
Compatible Certificateless and Identity-Based
Cryptosystems for Heterogeneous IoT

Rouzbeh Behnia1, Attila Altay Yavuz1, Muslum Ozgur Ozmen2∗, and Tsz Hon
Yuen3

1 University of South Florida, Tampa, Florida, USA
{behnia,attilaayavuz}@usf.edu

2 Purdue University, West Lafayette, Indiana, USA
mozmen@purdue.edu

3 The University of Hong Kong, Pokfulam, Hong Kong
thyuen@cs.hku.hk

Abstract. Certificates ensure the authenticity of users’ public keys,
however their overhead (e.g., certificate chains) might be too costly for
some IoT systems like aerial drones. Certificate-free cryptosystems, like
identity-based and certificateless systems, lift the burden of certificates
and could be a suitable alternative for such IoTs. However, despite their
merits, there is a research gap in achieving compatible identity-based and
certificateless systems to allow users from different domains (identity-
based or certificateless) to communicate seamlessly. Moreover, more ef-
ficient constructions can enable their adoption in resource-limited IoTs.
In this work, we propose new identity-based and certificateless cryptosys-
tems that provide such compatibility and efficiency. This feature is ben-
eficial for heterogeneous IoT settings (e.g., commercial aerial drones),
where different levels of trust/control is assumed on the trusted third
party. Our schemes are more communication efficient than their public
key based counterparts, as they do not need certificate processing. Our
experimental analysis on both commodity and embedded IoT devices
show that, only with the cost of having a larger system public key, our
cryptosystems are more computation and communication efficient than
their certificate-free counterparts. We prove the security of our schemes
(in the random oracle model) and open-source our cryptographic frame-
work for public testing/adoption.

Keywords: Identity-based cryptography · certificateless cryptography
· IoT Systems · lightweight cryptography

1 Introduction

Mobile and heterogeneous IoT applications harbor large quantities of resource-
limited and non-stationary IoT devices, each with different capabilities, con-
figurations, and user domains. For instance, emerging commercial aerial drone
∗Work done in part when Muslum Ozgur Ozmen was at University of South Florida.

2 Behnia et al.

network protocols4 need a near real-time communication and processing over
a bandwidth-limited network. There are multiple hurdles of relying on tradi-
tional PKI for such systems: (i) The maintenance of PKI for such IoT networks
demands a substantial infrastructure investment [25]. (ii) PKI requires trans-
mission and verification of certificate chains at the sender’s/verifier’s side. This
communication and computation overhead could create a major bottleneck for
mobile IoT devices (e.g., aerial drones [21]) that potentially need to interact
with a number of devices. In certain cases, these certificate chains might be
larger than the actual measurements/commands being transmitted and there-
fore, might be the dominating cost for these applications. Figure 1-a depicts a
high-level illustration of traditional PKI for mobile IoT applications.

Identity-based (IDB) and certificateless (CL) cryptosystems offer implicit
certification [1,25,9], and therefore can mitigate the aforementioned hurdles. In
IDB, the user’s public key is derived from their identifying information, and
the system relies on a fully-trusted third party (TTP), called the private key
generator (PKG), to issue users’ private keys. The top portion of Figure 1-b
depicts IDB encryption, wherein the user authenticates itself to the PKG and
receives a private key corresponding to its identity D1. The sender can use D1

as the public key to run encryption. IDB is potentially suitable for applications
where the system setup is done and managed by a trusted centralized entity. In
CL systems [1] the trust on the TTP is lowered by allowing the private key of
the user to consist of two parts. One is computed by the user and the other is
by the TTP (called the KGC). The bottom portion of Figure 1-b outlines CL
encryption, where the user computes its key pair and then works as in IDB to
receive the other part of the private key from the KGC. CL cryptosystems are
suitable for architectures that might not assume a fully trusted third party where
the trust level on the KGC is similar to traditional certification authorities.

IDB and CL cryptosystems have their own merits and drawbacks, and there-
fore might be used in different IoT applications. Hence, it is expected that there
will be different user groups who rely on IDB and CL cryptosystems initiated
in different domains/systems. For example, Amazon’s Prime Air5 would require
drones, under the complete control of Amazon, to interact with other drones
(e.g., personal) to ensure safe operation. By employing IDB cryptography on its
drones, Amazon can have complete control over the operations of its delivery
drones while avoiding the overheads of traditional PKI. However, it is a strong
assumption that other drones, outside Amazon’s network, will adopt a similar
cryptographic setting to ensure safe and secure operations. For instance, per-
sonal users rarely trust any third party to have complete control and knowledge
of their drones’ activity. To the best of our knowledge, there is a significant
research gap in enabling a seamless communication between users who are regis-
tered under different domains (e.g., IDB and CL). This is a potential obstacle to
widely deploy efficient certificate-free solutions in heterogeneous environments.
This limitation is mentioned in Figure 1-b. Moreover, it is important to further

4https://github.com/mavlink/mavlink
5https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011

https://github.com/mavlink/mavlink
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011

Compatible Certificateless and Identity-Based Cryptosystems for IoT 3

Fig. 1: Proposed IDB and CL Cryptosystems and Alternatives (High-Level)

CA

1

PK

Cert

Verify

4

5

4

?

C Encrypt(M,)

C

2

PKG

KGC

1

!!!"
C2,1 Encrypt(M, !!)

2

3

!!

3

!!

!#!$
!"

2

3

4 C4,3

4

2

PKG

KGC

1

!!!"
C2,1 Encrypt(M, !", "1)

C2,1

3

!!

!#!$
(!", $##)

2

C4,3 Encrypt(M, !", "3)3

4 C4,3

(!", &3)

(, &1)

(!!, &1)

!!+ &1

1

1

2 C4,1 Encrypt(M, !!, "1)

3

C4,3 Encrypt(M,)

C4,1

C2,1

a. Traditional Public Key Infrastructure
b. Conventional Identity-Based (top)
and Certificateless (bottom) Systems

c. Compatible Identity-Based (top)
and Certificateless (bottom) Systems

(!",)

1

(, &3)

SK

Identity

Certificate communication and
verification overhead

Widely used in practice

No communication between IDB
and CL users

No certificate communication and
verification overhead

Seamless communication between
IDB and CL users

No certificate communication and
verification overhead
Improved performance

improve the computational efficiency of IDB and CL techniques to offer a low
end-to-end delay that is needed by delay-aware IoT applications.
Our Contribution. We propose a new series of public key encryption, digital
signature, and key exchange schemes that permit users from different domains
(IDB or CL) to communicate seamlessly. To our knowledge, this is the first set of
certificate-free cryptosystems that achieve such compatibility and efficiency, and
therefore a suitable alternative for resource-limited IoT systems such as com-
mercial aerial drones. The idea behind our constructions is to create special key
generation algorithms that harness the additive homomorphic property of the
exponents and cover-free functions to enable the users to incorporate their pri-
vate keys into the one provided by the TTP without falsifying it. As detailed in
Section 4, this special design is applicable across our IDB and CL algorithms, and
therefore it permits a seamless communication between our IDB and CL cryp-
tosystems. This strategy also reduces the cost of online operations and enables
our schemes to achieve a lower end-to-end delay compared to their counterparts.
We elaborate on some desirable properties of our schemes as below.
• Compatible IDB and CL Schemes: Fig 1.c outlines the concept of compatible
IDB and CL schemes where the users from different domains (and trust-levels)
can use identical encryption, signature, and key exchange algorithms to commu-
nicate without any additional overhead.
• Computation & Communication Efficiency: Based on our analysis, new schemes
offer performance advantages over their counterparts: (i) Similar to other ID-
B/CL cryptosystems, our schemes lift the hurdle of certificate transmission and
verification, and therefore offer significant communication efficiency over some

