The PIR
computation overhead in ODSEwo

ro and ODSEwo
it is reasonable because it operates on a considerably large

amount of 16-bit values. For the file update operations, the server-side cost is mainly due to memory
accesses to overwrite some columns of the encrypted index. ODSEwo

ro and ODSEwo
it schemes are highly

memory access-efficient since we store their matrix-based index column-wise in the memory. This mem-
ory layout organization allows the inner product in PIR to access contiguous memory blocks thereby,
minimizing the memory access delay not only in the update but also in the search. In ODSEwo

xor, we stored
the matrix row-wise for row-friendly access to permit efficient XOR operations during search. However,
this requires file update to access non-contiguous memory blocks. Hence, the file update in ODSEwo

xor

incurred a higher memory access delay than that of ODSEwo
ro and ODSEwo

it as shown in Figure 24.

8.4. Storage overhead

The main limitation of ODSE schemes is the size of encrypted index, whose asymptotic cost is
O(N · M), where N and M are the number of files and unique keywords, respectively. Given the largest
database being experimented, the size of our encrypted index is 23 GB. The client storage includes two
position maps of size O(M log M) and O(N log N), the stash of size O(M · log N), a counter vector of
size Ω(N) and a master key (in ODSEwo

xor scheme). Empirically, with the same database size discussed

24 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

0.1 20 40 60 80 100
10−2

10−1

100

101

102

103

Fraction of keywords (resp. files) in a search (resp. update) query

D
el

ay
(s

ec
on

d)
(l

og
sc

al
e)

ODSEwo
xor

ODSEwo
ro

ODSEwo
it

Path-ORAM [23]
Ring-ORAM [38]
Πdyn

2lev [7] (search)
Πdyn

2lev [7] (update)

Fig. 25. Delay of ODSE schemes and their counterparts with different fraction of keywords/files involved in a search/update.

above, the client requires approximately 22 MB in all ODSE schemes.

8.5. Experiment with various query sizes

We studied the performance of our schemes and their counterparts in the context of various keyword
and file numbers involved in search and update operations that we refer to as “query size". As shown
in Figure 25, ODSE schemes are more efficient than using generic ORAMs when more than 5% of
keywords/files in the database are involved in the search/update operations. Since the complexity of
ODSE schemes is linear to the number of keywords and files (i.e., O(M + N)), their delay is constant
and independent from the query size. The complexity of ORAM approaches is O(r log2(N ·M)), where
r is the query size. Although the bandwidth cost of ODSE schemes is asymptotically linear, their actual
delay is much lower than using generic ORAM, whose cost is poly-logarithmic to the total number of
keywords/files but linear to the query size. This confirms the results of Naveed et al. in [25] on the
performance limitations of generic ORAM and DSSE composition, wherein we used the same dataset
for our experiments.

8.6. ODSE Performance in the Presence of Malicious Adversary

In this section, we present the performance of maliciously-secure ODSE schemes described in §6.
Figure 26 presents the search and update delay of MD-ODSEwo

xor, MR-ODSEwo
ro and MR-ODSEwo

it schemes
in the presence of one malicious adversary, compared with their corresponding semi-honest version.
Recall that in this setting, we set the number of servers in the system for MD-ODSEwo

xor, MR-ODSEwo
ro

and MR-ODSEwo
it schemes to be two, three and four, respectively. We can see that the search delays of

maliciously-secure ODSE schemes are around two times slower than their semi-honest version. It is
mainly due to the additional processing and network transmission overhead for the MAC components
stored at the server-side, which has the same size with the encrypted index. The update of MR-ODSEwo

ro
and MR-ODSEwo

it schemes are around three times slower than that of their semi-honest version. The
main reason is that MR-ODSEwo

ro and MR-ODSEwo
it requires an extra server in the system to detect one

malicious adversary, which leads to the increase of the client bandwidth overhead.

