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ABSTRACT

Multi-user oblivious storage allows users to access their shared data
on the cloud while retaining access pattern obliviousness and data
confidentiality simultaneously. Most secure and efficient oblivious
storage systems focus on the utilization of the maximum network
bandwidth in serving concurrent accesses via a trusted proxy. How-
ever, since the proxy executes a standard ORAM protocol over the
network, the performance is capped by the network bandwidth and
latency. Moreover, some important features such as access control
and security against active adversaries have not been thoroughly
explored in such proxy settings.

In this paper, we propose MOSE, a multi-user oblivious storage
system that is efficient and enjoys from some desirable security
properties. Our main idea is to harness a secure enclave, namely
Intel SGX, residing on the untrusted storage server to execute proxy
logic, thereby, minimizing the network bottleneck of proxy-based
designs. In this regard, we address various technical design chal-
lenges such as memory constraints, side-channel attacks and scala-
bility issues when enabling proxy logic in the secure enclave. We
present a formal security model and analysis for secure enclave
multi-user ORAM with access control. We optimize MOSE to boost
its throughput in serving concurrent requests. We implemented
MOSE and evaluated its performance on commodity hardware. Our
evaluation confirmed the efficiency of MOSE, where it achieves
approximately two orders of magnitudes higher throughput than
the state-of-the-art proxy-based design, and also, its performance
is scalable proportional to the available system resources.
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1 INTRODUCTION

Data outsourcing is a promising approach in the cloud era for
efficiently providing a large amount of storage to many remote
clients. However, storing data on untrusted servers raises secu-
rity/privacy concerns. Applying encryption to data may provide
data confidentiality, but it is not sufficient to address such concerns.
In particular, leaking the access patterns may put data privacy at
risk. Once clients access their data on the cloud, they leak access
patterns to the cloud provider as well as the attackers on the net-
work. As a consequence, recently, a number of attacks exploiting
such access pattern leakage have been demonstrated, especially in
the encrypted search domain [7, 20, 27, 33, 56].
Standard ORAM in the single-user setting. Oblivious Random
Access Machine (ORAM) [18] is a promising technique for data
outsourcing because ORAM can hide access patterns, but to use it,
one should overcome its significant computation and/or network
bandwidth overhead. Despite the recent algorithmic improvements
in ORAM [22, 38, 42, 46, 47, 51], there exists a limit in network band-
width usage: logarithmic communication lower bound. In client-
server settings, such communication is performed over the network
with limited bandwidth and high latency [4, 22]. Several ORAM
schemes with O(1) bandwidth (e.g., [2, 12, 15]) were proposed; how-
ever, they incur high server computation overhead.
Multi-user ORAM. ORAM could be extended to support multi-
user settings, but doing so brings up new challenges such as net-
work bandwidth overhead, complexity of handling concurrency,
asynchronicity, etc. Once the single-user ORAM is adopted into the
multi-user setting, the impact of network delay drastically increases
since user requests must be processed in a sequential order over
the network. Alternatives were proposed to enable some security
and efficiency properties such as access pattern obliviousness, ac-
cess control and concurrency. Unfortunately, existing techniques
do not fully satisfy all the performance and security requirements.
One research direction focuses on proposing new ORAM with
access control (e.g., [30, 31]), or parallelization (e.g., [6, 8, 9, 35]).
Although these schemes do not rely on an additional trusted party
(e.g., a proxy), they incur either high network communication (e.g.,
O(log2 N ) where N is the number of data blocks) (e.g., [6, 8, 9]) or
server computation overhead [31] (i.e., O(N )). Maffei et al. in [31]
showed that there exists a computation lower bound of Ω(N ) to
achieve both the access pattern obliviousness and access control at
the same time against an active adversary.

Another research direction leveraged a trusted proxy to handle
multi-user concurrent accesses and access control (suggested in
[31]) by using a standard ORAM protocol [4, 40, 44, 45, 54]. Unfortu-
nately, fully asynchronous proxy designs (e.g., [4, 45]) were shown
insecure against timing attacks [40] exploiting access pattern leak-
ages in processing concurrent requests. To fix this vulnerability,
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Sahin et al. proposed TaoStore [40], the most efficient and secure
proxy design to-date, which allows ORAM protocols to be securely
executed in parallel over the network. Despite their merits, all
proxy designs execute standard ORAM protocols over the network
so that their performance is capped by the limitations of the net-
work bandwidth and latency, and fail to scale beyond that limit (e.g.,
TaoStore supports up to ten users for a 1Gbps link). Since all proxy
designs are originally proposed to exploit the maximum network
throughput for concurrent accesses, they do not focus on access
control enforcement or handling an active adversary. Maffei et al.
in [31] pointed out that proxy-based designs can offer access con-
trol enforcement with the incorporation of an access control data
structure and authentication at the proxy. A detailed exploration of
this enhancement in practical settings is a worthy investigation.
Our Approach. After observing the drawbacks of the previous
approaches, we aim to achieve three major goals for a secure and
efficient data outsourcing: 1) Low network overhead; 2) Access con-
trol and security assurances against active adversary; and 3) Secure

parallelization at the server side for fast concurrent access.
To this end, we design our system, MOSE, which employs secure

enclave to drastically reduce network overhead, support security
functionalities against active adversaries, and exploit parallelism in
the server at once. In particular, we first develop the trusted logics
(similar to the trusted proxy) on an untrusted server (i.e., not on
the network) by adopting a commodity secure enclave (Intel SGX)
as a secure isolation mechanism. This design is inspired by recent
systems and frameworks assisted by Intel SGX (e.g., [1, 13, 14, 16,
23, 36, 41]), which employ a commodity secure hardware to enhance
the efficiency of the underlying cryptographic operations. We are
motivated by these approaches to overcome network bandwidth
limitations of the previous proxy-assisted ORAM systems.
Contributions. MOSE offers the following desirable properties.
• Minimal network bandwidth overhead: MOSE removes network-
related problems in existing proxy-assisted oblivious storage sys-
tems by putting the trusted logic on an enclave. In this setting, the
enclave communicates with the storage server via a local memory
bus, which is several orders of magnitude faster than the network
communication in terms of both bandwidth and latency. This de-
sign does not incur network bandwidth overhead because MOSE
will transfer only the encrypted, bulk data over the network.
• Access control enforcement against active adversary: MOSE, run-
ning in a secure enclave, securely enforces access control policies
and hides the access patterns against an active adversary corrupt-
ing the users and/or all components of the server except for the
CPU. To this end, we define a security notion for enclave-assisted
multi-user ORAM with access control in the presence of an active
adversary. We show that MOSE achieves the security according to
this model (see §6).
• Scalable to multi-user concurrent access:MOSE achieves a scalable
performance by utilizing a parallel optimization, which achieves
maximum concurrency at the server while preserving the ORAM
security. In particular, MOSE is scalable proportional to the available
system resources, e.g., the number of CPU cores in the server. These
properties allow MOSE to achieve a high throughput in serving a
large number of concurrent requests from multiple users.
• Implementation and experimental evaluations: We implemented
MOSE and evaluated its performance on a commodity desktop
that supports Intel SGX, and the experimental result indicated that

our system is efficient and practical (see §7). For example, with
96 GB database, MOSE can process 374 concurrent requests while
achieving less than one second delay to all requests, and it can
process 788 concurrent requests while achieving, on average, one
second delay per request. MOSE is two orders of magnitudes faster
than the state-of-the-art [40] and thus more suitable in serving
multi-users requests. Specifically, MOSE can support more than 300
concurrent users with a reasonable delay for accessing 96 GB data-
base, compared with 10 users on 13 GB database in TaoStore with
1 Gbps network bandwidth. To achieve these, MOSE incurs 10 GB
of additional memory usage and doubles the storage overhead.

