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Abstract—Audit logs play a crucial role in the security of
computer systems and are targeted by the attackers due to their
forensic value. Digital signatures are essential tools to ensure the
authentication/integrity of logs with public verifiability and non-
repudiation. Especially, forward-secure and aggregate signatures
(FAS) offer compromise-resiliency and append-only features such
that an active attacker compromising a computer cannot tamper
or selectively delete the logs collected before the breach. Despite
their high-security, existing FAS schemes can only sign a small
pre-defined number (K) of logs, and their key-size/computation
overhead grows linearly with K. These limitations prevent a
practical adoption of FAS schemes for digital forensics.

In this paper, we created new signatures named COmpact
and REsilient (CORE) schemes, which are (to the best of our
knowledge) the first FAS that can sign (practically) unbounded
number of messages with only a sub-linear growth in the key-
size/computation overhead. Central to CORE is the creation of
a novel K-time signature CORES,.. that has a small-constant
key generation overhead and public key size. We then de-
velop CORE—MMM that harnesses COREf, .. via forward-secure
transformations. We showed that CORE—MMM significantly
outperforms its alternatives for essential metrics. For instance,
CORE—MMM provides more than two and one magnitudes faster
key updates and smaller signatures, respectively, with smaller
private keys. CORE—MMM also offers extra efficiency when
the same messages are signed with evolving keys. We formally
prove that CORE schemes are secure. Our analysis indicates that
CORE schemes are ideal tools to enhance the trustworthiness of

digital forensic applications.
Index Terms—Authentication, digital signatures, digital foren-
sics, audit logs, forward-security, aggregation.

I. INTRODUCTION

Audit logs are one of the most prevalent forensic analysis
methodologies in computer systems [1]. Logs provide critical
information on the past states of a machine such as system
events, security incidents and failures. They have a central
role in law investigations and legal dispute resolution. Due to
their forensic value, logs are among the primary targets of the
attackers. For instance, an attacker breaching into a computer
can erase its own traces and/or implicate innocent users by
tampering audit logs. It is of vital importance to ensure the
tamper-resistance of audit logs in computer systems.

Cryptographic digital forensic mechanisms form the founda-
tion of tamper-resistant and trustworthy audit logging [2], [3],
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[4]. They can provide essential services such as authentication
and integrity while also offering some advanced security
features (e.g., forward-security). Specifically, an ideal crypto-
graphic digital forensic mechanism should offer (at minimum)
the following properties [4], [5], [6], [7], [8]:

(i) Public verifiability and non-repudiation: They permit
any entity to verify the trustworthiness of logs via public
keys. Hence, real-life use-cases that involve a public audit
or legal dispute resolution (e.g., financial, healthcare) strictly
need these features, which are mainly achieved via digital
signatures [9]. (ii) Compromise-resiliency: The digital sig-
nature should offer some security even in the presence of
active attackers who may breach into the computer system
(e.g., malware, physical intervention). Especially, a forward-
secure signature [10] ensures that despite the current key
is compromised, data items signed before the attack remain
unforgeable. (iii) Aggregation and Holistic Integrity: The
cryptographic storage and transmission overhead of tamper-
resistant mechanisms can be substantial due to the high volume
of logs collected from a large number of users. The signature
aggregation [11] in conjunction with forward-security can
compress the signatures thereby mitigating this overhead. It
can also not only guarantee the integrity of individual logs, but
the entire log trail to prevent re-ordering and selective dele-
tion [6]. (iv) High Efficiency: The cryptographic mechanism
should offer fast verification to audit sheer amount entires, an
efficient signing and constant-size private/public key sizes to
minimize overall storage burden.

There is a critical research gap in the state-of-art towards
achieving all these desirable properties simultaneously.

II. RELATED WORK AND THE LIMITATIONS OF THE
STATE-OF-THE-ART

There are two main lines of cryptographic digital forensic
(also referred to as secure audit logging) techniques.

o Symmetric Cryptography based Primitives: Many sym-
metric key based audit logging techniques [3], [12], [13] rely
on Message Authentication Codes [9]. Despite their efficiency,
they cannot achieve non-repudiation and public verifiability,
since the verifier(s) shares the same key with signer(s). As
discussed, these properties are vital for digital forensic appli-
cations [1]. The rest of this paper focuses on the public key
based secure auditing techniques.



e Public Key Cryptography (PKC) based Primitives: Digital
signatures offer public verifiability and non-repudiation, but
the traditional signatures [14] do not offer advanced features
such as forward security [10], aggregation [11] and high
performance. Later, forward-secure and aggregate signatures
(FAS) for secure audit logging have been developed with
several performance and security trade-offs. FssAgg [3], [5],
[6], [15] were the first (FAS) schemes, but their variants with
sub-linear signature and public key sizes were flawed [16].
FssAgg-BLS [3], [6] is the only secure version, which is a
K-time signature scheme with O(K) public key size. It also
requires a cryptographic pairing per message verification, and
therefore is very costly. Later, BAF schemes [4], [7], [17] have
been proposed, which are currently the most computationally
efficient alternatives but still require O(K') public key size. A
recent FAS in [18] pre-defines the number of messages to be
signed (i.e., K) and is extremely computationally costly since
the signature generation/verification requires exponentiations
over a large module (e.g. |[N| = 3072-bit) per message
with a size of ~ 100 KB. Finally, forward-secure schemes
with selective verification capabilities (e.g., order-free [2],
verifiable excerpts [1]) can complement the aforementioned
secure logging schemes.

e Research Challenges: There are two obstacles towards a
wide adoption of existing FAS-based digital forensic tools in
real-life applications: (i) The total number of messages are pre-
defined (i.e., K-time signatures). This is a severe limitation,
since it might not be possible to know beforehand how many
log entries a computer system may generate in its life-time.
Moreover, once all K signatures are consumed, the whole
system must be re-initialized, which might be impossible or
extremely costly for some real-life applications. For instance,
consider a router or security camera generating a new signature
on every new measurement that they capture. Such devices
may generate vast amount of log entries in relatively short
period of time, thereby quickly depleting K-time signatures.
This forces secure audit tool to be re-initialized frequently,
which introduces heavy transmission/computation and security
vulnerabilities to the system. (ii) The total cryptographic
storage overhead, which is dominated by the size of signature
plus the public key, is always O(K). For example, in BAF
and FssAgg-BLS, despite the aggregate signature has O(1)
size for K entries, the total cryptographic overhead remains
O(K) at the verifier (e.g., auditor, digital archive). There
is a significant need for new cryptographic schemes that
can address these limitations while preserving the desirable
properties of forward-secure and aggregate signatures.