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

108 109 1010 1011
0

1

2

3

4

5

6

7

8

keyword-file pairs (log scale)

D
el

ay
(s

ec
on

d)

ODSEwo
xor

ODSEwo
ro

ODSEwo
it

MD-ODSEwo
xor

MR-ODSEwo
ro

MR-ODSEwo
it

(a) search

108 109 1010 1011

1

3

5

7

9

11

13

15

17

keyword-file pairs (log scale)

D
el

ay
(s

ec
on

d)

ODSEwo
xor

ODSEwo
ro

ODSEwo
it

MD-ODSEwo
xor

MR-ODSEwo
ro

MR-ODSEwo
it

(b) update

Fig. 26. End-to-end delay of maliciously-secure ODSE schemes in the presence of one malicious adversary

We also explored the performance of maliciously-secure ODSE schemes when the number of mali-
cious servers increases. Allowing more servers to be malicious requires to deploy more servers in the
system. Specifically, MR-ODSEwo

ro and MR-ODSEwo
it schemes need 2t + 1 and 3t + 1 servers in total to

be robust against t malicious servers, respectively. Figure 27 presents the performance of maliciously-
secure ODSE schemes with the varied number of malicious adversaries. We can see that it is expensive
to offer the robustness for a number of malicious servers in the system. This is because it incurs not only
the client bandwidth overhead to communicate with more servers, but also the client computation over-
head. In the worst case, MR-ODSEwo

ro and MR-ODSEwo
it requires the client to perform

(
`

t+1

)
and

(
`

2t+1

)
MAC verifications, respectively, to find an authentic |t|-bit data block in the presence of (less than) t
malicious servers. Since MD-ODSEwo

xor can only detect the malicious behavior (without knowing which
server it is), its overhead only increases slightly when allowing more servers to be malicious. This is
because it only requires to deploy more servers in the system, and the client aborts the protocol immedi-
ately when he/she finds an invalid MAC tag (without trying aggressively to find an alternative authentic
block as in MR-ODSEwo

ro and MR-ODSEwo
it schemes).

9. Conclusion

In this article, we present a new Oblivious Distributed DSSE framework called ODSE, which of-
fers full obliviousness, hidden size pattern, and low end-to-end for index access. These properties are
achieved by exploiting unique characteristics of the index data structure and searchable encryption,
which allows to deploy computation- and bandwidth-efficient techniques (i.e., multi-server PIR and
Write-Only ORAM) to conduct oblivious search and update separately. Our framework contains a series
of ODSE schemes each featuring different levels of performance and security in terms of data confi-
dentiality and access pattern obliviousness. Specifically, ODSEwo

xor offers the lowest end-to-end delay,
smallest bandwidth overhead and the highest resiliency against colluding servers. ODSEwo

it offers the ro-
bustness and information-theoretic security for access patterns and the encrypted index. ODSEwo

ro inherits
the best of both ODSEwo

xor and ODSEwo
it schemes: low end-to-end delay and robustness in the distributed

setting. All these schemes can also be extended to be secure/robust against malicious adversary.

26 T. Hoang et al. / Oblivious Dynamic Searchable Encryption

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

1 2 3 4
0

20

40

60

80

100

120

malicious servers

D
el

ay
(s

ec
on

d)

MD-ODSEwo
xor

MR-ODSEwo
ro

MR-ODSEwo
it

(a) search

1 2 3 4

101

102

103

malicious servers

D
el

ay
(s

ec
on

d)
(l

og
sc

al
e)

MD-ODSEwo
xor

MR-ODSEwo
ro

MR-ODSEwo
it

(b) update

Fig. 27. Delay of maliciously-secure ODSE schemes with varied number of malicious servers.

References

[1] D.X. Song, D. Wagner and A. Perrig, Practical Techniques for Searches on Encrypted Data, in: Proceedings of the 2000
IEEE Symposium on Security and Privacy, IEEE Computer Society, 2000, pp. 44–55.

[2] R. Curtmola, J. Garay, S. Kamara and R. Ostrovsky, Searchable symmetric encryption: improved definitions and efficient
constructions, in: Proceedings of the 13th ACM CCS, ACM, 2006, pp. 79–88.

[3] C. Wang, N. Cao, J. Li, K. Ren and W. Lou, Secure ranked keyword search over encrypted cloud data, in: IEEE 30th
International Conference on Distributed Computing Systems, IEEE, 2010, pp. 253–262.

[4] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y.T. Hou and H. Li, Privacy-preserving multi-keyword text search in the cloud
supporting similarity-based ranking, in: ACM SIGSAC AsiaCCS, ACM, 2013, pp. 71–82.

[5] N. Cao, C. Wang, M. Li, K. Ren and W. Lou, Privacy-preserving multi-keyword ranked search over encrypted cloud data,
IEEE Transactions on parallel and distributed systems 25(1) (2014), 222–233.