Based on these results, we believe that MOSE fills an important
practical gap between security and performance, and facilitates
secure data outsourcing in practice.

2 DESIGN DECISIONS AND CHALLENGES

We discuss design requirements and challenges in achieving an effi-
cient and secure multi-user oblivious storage using secure enclaves.

2.1 Requirements

A secure data outsourcing method is expected to meet the following
requirements to ensure practicality and security.
Performance: To allow multiple users to access the shared data-
base in a timely manner, the system should achieve the following
performance requirements:
(1) Efficiency: The system must not incur significant computation

delay to achieve a reasonably fast response time (i.e., latency)
and does not incur huge overhead in network bandwidth.

(2) Scalability: To serve arbitrarily many concurrent user requests,
the system should be able to scale its performance proportional
to the available system resources.

Security: In addition to the data confidentiality provided by en-
cryption, guaranteeing the following three security properties is
required for securing outsourced database in the multi-user setting:
(1) Obliviousness: The system should not leak any meaningful

information from users’ access patterns.
(2) Access control: The system should be able to check whether a

user has access to a specific entry in the databasewhile retaining
the obliviousness of users’ access patterns.

(3) Resiliency against active adversaries: The system should
ensure that both data and access patterns of honest users are not
leaked to the malicious server, active attackers in the network
or compromised users, even if they collude with each other.

2.2 Why Secure Enclaves?

We decided to adopt secure enclaves in MOSE’s design based on
the following reasons. Both previous directions for oblivious access
in the multi-user setting (i.e., non-proxy ORAM and proxy-based
ORAM) suffer from distinct limitations. Without a proxy, a purely
cryptographic ORAM construction requires a Ω(N ) computation
to enable access pattern obliviousness and access control at the
same time against an active adversary [31]. In contrast, any proxy-
based oblivious storage can enable access control by maintaining
an access control data structure at the proxy. However, their net-
work bandwidth overhead is inevitably costly because the ORAM



protocol is executed over the network. Therefore, even for the state-
of-the-art implementation [40], only ten concurrent users can be
supported in 1 Gbps network, capped by the bandwidth limit, and
this renders TaoStore impractical to use in real-world scenarios
(e.g., running a web server).

Our observation is that the designs without proxy incur extreme
computation overhead that might be impractical for large databases,
and the performance of the designs with proxy is restricted by the
network bandwidth. Focusing on the latter case, which is more
feasible than the former, we come up with a following research
question: Can we remove the restraining network layer in proxy-based

designs between the trusted proxy and the storage server?

Inspired by recent Intel SGX-assisted frameworks [1, 14, 16, 23,
36, 41], we aim to utilize the secure enclave to run our trusted
proxy to overcome the network bandwidth limitation. We target
storage-optimized infrastructures, in which our construction uti-
lizes high-speed local links (e.g., Infiniband/PCIe) for oblivious
access to the storage units while using remote link (i.e., Internet)
only to transfer the payload. These infrastructures are expected to
be widely available on commodity cloud services with enhanced
security features (e.g., MS Azure Confidential Computing). Secure
enclave, specifically Intel SGX, is a hardware-based isolation mech-
anism that provides a trusted execution environment and, therefore,
it can work as an isolation mechanism of a trusted proxy when run-
ning on an untrusted server. The benefit of the enclave is that the
communication channel between the proxy and the server is now a
local memory bus, which is orders of magnitude faster than network
links (273Gbps vs. 1Gbps). The enclave can execute trusted logics
such as access control, which also meets our security demand.

2.3 Challenges

Putting the trusted proxy in an enclavewill remove the performance
bottleneck in the proxy-based ORAM and enable access control
functionality. However, designing the system that meets all the
aforementioned requirements for data outsourcing with secure
enclave is a challenging task. We highlight some of these major
design challenges in the following.
System-level restrictions. Security and isolation guarantees pro-
vided by the secure enclave come with a performance cost, and our
design should be able to handle such performance issues efficiently.
First, because the enclave provided by Intel SGX can only protect
user-level processes, and the operating system is untrusted in the
Intel SGX security model, invoking any system calls that move data
outside the security domain requires encryption. Particularly in
MOSE, each I/O access that reads/writes the untrusted memory
as well as network communication requires encryption, thereby
the system must handle this accurately and efficiently. Second,
Intel SGX is performant when an enclave manages its active mem-
ory usage < 95 MB due to the hardware limit. A study [11] shows
that a program could suffer more than 200% slowdown, if its en-
clave uses memory beyond that boundary. Therefore, designs that
include a large amount of data (e.g., storing 8 GB data in trusted
memory) cannot meet the performance requirement.
Side-channel attacks against secure enclaves. The designmust
protect the trusted logic executed by an enclave from side-channel
attacks because Intel SGX does not guarantee the security against
such attacks. In particular, Intel SGX does not provide any protec-
tion for memory access pattern even for the trusted memory. In this

regard, researchers have demonstrated that attackers could learn
about the data that an enclave processes via cache [10, 19, 26, 32, 48,
50, 53] or page-fault [21, 49, 55] side-channel. Although the obliv-
ious data access requirement of MOSE can protect side-channel
attacks when reading data from storage, the enclave cannot auto-
matically protect the security critical logics. For instance, when an
ORAM controller reads a block from a path, attacker could learn the
position of a block from the enclave’s execution and memory access
pattern. Therefore, the design must ensure its resiliency against
side-channel attacks, as long as the attack is not caused by CPU
misimplementation [10, 48, 50, 53].
Achieving scalable performance. To meet the scalability re-
quirement, the design should be able to scale its performance to the
available system resources. While putting the trusted proxy in the
enclave unleashes the performance bottleneck caused by network
bandwidth limit, it does not guarantee that the proxy can utilize
system’s full bandwidth. Since the memory bus is fast, adopting the
enclave will change the performance limiting factor to other factors,
such as storage I/O access, computation speed for cryptographic
operations, etc. Hence, the design must analyze and identify per-
formance hurdles in this architecture and tailor itself to be scalable.
Additionally, scalable design should also consider that the design is
free from concurrency attacks to ORAM [40].

3 MOSE HIGH-LEVEL ARCHITECTURE

3.1 Overview

At a high level, MOSE is an outsourced oblivious storage in an
untrusted cloud server with a trusted proxy that handles user’s
requests. MOSE runs its trusted logic such as user authentication,
en/decryption, and the ORAM controller logic in the enclave. Unlike
previous approaches that put the trusted proxy in a physically
separated server on the network, MOSE utilizes hardware-based
isolation provided by Intel SGX and can guarantee a comparable
grade of security to such approaches. To make an access request
to MOSE, a user must be authenticated by the enclave logic and
also pass the access control requirements. After that, the enclave
will perform oblivious access to the encrypted database stored
in untrusted storage. The trusted logic will decrypt the content,
and finally, the result will be returned to the user. Note that the
communication between the user and the enclave is encrypted by
the secret key shared by the remote attestation protocol provided
by Intel SGX.