III. OUR CONTRIBUTIONS

We created new forward-secure and aggregate signatures
named as COmpact and REsilient (CORE) schemes, which
can address the aforementioned limitations towards enabling
fully practical cryptographic digital forensic tools.

Main Idea: We observed that achieving a practical un-
bounded forward-secure signature requires: (i) The signer
must generate a fresh private/public key pair per update, and

therefore the key generation overhead must be minimized. This
phase is extremely costly (i.e., O(K)) in previous construc-
tions. (ii) New public keys must be relayed to the verifier
for each update, and therefore both the signature and public
key sizes must be minimized. Based on these observations,
we first created a new K-time FAS scheme COREY,_. that
achieves efficient key generation time and small (and constant)
public key size while preserving the signing and verification
efficiency. We then develop CORE—MMM, which is (to
the best of our knowledge) the first practical FAS scheme
with unbounded signing capability. We elaborate the desirable
properties of CORE schemes as below:

e Compact Public Key, Signature and Efficient Key Genera-
tion: COREEase has several new design features that makes it
an ideal building block for unbounded signing with forward-
security and aggregation: (i) COREEaS,e derives a pair of
accumulated public keys, which can batch verify K -signatures,
from one-way private key sequences. The size of this K-
time public key is only 64 byte and can be generated with
two exponentiations (i.e., elliptic curve scalar multiplications),
as opposed to O(K) size and computation overhead of its
counterparts. (ii) COREE, . not only provides full K-time sig-
nature aggregation but also conditional public key aggregation
if the same message is signed consecutively with evolving
private keys. This offers extra compactness and verification
advantages for use-cases when the state (message) transitions
are infrequent. (iii) Unlike previous alternatives that must wait
all K-items to be signed, COREE, . permits “sealing" feature,
which can fast-forward signing with only a small-constant
overhead, in case an early verification is needed.

e Practically Unbounded Signing with High Efficiency: We
developed CORE—MMM, which is (to the best of our knowl-
edge) the first FAS scheme with unbounded signing, by
harnessing our COREf,.. via MMM with optimizations. We
also analyzed unbounded signing transformations of existing
alternatives, and showed that CORE—MMM offers a vastly su-
perior performance over them. For instance, CORE—MMM of-
fers 337x faster update (w.r.t., SchnorrQ—MMM), 7.5x
smaller signature (w.r.t., BAF—MMM), with 80% smaller
private key, compared with the most efficient alternative for
each category. This is achieved with an equal public key
size and competitive signing/verification speed. Moreover, the
performance of CORE—MMM is further pushed to the edge
once the application signs the same measurements consecu-
tively. We elaborate on some relevant use-cases and give a
comprehensive performance analysis in Section VIII.

e Provable Security and Implementation: We formally
prove that CORE schemes are Forward-secure Aggregate Exis-
tentially Unforgeable against Chosen Message Attack (FAEU-
CMA) [4] (in random oracle model), and present a full
implementation of COREE, . on commodity hardware.

e Potential Use-cases: CORE is ideal for digital forensic
applications (e.g., [5], [12], [13], [19]) that require store-
and-forward integrity and authentication (e.g., [4], [6], [16]).
For example, Internet of Things (IoT) devices (e.g., security
camera, sensors) collect critical measurements, digitally sign,




and store them, until the receiver requests those for the
verification. Similarly, some system monitoring applications
(e.g., hypervisors, financial logs) collect, secure and store
forensic data until it is transferred for an analysis. In this
process, an active adversary might compromise the device and

then forge the previous signatures by extracting the private key.
CORE—MMM prevents forgery and selective deletion of the

pre-compromise data by offering forward-security and aggre-
gation (i.e., append-only) without limiting the number of items
to be secured. CORE—MMM outperforms its counterparts in
many metrics, and shows even a better performance when
the system state remains unchanged for some time intervals.
For instance, the number of transactions on a personal bank
account per day is limited, and there are multiple and conta-
gious forward-secure signing periods, in which the signed data
remains the same. Similarly, a camera/sensor at a remote street
may capture only a few movements in a given hour, while
readings remain the same between these rare state changes.

IV. PRELIMINARIES
Operators || and |z|= log, 2 denote the concatenation and

the bit length of variable z, respectively. x & S means vari-
able z is randomly and uniformly selected from set S. We
denote {0, 1}* by the set of binary strings of any finite length.
The set of items ¢; for i = 0,...,]— 1 is denoted by {g;}.Z¢.
H :{0,1}* — {0,1}? (d is a small integer), Hy : Z; — Z;,
Hy @ {0,1}* — 27 and H3 : {0,1}* — {0,1}" are
cryptographic hash functions treated as random oracles [20].
G(.) is a length-doubling pseudo-random number generator. ¢
and p > ¢ are large primes such that ¢|(p—1). « is a generator

of the subgroup G of order g in Z.
Standard and K-time Digital Signatures: We use a standard

digital signature [9] as in Definition 1. We also use Efficient
and Tiny Authentication (ETA) [21] (see Algorithm 1).
Definition 1. A signature scheme consists of three algorithms
SGN = (Kg, Sig, Ver) defined as follows.
— (sk, PK) < SGN.Kg(1%): Given the security parameter
K, it outputs the private and public key pair (sk, PK).
— o0 < SGN.Sig(m, sk): Given the message m and the
signer’s private key sk, it outputs the signature o.
— b + SGN.Ver(m,o, PK): Given a message-signature
pair (m, o), and public key PK, outputs b < {0,1}

Algorithm 1 Efficient and Tiny Authentication Scheme [21]

Malkin, Micciancio and Miner (MMM) Signature
Scheme [22]: This is a generic algorithm that can transform
a standard digital signature SGN into a forward-secure
signature [22].