[6] S. Kamara, C. Papamanthou and T. Roeder, Dynamic searchable symmetric encryption, in: Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ACM, 2012, pp. 965–976.

[7] D. Cash, J. Jaeger, S. Jarecki, C.S. Jutla, H. Krawczyk, M.-C. Rosu and M. Steiner, Dynamic Searchable Encryption in
Very-Large Databases: Data Structures and Implementation., IACR Cryptology ePrint Archive 2014 (2014), 853.

[8] R. Bost, B. Minaud and O. Ohrimenko, Forward and backward private searchable encryption from constrained crypto-
graphic primitives, Technical Report, IACR Cryptology ePrint Archive 2017, 2017.

[9] R. Zhang, R. Xue, T. Yu and L. Liu, Dynamic and Efficient Private Keyword Search over Inverted Index–Based Encrypted
Data, ACM Transactions on Internet Technology (TOIT) 16(3) (2016), 21.

[10] F. Zhou, Y. Li, A.X. Liu, M. Lin and Z. Xu, Integrity Preserving Multi-keyword Searchable Encryption for Cloud Com-
puting, in: International Conference on Provable Security, Springer, 2016, pp. 153–172.

[11] T. Moataz, I. Ray, I. Ray, A. Shikfa, F. Cuppens and N. Cuppens, Substring search over encrypted data, Journal of
Computer Security (2018), 1–30.

[12] C. Bösch, P. Hartel, W. Jonker and A. Peter, A survey of provably secure searchable encryption, ACM Computing Surveys
(CSUR) 47(2) (2015), 18.

[13] D. Cash, P. Grubbs, J. Perry and T. Ristenpart, Leakage-abuse attacks against searchable encryption, in: Proceedings of
the 22nd ACM CCS, 2015, pp. 668–679.

[14] D. Pouliot and C.V. Wright, The Shadow Nemesis: Inference Attacks on Efficiently Deployable, Efficiently Searchable
Encryption, in: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ACM,
2016, pp. 1341–1352.

[15] M.S. Islam, M. Kuzu and M. Kantarcioglu, Access Pattern disclosure on Searchable Encryption: Ramification, Attack and
Mitigation., in: NDSS, 2012.

[16] C. Liu, L. Zhu, M. Wang and Y.-a. Tan, Search pattern leakage in searchable encryption: Attacks and new construction,
Information Sciences (2014).

[17] Y. Zhang, J. Katz and C. Papamanthou, All Your Queries Are Belong to Us: The Power of File-Injection Attacks on
Searchable Encryption, in: 25th USENIX Security Symposium (USENIX Security 16), 2016, pp. 707–720.

T. Hoang et al. / Oblivious Dynamic Searchable Encryption 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[18] E. Stefanov, C. Papamanthou and E. Shi, Practical Dynamic Searchable Encryption with Small Leakage, NDSS, San
Diego, California, USA (2014).

[19] F. Hahn and F. Kerschbaum, Searchable encryption with secure and efficient updates, in: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ACM, 2014, pp. 310–320.

[20] S. Kamara and C. Papamanthou, Parallel and dynamic searchable symmetric encryption, in: Financial Cryptography and
Data Security, Springer, 2013, pp. 258–274.

[21] R. Bost, Sophos âĂŞ Forward Secure Searchable Encryption, in: Proceedings of the 2016 ACM Conference on Computer
and Communications Security, ACM, 2016.

[22] M.D. Green and I. Miers, Forward secure asynchronous messaging from puncturable encryption, in: Security and Privacy
(SP), 2015 IEEE Symposium on, IEEE, 2015, pp. 305–320.

[23] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu and S. Devadas, Path ORAM: an extremely simple oblivious
RAM protocol, in: Proceedings of the 2013 ACM CCS, ACM, 2013, pp. 299–310.

[24] S. Garg, P. Mohassel and C. Papamanthou, TWORAM: Round-Optimal Oblivious RAM with Applications to Searchable
Encryption., IACR Cryptology ePrint Archive 2015 (2015), 1010.

[25] M. Naveed, The Fallacy of Composition of Oblivious RAM and Searchable Encryption, in: Cryptology ePrint Archive,
Report 2015/668, 2015.