4 Behnia et al.

of the most efficient PKI-based schemes. This advantage grows proportional to
the size of the certificate chain. (ii) Our schemes outperform their certificate-
free counterparts on the vast majority of the performance metrics. For instance,
the end-to-end delay in our IDB/CL encryption schemes is ≈ 25% lower than
our most efficient counterpart in [29]. Our signature schemes achieve up to %52
faster end-to-end delay as compared to our counterparts. We also achieve a 65%
lower end-to-end delay for our key exchange schemes.
• Open-Sourced Implementation: We implemented our schemes on a commod-
ity hardware and an 8-bit AVR microprocessor, and compared their performance
with a variety of their counterparts capturing some of the most efficient tradi-
tional PKI, IDB and CL schemes (see Section 6 for details). We open-source our
implementations for broad testing, benchmarking, and adoption purposes.

2 Preliminaries

Notation. Given two primes p and q, we define a finite field Fp and a group
Zq. We work on E(Fp) as an elliptic curve (EC) over Fp, where P ∈ E(Fp) is
the generator of the points on the curve. We denote a scalar and a point on
a curve with small and capital letters, respectively. x $← S denotes a random
uniform selection of x from a set S. We define the bit-length of a variable as |x|
(i.e., |x| = log2 x). EC scalar multiplication is denoted as xP , and all EC opera-
tions use an additive notation. Hash functions are H1: E(Fp)×E(Fp)→ {0, 1}γ ,
H2: {0, 1}n × {0, 1}∗ → Zq, H3: E(Fp) → {0, 1}n H4: {0, 1}n → {0, 1}n and H5:
{0, 1}n × E(Fp) → Zq, where all hash functions are random oracles [6]. FourQ
[12] is a special EC that is defined by the complete twisted Edwards equa-
tion E/Fp2 : −x2+y2 = 1+dx2y2. FourQ is known to be one of the fastest elliptic
curves that admits 128-bit security level [12]. Moreover, with extended twisted
Edwards coordinates, FourQ offers the fastest EC addition algorithms [12], that
is extensively used in our optimizations. All of our schemes are realized on FourQ.

Definitions. We first give our intractability assumptions followed by the defi-
nitions of identity-based and certificateless encryption and signature schemes.

Definition 1. Given points P,Q ∈ E(Fp), the Elliptic Curve Discrete Loga-
rithm Problem (ECDLP) asks to find a, if it exists, such that aP (mod p) = Q.

Definition 2. Given P, aP, bP ∈ E(Fp), the Computational Diffie-Hellman Prob-
lem (CDHP) asks to compute abP .

Definition 3. An identity-based encryption scheme is consisted of four algo-
rithms IBE = {Setup, Extract, Enc, Dec}.
(msk, params)← IBE.Setup(1κ): Given the security parameter κ, the PKG se-
lects master secret key msk, computes master public key mpk and system pa-
rameters params (an implicit input to all the following algorithms).
(skID, QID)← IBE.Extract(ID,msk): Given an identity ID andmsk, the PKG
computes the commitment value QID and the private key skID.

Compatible Certificateless and Identity-Based Cryptosystems for IoT 5

c← IBE.Enc(m, ID,QID): Given a message m and (ID,QID), the sender com-
putes the ciphertext c.
m← IBE.Dec(skID, c): Given the ciphertext c and the private key of the receiver
skID, the receiver returns either the corresponding plaintext m or ⊥ (invalid).

Definition 4. An identity-based signature scheme is defined by four algorithms
IBS = {Setup, Extract, Sig, Ver}.
(msk,mpk, params)← IBS.Setup(1κ): As in IBE.Setup in Definition 3.
(skID, QID)← IBS.Extract(ID,msk): As in IBE.Extract in Definition 3.
σ ← IBS.Sign(m, sk ID): Given a message m and sk ID, returns a signature σ.
d← IBS.Verify(m, ID,QID, σ): Given m, σ and (ID,QID) as input, if the
signature is valid, it returns d = 1, else d = 0.

Definition 5. A certificateless encryption scheme is defined by six algorithms
CLE = {KGCSetup, UserSetup, PartKeyGen, UserKeyGen, Enc, Dec}.
(msk,mpk, params)← CLE.KGCSetup(1κ): Give the security parameter κ, the
KGC generates master secret key msk, master public key mpk and the system
parameters params (an implicit input to all the following algorithms).
(α,U)← CLE.UserSetup(·): The user ID computes her secret value α and its
corresponding commitment U.
(w,QID)← CLE.PartKeyGen(ID,U,msk): Given ID, U , and msk , the KGC
computes partial private key w and its corresponding public commitment QID.
xID ← CLE.UserKeyGen(w,α): Given (w,α), the user ID computes xID.
c← CLE.Enc(m, ID,QID): Given (m, ID,QID), sender computes ciphertext c.
m′ ← CLE.Dec(xID, c): Given the ciphertext c and the private key of the receiver
xID, the receiver returns either corresponding plaintext m or ⊥ (invalid).

Definition 6. A certificateless signature scheme is defined by six algorithms
CLS = {KGCSetup, UserSetup, PartKeyGen, UserKeyGen, Sig, Ver}. The defini-
tion of algorithms are as in Definition 5 except for (CLS.Sig,CLS.Ver).
σ ← CLS.Sig(m,xID): Given a message m, and the signer’s private key xID, it
returns a signature σ.
d← CLS.Ver(m, ID,QID, σ): Given m, σ and (ID,QID) as input, if the signa-
ture is valid, it returns d = 1, else d = 0.

3 Security Model

The security model of identity-based schemes is slightly stronger than those for
traditional PKI based schemes. More specifically, the adversary can query for
the private key of any user ID, except for the target user ID∗. In this paper,
we constructed our schemes by following the security model of Identity-based
systems proposed in [9]. In certificateless systems, the private key of the users
consists of two parts: (i) user secret key α, which is selected by the user, and
(ii) partial private key w, which is supplied to the user by the KGC. Therefore,
following [1], it is natural to consider two types of adversaries for such systems.

6 Behnia et al.

A Type-I adversary AI does not have access to msk or the user’s partial
private key w but is able to replace any user’s public key U with public key of
its choice U ′. However, in our security model, since we adopt the binding method
[1], replacing the public key will result in falsifying the partial private key (and
evidently the private key). Therefore, following [2], we allow AI to query for the
secret key of the user via α ← OSecKey(ID). Note that our model can also be
extended to allow AI to replace the public key of the user (see Section 5). A
Type-II adversary AII is assumed to be a malicious KGC. Having knowledge on
msk, AII can query the partial private key of the user via w ← OPartKey(ID).
Following [1], we allow the adversary A ∈ {AI ,AII} to extract private key of
users’ private keys via the xID ← OCorrupt(ID). We note that inspired by [3],
many improvements on the security models of certificateless systems have been
suggested (e.g., [2,3,17]). In this paper, we provide our proof in the original model
proposed in [1,3], but note that many of those stronger security requirements
can be enforced if needed.

Definition 7. The indistinguishability of a CLE under chosen ciphertext attack
(IND-CLE-CCA) experiment ExptIND-CLE-CCA

A is defined as follows.