MMM is composed of the sum (referred to as ».) and
product composition algorithms. We give the _ composition
in Algorithm 2.

Algorithm 2 Sum Composition (3 ) Algorithms in MMM [22]
(sk, PK) <> .Kg(1%,r levels,i,SGN) :

1: (ro,m) < G(r)

2: if levels = O then

3: (Sko,pko)%SGN.Kg(ln,To)

4: (sky1,pk1)<—SGN.Kg(1%,71)

5: PK « H(pkol||pk1), sk < (sko, 71, pko, pk1)
6: return (sk, PK)

7. (sko, pko) <+ > .Kg(17%, 19, levels—1,i+1,SGN)
8: (sk1,pk1) < > .Kg(1%, 71, levels—1,i+1,SGN)
9: PK <« H (pko||pki1), sk < (sko,r1,pko,pk1)

10: return (sk, PK)

(o,t) <> .Sig(t, sk={(sk’, r1, pko, pk1), M, levels, i, T,SGN):

(sko, PK) < ETA.Kg(1", K):
70 &Z;,yizz,Yeoﬂ mod ¢
for j=0,...,K —1do

R; < o' mod p, rj41 < H(r;), v; + H(R;)
return skg < (y,rg) and PK < (Y, 7 = vy, ...

R

VK1)

oj < ETA.Sig(sk;, M;): if j > K return L else

I & {0,1}%, e; < H(M;||j||z;), sj < r; — € -y mod
q, j+1 < H(r;) and return o; = (s;,2;,7)

b« ETA.Ver(PK,M;,0;): if j > K then return b = 0

1 ifvj= H(YHM;llillzi). %) return b=1 else return b =0

1: if levels = 0 them _

2 ift<T/2thent < telset «+t—T/2

3 o SGN.Sig(sk', M), o %(U,,pko,pkzﬁ

4 return (o ,1')

5: else

6 if ¢ < T/2 then

7 (o', 1) <> .Sig(t, sk’ ,t, M, levels—1,i+1, SGN)
8 elset —t-T/2

9 (o',1) <3 Sig(t', sk', T, M, levels—1,i+1, SGN)
10: o « (0 ,pko,pk1) and return (o, 1)

S Up(sk=(sk’, 1, pko, pk1),t, levels, i, SGN):

1: if £ + 1 < T then sk «SGN.UP(sk )

2: else if ({+1 = T') then
(sk',pk’) +SGN.Kg(r1), r1 < 0, delete pk’ else sk’
<SGN.UP(sk")

4: if t < T/2 then

5: > .Up(sk”7 r1, pko, pk1,t, levels—1,i+1, SGN)

6: elsez.Up(sk//7Tl,pko,pkl,i—T/Zlevels—l,i—i—l,SGN)

b <3 Ver(pk, M,o=(0 ,pko, pk1), 1, levels, i ,SGN):
1: if H(pko||pk1) # pk then return b = 0
. if levels = 0 then
if i < T/2 then SGN.Ver(pko, M, o)
else SGN.Ver(pki, M, o)
else
if t < T/2 then
return Y .Ver(pko, M, 0:<al,pko7pk1>, t,
levels—1,i + 1,SGN)
else return > .Ver(pki, M, az(o/ , Pko, pk1),
t—T/2, levels—1,i+1,SGN)

B A




Using Algorithm 2, we instantiated our CORE—MMM (Al-
gorithm 4) by leveraging our COREK,_ (Algorithm 3) via
product composition and optimized MMM strategies. In our
instantiation of the )  composition, we only use one type of
standard signature SGN. Hence, given a SGN with T'/2 time
periods (i.e., signing capability), the Y composition produces
a signature SGN” with 7' = T/2 4+ T/2 time periods. In
product composition, given two SGN with T'/2 time periods,
it produces a signature SGN’ with 7' = (7'/2)? time periods.
The overall MMM construction has a single upper tree and
lower trees, which are created with the iterative execution
of sum composition. Lower trees are generated on the run
with increasing levels of height. This minimizes the key
generation/update cost and makes them depend on "messages
signed so far". Thus, the lower trees are created as needed on
the run. MMM increases the levels in each iteration to sign
more messages with a slight increase in cost (generation of a
higher tree). Overall, in MMM, the costs are either logarithmic
or constant with respect to ¢ < T (i.e., the total number of
messages signed so far) and the size of the PK is a small-
constant.

V. SYSTEM, THREAT AND SECURITY MODELS

System and Threat Model: Our system model relies on the
standard digital signature based broadcast authentication with
a store-and-forward model including two entities: (i) Signers
who are honest until they are compromised by the adversary,
(ii) verifiers who can be any entity. In the store-and-forward
model, the signer collects, signs and then stores K messages
and their corresponding signatures until they are requested
for a verification. These messages and signatures later are
uploaded to a verifier for a public verification. Our threat
model assumes an active adversary A who can compromise
the secret key, interact and observe signatures before its
compromise. After the signer and secret key are compromised
by A, they may attempt to forge signatures, or modify/re-
order/delete the signatures issued before the compromise.

Security Model: We define our formal security model that
correspond to our threat and system model as follows.

CORE schemes rely on the intractability of Discrete Loga-
rithm Problem (DLP) [9], which is defined below.