On the other hand, the storage is untrusted, thereby the database
and the access control structure must be encrypted. This proxy
construction ensures three security requirements for data outsourc-
ing. First, the ORAM access from trusted proxy can guarantee the
access pattern obliviousness if our secure enclave does not leak any
critical data via side-channel analysis. Second, to guarantee security,
MOSE blocks control-flow side-channel via secure (non-branch)
comparison and assignment logic and blocks cache side-channel by
accessing the entire data for critical ORAM components such as re-
quested paths and the stash. Third, for access control and resiliency,
MOSE implements access control logic in the trusted enclave and
uses ORAM to obliviously check the permission, so even when
a malicious user colludes with the server, they cannot infer any
information about the honest user(s).

Regarding the performance, MOSE achieves the two following
design requirements. First, by having a trusted proxy in a secure



enclave, MOSE eliminates efficiency issues related to network band-
width/latency applied between the proxy and the storage server.
Instead of communicating via a network link, the trusted proxy of
MOSE uses memory bus, which is two orders of magnitude faster
(273 Gbps vs. 1 Gbps) in bandwidth and much faster (350 ns vs.
≈ 50 ms) in latency. This design unleashes the bottleneck in serving
concurrent requests as in TaoStore [40], which can only support
ten users for achieving their optimal performance.

Second, MOSE offers scalable performance for supporting multi-
user access by speeding up a single ORAM access via parallelization
while processing the entire user access requests sequentially. Un-
like previous works aiming at parallelizing multiple ORAM access
in a concurrent manner, this construction makes MOSE free from
the asynchronicity attack [40]. In particular, MOSE applies paral-
lelization to a single ORAM access request regarding encryption
and decryption computations, and I/O access. MOSE splits each
block in ORAM structures into m chunks, where m is the num-
ber of parallel threads. When processing an access request, each
thread processes the reading of each chunk from the storage as well
as cryptographic computation in parallel. Thanks to this parallel
construction, MOSE’s performance improves in proportion to the
number of parallel threads, and therefore, it is scalable.

3.2 System Model

Our system is comprised of a data owner, k users, and an untrusted
storage server S equipped with Intel SGX. The data owner owns
a database (DB) containing N blocks and grants permissions such
as read (R), read&write (RW) for k users to access N blocks via an
access control data structure (AC). Only the data owner can update
the AC entries. The data owner encrypts DB and AC forming EDB
and EAC, respectively, both of which are stored in the untrusted
memory region of S such as solid-state drive (SSD). To access an
entry in DB/AC, the users/data owner interacts with an enclave
created by Intel SGX, which acts as a trusted proxy to execute
ORAM operations with S.

For the sake of simplicity, we say accessing S to imply accessing
the untrusted memory region in S. We consider the enclave as the
ORAM client (OClient) in our models because it is the only entity
that executes the ORAM protocol with S.

Inspired by [31, 40], we present the definition of multi-user
ORAM with trusted proxy in Definition 3.1. Our model differs
from the ones in [31] and [40] in the sense that the former does
not use proxy while the latter does not consider the access control
enforcement. We denote the execution of protocol A by OClient
with the server S as (®oC ; ®oS )← A(®iC ; ®iS ), where the input/output
vectors of two parties are separated by a semicolon (;).

Definition 3.1 (Enclave-assisted multi-user ORAMwith access control).

A multi-user ORAM with access control is comprised of the follow-
ing (interactive) Probabilistic Polynomial Time (PPT) algorithms:
• (ko , EDB, EAC)← Gen(1λ ,DB,k,N ): It takes as input a security
parameter λ, and a database DB containing N data blocks. It
initializes a data structure AC managing the access policy of k
users for N blocks. It returns EDB and EAC as the encrypted
form of DB and AC, respectively.
• (p;⊥)← ReadAC(uid, bid; EAC): It takes a user ID uid and a
block ID bid fromOClient and EAC from S as input. It reads the

permission on EAC for entries bid and uid as p ← EAC(uid, bid).
It outputs a permission p ∈ {R,RW,⊥} to OClient and ⊥ to S.
• (p; EAC′)←WriteAC(uid, bid,p; EAC): It takes (uid, bid,p) from
OClient, where p ∈ {R,W,RW,⊥} and EAC from S as input. It
updates as EAC(uid, bid)← p. It outputs p to OClient, and the
updated EAC′ to S.
• (data;⊥)← ReadDB(uid, bid; EAC, EDB): It takes (uid, bid) from
OClient and (EAC, EDB) from S as input. It executes (p;⊥)←
ReadAC(uid, bid; EAC). If p /∈ {R,RW}, it gets data ← EDB[i],
where i is a dummy block ID. Otherwise, it gets data← EDB[bid].
Finally, it returns data to OClient and ⊥ to S.
• (data; EDB′)←WriteDB(uid, bid, data∗; EAC, EDB): It takes (uid,
bid, data∗) from OClient, where data∗ is the new data to be
written, and (EDB, EAC) from S as input. It executes (p,⊥)←
ReadAC(uid, bid; EAC). Ifp ̸= RW, it gets data← EDB[i], where
i is an dummy block ID. Otherwise, it gets data ← EDB[bid],
and updates EDB[bid]← data∗. It returns data to OClient, and
EDB′ to S indicating EDB is (possibly) updated.
• data′ ← Response(kuid, data): It encrypts data with key kuid.

3.3 Threat Model

We build MOSE based on following assumptions as its threat model.
• Trusted: We trust the data owner, OClient and the ORAM con-
troller logic, both of which run by the enclave. We trust the remote
attestation protocol by Intel SGX, on which we rely on for verifying
the integrity of the enclave and establishing a secure communica-
tion channel between the user and the enclave. We also trust the
hardware key, generated by the enclave that seals the ORAM key.
• Untrusted: We assume that the server S is completely untrusted
except the enclave. We assume attackers on the server can freely
monitor access patterns of the users and the enclave such as net-
work access, storage and memory access; however, they cannot
compromise data confidentiality for such accesses. We do not trust
any of server’s logic that includes virtual machine monitor, operat-
ing system and drivers, software that manages storage, etc. This
is a general assumption for a system that utilizes secure enclaves
because Intel SGX isolates and applies encryption to the enclave’s
memory space via hardware mechanisms. Additionally, data users
and the server can also be active adversaries, meaning that they
may attempt to inject/tamper their input or even collude with each
other to break the security of other honest users.

4 BUILDING BLOCKS

Notation. x
$
← S denotes x is uniformly and randomly sampled

from set S . We denote E = (Gen, Enc,Dec) as an IND-CPA-secure
symmetric encryption, where k ← E .Gen(1λ ) generates a symmet-
ric key k given a security parameter 1λ ; c ← E .Enck (M) returns the
ciphertext c of M encrypted with key k ; M ← E .Deck (c) returns
the plaintextM of c , which is previously encrypted by k .