– C runs CLE.KGCSetup(1κ) and returns mpk and params to A.
– (ID∗,m0,m1)← AOPartKey,OSecKey,OCorrupt,ODec(mpk, params)

– C picks b $← {0, 1}, cb ← CLE.Enc(mb, ID
∗, params) and returns cb to A.

– A performs the second series of queries, with a restriction of querying ID∗
or cb to Corrupt(·) or CLE.Dec(·), respectively. Finally, A outputs a bit b′.

A wins the above experiment if b = b′ and the following conditions hold: (i)
ID∗ was never submitted to OCorrupt. (ii) If A = AI , ID∗ was never submitted
to OPartKey. (iii) If A = AII , ID∗ was never submitted to OSecKey. The IND-
CLE-CCA advantage of A is Pr[b = b′] ≤ 1

2 + ε, for a negligible ε.

Definition 8. The existential unforgeability under chosen message attack (EU-
CLS-CMA) experiment ExptEU-CLS-CMA

A for a certificateless signature CLS is
defined as follows.

– C runs CLS.KGCSetup(1κ) and returns mpk and params to A.
– (ID∗,m∗, σ∗)← AOPartKey,OSecKey,OCorrupt,OSign(mpk, params)

A wins the above experiment if 1 ← CLS.Ver(m∗, σ∗, ID), and the following
conditions hold: (i) ID∗ was never submitted to OCorrupt. (ii) If A = AI , ID∗
was never submitted to OPartKey. (iii) If A = AII , ID∗ was never submitted to
OSecKey. The EU-CLS-CMA advantage of A is Pr[ExptEU-CLS-CMA

A = 1]

4 Proposed Schemes

4.1 Proposed Identity-Based Cryptosystem

Most of pairing-free IDB schemes rely on the classical signatures (e.g., [24]) in
their key generation to provide implicit certification. The use of such signatures

Compatible Certificateless and Identity-Based Cryptosystems for IoT 7

Algorithm 1 Identity-Based Encryption

(msk, params)← IBE.Setup(1κ):
1: Select primes p and q and (t, k) ∈ N

where t >> k.
2: for i = 1, . . . , t do
3: vi

$← Zq, Vi ← viP mod p

4: return msk ← (v1, . . . , vt),
mpk ← (V1, . . . , Vt) and params←
(H1, H2, H3, H4, p, q, k, t,mpk)

(w,Q)←IBE.Extract(ID,U,msk):

1: β $← Zq, Q← βP mod p
2: (j1, . . . , jk) ← H1(ID,Q) where for

all i = 1, . . . , t, 1 < ji < |t|
3: y ←

∑k
i=1 vji mod q

4: x← y + β mod q
5: return (x,Q)

c← IBE.Enc(m, IDa, Qa): Bob en-
crypts message m ∈ {0, 1}n.

1: σ $←− {0, 1}n, r ← H2(σ,m), R ←
rP mod p

2: (j1, . . . , jk) ← H1(IDa, Qa), Ya ←∑k
i=1 Vji mod p

3: u ← H3(r(Ya + Qa) mod p) ⊕ σ,
v ← H4(σ)⊕m

4: return c = (R, u, v)

m← IBE.Dec(xa, c): Alice de-
crypts the ciphertext c.

1: σ′ ← H3(xaR mod p)⊕ u
2: m′ ← v ⊕ H4(σ′),r′ ← H2(σ′,m)
3: if r′P (mod p) = R then

return m′

4: else return ⊥
to construct IDB schemes usually require several expensive operations (e.g.,
scalar multiplication), and therefore may incur a non-negligible computation
overhead. To reduce this cost, we exploit the message encoding technique and
subset resilient functions (similar to [23]) along with the exponent product of
powers property to generate keys. This permits an improved efficiency for both
the PKG and user since it only requires a hash call and a few point additions.

Our IDB schemes use similar IBE.Setup and IBE.Extract functions whose
key steps are outlined as follows. In the IBE.Setup, the PKG selects t values
vi ← Zq, and computes their commitments as Vi ← viP mod p, for i = 1, . . . , t,
it then sets the master secret key msk ← (v1, . . . , vt) and the system-wide public
key mpk ← (V1, . . . , Vt). This is similar to the scheme in [23], where EC scalar
multiplication is used as the one-way function. In IBE.Extract, the PKG picks a
nonce β ← Zq and computes its commitments Q← βP mod p. The PKG then
derives indexes (j1, . . . , jk) ← H1(ID,Q), which select k-out-of-t elements from
the master secret key vji for i = 1, . . . , k. Note that Q is implicitly authenticated
by being included in input of H1(·), this is similar to the technique used in
other pairing-free identity-based and certificateless systems [15,3]. In Steps 3-4,
unlike the scheme in [23], where secret keys are exposed, we use the additive
homomorphic property in the exponent to mask the one-time signature y (Step
3) via the nonce β (in line with [5,4]). The PKG will then sends (x,Q) to the
user via a secure channel.

Identity-Based Encryption Scheme: In IBE.Enc (Algorithm 1, Step 2), the
indexes obtained from H1 are used to retrieve the components Vji from the
system-wide public key mpk. The input of H3 is the ephemeral key, which given
the ciphertext c = (R, u, v), can be recomputed by the receiver in the IBE.Dec al-
gorithm. σ and r are computed in-line with the transformation proposed in [14].

8 Behnia et al.

Algorithm 2 Identity-Based Signature

(msk, params)← IBS.Setup (1κ):
Description identical to IBE.Setup
in Algorithm 1, except that only
the description of H1 and H5 is in-
cluded in params.

(w,Q)← IBS.Extract(ID,U,msk):
As in IBE.Extract in Algorithm 1.

(s, e)← IBS.Sign(m,xa): Alice
IDa signs message m.

1: r $←− Zq, R← rP mod p
2: e← H5(m,R)
3: s← r − e · xa mod q
4: return (s, e)

{0, 1} ← IBS.Verify(m, IDa, Qa, 〈s, e〉):
Bob verifies the signature (s, e).

1: (j1, . . . , jk)← H1(IDa, Qa)
2: Ya ←

∑k
i=1 Vji mod p

3: R′ ← sP + e(Ya +Qa) mod p
4: if e = H5(m,R′) then return 1
5: else return 0

Identity-Based Signature Scheme: In IBS.Verify, the public key of the user
Ya is computed from Vji ∈ mpk via the indexes retrieved from the output of H1.
The key generation is as in Algorithm 1. The rest of the signing and verification
steps are akin to Schnorr signatures [24].
Identity-Based Key Exchange Scheme: For the key exchange scheme, we
run IBE.Setup and then let both parties, Alice and Bob, obtain (xA, QA) and
(xB , QB) via the IBE.Extract algorithm, respectively. Alice then picks zA

$← Zq,
computes its commitment MA ← zAP mod p, and sends (MA, QA) to Bob. Bob
does the same and sends (MB , QB) to Alice. Alice then computes (j1, . . . , jk)←
H1(IDb, Qb) and Yb ←

∑k
i=1 Vji mod p and outputs the shared secret key as

Ka ← xa(Yb +Qb) + zaMb mod p. Bob works similarly, and outputs the shared
key as Kb ← xb(Ya +Qa) + zbMa mod p.