Definition 2. A cyclic group G of order prime q and a
generator o of G, let algorithm A return an element of Z;:

Experiment Exptgfa(fl)
y & 75 Y + a¥mod gy — AY),
Ifay/ mod p =Y, return 1, else, return 0.

The DL-advantage of A in this experiment is defined as
Advg’La(A) = Pr[Exptgfoé(A) =1].
The DL-advantage of (G, o) in this experiment is defined as
Advgﬁl(t) = mjx{Advgﬁx(A)},

where the max is over all A having time t.

COREK,,. is a K-time single-signer forward-secure and
aggregate signature (FAS) [4]. We will not repeat FAS in-
terface, as it is identical to that of COREE, (see Algorithm
3), wherein the key updates are subsumed in the signature
generation. A FAS scheme is proven to be Forward-secure
Aggregate Existentially Unforgeable against Chosen Message
Attack (FAEU-CMA) [4] based on the experiment defined in
Definition 3. A is given with three oracles:

RO(.): A random oracle from which A can request the hash
of any message m of their choice up to K’ messages. Our hash
functions are modeled as a random oracle [20] via RO(.).

FAS.Sigg,(1): A COREEasesﬁning oracle from which
A can query up to K messages M of their choice adaptively,
until they decide to “break-in". For each query on m;,1 <
j < K, FAS.Sig(.) updates sk; to skjﬂ_)(deletes sk;),
and returns an aggregate signature oq; on M = {mj}jK:1
also including a state st and a partial aggregated public key
PK. As in [4], we consider a batch verification of multiple
messages M’, in which o1,k 1is verified only under the
aggregate public key PK on {sk; }szl

Break-in: If A queried [ < K messages to FAS.Sig,(.),
then Break-in oracle returns (I 4 1)-th private key to A, else
it rejects the query (all sk were used).

Definition 3. FAEU-CMA experiment is defined as follows:
Experiment ExptiqaBU-CMA( )
(sk1, PK) < FAS.Kg(1%, K),

(St*ﬂﬁl) . ARO(.),FASASigSk(.)7Break—in(PK)’
If FAS.Ver(PK, st* = (M*,PK*),07,) = 1 and 3z ¢

{1,...,1} : M*[z] ¢ M holds, then return 1, else return 0.
FAEU-CMA-advantage of A is defined as

Adv A5 MA(A) = PriBmt ARV M4 (4) = 1
FAEU-CMA-advantage of FAS is defined as

Adu 15V CMA (L1, 1) = g Adu1ETOMA (4}

where the max is over all A with time t, making at most K'

queries to both RO(.) and FAS.Sig ().

VI. PROPOSED SCHEMES

We first give our K-time scheme COREE, ., and then its ex-

tension CORE—MMM with (practically) unbounded signing.
A. Description of the COREE

Base SCheme

In key generation algorithm of COREK,_..Kg, we create a

pair of accumulated (small constant-size) public keys with
only two exponentiations. This pair can verify an aggregate
signature computed via K distinct private keys. Specifically,
we generate two hash chains from (y;, r1) of size K, and then
compute accumulated private keys (7, y) from them (step 2-
3). We then embed them into PK <+ (R’ = Hi(R1,x),Y' =
Hy(Y1,kx), and set sk = (y1,r1, 1) (step 4-5).

The signing algorithm COREK,_ .Sig offers K-time
forward-secure signature aggregation and conditional public
key aggregation (when the message to be signed does not
change for consecutive intervals). If the message m; is



different than the previous M;, we compute an individual
signature s; and add/update state st; including individual
;) partizi> aggregate public key PK; with corresponding
messages M; (steps 13-16). Otherwise, we can also aggregate
Y, into previous one (Step 19). We then aggregate s; into
previous signature (step 20) and update private/public keys
(step 21-22), until final aggregate signature o x computed.
In steps 1-12, we capture a special condition that we refer
to as "sealing". Specifically, the accumulated PK requires a
batch verification of all K messages (as in previous K-time
FAS schemes (e.g., [4], [6])) as it contains all K private keys.
If a verification is requested before all private keys are used,
we invoke “seal" mechanisms that fast-forwards the signature
generation, in the line of key generation, by computing a full
aggregate signature and public key on a special command
M; = seal||timestamp||j||K that locks the time, order ()
and sealing of data items accumulated so far. The sealing
requires only one exponentiation and therefore is efficient.

The verification alg_o)rithm COREK,..Ver takes PK, state st
including messages M, their corresponding partial aggregate
public key PK and final counter values (i,j,j’) with
aggregate signature o1 ; = (s1,;, ;). We first check counters
(e.g., number of items, in step 1) and then verify if the
partial aggregate public keys matches with the accumulated
PK (step 2). If PK are verified, then we use them and o ;
to verify the messages M (step 3). Notice that our verification
gains speed advantage from partial public key aggregation (if
it applies).

Algorithm 3 COREE

Base

(sk1, PK) + COREK

Base*

Algorithm
Kg(1", K) :
s . $
(y1,7m1) < Zy, 1 < {0,1}",5ky < (y1,71,71)
T4 Zszl T mod D, where Ti+1 < H1 (Tl)

g~ Zfil y; mod p, where y; 11 < Hi(y;)
Yk < oY mod p, Ry x < a" modp
PK «+ (R/ = Hl(Rl’K),YI = Hl(Yl,K))

AR

(Stj,O'l’j) — COREEase.Sig(Skj,lejfl,mj,Stj,C)I Let
(i=j=4=1e=0Lm =M,Y"" =18,0=0

and (M, PK, sty) are empty.

if c =1 then

Tit1 < H3(l‘i), 11+ 1

M; + “sea}lJ\timestamijHK”

Yj i < Di—; Hi(y) mod g, where yi1  Hi(y1)