4.1 Intel SGX

We use Intel SGX as a secure enclave to securely execute the trusted
logic on an untrusted server. In the following, we describe how we
exploit the hardware-based isolation for secure execution and its
remote attestation for establishing a secure communication channel
between a client and the trusted logic. We also describe how we



securely use Intel SGX while providing defense against existing
threats, such as untrusted system calls.
Isolation by secure enclave. Intel SGXprovides an Enclave, which
isolates its memory from untrusted system components other than
CPU and also protects the integrity and confidentiality of its mem-
ory. Its hardware-based isolation does not allow any execution
other than the program runs in the enclave from accessing en-
clave’s data. We run MOSE’s trusted logic for processing the access
control and ORAM protocol in an enclave. Thus access to such logic
is prevented from any untrusted part of the server machine.
Remote attestation and secure communication. Weutilize the
remote attestation protocol of Intel SGX to verify the integrity of
our trusted logic and also securely exchange secret keys for protect-
ing communication channels between the trusted logic and the user.
With this, we ensure that clients do not directly communicate with
the server in the case of a failed integrity check and therefore, re-
duce our attack surface for man-in-the-middle attack. In addition to
the measurement, the protocol also securely shares Diffie-Hellman
key parameters. We use this shared secret as a session key to protect
the communication channel between the trusted logic and the user.
Use encryption for untrusted system calls. System calls includ-
ing network and disk I/O are untrusted in Intel SGX. Following the
guidelines provided by Intel and security community [11, 24, 25], we
apply encryption on the data if the data moves across the security
domains (i.e., encrypts data if they are being processed by system
calls, decrypts data if they are being processed by an enclave). There-
fore, security components of MOSE such as the position map and
plaintext data of database are stored encrypted on the untrusted
server (thus secure), and they will be decrypted by our trusted logic
in an enclave only when they are being accessed by a user request.

4.2 Circuit-ORAM

ORAM allows the client to hide access patterns when accessing an
encrypted database stored in the untrusted memory region [18].
Most efficient ORAM schemes for client-server applications [22, 38,
47, 51] follow the tree-paradigm proposed in [42]. Among these, we
select Circuit-ORAM [51] for MOSE since it features the optimal
circuit size and therefore, it is the most efficient to be incorporated
with the secure enclave technique.

Definition 4.1 (Circuit-ORAM [51]). It comprises two PPT algo-
rithms as follows.
• EDB← Setup(k,DB): Given a key k and a database DB with
N data blocks as input, it first generates a binary tree T0 with
N leaves, in which each data block is assigned to a random
path and resided somewhere along the assigned path. It also
generates a stash component (S) of size O(|B |logN ), where |B |
is the block size, and a position map (pos) of size O(N logN ),
which stores the path information of each block. It then store pos
in a series of small binary trees (T1, . . . ,TlogN ) with recursive
technique in [42]. Finally, it outputs an encrypted database EDB,
which includes the encrypted version of all the aforementioned
components as EDB←

(
{E .Enck (Ti )}

logN
i=0 , E .Enck (S)

)
.

• data← Access(op, bid, data′; EDB) : The client inputs an access
operation op ∈ {read,write}, a block ID bid and data data′ to
be updated (if op = write). The server inputs the encrypted
database EDB. It outputs the read data of bid (data) to the client.

Each Circuit-ORAM access comprises two following phases.
• Read: The client gets the path of bid from pos. She then reads and
decrypts all nodes along the path pid from the ORAM tree, and puts
only bid into S . She removes bid info from the path and updates
the path of bid with a new path selected uniformly at random.
• Eviction: The client selects an eviction path randomly as in [17].
The client prepares a list of blocks to be moved in the eviction path.
The client picks one block from S that can be pushed to the deepest
level of the tree, and then traverses from the root to leaf. In each
level, the client drops the holding block and picks another block to
be resided into a deeper level, until the leaf is reached.
Data Integrity. In MOSE, we employ authenticated encryption
technique (i.e., AES-CTR for encryption and HMAC with SHA-256
for authentication) to achieve the integrity for each node in the
Circuit-ORAM tree against malicious adversary.

5 DESIGN OF MOSE

5.1 System Initialization

Figure 1 presents the initialization workflow of MOSE. Given a
database DB containing (upto) N block entries being shared among
(upto) k users (uid1, . . . , uidk ), the data owner executes the Gen
algorithm to construct mandatory data structures outsourced to the
cloud (Step 1 ). The algorithms first generates an ORAM symmetric
key ko and initializes an access control matrix AC (see §5.3 for our
argument on why matrix structure is preferred) for each user uidi
with each database entry bidj . For simplicity, we consider basic
permission attributes including read and write.DB and AC are then
packaged and encrypted into two separate recursive Circuit-ORAM
structures called EDB and EAC, respectively. Figure 2 presents the
Gen algorithm, which executes Circuit-ORAM setup algorithm in
Theorem 4.1 to construct recursive Circuit-ORAM structures for
the database and the access control structure. After the algorithm
is executed, the data owner sends EAC and EDB as well as their
encrypted position map (all in the form of Circuit-ORAM trees) to
the server, all of which are stored in the untrusted memory region
(e.g., SSD, at Step 2 ). The data owner performs a remote attestation
of an enclave (provided by Intel SGX) running on the server to
ensure if the enclave is intact and to exchange cryptographic key
for establishing an encrypted communication channel between the
data owner and the enclave. To this end, the data owner sends ko to
the enclave via the established channel (Step 3 ). To ensure security,
the enclave always keeps ko in the trusted memory, and stores it to
the disk only after encrypting it with the enclave’s hardware key
(i.e., data sealing feature provided by Intel SGX).

5.2 Handling user request with access control

Figure 3 illustrates the workflow of MOSE in processing the user
request with the access control check. Let bid be the ID of the block
in EDB the user uid wants to access. The user will first establish a
secure channel (via a shared key kuid) with the enclave via remote
attestation. The user encrypts the 4-tuple (uid, pwd, bid, op) with
the shared key kuid where pwd is user’s authentication password
and op denotes the access type (e.g., op ∈ {read/write}), and then
sends the encrypted request to the storage server, which passes
it into the enclave (Step 1 ). The enclave decrypts the tuple (uid,
pwd, bid,op) using kuid, and authenticates the user with the uid and
password pwd. If authenticated, it derives the ID bid′ of a block
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Figure 1: MOSE initialization.

MOSE.Gen(λ, DB, k, N ):

1: ko ← E .Gen(1λ ) an initialize k × N matrix AC ▷ Generate ORAM key ko
2: EDB← Circuit-ORAM.Setup(ko, DB)
3: AC[uid, bid]← {R, RW, ⊥} for 1 ≤ bid ≤ N and 1 ≤ uid ≤ k
4: AC′ ← Split AC into N ′ blocks each of size |B′ | bits
5: EAC← Circuit-ORAM.Setup(ko, AC′)
6: return (ko, EDB, EAC)

Figure 2: Setting up EAC and EDB components in MOSE.
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Figure 3: Oblivious access workflow in MOSE.

in EAC containing the permission of uid with bid. The enclave
performs recursive Circuit-ORAM accesses on the position map
component of EAC to retrieve the path location (pid′) of bid′ in
EAC (Step 2 ). After that, the enclave performs a Circuit-ORAM
access on EAC to retrieve the block bid′ from the path pid′ (Step
3 ), and checks whether op is permitted (i.e., op ∈ bid′) or not (Step
4 ). If op ∈ bid′, the enclave performs recursive Circuit-ORAM
accesses on the position map component of EDB to retrieve the
path location of bid (Step 5 ), and then executes a Circuit-ORAM
access on EDB to retrieve the requested block bid from the path
(Step 6 ). Otherwise, if op /∈ bid′, the enclave performs dummy

(recursive) accesses on both EDB’s position map and EDB. Such

MOSE.AccessDB(uid, bid, op, B∗):
1: bid′ ← (2N · uid + bid)/ |B′ | ▷ N : # DB blocks, |B′ |: AC block size
2: B′ ← Circuit-ORAM.Access

(
read, bid′, ⊥; EAC

)
3: perm← Get the permission of user uid on bid from B′
4: v ← ocmp(op, perm) ▷ Check if op = perm

5: did
$
← {1, . . . , N }

6: bid← oupt(v, bid, did); B∗ ← oupt(v, B∗, {0} |B∗ | )
7: B ← Circuit-ORAM.Access

(
op, bid, B∗; EDB

)
8: B ← oupt(v, B, {0} |B | )
9: B′ ← E .Enckuid (B)
10: return B′ ▷ Send B′ to uid

Figure 4: Processing user request in MOSE.