4.2 Proposed Certificateless Cryptosystem

For our CL schemes to achieve the same trust level (Level 3) [16] on the third
party (KGC), as in traditional PKI, we use the binding method [1] in the
CLE.PartKeyGen and CLS.PartKeyGen algorithms. Note that the same secure
channel which is used for user authentication (e.g., SSL/TLS), can be used to
send the user commitment U to the KGC. This permits an implicit certification
of U, and therefore any changes of U, will falsify the private key.

The CLE.KGCSetup algorithm is as in IBE.Setup in Algorithm 1. The
CLE.PartKeyGen algorithm is similar to the IBE.Extract in Algorithm 1, with
the difference that the user commitment U is used to computeQ. In CLE.UserKeyGen,
the correctness of the partial private key is checked first before the private key
x is computed.
Certificateless Encryption Scheme: Note that the CLE.Enc and CLE.Dec al-
gorithms are identical to IBE.Enc and IBE.Dec algorithms in Algorithm 1.
Certificateless Signature Scheme: The setup and key generation algorithms
are as in Algorithm 3, and the CLS.Sign and CLS.Verify algorithms are as in
IBS.Sign and IBS.Verify in Algorithm 2, respectively.
Certificateless Key Exchange Scheme: Given the compatibility of our IDB
and CL schemes, after the initial algorithms (system setup and key generation)

Compatible Certificateless and Identity-Based Cryptosystems for IoT 9

Algorithm 3 Certificateless Encryption

(msk, params)← CLE.KGCSetup(1κ):
As in IBE.Setup in Alg. 1.

(α,U)←CLE.UserSetup(·):

1: α $← Zq, U ← αP mod p
2: return (α,U)

(w,Q)←CLE.PartKeyGen(ID,U,msk):

1: β $← Zq, W ← βP mod p
2: Q = U +W mod p
3: (j1, . . . , jk) ← H1(ID,Q) where for

all i = 1, . . . , t, 1 < ji < |t|
4: y ←

∑k
i=1 vji mod q

5: w ← y + β mod q
6: return (w,Q)

x← CLE.UserKeyGen(w,α):
1: (j1, . . . , jk) ← H1(ID,Q), Y ←∑k

i=1 Vji mod p
2: W ′ ← Q−U mod p, W ′′ := wP −
Y mod p

3: if W ′ = W ′′ then return x ←
w + α mod q else return ⊥

c← CLE.Enc(m, IDa, Qa): Bob en-
crypts message m ∈ {0, 1}n.

1: σ $←− {0, 1}n, r ← H2(σ,m), R ←
rP mod p

2: (j1, . . . , jk) ← H1(IDa, Qa), Ya ←∑k
i=1 Vji mod p

3: u ← H3(r(Ya + Qa) mod p) ⊕ σ,
v ← H4(σ)⊕m

4: return c = (R, u, v)

m← CLE.Dec(xa, c): Alice de-
crypts the ciphertext c.

1: σ′ ← H3(xaR mod p)⊕ u
2: m′ ← v ⊕ H4(σ′),r′ ← H2(σ′,m)
3: if r′P (mod p) = R then

return m′

4: else return ⊥

Algorithm 4 Certificateless Digital Signature

(msk, params)← CLS.KGCSetup(1κ):
As in CLE.KGCSetup in Alg. 3, ex-
cept that H1 and H5 are in params.

(α,U)←CLS.UserSetup(params):
As in CLE.UserSetup in Alg. 3.

(w,Q)←CLS.PartKeyGen(ID,U,msk):
As in CLE.PartKeyGen in Alg. 3.

x← CLS.UserKeyGen(params, α,w):
As in CLE.UserKeyGen in Alg. 3.

(s, e)← CLS.Sign(m,xa): Alice
IDa signs message m.

1: r $←− Zq, R← rP mod p
2: e← H5(m,R)
3: s← r − e · xa mod q
4: return (s, e)

{0, 1} ← CLS.Verify(m,Qa, 〈s, e〉):
Bob verifies the signature (s, e).

1: (j1, . . . , jk)← H1(IDa, Qa)
2: Ya ←

∑k
i=1 Vji mod p

3: R′ ← sP + e(Ya +Qa) mod p
4: if e = H5(m,R′) then return 1
5: else return 0

take place as in Algorithm 3, the CL key exchange will be identical to the one
proposed in the identity-based key exchange scheme above.

4.3 Compatibility of Identity-Based and Certificateless Schemes

In our CL schemes, we utilize the additive homomorphic property of the ex-
ponents (i.e., w) when the KGC includes the addition of commitments (Wand
U) in the H1. After receiving w, the user exploits the homomorphic property to

10 Behnia et al.

modify the key without falsifying it and obtain x. For instance, we observed that
our counterparts (e.g., [9,1]) do not offer such a compatibility, since the partial
private key is the KGC’s commitment to the (hash of) user identity, without a
homomorphic property. Moreover, the KGC does not output any auxiliary value
to incorporate the user commitment with it.

As shown above, our IDB and CL schemes are compatible, thanks to the spe-
cial design of their key generation algorithms (i.e., Extract in IDB, UserSetup
and PartKeyGen in CL). Therefore, after the users computed/obtained their keys
from the third party, the interface of the main cryptographic functions (e.g., en-
crypt, decrypt, sign, etc.) are identical in both systems, therefore, the users can
communicate with uses in different domains seamlessly. For instance, ciphertext
c = (R, u, v) outputted by the CLE.Enc in Algorithm 1, can be decrypted by a
user in the identity-based setting by the IBE.Dec algorithm in Algorithm 1. This
also applies to the signature and the key exchange schemes proposed above.

5 Security Analysis

Theorem 1. If an adversary AI can break the IND-CLE-CCA security of the
encryption scheme proposed in Algorithm 3 after qHi queries to random oracles Hi
for i ∈ {1, 2, 3, 4}, qD queries to the decryption oracle and qsk to the private key
extraction oracle with probability ε. There exists another algorithm C that runs
AI as subroutine and breaks a random instance of the CDH problem (P, aP, bP)
with probability ε′ where: ε′ > 1

qH3

(
2ε

e(qsk+1) −
qH2
2n −

qD(qH2+1)

2n − 2qD
p

)
.

Proof. Our proof technique is similar to the one in [3]. C simulates the real
environment for AI . It knows the t secret values v′is in the scheme, and tries to
embed a random instance of the CDH problem (P, aP, bP). C sets aP as a part
of the target user’s (ID∗) public key (i.e., QID∗ ← aP) and bP as a part of the
challenge ciphertext (i.e., R∗ ← bP). C uses four lists, namely ListH1 , ListH2 ,
ListH3 , and ListH4 , to keep track of the random oracle responses and following
the IND-CLE-CCA experiment ExptIND-CLE-CCA

A (Definition 7), C responds to
AI queries as follows.
Queries to H1(IDi, Qi): If the entry (〈IDi, Qi〉, h1,i) exists in ListH1 , C returns

h1,i, otherwise, it chooses h1,i
$← γ, and inserts (〈IDi, Qi〉, h1,i) in ListH1 .

Queries to H2(σi,mi): If the entry (〈σi,mi〉, h2,i) exists in ListH2 , C returns h2,i,
otherwise, it chooses h2,i

$← Zq, and inserts (〈σi,mi〉, h2,i) in ListH2 .
Queries to H3(Ki): If the entry (Ki, h3,i) exists in ListH3 , C returns h3,i, other-

wise, it chooses h3,i
$← {0, 1}n, and inserts (Ki, h3,i) in ListH3 .