TiK < Z{i] Hy(r;) mod ¢, where ;41 + Hq(r)

sj i < i — Hi(M]|j + 1|[x) - yj,x mod ¢

S1,K ¢ S1,j—1 + 8j,x mod ¢q

YZ-j’K +— a¥% K mod p

Delete (Y, ..o Uk, Y i s Tis s TR T, K s Tiy Tit 15 S5, K s
s1.;_1), and add (Yij‘lvf",_ygv’() and (M7~ M =
M;||l7’ +1) to PK; and M, respectively. N
10: j < K +1 and update st; = ((i,j — 1,5'), M, PK))
11: o1k < (51,K,71)

R e A Sl >

12: return the final state (sk; = L, (st;, 01 k)) and exit

13: else if m; # M, then

14 Add Y/ and MJ™Y = M||j to PK; and M,
respectively, and update st; 1 = ((i,j —1,5'), ﬁ, ﬁ()

15: j/<—j, $i+1(—H($i),i<—i+1, Mi<—mj

16 s 1y — Hi(Mi]|j]|2:) -y mod ¢, Y7 Y,

17: else

18: s; < rj — Hy(M;]|5'||z;) - y; mod ¢

19: Y2 vy, delete Y/ and Y

20: 81,5 ¢ S1,5—-1 1+ Sj mod ¢, delete (Sl,j_l,Sj)

210 Yjq41 Hl(yj)a Tjt1l < Hl(’f‘j) delete (yj,’f‘j)

22: Yy < a¥+imodp, j <« j+1

23: if j > K then add Y77 and M7 ™17 = M;|lj’ to PE;
and M, respectively, update st; = ({i,7—1, "), M, PK)
return ((st;, o1 x = (s1,x,21))), sk; = L, and exit

)

24: return (stj, o1 ; = (51,5, %))

Ner(PK, st=(M, PK), o1.,):
j—1#K

(0,1) + COREK,.
1ifj>1 and j <i
then return 0 |

2 else if Hy([],_, PK, mod p) # Y then return 0
3: else if R’ # Hle ﬁ(lHl(MlHJUL) -a®t¥ mod p, (141
Hjs(x;)) then return O else return 1

and <  and

B. CORE—MMM Scheme

Our CORE-MMM scheme transforms our
COREE,,. scheme into a practically unbounded FAS scheme
via. MMM [22]. The Algorithm 4 describes instantiation
of COREK,. with > (see Algorithm 2) and product
compositions (see Section IV) with an optimization as in
Figure 1. The upper and lower leaves in MMM tree are
computed with SchnorrQ [23] and COREf, ., respectively.
Lower trees are created on the run while the upper tree is
fixed. COREE,_. signs messages while SchnorrQ certifies
lower trees. Leveraging this strategy not only makes the
aggregation capabilities of COREE,.. possible but it also
makes implicit certification very fast.

Fig. 1: Signature Tree Structure of CORE—MMM

CORE
. Bas, @ schnorrQ Signatures

K <- Security Parameter

log(x)

L]

We further emphasize the features of CORE—MMM among
it’s counterparts that makes it ideal for (practically) unbounded
forward-secure transformation thanks to the special design
of COREK,..: (i) In MMM, despite the final public key is
just a hash output, the public keys of base schemes are
stored logarithmically as a secret key and then released as

a part the signature regularly. Since CORE, . minimizes the



public key size (only 32 Byte) while also offering signature
aggregation, it offers the most compact cryptographic tag sizes
(i.e., |o| + | PK|) among its counterparts when extended with
MMM. (ii)) The computational overhead in MMM strictly
depends on the key generation, which dictates the cost of key
update. Unlike existing FAS alternatives incurring O(K) ex-
ponentiations, COREE, __ only requires two for key generation,
which makes CORE—MMM key update vastly more efficient
than its alternatives. (iii) COREBase features “sealing" and
batch verification thanks to the partial public key aggregation
that enhances the computational efficiency of CORE—MMM.

Algorithm 4 CORE—MMM Algorithm

(sk, PK) « CORE—MMM.Kg(r, 17):
to=0,6,=0,l=1

(ro,r1) <G(r), (ry,r}) «G(r1)

(sko, PK) <> .Kg(ro,7,0,5¢chQ, 17)
(Skl,pkl) (—Z .Kg(ro,l,O COREgasm K)
o+ .Sig(0, sko, pk1,1,0,5¢chQ)

sko <> .Up(sko,0,1,0,SchQ)

return (sk=(sko, o, skq, pk1,r] ),PK)

A O o

o< CORE—MMMSIg(i,Sk = <8/€(),0(), skl,pkl,r%M,E) :

Lt «—t +1
2: 14 .Sig(0, sko, pki1, 0, E’COREEase)
3: return (o = (pk1,00701>7i)

CORE—MMM.UP (%, sk = (skq, 0q, sk1,pk1,7),t0):
ift +1 # 0 mod T then
> .Up(ski1,t mod T,ty,0,CORE. .
else
L 1+1,tgto+1, (r',r) <G(r)
(sk1,pk1) <> .Kg(r’ ,l,z,COREEase)
o <—Z SIg(Li/TlJ ,Sko,pkl,to,o T, SChQ)
sko (—Z .Up(Sko, Li/TlJ ,%,O,SChQ)

) and exit

A o e

(0,1) +CORE—MMM .Ver(pk, M, (o=(pk1,0,0"),%,%0,t1):
1: By <Y Ver(pky, M, o, Li/TJ ,t0,0,Sch)

2 By <Y Ver(pki, M, o’ ,t-T,#;,0, COREE,..)

3: return By and B,

VII. SECURITY ANALYSIS

We prove that COREE, __ is a FAEU-CMA signature scheme
in Theorem VII.1 in the random oracle model (ROM) [20].

Theorem VII.1.
AdvEGke s (t, K7 K)
where O(t') = O(t + K - k3 + K’ -

Proof: Let A be a COREK,, attacker and (y & 7;,Y
a¥ mod p) as in Definition 2). We build a DLP- attacker F
that uses A as a sub-routine as follows:

< L-Advgh(t),

k) (in ROM).