MOSE.WriteAC(uid, bid, p):
1: bid′ ← (2N · uid + bid)/ |B′ | ▷ N : # DB blocks, |B′ |: AC block size
2: B′ ← Circuit-ORAM.Access(write, bid′, p ; EAC)

Figure 5: Update user permission in MOSE.

dummy accesses are necessary in order to prevent the server from
learning whether the user request is permitted or not. Finally, the
enclave encrypts the accessed block (or dummy data if uid is not
permitted) with kuid, and then sends the encrypted data to the user
(Step 7 ).

Figure 4 presents how our enclave processes the access request
algorithmically after the user is authenticated. The algorithm in-
vokes the recursive Circuit-ORAM protocol (Steps 2, 7 ). Generally
speaking, the enclave needs to perform a conditional check to verify
whether the user has permission or not (Step 4) and also require
a check when the enclave obliviously accesses the database block
from the path of the Circuit-ORAM tree. To prevent information
leakage from diverging execution on a conditional branch, we im-
plemented the oblivious comparison and oblivious update functions
using CMOV and SETE instructions proposed in [36, 37], which are
defined as follows.
• b ← ocmp(x ,y): It takes as input two values x ,y and outputs
b ← 0 if x = y or b ← 1 otherwise.
• z ← oupt(b,x ,y): It takes as input two values x , y and a
boolean b, and assigns z ← x if b = 1 or z ← y otherwise.

Notice that read and write operations (i.e., ReadDB andWriteDB
algorithms in Definition 3.1) must incur the same procedure pre-
sented in Figure 4 to achieve security. To be complete, Figure 5
presents the detailedWriteAC algorithm defined in Definition 3.1.
Notice that this process can only be triggered by the data owner,
and the enclave executes this algorithm only after the data owner
is authenticated.

5.3 Towards Scalable Oblivious Access

To achieve a scalable performance, we optimize each Circuit-ORAM
access on encrypted data components stored in the untrusted mem-
ory via secure enclaves and parallelization of computation and I/O
accesses. As briefly discussed in §3, the state-of-the-art proxy-based
oblivious storage design (TaoStore [40]) pointed out the concur-
rency limitation of ORAM. That is, any optimization that paral-
lelizes multiple ORAM access must reply such requests sequentially
in their arrival order to prevent information leakages via their tim-
ings. Although multiple user’s requests can arrive and be processed
at the proxy simultaneously, the total response time for a user is



equal to the total processing time of its prior requests plus the
processing time for the target request, which includes local proxy
computation and ORAM network communication delay.

Holding the restriction that all requests have to be replied in a
sequential order to ensure security, the only solution to optimize
MOSE’s performance is to employ parallelization tricks, not for the
concurrent ORAM access, but for minimizing the processing time of
a single request. With this approach, we can minimize the delay of
processing one user request at a time and also make MOSE scalable
by increasing its concurrent request processing performance in
proportional to the number of available CPU cores.

Another bottleneck that limits the support of concurrent requests
is the network bandwidth overhead. The 1Gbps link between the
proxy and the storage server only allows ten concurrent access
requests in a second, and this number cannot reflect concurrency
needs in real-world scenarios. Thanks toMOSE’s design that utilizes
secure enclaves, the network overhead does not exist in MOSE
because the enclave communicate with the storage via a high-speed
memory bus, which is a 273 Gbps link for a regular dual-channel
DDR4-2133 memory.
Scalable Computation and I/O Access Parallelization. MOSE
parallelizes computations aswell as I/O accesses in eachCircuit-ORAM
access by utilizing a multi-core CPU as follows. We split each
(real/dummy) block of Circuit-ORAM into multiple chunks, prefer-
ably as the number of parallelized threads, and encrypt each chunk
separately and independently from one another using paralleliz-
able encryption techniques such as AES-CTR. On performing a
Circuit-ORAM access, the enclave spawns multiple threads to ac-
cess such chunks in parallel. Each thread is responsible to read/write
its assigned chunks from/to the server’s storage device and also
perform encryption/decryption. This parallelization is simple, but
more efficient than [9], in which each CPU is assigned to an inde-
pendent subtree in the ORAM tree structure, which might incur
a costly synchronization and unbalanced CPU workloads. More-
over, because it only parallelizes a single ORAM access request, this
parallelization is not vulnerable to the asynchronousity attack [40].

A caveat in applying this parallelization is that the meta-data
components in the Circuit-ORAM tree is very small in practice (less
than 16 B), the parallelization for meta-data computation is not
beneficial because initializing threads costs some delay. Therefore
in MOSE, we use only one thread to load the encrypted meta-data
from the storage disk into the enclave memory space first, and then
creating multiple threads to process block data by chunks.
Performance and storage trade-offs in access control struc-

tures. In this study, we instantiate AC with matrix, which is the
basic structure for access control management. This design de-
cision follows the same scalability principle: optimizing a single
request. Although matrix is storage-costly (sized as # of user × # of
database files) than more compact alternatives such as linked-list,
it allows to get the user permission on a specific database block
directly when packaged into the ORAM blocks. Specifically, the
cell AC[uid, bid] can be packaged into an ORAM block with ID
bid′ = (2 · uid · N + bid)/|B′ |, where N is the number of database
blocks, and |B′ | is the selected AC block size (in bits). On the con-
trary, with a linked-list structure, each entry for uid stores an array
of block IDs that uid can access to (or in reverse). Because the list is
different for each user, one might have to scan at least logarithmic
number of entries in the list with multiple ORAM executions (e.g.,

[52]), which will incur a high latency. Moreover, such structure
might be vulnerable to information leakage via list size and access
timing, which cannot be prevented by ORAM. Padding can mitigate
this leakage, but it incurs more delay and is application-specific.

Note that the entire operation of MOSE is orthogonal to the
selection of AC structure, so any structure can be utilized. However,
for the given scalability goal and security requirements, we decide
to sacrifice the storage for the other properties.

6 SECURITY

We present the security definition of standard ORAM as follows.
Definition 6.1 (ORAM security [42]). Let ®o = (⟨op1, idx1, data1⟩, . . . ,
⟨opq , idxq , dataq⟩) be a sequence of data access requests on en-
crypted database, where opi ∈ {read,write}, idxi is logical address
to be read/written and datai being the data at idxi to be read/written
(for i ∈ {1, . . . ,q}). Let AP(®o) be an access pattern observed by the
server S given a data request sequence ®o. An ORAM scheme is
secure if for any two data request sequences ®oi and ®oj of the same
length, their access patterns AP(®oi ) and AP(®oj ) are computationally
indistinguishable by anyone but the client.