[26] S. Devadas, M. van Dijk, C.W. Fletcher, L. Ren, E. Shi and D. Wichs, Onion oram: A constant bandwidth blowup oblivious
ram, in: Theory of Cryptography Conference, Springer, 2016, pp. 145–174.

[27] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in: International Conference on the
Theory and Applications of Cryptographic Techniques, Springer, 1999, pp. 223–238.

[28] I. Abraham, C.W. Fletcher, K. Nayak, B. Pinkas and L. Ren, Asymptotically Tight Bounds for Composing ORAM with
PIR, in: IACR Public Key Cryptography, Springer, 2017, pp. 91–120.

[29] T. Hoang, A. Yavuz and J. Guajardo, Practical and Secure Dynamic Searchable Encryption via Oblivious Access on
Distributed Data Structure, in: Proceedings of the 32nd Annual Computer Security Applications Conference (ACSAC),
ACM, 2016.

[30] C. Bosch, A. Peter, B. Leenders, H.W. Lim, Q. Tang, H. Wang, P. Hartel and W. Jonker, Distributed searchable symmetric
encryption, in: Privacy, Security and Trust (PST), 12th International Conference on, IEEE, 2014, pp. 330–337.

[31] T. Hoang, A.A. Yavuz, F.B. Durak and J. Guajardo, Oblivious Dynamic Searchable Encryption on Distributed Cloud
Systems, in: IFIP Annual Conference on Data and Applications Security and Privacy, Springer, 2018, pp. 113–130.

[32] J. Katz and Y. Lindell, Introduction to modern cryptography, CRC Press, 2014.
[33] A. Shamir, How to share a secret, Communications of the ACM (1979).
[34] I. Goldberg, Improving the robustness of private information retrieval, in: IEEE Symposium on Security and Privacy,

IEEE, 2007, pp. 131–148.
[35] A. Beimel and Y. Stahl, Robust information-theoretic private information retrieval, in: International Conference on Secu-

rity in Communication Networks, Springer, 2002, pp. 326–341.
[36] B. Chor, E. Kushilevitz, O. Goldreich and M. Sudan, Private information retrieval, Journal of the ACM (JACM) (1998).
[37] E.-O. Blass, T. Mayberry, G. Noubir and K. Onarlioglu, Toward robust hidden volumes using write-only oblivious RAM,

in: Proceedings of the 2014 ACM CCS, ACM, 2014, pp. 203–214.
[38] L. Ren, C.W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk and S. Devadas, Ring ORAM: Closing the Gap Between

Small and Large Client Storage Oblivious RAM., IACR Cryptology ePrint Archive (2014).
[39] V. Guruswami and M. Sudan, Improved decoding of Reed-Solomon and algebraic-geometric codes, in: Foundations of

Computer Science, 1998. Proceedings. 39th Annual Symposium on, IEEE, 1998, pp. 28–37.
[40] L.R. Welch and E.R. Berlekamp, Error correction for algebraic block codes, Google Patents, 1986, US Patent 4,633,470.
[41] sparsehash: An extemely memory efficient hash_map implementation, February 2012.
[42] S. Gueron, White Paper: Intel Advanced Encryption Standard (AES) New Instructions Set, Document Revision 3.01,

September 2012.
[43] V. Shoup, NTL: A Library for doing Number Theory, 2016.
[44] ZeroMQ library, 2016.
[45] The Clusion Library.

	Introduction
	State-of-the-arts and Limitation
	Our Contributions

	Preliminaries and Building Blocks
	Notation
	Shamir Secret Sharing
	Private Information Retrieval

	System and Security Models
	System Model
	Security Model

	The Proposed (Semi-Honest) ODSE Schemes
	 ODSE Data Structures
	ODSExorwo: Fast ODSE
	ODSErowo: Robust ODSE
	 ODSEitwo: Robust and Information-Theoretically Secure ODSE

	Security Analysis
	Maliciously-Secure ODSE
	 MD-ODSExorwo: Maliciously-Detectable ODSExorwo
	 MR-ODSErowo: Maliciously-Robust ODSErowo
	 MR-ODSEitwo: Maliciously-Robust and IT-Secure ODSEitwo

	Implementation
	Performance Evaluation
	Configurations
	Overall End-to-end Delay in the Semi-honest Setting
	 Detailed Cost Analysis
	Storage overhead
	Experiment with various query sizes
	 ODSE Performance in the Presence of Malicious Adversary

	Conclusion
	References