Queries to H4(σi): If the entry (σi, h4,i) exists in ListH4 , C returns h4,i, otherwise,
it chooses h4,i

$← {0, 1}n, and inserts (σi, h4,i) in ListH4 .
Public key request : Upon receiving a public key request on IDi, C works as
follows. If (〈IDi, Ui, Qi〉, ζi) exists in ListPK , then it returns (IDi, Ui, Qi). Else,
it flips a fair coin where Pr[ζ = 0] = δ, and works as follows (δ will be determined
later in the proof). If ζ = 0, it runs the partial key extraction oracle below first,
update ListPK and then output (IDi, Ui, Qi). If ζ = 1, pick t $← Zq, set Qi ←

Compatible Certificateless and Identity-Based Cryptosystems for IoT 11

aP mod p, adds (IDi, Ui, 〈⊥, Qi〉) to ListPartialSK and adds (〈IDi, Ui, Qi〉, ζi)
to ListPK , before outputting (IDi, Ui, Qi).
Partial key extraction: Upon receiving a partial key extraction query on (IDi, Ui),
C works as follow:
– If (IDi, Ui, 〈wi, Qi〉) ∈ ListPartialSK, return (wi, Qi).
– Else,
• wi

$← Zq, Zi ← wiP mod p, (j1, . . . , jk)
$← [1, . . . , t], Qi ← Zi −∑k

i=1 Vji + Ui mod p.
• If (IDi, Qi, . . .) ∈ ListH1 , aborts. Else, adds (〈IDi, Qi〉, h1,i) to ListH1 ,

where h1,i ← (j1, . . . , jk) and output the partial private key as (wi, Ui, Qi)
after adding it to ListPartialSK.

Secret key request : Upon receiving a secret key request on IDi, C checks if there
exists a pair (IDi, ui, Ui) ∈ ListSecretKey, it returns ui. Otherwise, selects ui

$←
Zq, computes Ui ← uiP mod p and inserts (IDi, ui, Ui) in ListSecretKey.
Private key request : To answer a private key request on (IDi, Ui), C runs the
public key request oracle above to get (〈IDi, Ui, Qi〉, ζi) ∈ ListPK and finds
(IDi, ui, Ui) in ListSecretKey . If ζ = 0, finds ((IDi, Ui, 〈wi, Qi〉) ∈ ListPartialSK
and returns wi + ui as the response. Otherwise, it aborts.
Decryption query : Upon receiving a decryption query on (IDi, Qi, ci = 〈Ri, ui, vi〉),
C works as follows.

– Searches ListPK for an entry (〈IDi, Ui, Qi〉, ζi). If ζ = 0, works as follows.
• Searches ListPartialSK for a tuple (IDi, Ui, 〈wi, Qi〉) and searches for
(ID, 〈w,Q〉) in ListPartialSK, set σ′ ← H3((w + α)R mod p) ⊕ u, m′ =
v ⊕ H4(σ′), r′ := H2(σ′,m).
• Checks if R = r′P mod p holds, outputs m′

– Else, if ζ = 1, works as follows.
• Runs the oracle for H1 to get h1,i (to compute the public key Yi) and

checks lists ListH2 , ListH3 and ListH4 for tuples (〈σi,mi〉, h2,i), (Ki, h3,i),
and (σi, h4,i), such that Ri = h2,iP mod p, u = h3,i⊕σi and v = h4,i⊕mi

exists. Checks if Ki = ri(Yi +Qi) holds, outputs mi, else, aborts.

After the first round of queries, AI outputs ID∗ and two messages m0 and
m1 on which it wishes to be challenged on. We assume that ID∗ has been
already queried to H1 and was not submitted to the private key request oracle.
C checks (〈ID∗, U∗, Q∗〉, ζ) ∈ ListPK if ζ = 0, it aborts. Otherwise, it computes
the challenge ciphertext as follows. β∗ $← {0, 1}, σ∗ $← {0, 1}∗, u∗ ← {0, 1}n,
b

$← {0, 1}. R∗ ← aP (this implicitly implies that a = H2(σ∗,mb)), H3(KID∗)←
u∗ ⊕ σ∗ and v∗ ← H4(σ∗)⊕mb. Return (R∗, u∗, v∗).
AI initiates the second round of queries similar as above, with the restrictions

defined in Definition 5. When AI outputs its decision bit b′, C returns a set
Λ = {Ki −Ryii ,where Kis are the input queries to H3}.

Notice that if C does not abort, and AI outputs its decision bit b′, then the
public key must have the QID∗ = aP , and given how the challenge ciphertext is

12 Behnia et al.

formed (e.g., R∗ = bP), KID∗ = yID∗abP should hold, where yID∗ is known to
C. Hence, the answer to a random instance of the the CDH problem (P, aP, bP),
can be derived from examining the AI ’s choice of public key and H3 queries.

Here, we provide an indistinguishability argument for the above simulation.
First we look at the simulation of the decryption algorithm. If ζ = 0, we can
see that the simulation is perfect. For ζ = 1, an error might occur in the event
that ci is valid, but (σi,mi), Ki, and σi were never queried to H2, H3, and H4,
respectively. For the first two hash functions, the probability that the ci is valid,
given a query to H3 was never made, considers the query to H2 as well (not
considering the checking phase in the simulation). Therefore, the probability
that this could occur is qH2

2n + 1
p . When considering H4, this probability is 1

2n + 1
p .

Given the number of decryption queries qD, we have the probability of decryption
error qD(qH2+1)

2n + 2qD
p .

C will also fail in simulation during the partial key extraction queries if the
entry (IDi, Qi, . . .) already exists in ListH1 . This will happen with probability
qH1
2γ .

The probability that C does not abort in the simulation is δqsk (1− δ) which
is maximized at δ = 1− 1

qsk+1 . Therefore, the probability that C does not abort
is 1

e(qsk+1) , where e is the base of natural logarithm. Given the argument above,
we know that if (σ∗,mb), (K∗) were never queried to H2 and H3 oracles, then
AI cannot gain any distinguishing advantage more than 1

2 . Given all the above
arguments, the probability that KID∗ has been queried to H3 is ≥ 2ε

e(qsk+1) −
qH2
2n −

qD(qH2+1)

2n − 2qD
p .

Therefore, if the above probability occurs, C can solve the CDH problem
by finding and computing KID∗ = yID∗abP from the list Λ. Given the size of
the list Λ (i.e., qH3), the probability for C to be successful in solving CDH is:
ε′ > 1

qH3

(
2ε

e(qsk+1) −
qH2
2n −

qD(qH2+1)

2n − 2qD
p

)
Theorem 2. If an adversary AII can break the IND-CLE-CCA security of the
encryption scheme proposed in Algorithm 3 after qHi queries to random oracles
Hi for i ∈ {1, 2, 3, 4}, qD queries to the decryption oracle and qsk to the secret key
extraction oracle with probability ε. There exists another algorithm C that runs
AII as subroutine and breaks a random instance of the CDH problem (P, aP, bP)
with probability ε′ where: ε′ > 1

qH3

(
2ε

e(qsk+1) −
qH2
2n −

qD(qH2+1)

2n − 2qD
p

)
.

Proof (Sketch). Having access to random oracles, and by keeping lists similar
to above, the challenger C can simulate an indistinguishable environment for
AII and respond to its queries similar to the above proof. Note that following
Definition 7, AII can query for the secret key of all the users, except for the
target user ID∗.
C knows the t private values v′is in the scheme, and tries to embed a random

instance of the CDH problem (P, aP, bP). By flipping a fair coin, as in the public
key request query above, C defines the probability to embed aP in the target
UID∗ value. C sets bP as a part of the challenge ciphertext (i.e., R∗ ← bP).