Setup: F creates three lists HL, LM, and LS to maintain
the query results during the experiment. HL keep tracks

data items queried to RO(.) and their corresponding answers.
LM and LS keep tracks of data items and their corresponding
answers given by FAS.Sig ;. (.), respectively.

1) RO(.) Oracle: F runs the function b’ < H-Sim(m,i €
0,1,2,3) to simulate RO(.) answers for (H, Hy, Hy, H3)
on message m. If (m, i) € HL then return the previously
given answer in HL corresponding to m. Otherwise,
return one of (h & {0,1}4, hy & Ly, ho & Ly, hs &
{0,1}") for the query on (H, Hy, Hy, Hs), respectively.

2) Initialize FAS.Sig,,(.) Oracle: Generate (y1,71) & Z;
and 1 & {0,1}*, and set partial private key sk’ =
(y1,71,21) as in CORES___.Kg(1”, K).

3) Simulate PK: F select a random target forgery index
$

w < [1,K] and embeds Y into w-th public key as
Y, = Y. Since F does not know the private key
(Yw, Tw) corresponding to (Y, Ry, ), F simulates PK via
(sk

Yw,R ) as f0110w5'
o Add (yuw+1 <— Ly Twt1 &z ;) into sk’
TR ZZ 1 Yi mod q, Yi+1 < H-Sim(y;, 1)
TR ZvaH y; mod ¢, yiy1 < H-Sim(y;, 1)
o T+ 21:11 r; mod g, 11 < H-Sim(r;, 1)
o 7 Efiwﬂ r; mod g, riy1  H-Sim(r;, 1)

o Y +y mod ¢, 7 < 7 + 7’ mod ¢
e (0,7) % Z*
o« R, (Ye) LaY mod p
o Y1 g+ (o) Y, modp, Ry x < (a¥)- Ry, mod p
« PK « (R = H-Sm(Rig 1), Y =
H-Sim(Y1,k,1), return PK to A
Execute ARO().FAS.Sig (). Break-in(PE).  F  executes

RO(.) for hash queries via H-Sim function as in Setup Step
1. F responds A’s signature and break-in queries as follows:

1) FAS.Sig () Oracle: (i) F answers signature queries
via sk = {((y1,71)), (g1, 7w+1), 21} and RO(.) b
following COREE,_..Sig algorithm, except a query on
(yw = y) corresponding the challenge Y =Y,,. (ii) For
the query m,, on y,, = y, if My, = (my||w||z.) € HL
then F aborts and return 0. Otherwise, it sets s, < 0,
and programs H-Sim by inserting ~ into HL for the
hash answer of M,,. F can compute the rest of aggregate
signature by using sk’ as in (i).

2) Break-in Oracle: Given | queries to FAS.Sig;(.) up to
now, if [ = K then reject the query and proceed to the
Forgery . Otherwise, if [ < w then abort and return 0.
Otherwise, give the current private key (y;, 7, x;) to A.

Forgery and Extraction: A outputs a forgery for PK as

(st oy l) By Definition 3, A wins if COREE,...Ver(PK,

— (M*,PR*),07,) = 1 and 32 € {1,...,1} : M*[2] ¢
M holds. If A loses in the FAEU-CMA experiment, then F
also loses in the DL-experiment, and therefore F aborts and
returns 0. Otherwise, F continues as follows: If (z < w) then
F aborts and return 0, where z = |M*| (i.e., A’s forgery is




valid but it is not on the values Y = Y,,). Otherwise, F pro-
ceeds for the discrete log extraction as follows: The forged ag-
gregate signature s ; is valid on PK, and F knows sk except
(Yw = Y, Tw)s which are in the forged signature v*. Therefore,
J can extract v* from s] ; € o7 ; by using private key values at
hand. (i) a” = Y,?- R,, mod p holds due to the simulation. (ii)
Since COREK, _ .Ver(PK, st* = (M*, PK*),07,) = 1 holds,
at = Yufhj” - Ry, mod p also holds, where (Y,, =Y) € PK
and b <« H-Sim(M*[w]||w||x,). This implies the below
modular linear equations with only unknowns (Y, = ¥, 7'y)-
F then can extract y,, by solving them.

vy = 60-yu+ry modg,

*

N = —hl Yy + 1y mod g,

Y = o¥ mod p holds, as A’s forgery is valid and non-
trivial on Y. By Definition 2, F wins the DL-experiment.

Indistinguishability, Probability and Running Time Analysis:

Tﬁg real-view of A is comprised of (PK,st* =
(M*,PK*),07; = (s1,,21)). In simulation, the values
in s = (y1,71,Yw+1, w+1) are randomly selected from
Zg, and intermediate keys derived from sk’ are computed via
H-Sim acting as a random oracle. The simulated signature
o = 0 -y, + 1 has identical distribution to that of the real
signature s,,, since y,, = y corresponds to DL-Challenge

Y <$4 ZZ. Due to the simulation and 6 <i Zj‘l, T, 1S @ random
element from Z;‘. Hence, the values in A’s simulated-view
has an identical joint probability distribution to that of A’s
real-view as hash functions are modeled as a random oracle.
(a) F does not abort during A’s queries: (i) if F queries
M, = (my||lw||zy) to RO(.) oracle before querying it to
FAS.Sigg,(.) oracle, then F aborts. This requires A to guess
r1 Or x,, which only occurs with a negligible probability
1/2%. If F queries Break-in oracle on | < wth private, then
A aborts as they don’t know y,,. Therefore, the probability
that F does not abort is [/K. (b) A does not abort due to
the F’s query replies, as A’s real-view is perfectly indistin-
guishable than A’s simulated view. Therefore, the probability
that A4 produces a forgery is Advgégéﬁg%‘;‘(t,[( "K). (¢)
F does not abort during the extraction, if A’s forgery includes
wth (simulated public) key, which occurs with at least 1/1.
The probability that A produces a forgery without querying
RO(.) oracle is negligible in terms of x. F wins the experi-
ment if all the above events in (a,b,c) happens, and therefore
the upper bound on FAEU-CMA-advantage if COREK,. is:

AdvCGREMN (L K K) < L Advgh(t)

The running time of F is that of A plus the overhead
of setup, query handling and extraction. The setup requires
only a small-constant number of costly operations (e.g.,
exponentiation) and therefore it is negligible. The simula-
tion and extraction have similar costs to COREK__..Sig and
COREEase.Ver overhead plus random number generations for
RO(.). Hence, the estimated running time is O(t') = O(t +
K - k3 + K’ - k), where the cost of an exponentiation and
random number generation are x> and , respectively.