We present the security notion for an enclave-assisted multi-user
ORAM with access control, and show how MOSE achieves them.
Our model is inspired from [30, 31, 40] with the following differ-
ences. In [30, 31], the security model captures multi-user ORAM
and access control without a trusted proxy (modeled as a secure
enclave in MOSE). In [40], it captures a multi-user ORAM with a
trusted proxy over the asynchronous network setting but does not
offer access control measures. In MOSE, the enclave resides on an
untrusted server and therefore, the network setting does not apply.
We consider twomain adversary properties includingmaliciousness,
where they can actively inject/tamper with the input and collusion,
where both the user and server can collude with each other.
Access pattern obliviousness: Intuitively, an enclave-assisted
multi-user ORAM with access control is secure if the server and
an arbitrary subset of users, cannot learn any information regard-
ing the access patterns of honest users aside from what is trivially
leaked by corrupted users. We define this notion as follows.
Definition 6.2 (Enclave-assisted multi-user ORAM with access control

security). Consider the following experiment between an adversary
A, which contains a set of malicious and colluding entities (i.e.,
users and server) and a challenger C (which works as OClient).
• Setup: C generates a database DB with N blocks for k users and
initializes two empty lists UL and QL. It executes (ko , EAC,
EDB)← Gen(1λ ,DB,k,N ), and returns EAC and EDB to A.
• Learning phase:

– OaddU(uid): This oracle adds a user and its secret key to the
list of colluding users asUL ← UL ∪ {uid,kS }.

– OAccess(op, uid, bid, data): If op = read, it executes ReadDB(
uid, bid; EAC, EDB). Otherwise (if op = write), it executes
WriteDB(uid, bid, data; EAC, EDB). It then executes data′ ←
Response(kuid, data) and add oi = ⟨op, uid, bid, data⟩,AP(oi )
to QL, where AP(o)i is the access pattern when executing
WriteDB, ReadDB and Response protocols.

• Distinguish phase:A prepares two access requestso1 = ⟨op1, uid1,
bid1, data1⟩ and o2 = ⟨op2, uid2, bid2, data2⟩.
– Challenge(o1,o2): A queries the challenge oracle with two
access requests o1 and o2 defined above. If uid1 ∈ UL or



uid2 ∈ UL, C aborts. Otherwise, C flips a random coin
b ← {0, 1} and executes ReadDB or WriteDB depending on
opb and returns AP(ob ) to the adversary. The adversary can
continue the learning phase with the exception of calling
OaddU(uid1) or OaddU(uid2). A eventually outputs a bit b ′
to indicate if AP(ob ) corresponds to o1 or o2.

At the end of the game, the adversary wins if b ′ = b.

Data secrecy: Only the authorized users can learn about the data-
base contents.
Tamper resistance against malicious server: Adversary can
not violate data integrity.

Theorem 6.1. MOSE is secure by Definition 6.2 if the underlying

ORAM and IND-CPA encryption scheme are secure.

Proof. The game starts by running the Gen algorithm to initial-
ize EDB, EAC and the ORAM key ko . During the learning phase, the
adversary can corrupt any user of its choice by simply querying its
key.A can adaptively query the OAccess oracle on access requests
of its choice. At some point, A decides to query the Challenge or-
acle. A prepares two access requests o1 = ⟨op1, uid1, bid1, data1⟩
and o2 = ⟨op2, uid2, bid2, data2⟩. Note that to rule out the trivial
cases, we require that uid1 /∈ UL or uid2 /∈ UL.

Upon initiating the Challenge oracle, C commits to a random
coin b ← {0, 1}. For a ob = ⟨opb , uidb , bidb , data′, data∗⟩ submit-
ted to the Challenge oracle, whether opb is a read or a write op-
eration, two ORAM accesses take place. The first ORAM access
is to EAC to determine the permission of uidb on bidb . When
(pb , EAC′) ← ⟨ReadACA(EAC)(uidb , bidb )⟩ is called, EAC is ac-
cessed by the underlying ORAM and the output (i.e., pb ) is returned
to C. After determining uidb ’s permission on bidb , C performs
either a real or dummy ORAM access for data request ob on EDB.
This leads to memory access pattern AP(ob ) on EDB where the
output is returned through data← ⟨Response(kuid, data)⟩ to uidb .

We now analyze the view of A for the access patterns and tran-
scripts generated through the above accesses. First, both EAC and
EDB are encrypted via an IND-CPA encryption scheme at all times.
Second, when (pb , EAC′)← ⟨ReadACA(EAC)(uidb , bidb )⟩ is called,
A does not have any view on outputs to C, therefore, it cannot
infer any information about pb . Moreover, since MOSE leverages a
secure ORAM, to access EAC, any memory access pattern generated
by ORAM is (computationally) indistinguishable by Definition 6.1
[8]. Third, based on the permission pb , whether A has to perform
a real or dummy access for request ob on EDB, due to the security
of the underlying ORAM, the generated access patterns AP(ob ) for
b ∈ {0, 1} is (computationally) indistinguishable by Definition 6.1.
Lastly, the output of Challenge toA is encrypted with an IND-CPA
encryption and therefore, indistinguishable for A. In all the above
cases, for A to distinguish between AP(ob ) based on o1 and o2, it
has to break the underlying ORAM or IND-CPA encryption. □

Corollary 6.1. MOSE offers data secrecy and tamper resistance

against malicious adversary.

Proof. Data secrecy in MOSE is based to the IND-CPA property
of the underlying encryption scheme. As pointed out in the above
proof, EDB and EAC remain encrypted at all the times via an IND-
CPA encryption. Moreover, the returned values are also encrypted
in the Response algorithm via the underlying IND-CPA encryption.

The tamper resistance of MOSE is based on the underling keyed
hash function (e.g., SHA-256) which is used to provide HMAC for
each database block. Finally, the integrity of the enforced access
control mechanism ensures users cannot access (read/write) that
they do not have permission on. □

Blocking side-channel attacks. Although the enclave’s data is
isolated and encrypted, attackers could indirectly learn about the
data via cache [19, 26, 32] or page-fault [21, 49, 55] side-channel
attacks. Specifically, the execution that retrieves a block from a
read path of ORAM tree or accesses stash could leak information
related to data to such side channels. In this regard, MOSE provides
defenses against such attacks. On one hand, we access all blocks
in a single path and the stash per each ORAM access to prevent
cache side-channel attacks. On the other hand, we implement our
logic in the enclave using CMOV instructions to remove conditional
branches that potentially leaks via page-fault side-channel when
the enclave verifies the user permission.

7 EVALUATION

Implementation. We implemented MOSE in C/C++ using the
Intel SGX SDK v1.7. Our implementation contains approximately
2,982 lines of code for the untrusted modules and 780 lines of code
for trusted modules. We leveraged sgx_aes_ctr_encrypt() and
sgx_read_rand() functions in the Intel SGX SDK library, for en-
crypting ORAM with AES-CTR mode and random number genera-
tion (via the RDRAND instruction), respectively. We used pthread for
spawning multiple threads to support parallelism in secure enclave.
Remark that we stored the position map components on the un-
trusted memory in the form of recursive Circuit-ORAM structures.
We also stored the stash components on the untrusted memory,
which are encrypted and loaded as plaintext only to the enclave
memory space chunk-by-chunk (an ECALL function handles this).

In the following, we outline the configurations and methodology
of our evaluation (in §7.1), and then we evaluate the effectiveness
of MOSE in terms of the delay when handling single/multiple client
request(s) with/without optimization and the storage overhead.