Compatible Certificateless and Identity-Based Cryptosystems for IoT 13

After the AII outputs a forgery, C can extract the solution to the CDH
problem since it has knowledge over the t secret values and β∗.

Lemma 1. A public key replacement attack by AI is not practical since it will
falsify the private key.

Proof. Note that if AI replaces U with a new value U ′ (which it might know the
corresponding secret key), then the existing Q will be falsified since Q = U +W
and this will also falsify the current partial private key component y since it is
computed based on the indexes that are obtained by computing H1(ID,Q). Also
note that, if AI can obtain the original (α,U), given Q is public, it can compute
W , however, W is merely the commitment of β and it does not disclose any
information about β. The public key replacement attack in our security proof is
possible if AI requests a new partial private key for each new U ′ .

Lemma 2. If an adversary AI can break the EU-CMA security of the signature
scheme proposed in Algorithm 4 , then one can build another algorithm C that
runs AI as subroutine and breaks a random instance of the ECDLP (P, aP).

Proof. Due to the space constraint, here we give the high level idea of our proof.
We let AI be as in Definition 8, then we can build another algorithm C that uses
AI as a subroutine, and upon AI ’s successful forgery, solves a random instance of
the ECDLP (P, aP). C knows the t secret values vi’s and, similar to the proof of
Theorem 1, it sets aP as a part of the target user’s public key (i.e., QID∗ ← aP).
Most of the simulation steps are like the ones in the proof of Theorem 1. At the
end of the simulation phase, AI outputs a forgery signature (s∗1, e

∗
1), the proof

then uses the forking lemma [22] to run the adversary again to obtain a second
forgery (s∗2, e

∗
2), using the same random tape. Our proof will follow the same

approach as in [15] which is very similar to the proof in [24]. Given two forgeries
and the knowledge of C on the v′is and α∗ID, C can compute a and solve the
ECDLP. Note that similar to Schnorr [24] the security of the scheme will be
non-tight due to the forking lemma.

Parameters Selection for (t, k). Parameters (t, k) should be selected such
that the probability qH1 ·k!

2γ is negligible. Considering that γ = k log2 t (since k
indexes that are log2 t-bit long are selected with the hash output), this gives us
qH1 ·k!
2k|t|

. We further elaborate on some choices of (t, k) along with their performance
implications in Section 6.

6 Performance Analysis and Comparison

We first present the analytical and then experimental performance analysis and
comparison of our schemes with their counterparts. We focus on the online op-
erations (e.g., encryption, signing, key exchange) for which both our IDB and
CL schemes have the same algorithms, rather than one-time (offline) processes
like setup and key generation. Since the online operations are identical in IDB
and CL systems in our case, we refer to them as “Our Schemes” in the following

14 Behnia et al.

Table 1: Analytical Comparison of Public Key Encryption Schemes

Scheme sk Enc Comm. Dec PK mpk
System
Type κ†

ECIES [26] |q| 2mEC + dmEC
2|p|+ b+
d+ CF

mEC |p| - TD 128

BF [9] |p| bp+mEC + ex |p|+ b+ |M | bp+mEC |p| |p| IB 80
AP [1] |p| 3 bp+mEC + ex |p|+ b+ |M | bp+mEC 2|p| |p| CL 80
BSS [3] 2 |q| 4 ex+m |p|+ b+ |M | 3 ex 2|p| |p| CL 128
WSB [29] |p|+ |q| 3mEC + 2 aEC 2|q| + |c| 2mEC 2|p| |p| CL 128

Our Schemes |p| 2mEC + k aEC |p|+ b+ |M | 2mEC |p| t |p| IB/CL 128
† Denotes the security bit. Enc, Dec, and Comm. represent encryption, decryption, and communication
load (bi-directional), respectively. mEC , aEC , and dmEC denote the costs of EC scalar multiplication,
EC addition, and double scalar multiplication over modulus p, respectively. m, ex and bp denote multipli-
cation, exponentiation and pairing operation, respectively. k is the BPV parameter that shows how many
precomputed pairs are selected in the online phase. b, d and CF denote block/key size for symmetric key
encryption, message digest (i.e., MAC) size and size of the certificate, respectively. M denotes message
space size. TD, IDB, and CL represent traditional public key cryptography, identity-based cryptography,
and certificateless cryptography, respectively.

Table 2: Analytical Comparison of Digital Signature Schemes

Scheme sk Sign Comm. Verify PK mpk
System
Type κ

Schnorr [24] |q| mEC 2|q|+ CF 2dmEC |p| - TD 128
GG [15] |q| mEC 2|p|+ |q| 2 dmEC |p| |p| IDB 128
AP [1] |p| 2mEC + aEC + bp |q|+ |p| 4 bp+ ex 2|p| |p| CL 80
KIB [18] |q| mEC |q|+ |p| 3mEC 3 |p| 2 |p| CL 128

Our Schemes |q| mEC 2|q| dmEC + k aEC |p| t |p| IDB/CL 128

tables/discussions. We consider the cost of certificate verification for schemes in
traditional PKI. We only consider the cost of verifying and communicating the
cost of one certificate, which is highly conservative since in practice (i.e., X.509)
there are at minimum two certificates in a certificate chain. This number could
be as high as ten certificates in some scenarios.
Analytical Performance Analysis and Comparison We present a detailed
analytical performance comparison of our schemes with their counterparts for
public key encryption/decryption, digital signature and key exchange in Table 1,
Table 2 and Table 3, respectively.

Our schemes have significantly lower communication overhead than their
PKI-based counterpart in all cryptosystems as they do not require the trans-
mission of certificates. As discussed above and also elaborated in Section 6, this
translates into substantial bandwidth gain as well as computational efficiency
since the certification verification overhead is also lifted. Moreover, in almost
all instances, our schemes also offer a lower end-to-end computational overhead
compared to their PKI-based counterparts. Our schemes also offer a lower end-
to-end computational delay than that of all of their IDB and CL counterparts
in all cryptosystems, with generally equal private and public key sizes. However,
the master public key size of our scheme is larger than all of their counterparts.
Experimental Performance Analysis and Comparison: We now further
elaborate on the details of our performance analysis and comparison with ex-
perimental results. We conduct experiments on both commodity hardware and
low-end embedded devices that are typically found in IoT systems to objec-

Compatible Certificateless and Identity-Based Cryptosystems for IoT 15

Table 3: Analytical Comparison of Key Exchange Schemes

Scheme sk User Comp. Comm. PK mpk
System
Type

Ephemeral ECDH [13] |q| 2mEC 2|p|+ CF |p| - TD
ECHMQV [19] |q| 3mEC 2|p|+ CF |p| - TD
TFNS [28] |p| bp+ 5mEC |p| |p| |p| IDB
AP [1] |p| 4 bp+ ex 3|p| 2|p| |p| CL
YT [30] 2|q|+ |p|+ |s|† 3 dmEC + 5mEC 3|p|+ |s| 2|p|+ |s| 2 |p| CL

Our Scheme |q| 3mEC + (k + 1) aEC 2|p| |p| t |p| IDB/CL

User Comp. denotes user computation.
†|s| denotes the output of a signature scheme that the authors in [30] use in their scheme.