In Corollary VII.I, we show that the security of
CORE—MMM follows from that of COREE,.. and generic
MMM transformation. We do not repeat the security theorems

in MMM for brevity, and refer curios readers to [22].

Corollary VIIL.1.

- A I A - A
Advggf\ylf-f/lj\l\//[lM (t7 K/a K) < t- AdngF?Elépg],\i) (t7 KI7 K)7
Proof: Let CORE—MMM be an MMM instantiation of
COREK.___via sum and product compositions for the maxi-

Base
mum 7' time period with the number of update operations
so far denoted as t. AdvESSESNN(t, K/ K) is a Forward-
secure EU-CMA (FAEU-CMA) signature scheme, since (i)
COREK,,. is a FAEU-CMA secure by Theorem VIL1, (ii)
SchnorrQ is EU-CMA secure [23], and sum and product
composition are secure by Theorem 1 and Theorem 5 as
in [22], respectively. Hash functions are modeled as random
oracle in CORE—MMM and therefore are collision-resilient as
required by [22]. The advantage of .4 against CORE—MMM is
bounded by the total number of updates so far £ with that
of COREK,... SchnorrQ is invoked only 1 < K << ¢%,
and therefore A’s advantage and execution time costs are
dominated by COREE__.. The rogue-key attacks in multi-user

settings [24] do not apply, since COREEase is in single-signer
setting and PK is certified at the key generation.

VIII. PERFORMANCE ANALYSIS

In this section, we compare the performance of
CORE schemes with their counterparts.

A. Evaluation Metrics and Experimental Setup

We compare CORE schemes and their counterparts in
terms of (i) private, signature and public key sizes, and (ii)
key generation, signature generation, update and verification
execution times. We fully implemented COREE,.. on elliptic
curves on an Intel i7-6700HQ 2.6 GHz processor with 12
GB of RAM as the commodity hardware in our experiments.
FourQlib' is utilized for curve & arithmetic operations. We
used BLAKE2b [25] as our hash function. Base implemen-
tations (if available) are used for the counterparts or we
conservatively measured their performance based on the unit
costs. Our open-source implementation is located at:

‘ www.github.com/efeseyitoglu/COREBASE

B. Performance Evaluation and Comparisons
We present the performances of COREE, . and its K-

Base
time counterparts in Table I and Table II, analytically and
experimentally, respectively. Recall that a fast key generation
and compact public key are essential requirements for an
efficient MMM transformation. As seen in Table II, for K =
210, the key generation and public key size of COREf,, is
2035x faster and 16x smaller, respectively, than its closest
counterpart (i.e., XMSS). It also has a highly competitive
signing (including key update) and verification speeds with
a private key size of only 80 bytes. This makes it the best

Uhttps://github.com/Microsoft/FourQlib



TABLE I: Private/public key sizes, signature size and signature generation/verification costs of COREE

and its counterparts

Base
Scheme Signer Verifier
Key Generation IPrivate Key| Signature Signing Public Key Verification
Time Size Size Time { Size Time

HORS [26] 2.k K -H K K- k- u (u+1)-H t . |H -K|K-(u+1)-H
SchnorrQ [23] K - EMul Iq] K - 2[q] EMul K -1q] K -1.3- EMul

K-(FIKD[  ((K[+2)- (K] KT+ K- (K[+1

XMSS 271 K- @B+1-(w+2)-H  x JH| Rl (w+2)/244- K- H|| +1)-[H| | (w+1)-H

*BAF [4] 2- K- FEMul 4]q] 2|q| Mulg + 4H (4K —1)-lq| K- -EMul

**FssAgg—BLS [3] K - EMul lq] lq] 2H + EMul 4+ Mulq K -|q] K - PR

*CORER__ 2- EMul 2lql +« |lq| - f +2|q||[EMul + (K — f)/K) - Eadd 2|q| (1.3+ f) - EMul]

K is the maximum number of signatures that can be generated for K -time signature schemes. f denotes the frequency of message changes out of K messages to be signed.
Emul and Eadd denote the costs of EC scalar multiplication over modulus p, and EC addition, respectively. H and Mwul, denote a cryptographic hash and a modular
multiplication over modulus g, respectively. We omit the constant number of negligible operations if there is an expensive operation (e.g., hashing, Eadd are omitted if there is
an Emul). We use double-point scalar multiplication for verifications of ECC based schemes (1.3 - Emul instead of 2 - E'mul). Integers ¢’ and u denote the parameters used
in HORS [26]. w is the Winternitz parameter and [ is the tree parameter in XMSS [27]. PR denotes for the pairing cost (al curve is used for FssAgg-BLS). For HORS [26] and
SchnorrQ. [23], we deterministically generate the private keys from a seed (i.e., via a keyed hash). = denotes forward secure and aggregate signatures. We have presented the costs

for the signature size, signature verification and key generation for K messages and signature generation for a single message. *

TABLE II: Experimental performance comparison of COREK

and its counterparts, where K = 210

denotes that cost is calculated per message.