7.1 Configurations and Methodology

Hardware. We used a commodity desktop supporting Intel SGX,
which is equipped with a six-core Intel Core i7-8700K CPU @
3.70 GHz, 32 GB of dual-channel DDR4-2133 memory, and 4 TB
NVMe SSD drive.
Dataset. We constructed a databaseDB containing 225 (33,554,432)
random database blocks of size 24 KB (4 KB × six threads). We as-
sumed basic 2-bit access policies (read and/or write) for 214 (16,384)
users on such 225 blocks.
EvaluationMethodology. Weevaluated the performance in terms
of latency, throughput, and memory usage, by varying the database
size, number of cores and ORAM cache level (see §7.2). Afterwards,
we applied various optimizations such as position map caching and
k-top level caching (see §7.3). We then analyze the effectiveness
of MOSE in the multi-user environment, compare its performance
with TaoStore [40] under various database sizes. (see §7.4). We did
not compare with other proxy-based techniques [4, 40, 45] because
their design is insecure against asynchronous timing attack (see
§8). We also did not compare MOSE with non-proxy ORAM primi-
tives [5, 8] because they incur high communication/computation



overhead due to some cryptographic operations. For scalability
testing, we created a number of virtual users that send concurrent
access requests to MOSE with 50 ms network latency.
Configurations. We setup the following system parameters.
• MOSE: We selected standard parameters for Circuit-ORAM:

bucket size Z = 2 with deterministic eviction and stash size |S |= 80.
To exploit parallelism on accessing the ORAM structure from the
NVMe disk drive, we divided each block of EDB into nt 4 KB
chunks, where nt = 6 being the number of threads for parallelism.
We instantiated AC with a matrix for access control management
of 214 users on 225 data blocks. We divided AC into 12- KB blocks,
and built recursive Circuit-ORAM trees for such blocks and their
position map. Similar to EDB, we divided each EAC block into nt
chunks, and each chunk is of size 2 KB. For the recursion, we
selected the compression ratio r = 256.
• TaoStore [40]:We launched a simulation experiment for TaoStore

with a conservative approach. Our virtual TaoStore used Path-ORAM
because it was used by default in [40] and is the most efficient
ORAM for (networked) client-server applications. We used the
Path-ORAM standard parameters: Z = 4, |S |= 80 [47]. We selected
1 Gbps of network throughputs with 10 ms latency for simulating
the execution of the Path-ORAM on the proxy. We excluded all
execution delays at the storage server and the proxy such as I/O ac-
cess, decryption/encryption, thread synchronization, etc. and only
simulated the network delay of transmitting Path-ORAM paths
caused by executing Path-ORAM protocols (in parallel) over the
network between the proxy and the server. Our logic behind this
experiment is that the network delay is inherent so it must be in-
cluded, and adding any of the implementation to the server and
proxy will certainly incur more delay on the execution side. Any
actual implementation of TaoStore will involve more delay than
this simulation.

7.2 Single Request Processing Time

Base-case performance. We first present MOSE’s response time
in handling a single user request for various database sizes from
6 GB to 768 GB, while not applying any optimizations such as
k-level cache, etc. (see Table 1). The size of database will affect the
path length, so our enclave will read more data from the ORAM,
and therefore will result in more delay. In the base-case design, the
average total delay of MOSE is from 9.21 ms to 28.05 ms. In MOSE,
the accesses on EAC and EDB can be slightly pipelined. That is,
right after finishing the access on EAC from one request, MOSE
can issue the access on EAC of the next request while processing
EDB access of the previous request. This pipelining strategy allows
MOSE to achieve the throughputs ranging from 200 ops to 53 ops
for database sizes from 6 GB to 768 GB, respectively.

Note that these numbers do not reflect the optimized perfor-
mance. Next, we will further analyze factors that affect the total
delay in MOSE, and then optimize them.
Delay Breakdown. We dissect the cost of a single request to un-
derstand the factors that affect MOSE’s performance. As illustrated
in Figure 6, MOSE has two major sources of delay: (i) the I/O ac-
cesses between enclave and disk incurred by Circuit-ORAM via
encrypted read/write operations; (ii) the secure computation (e.g.,
decryption/re-encryption/oblivious update operations) in the en-
clave. In the breakdown, we can observe that most delays in MOSE
are caused by four different I/O accesses: The position map for the

Table 1: Delay of base-case MOSE in processing one user re-

quest, for various database sizes.

DB

Size

Acc. Control (ms) Database (ms) Total

(ms)posEAC EAC posEDB EDB
6 GB 1.46 2.77 1.43 3.55 9.21
12 GB 1.64 2.78 1.54 3.72 9.62
24 GB 2.36 3.49 2.55 4.63 13.03
48 GB 2.51 3.79 3.46 6.29 16.05
96 GB 2.56 3.92 4.94 7.53 18.95
192 GB 2.78 4.13 6.05 8.7 21.66
384 GB 3.52 4.84 7.06 9.61 25.03
768 GB 3.67 5.14 7.97 11.27 28.05

access control, the access control data, the position map for the data-
base, and the database block. For the database accesses, the delay
is caused by their tree ORAM structure, where each read/eviction
operation requires accessing O(logN ) blocks located in random
positions on the disk. For the position map accesses, 92% of its
delay is caused by I/O access (uses only 8% of time for computa-
tion) because it is stored in the recursive ORAM structures, which
require multiple access rounds. In the next section, we will evaluate
optimization techniques applied to MOSE to reduce this I/O delay.

7.3 Optimized MOSE

To reduce the single-request delay, we implemented various opti-
mization techniques including caching and parallelization to mini-
mize the I/O access and computation delays.
Optimizing I/O delay. We first cache the entire position map,
stash, and metadata, all of which are required to make an ORAM
access, in the main memory. For instance, the size of position map is
only 5.6 MB for a 12 GB DB and 47.8 MB for a 96 GB DB, while the
size of stash and metadata are approximately 400 MB. Due to their
relatively small sizes, maintaining them in the main memory incurs
a low overhead. The second and third bars in Figure 7 illustrate
the outcome of this optimization. Caching the entire position map
reduces the I/O delay from 14.93 ms to 8.03 ms (46.21% reduction).
Moreover, caching the stash and meta-data components reduces I/O
delay from 8.03 ms to 3.01 ms (62.51% reduction) on top of the posi-
tion map caching. In summary, applying the caching mechanisms
reduces MOSE’s I/O delay from 14.93 ms to 3.01 ms, which is 79.83%
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represents the catching levels of ORAM trees of EAC and EDB.

delay reduction (see the third bar of Figure 7), while incurring ≈
500 MB of additional memory usage.

We also implemented thek-top caching strategy proposed in [29],
which caches the first k levels of the EDB and EAC structures, to
reduce I/O delay in ORAM access. The latter bars (4th+) of Figure 7
illustrates the outcome of the caching. Increasing the number of
cached levels reduces the I/O delaywith the cost of a highermemory
usage, however, note that performance gain increases linearly (by
reading H − k blocks where H is the tree height), and memory
overhead increases exponentially (caching 2(k+1) blocks for k-top
caching). In this regard, we should set a practical limit of cached
level by which the server can accommodate its memory overhead.
Overall, we can reduce the I/O delay of MOSE from 14.93 ms to
0.68 ms by using around 10 GB of additional memory. As shown in
Figure 7, caching around 50-70% levels of EDB and EAC provides a
reasonable memory and I/O delay trade-off (e.g., 11–13 levels with
1GB RAM usage for 96GB DB).
Optimizing computation delay. MOSE also leverages the par-
allelism in a multi-core CPU to speed up encryption/decryption
operations in the enclave, and this optimization makes MOSE scal-
able. The purple line in Figure 8 illustrates the impact of utilizing
multiple CPU cores in MOSE’s computation logic. The performance
of MOSE increases in proportion to the number of CPU cores that
MOSE uses. The actual gain by a multi-core CPU is slightly lower
than linear increment, e.g., using 6 physical cores improved around
4× of the performance. This is because creating and assigning mul-
tiple threads into the corresponding physical CPU core costs a fixed
and remarkable overhead.
Overall delay after optimization. When all optimization tech-
niques above are applied, MOSE will take 3.74 ms in total to process
an access request on a 24 KB block in a 96 GB DB, which consists
of 0.56 ms I/O delay and 3.18 ms computation delay. This allows
MOSE to process around 394 op/s with pipelining strategy.
Scalability of MOSE.MOSE’s performance is scalable, i.e., MOSE
performs better with a more number of CPU cores on the server.
The blue line in Figure 8 illustrates how the number of concurrent
users for supporting less than one second delay increases as the
number of cores that MOSE used for the experiment increases.
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DB sizes under 1 Gbps network throughput.