Table 4: Public Key Encryption Schemes on Commodity Hardware
Scheme sk Enc Comm. Dec PK mpk E2E Delay

ECIES [26] 32 55 690† + |M | 21 32 - 76

BF [9] 32 ≈ 2000 48 + |M | ≈ 2000 32 32 ≈ 4000

AP [1] 32 ≈ 6000 48 + |M | ≈ 2000 64 32 ≈ 8000

BSS [3] 64 73 64 + |M | 53 64 32 126

WSB [29] 64 53 64 + |M | 41 64 32 94

Our Schemes 32 39 48 + |M | 33 32 32K 72

All sizes are in Bytes, and all computations are in microseconds.
† We assume the certificate size is 578 Bytes, the size is given in RFC 5280 [11].

tively assess the performance of our schemes as well as their counterparts. Our
open-sourced implementation is available via the following link.

https://github.com/Rbehnia/CertFreeSystems

• Experiments on Commodity Hardware: We used an i7 Skylake laptop equipped
with a 2.6 GHz CPU and 12 GB RAM in our experiments. We implemented our
schemes on the FourQ curve [12] which offers fast elliptic curve operations for κ =
128-bit security. We instantiated our random oracles with blake2 hash function6,
which offers high efficiency and security. For our parameters, we selected k = 18
and t = 1024. We conservatively estimated the costs of our counterparts based
on the microbenchmarks on our evaluation setup of (i) FourQ curve for schemes
that do not require pairing and (ii) PBC library7 on a curve with κ = 80-bit
security (we used the most efficient alternative for them) for schemes that require
pairing.

As depicted in Table 4, the encryption and decryption algorithms of our
schemes are more efficient than their counterparts in the identity-based and
certificateless settings. More specifically, the end-to-end delay of our schemes is
≈ 25% lower than that in [29], which is specifically suitable for aerial drones.
One could also notice how the communication overhead is lower in certificateless
and identity-based schemes since there is no need for certificate transmission.

As shown in Table 5, our schemes enjoy from the fastest verification algo-
rithms among all its counterparts. This is again due to the novel way the user
keys are derived and results in 30% and 52% faster end-to-end delay as compared
6http://131002.net/blake/blake.pdf
7https://crypto.stanford.edu/pbc/

https://github.com/Rbehnia/CertFreeSystems
http://131002.net/blake/blake.pdf
https://crypto.stanford.edu/pbc/

16 Behnia et al.

Table 5: Digital Signature Schemes on Commodity Hardware
Scheme sk Sign Comm. Verify PK mpk E2E Delay

Schnorr [24] 32 12 642 44 32 - 56

GG [15] 32 12 96 44 32 32 56

AP [1] 32 ≈ 2000 64 ≈ 8000 64 32 ≈ 10000

KIB [18] 32 20 64 61 96 64 81

Our Schemes 32 12 64 27 32 32K 39

All sizes are in Bytes, and all computations are in microseconds.

Table 6: Key Exchange Schemes on Commodity Hardware
Scheme sk User Comp. Comm. PK mpk E2E Delay

Ephemeral ECDH [13] 32 55 642 32 - 110

ECHMQV [19] 32 74 642 32 - 148

TFNS [28] 32 ≈ 2000 32 32 32 ≈ 4000

AP [1] 32 ≈ 8000 96 64 32 ≈ 16000

YT† [30] 160 157 160 128 64 314

Our Scheme 32 57 64 32 32K 114

All sizes are in Bytes, and all computations are in microseconds.
† The signature size is considered as 64 bytes.

to its most efficient identity-based [15] and certificateless [18] counterparts, re-
spectively. One may notice that although schemes in [15,24,18], along with our
schemes, all require a scalar multiplication in their signature generation (see
Table 2), their experimental costs differ. The reason for this discrepancy is the
fact that the cost of scalar multiplication over the generator P is faster than the
scalar multiplication over any curve points, and these differences are considered
in the experimental evaluations.

As shown in Table 6, our schemes’ performance is similar to that in their
counterparts in traditional PKI setting [13,19]. However, they outperform the
most efficient counterpart in certificateless setting [30] by having 65% lower end-
to-end delay and 60% smaller load for communication.
• Experiments on Low-End Device: We used an 8-bit AVR ATmega 2560 micro-
processor to evaluate the costs of our schemes on an IoT device. AVR ATmega
2560 is a low-power microprocessor with 256 KB flash, 8 KB SRAM, 4 KB
EEPROM, and operates at 16 MHz frequency. We used the 8-bit AVR library
of the FourQ curve presented in [20]. For our counterparts, we again conserva-
tively estimated their costs based on microbenchmarks in (i) FourQ curve 8-bit
AVR implementation [20], and (ii) NanoECC [27], that implements a curve that
supports pairings on 8-bit AVR microprocessors and offers κ = 80-bit security.

As depicted in Table 7, our schemes outperform all of their identity-based
and certificateless counterparts and have a more efficient encryption algorithm
than [26]. Our decryption algorithms, while being more efficient than all of their
identity-based and certificateless counterparts, are slightly less efficient than the
one in [26]. Similar to the trend in the analytical performance, our signature
schemes outperform their counterparts. As Table 8 shows, our schemes’ signing
algorithm are amongst the most efficient ones, while the verification algorithm
outperforms all the counterparts with similar communication overhead.
Limitations: The main limitation of our schemes is the size of the master
public key. Note that if there are different TTP in different domains and users

Compatible Certificateless and Identity-Based Cryptosystems for IoT 17

Table 7: Public Key Encryption Schemes on 8-bit AVR processor
Scheme sk Enc Comm. Dec PK mpk

ECIES [26] 32 17 950 967 610 + |c| 6 875 861 32 -
BF [9] 32 60 802 555 48 + |c| 56 278 012 32 32
AP [1] 32 166 213 087 48 + |c| 58 912 609 64 32
BSS [3] 64 22 791 835 64 + |M | 16 590 321 64 32
WSB [29] 64 17 091 636 64 + |c| 13 631 755 64 32

Our Schemes 32 11 789 632 48 + |c| 9 883 161 32 32K
All sizes are in Bytes, and all computations are in CPU Cycles.

Table 8: Digital Signature Schemes on 8-bit AVR processor
Scheme sk Sign Comm. Verify PK mpk

Schnorr [24] 32 4 263 298 642 17 902 958 32 -
GG [15] 32 4 263 298 96 17 902 958 32 32
AP [1] 32 62 487 032 64 221 226 015 64 32
KIB [18] 32 7 025 861 64 20 617 583 96 64

Our Schemes 32 4 263 298 64 10 955 369 32 32K
All sizes are in Bytes, and all computations are in CPU Cycles.

often communicate with the users in those domains, it would make sense to
store different mpk. Otherwise, the users only need to store mpk for their own
systems. We can reduce the size of the mpk in exchange for a small performance
loss. For instance, with k = 32, we can reduce the size of the mpk by four times.

7 Related Work

There is a comprehensive literature covering different aspects of IDB and CL
systems. Remark that most of the closely related works have been discussed in
Section 3 and 5 in terms of security models and performance metrics. Overall, the
main difference in our work is to focus on the achievement of inter-compatibility
between IDB and CL with a high efficiency, with respect to existing alternatives.