Base
Schem f Key Generation Signing Private Key | Signature | Verification Public Key
cheme Time (us) Time (us) Size (Byte) Size (KB) Time (ms) Size
HORS [26] 36700.16 6.47 16 384 3.60 32 MB
SchnorrQ [23] 10362.88 10.89 32 64 21.69 32 KB
XMSS [27] N/A 55728 322.41 16 2 368 45.63 1 056 Byte
*BAF [4] 20725.76 1.21 128 0.0625 16.21 131040 Byte
*FssAgg—BLS [3] 10362.88 911.02 32 0.03125 11250.69 32768 Byte
1 11.11 0.09375 0.02
3
" K 2 10.87 0.3125 0.15
COREg, . 29 27.38 10.61 80 16.0625 8.52 64 Byte
210 10.28 32.0625 17.07

The signing costs, which also includes the key update cost (relatively small), are given per message. K = 29 p = 2127 _

=4, [ = 67, hash output = 32 Bytes, Igl = 32 Bytes. The cost of hash-based schemes are calculated based on the cost of a single hash operation.

TABLE III: Analytical comparison of CORE—MMM and its standard unbounded forward-secure counterparts

1, ¢t =1024, u =24, w

Signing Private Key . Signature Verification  [Public Key,
Scheme Time (15) Size (Byte) Update Time Size (Byte) Time (5) (Byte)

_ , (5|k| + 3log(t) + 6t + 2) o K - (25| + 2[log(t) + 4" + 1) .- '

HORS—MMM (u+1)-H AH + 24 w) - s 2-k-H \H| + 26 ) K- -(2u+2)-H |H]|
B (5|x| + 3log(t) + 2) K - ((2]s| + 2log(t) + 1) - |H| ] .
SchnorrQ—MMM EMul | H] + 10]g EMul +8lq)) K -2.6-EMul |H|

B (5|| + 3log(t/K) + 2) ] (2|k| + 2log(t/K) + 1) - |H]| ]

BAF—MMM Mulq +4H \H| + (12K 4+ 4) - |q] 2 - EMul (8K +4) - [q (1.34+ K) - EMul| |H|
EMul (5|k| + 3log(t/K) + 2) (2]K| + 2log(t/K) + 1) - |H|

— . 2. - EMul

COREMMM |l (¢ — 1)/ K) - Badd ||+ 14lg £ [F)EMU 77 uog gy fo [P0 T M A

t denotes the signatures signed so far, since MMM costs depends on this value. In MMM, the signing execution time includes key generation times.

TABLE IV: Performance comparison of CORE—MMM and its standard unbounded forward-secure counterparts

Signing Private Key . Signature | Verification | Public Key
Scheme | Time (us) | Size (Bytey | UPdate Time (1) | oo (KB) | Time (ms) | Size (Byte)
HORS—MMM 3.51 201088 35.84 134240 7.21 32
SchnorrQ—MMM || N/A 10.22 4384 10.12 2656 44.56 32
BAF—MMM 1.21 396448 20.24 257.8 16.23 32
1 11.11 21 0.04
23 10.87 2.3 0.17 .
CORE—MMM 59 10.61 3568 0.03 I8 854 32
210 10.28 34 17.09

The costs of MMM instantiations are calculated based on the base schemes and analytical performances as in Table III (parameters are as in Table II).

Recall that the signature verification is given for K items in all compared schemes.

candidate for MMM transformation among its alternatives as
shown in the performance analysis of CORE—MMM below.

We now showcase the analytical and experimental perfor-
mance comparison of CORE—MMM and its counterparts in
Table III and Table IV, respectively. Note that the performance
of MMM schemes depends on signatures signed so far, which
makes it practically unbounded. We consider up to ¢t = 230
messages to be signed, that corresponds to 3.4 signatures per
second (non-stop) for 10 years. We consider that this should

suffice for almost all practical audit logging applications. We
set K = 219 for all base schemes as in Table I and Table II.
All MMM extensions have a small constant-size public key

of 32 Bytes. CORE—MMM has the fastest update (337x
better than SchnorrQ—MMM) and therefore the most efficient
signing plus update time among its alternatives. It has also
the smallest signature (7.5x better than BAF—MMM) and
private key size. Finally, CORE—MMM has a competitive
verification time compared to its alternative, albeit being



slightly less efficient than HORS—MMM and BAF—MMM.
Note that CORE—MMM gains substantial performance advan-
tage when the same message is being consecutively signed
with evolving keys. For instance, when the frequency of
message changes is f = 8 over K = 2!, CORE-MMM can
offer approximately two magnitudes of smaller signature sizes
and faster verification than its best counterparts. In summary,
CORE—MMM vastly outperforms its alternatives in almost all
metrics except signature verification, and for all metrics when
the same message is being signed repeatedly for some time
interval with example parameters 1 < f < 29, K = 210,

Remark: The signature size and verification costs are
calculated cumulatively over K messages. Update costs are
amortized as in MMM [22].

IX. CONCLUSION

In this work, towards addressing the authentication and
integrity needs of audit logging applications, we created new
forward-secure and aggregate schemes that we call as COm-
pact and REsilient (CORE) signatures. Our base scheme is a

novel K-time forward-secure signature COREE, __ that has a

small constant-size public key with signature and conditional
public key aggregation. We then developed CORE—MMM that

relies on CO REEase to achieve a practically unbounded number

of signatures with high performance. CORE—MMM vastly
outperforms its counterparts for essential metrics such as
key update, private key and signature sizes with an equal
public key size and security. Moreover, the performance of
CORE schemes is further boosted for secure logging applica-
tions with infrequent state transitions, for which CORE out-
performs its alternatives for almost all metrics. Overall, our
analysis suggests that CORE is an ideal cryptographic tool
to enhance the security of audit logging applications with
low overhead and practically unbounded signing capability.
Acknowledgements: We would like to thank the anonymous
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