7.4 Multi-user Concurrent Access Performance

MOSE with practical concurrency.We ran an experiment on a
virtual network that assumes 50 ms for the user network latency,
and it showed that on a 96 GB DB, MOSE can serve 374 concurrent
requests, each accessing a 24 KB block without incurring more than
a second delay for 374 users. In case if the server’s service-level
agreement (SLA) is to ensure average expected delay for each user
to be one second, MOSE can serve around 788 concurrent requests.
MOSE vs. TaoStore. We compare the performance of MOSE with
TaoStore [40] with varied database sizes. We considered ten concur-
rent requests1 as originally presented in [40] for a fair performance
comparison. For the experiment, we simulated the performance of
TaoStore according to 24 KB block size and varied database sizes
ranging from 1GB to 1 TB. Figure 9 presents the delay of MOSE
and TaoStore. Note that since our database and block size are larger
than that of [40], the reported delay of TaoStore in Figure 9 is
higher than what is originally presented in [40]. Given TaoStore is
equipped with a highly dedicated network (i.e., 1 Gbps throughput),
MOSE is still around 34.80–37.8× faster than TaoStore where MOSE

1 The notion of concurrency in TaoStore is limited by the communication bandwidth
between the server and the trusted proxy. The reason for having maximum ten concur-
rent users in their evaluation is mainly because ten concurrent requests will max-out
the bandwidth. Having more request than ten at the same time will drastically degrade
its performance, as stated in their paper.



(with optimization) achieved (on average) 13–21 ms delay for each
request, compared with 525–731ms (on average) in TaoStore.

7.5 Storage Overhead

MOSE stores four encrypted components in the server’s untrusted
storage device: EAC and EDB, and their position maps. All of them
are in the form of Circuit-ORAM tree structures, which incur a
constant (≈ 2×) storage blowup. Specifically, for the 96 GBDBwith
214 users, EDB and EAC cost approximately 206.8 GB and 103.7 GB,
respectively. The position map components cost approximately
48.8 MB (1/2000 of DB size).

8 RELATEDWORK

Oblivious Random Access Machine (ORAM) was first explored by
Goldreich et al. [18] for software protection, and then has been
intensively studied in the context of data outsourcing (e.g., [42, 44,
45, 47]). Shi et al. [42] proposed the tree structure for ORAM, which
was extensively used in recent ORAM constructions (e.g., [22, 39,
47, 51]). Tree-based ORAM schemes (without server computation)
feature O(logN ) client-server communication overhead, and O(1)
(e.g., [51]) or O(logN ) [47] stash size.
Non-proxy ORAMs. Several Parallel-ORAM schemes have been
introduced (e.g., [6, 8, 9, 35]), which can be used to enable multi-user
concurrent access. These constructions feature large block size (e.g.,
[8]), or add poly-logarithmic communication blowup atop standard
ORAM (e.g., [6, 9, 35]). Maffei et al. proposed several access control-
supported ORAM schemes (e.g.,[30, 31]). The authors also gave an
insightful computation lower bound of Ω(N ) for the composition
of access control and ORAM against active adversaries.
Proxy-based asynchronous ORAMs. ObliviStore [46] and its
extended multi-server version [44] were among the first to exploit
a trusted proxy for concurrent oblivious access in the multi-user
setting. In these systems, the proxy schedules concurrent user’s re-
quests and then, executes Partition-ORAM with the storage server
[4, 40, 44, 45]. Since ObliviStore only parallelizes requests on differ-
ent blocks, but sequentializes same-block requests, it leaks timing
information. This allows an adversary to distinguish access pat-
terns from multi-users. To seal this leakage, CURIOUS framework
[4] also parallelizes same-block requests by invoking one actual
ORAM operation along with several dummy ORAM operations
between the proxy and storage server. Although this design enables
CURIOUS to be fully asynchronous (i.e., one request can be pro-
cessed immediately without waiting for the previous requests to be
finished), Sahin et al. [40] showed that it still leaks timing informa-
tion. Specifically, because dummy ORAM operations do not return
the actual block being requested to the proxy, concurrent requests
on the same block cannot be answered until the real one is finished.
Given that the adversary can observe all network traffic coming
from the proxy, and even reschedule the network package delivery
from the storage server, it can learn the timing difference in replying
same-block requests vs. different-block requests of the proxy. An-
other limitation is that, they rely on Partition-ORAM, which incurs
costly communication overhead due to the background eviction
and high proxy storage overhead (i.e., O(

√
N )).

To seal timing information leakage, Sahin et al. [40] indicated that
the proxy must reply users’ requests sequentially according to their
arrival order. The authors proposed TaoStore, which implements
two modules called Processor and Sequencer at the proxy, where the

former executes a standard ORAM (i.e., Path-ORAM [47]) with the
storage server in parallel via multiple threads, while the latter is
to reply users’ requests sequentially. Once a thread obtains data
from the storage server due to ORAM operation, Processor will lock
the proxy’s local memory and synchronize it with the fetched data,
and then transfers the desired block to the Sequencer for user reply.
TaoStore is also more efficient than previous designs because it
employs Path-ORAM [47].

Using secure hardware to make oblivious access more practical
has been explored in the literature [1, 3, 23, 28, 41, 43]. UnlikeMOSE,
most these techniques either focus on the single-user setting (e.g.,
[1, 41]) or harness a custom hardware such as FPGA (e.g., [29,
34]). One of the most most relevant system to ours is Shroud [28],
which harnesses multiple commodity CPUs to boost the ORAM
performance in serving concurrent multi-user requests. However,
we note that Shroud focuses on the optimization in a very large-
scale server, where it needs thousands of CPUs (around 8,192) for
parallelization, while MOSE scales linearly from one core to many.
Similar to our MOSE, Obliviate [1] and POSUP [23] also made
use of Intel-SGX to reduce the network bandwidth of ORAM. The
objectives of these works is different than ours, where they focused
on oblivious file system and searchable encryption, instead of multi-
client setting and access control enforcement. Another relevant
work is [13], which harnesses Intel SGX to enforce access control
policy and encryption services. However, it does not provide the
access pattern obliviousness like MOSE.

9 CONCLUSION

We presented MOSE, a practical multi-user oblivious storage with
access control that enables secure and efficient data outsourcing on
the cloud. The adaptation of secure enclaves for multi-user obliv-
ious storage enables a new opportunity to overcome limitations
of existing approaches. As a part of this opportunity, MOSE has
demonstrated that using secure enclave can eliminate the band-
width bottleneck and achieve scalability, access control and re-
siliency against active adversaries simultaneously. For the future
direction, we would like to pave a way for scaling multi-user oblivi-
ous storage to production levels so that the world can benefit from
its high security assurances. An expected, imminent adoption of
secure enclaves in public cloud will speed up this goal realization.
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