The idea of IDB cryptography was proposed by Shamir [25]. However, the
first practical instance of such schemes was proposed later by Boneh and Franklin
[9] using bilinear pairing. To get the full adaptive-identity, chosen-ciphertext se-
curity guarantees without sacrificing performance, Boyen [10] described an aug-
mented versions of the scheme in [8] in the random-oracle model. However, the
augmented version also requires multiple pairing computations in the decryption
algorithm. Following [7], several pairing-free signature scheme were proposed.
Galindo and Garcia [15] proposed a lightweight IDB signature scheme based on
[24] with reduction to the discrete logarithm problem.

CL cryptography [1] was proposed to address the private key escrow problem
in IDB systems. In the same paper, the authors proposed an IND-CCA encryp-
tion scheme along with a signature and key exchange schemes. Following their
work, Baek et al. [3] proposed the first IND-CCA secure certificateless encryption
scheme without pairing. The scheme is constructed using Schnorr-like signatures
in partial private key generation algorithm. Recently Won et al. [29] proposed
another efficient IND-CCA encryption scheme that is specifically used for key
encapsulation mechanisms. There has been a number of works that focus on the

18 Behnia et al.

Table 9: Key Exchange Schemes on 8-bit AVR processor
Scheme sk User Comp. Comm. PK mpk

Ephemeral ECDH [13] 32 18 039 710 642 32 -
ECHMQV [19] 32 24 601 857 642 32 -
TFNS [28] 32 82 356 781 32 32 32
AP [1] 32 221 226 015 96 64 32
YT [30] 160 54 212 824 160 128 64

Our Scheme 32 18 015 493 64 32 32K
All sizes are in Bytes, and all computations are in CPU Cycles.

security models of certificateless systems. In most of the proposed models (e.g.,
[1]) a Type-II adversary is assumed to generate the keys honestly, and initiate
the attacks only after the setup phase.

Acknowledgments. This work is supported by the Department of Energy
Award DE-OE0000780 and NSF Award #1652389.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.S. (ed.) Advances in Cryptology - ASIACRYPT 2003. pp. 452–473. Springer
Berlin Heidelberg (2003)

2. Au, M.H., Mu, Y., Chen, J., Wong, D.S., Liu, J.K., Yang, G.: Malicious kgc at-
tacks in certificateless cryptography. In: 2nd ACM Symposium on Information,
Computer and Communications Security. pp. 302–311. ASIACCS (2007)

3. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption without
pairing. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) Information Security.
pp. 134–148. Springer Berlin Heidelberg (2005)

4. Behnia, R., Ozmen, M.O., Yavuz, A.A.: ARIS: Authentication for real-time IoT
systems. In: IEEE International Conference on Communications (ICC). pp. 1855–
1867. ICC, ACM, New York, NY, USA (2019)

5. Behnia, R., Ozmen, M.O., Yavuz, A.A., Rosulek, M.: Tachyon: Fast signatures
from compact knapsack. In: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1855–1867. CCS ’18, ACM, New
York, NY, USA (2018)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM conference on Computer and
Communications Security (CCS ’93). pp. 62–73. ACM, NY, USA (1993)

7. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based iden-
tification andăsignature schemes. Journal of Cryptology 22(1), 1–61 (Jan 2009)

8. Boneh, D., Boyen, X.: Efficient Selective-ID secure identity-based encryption with-
out random oracles. In: Theory and Applications of Cryptographic Techniques
(EUROCRYPT ’04). pp. 223–238 (2004)

9. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
Advances in Cryptology - CRYPTO 2001. pp. 213–229 (2001)

10. Boyen, X.: A tapestry of identity-based encryption: practical frameworks com-
pared. IJACT 1(1), 3–21 (2008)

11. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet x.
509 public key infrastructure certificate and certificate revocation list (crl) profile.
RFC 5280, RFC Editor (May 2008)

Compatible Certificateless and Identity-Based Cryptosystems for IoT 19

12. Costello, C., Longa, P.: FourQ: Four-dimensional decompositions on a Q-curve over
the mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology –
ASIACRYPT 2015. pp. 214–235. Springer Berlin Heidelberg (2015)

13. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22, 644–654 (November 1976)

14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Advances in Cryptology - CRYPTO ’99. pp. 537–554 (1999)

15. Galindo, D., Garcia, F.D.: A schnorr-like lightweight identity-based signature
scheme. In: Progress in Cryptology - AFRICACRYPT 2009. pp. 135–148 (2009)

16. Girault, M.: Self-certified public keys. In: Proceedings of the 14th International
Conference on the Theory and Application of Cryptographic Techniques (EURO-
CRYPT ’91). pp. 490–497 (1991)

17. Huang, X., Mu, Y., Susilo, W., Wong, D.S., Wu, W.: Certificateless signature
revisited. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) Information Security
and Privacy. pp. 308–322. Springer Berlin Heidelberg (2007)

18. Karati, A., Islam, S.H., Biswas, G.: A pairing-free and provably secure certificate-
less signature scheme. Information Sciences 450, 378 – 391 (2018)

19. Krawczyk, H.: HMQV: A high-performance secure diffie-hellman protocol. In: Ad-
vances in Cryptology - CRYPTO 2005. pp. 546–566 (2005)

20. Liu, Z., Longa, P., Pereira, G.C.C.F., Reparaz, O., Seo, H.: FourQ on embedded
devices with strong countermeasures against side-channel attacks. In: Fischer, W.,
Homma, N. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2017.
pp. 665–686. Springer International Publishing, Cham (2017)

21. Ozmen, M.O., Behnia, R., Yavuz, A.A.: Iod-crypt: A lightweight cryptographic
framework for internet of drones. CoRR abs/1904.06829 (2019), http://arxiv.
org/abs/1904.06829

22. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) Advances in Cryptology — EUROCRYPT ’96. pp. 387–398. Springer Berlin
Heidelberg (1996)

23. Reyzin, L., Reyzin, N.: Better than BiBa: Short one-time signatures with fast sign-
ing and verifying. In: Proceedings of the 7th Australian Conference on Information
Security and Privacy (ACIPS ’02). pp. 144–153. Springer-Verlag (2002)

24. Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology
4(3), 161–174 (1991)

25. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advances in
Cryptology. pp. 47–53. Springer Berlin Heidelberg (1985)

26. Shoup, V.: A proposal for an iso standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112 (2001), https://eprint.iacr.org/2001/112

27. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: Nanoecc: Test-
ing the limits of elliptic curve cryptography in sensor networks. In: Verdone, R.
(ed.) Wireless Sensor Networks. pp. 305–320. Springer Berlin Heidelberg (2008)

28. Tomida, J., Fujioka, A., Nagai, A., Suzuki, K.: Strongly secure identity-based key
exchange with single pairing operation. In: Computer Security - ESORICS 2019
- 24th European Symposium on Research in Computer Security, Luxembourg,
September 23-27, 2019, Proceedings, Part II. pp. 484–503 (2019)

29. Won, J., Seo, S., Bertino, E.: Certificateless cryptographic protocols for efficient
drone-based smart city applications. IEEE Access 5, 3721–3749 (2017)

30. Yang, G., Tan, C.H.: Strongly secure certificateless key exchange without pairing.
In: Proceedings of the 6th ACM Symposium on Information, Computer and Com-
munications Security. pp. 71–79. ASIACCS, ACM, New York, NY, USA (2011)

http://arxiv.org/abs/1904.06829
http://arxiv.org/abs/1904.06829
https://eprint.iacr.org/2001/112

	Compatible Certificateless and Identity-Based Cryptosystems for Heterogeneous IoT

