Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things

Rouzbeh Behnia
University of South Florida
Sarasota, Florida, USA
behnia@usf.edu

ABSTRACT

A digital signature is an essential cryptographic tool to offer authen-
tication with public verifiability, non-repudiation, and scalability.
However, digital signatures often rely on expensive operations
that can be highly costly for low-end devices, typically seen in the
Internet of Things and Systems (IoTs). These efficiency concerns
especially deepen when post-quantum secure digital signatures are
considered. Hence, it is of vital importance to devise post-quantum
secure digital signatures that are designed with the needs of such
constraint IoT systems in mind.

In this work, we propose a novel lightweight post-quantum
digital signature that respects the processing, memory, and band-
width limitations of resource-limited IoTs. Our new scheme, called
ANT, efficiently transforms a one-time signature to a (polynomially-
bounded) many-time signature via a distributed public key com-
putation method. This new approach enables a resource-limited
signer to compute signatures without any costly lattice operations
(e.g., rejection samplings, matrix multiplications, etc.), and only
with a low-memory footprint and compact signature sizes. We also
developed a variant for ANT with forward-security, which is an
extremely costly property to attain via the state-of-the-art post-
quantum signatures.

KEYWORDS

Digital signatures; post-quantum security; authentication

ACM Reference Format:

Rouzbeh Behnia and Attila A. Yavuz. 2021. Towards Practical Post-quantum
Signatures for Resource-Limited Internet of Things. In Proceedings of ACM
Conference (Conference’21). ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Efficient authentication and integrity are vital requirements to pro-
tect emerging IoT systems and cyber-critical infrastructures against
common attacks such as man-in-the-middle, impersonation, data
tampering, and many others. A reasonable measure to provide
these properties is via message authentication codes. However, this
symmetric primitive, while very efficient, requires pair-wise key

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’21, June 2021, ,

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Attila A. Yavuz
University of South Florida
Tampa, Florida, USA
attilaayavuz@usf.edu

distribution and storage, and fails to provide non-repudiation and
public verifiability which are often required by many IoT applica-
tions like medical devices [1] and payment systems [2].

Digital signatures provide public verifiability and non-repudiation
while being widely scalable, therefore an ideal solution to provide
authentication and integrity for IoT applications. However, such
schemes usually require expensive operations that can make the
cryptographic overhead intolerable for some IoT applications, espe-
cially with those involving battery-powered and/or low-end devices
(e.g. [1]).

Following Shor’s algorithm [3], cryptosystems based on con-
ventional hard problems such as elliptic curve discrete logarithm
problem (e.g., ECDSA [4]) will be broken with the emergence of
quantum computers. Therefore, NIST has started rounds of stan-
dardizations for post-quantum cryptography.1 Hence, to ensure
long-term security, resistance to quantum attacks should be consid-
ered. However, following NIST’s third round of standardizations,
the most efficient signature schemes currently in the competition
(e.g., Dilithium [5]), could be very expensive for some IoT applica-
tions. For instance, for a resource-limited battery-powered medical
sensor [6], that periodically generates and signs sensitive medical
readings to be verified by a cloud service provider, the efficiency of
the signing algorithm directly translates to a longer battery life.

Therefore, an ideal post-quantum secure signature for low-end
IoT settings (e.g., battery-powered devices) should have the follow-
ing desired properties: (i) High computation, memory, and band-
width efficiency to minimize the burden of cryptography on the
intended IoT application. This may, for instance, translate into a
longer operation time for battery-powered devices due to the re-
duced energy consumption. (ii) It is not uncommon for low-end
IoT devices to operate in an adversarial environment where they
may be breached by an attacker via malware infiltration or physical
means. To this end, providing compromise-resiliency features such
as forward-security and side-channel resiliency are important.

The main goal of this paper is to create post-quantum signer-
efficient and compact digital signature schemes with forward-security
to meet the computation, memory, bandwidth, and battery needs of
resource-limited IoT devices while minimizing the interventions and
the cryptographic overhead.

1.1 Research Gap

In the classical domain (i.e., cryptosystems based on conventional
hard problems), there have been many successful algorithmic and/or
implementation attempts in proposing efficient signature schemes
that are designed with signer efficiency in mind. However, as al-
luded to, in the case of post-quantum secure schemes, the existing

!https://csre.nist.gov/projects/post-quantum-cryptography

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://csrc.nist.gov/projects/post-quantum-cryptography

Conference’21, June 2021, ,

Rouzbeh Behnia and Attila A. Yavuz

Table 1: Performance comparison of ANT and its lightweight counterparts on 8-bit Microcontroller

Signin, Private Ke Signature | Post-Quantum . Rejection/Gaussian
Scheme C%Iclesg (KB) Y g(KB) Pr?)mise Device ! (Sampling)

ECDSA [7] 81, 324, 870 0.03 0.06 X ATmega2560 (16 MHz) X
Ed25519 [8] 33, 918, 780 0.03 0.06 X ATmega2560 (16 MHz) X
SchnorrQ [9] 5, 211, 321 0.03 0.06 X ATmega2560 (16 MHz) X
ESEM' [10] 616, 896 0.03 0.047 X ATmega2560 (16 MHz) X
BLISS-I [11] | 10, 537, 981 0.25 0.7 v ATxmegal28A1 (32 MHz) v
ANT-II 657, 517 0.03 0.432 v ATmega2560 (16 MHz) X
ANT-FS-II 718, 678 0.09 0.432 v ATmega2560 (16 MHz) X

+ The current parameter sets of ESEM have be shown to be insecure. Further discussion is provided in Section 6.

post-quantum candidates (in the 3rd round of NIST post-quantum
standardization process) (e.g., [5, 12, 13]), while being elegant, are
not designed with resource-constrained IoT systems in mind. For
instance, while the current hash-based standards/candidates have
been extensively studied and improved both from the algorithmic
and implementation perspectives [14-17], the slow signing and
the large signature sizes may not be suitable for low-end devices
operating on low-bandwidth networks. For instance, SPHINCS+
[14] signature size is around 17,000 KB while its signature genera-
tion (on commodity hardware) is about two magnitudes of times
slower than the lattice-based counterparts (e.g., Dilithium [5]). As
another example, one can also consider the lattice-based candidates
[5, 12] currently in the third round of standardization. They are
more efficient than their hash-based counterparts for the signing
speed and signature size, but they still require rather expensive
operations (e.g., vector-matrix multiplications). While there have
been attempts to enhance the performance, for instance, by im-
proving the Number Theoretic Transform (NTT) operation (e.g.,
in [5]), when these schemes are implemented on low-end devices,
they often incur high computation and communication overhead,;
which aside from the high end-to-end delay, directly translates to a
lower operation time for battery-powered devices.

1.2 Our Contribution

We propose a new signer-efficient (lightweight) signature scheme
with post-quantum security called ANT. ANT is specifically designed
to provide computation and energy-efficient signing with com-
pact signatures for resource-limited IoT devices. The main idea is
to eliminate the public key generation, storage, certification, and
transmission from the signer while keeping the efficiency of a near-
optimal lattice-based one-time signature [18]. Another reason for
choosing this particular one-time signature is that it is based on a
very well-studied problem (e.g., shortest integer solution problem)
that a current lattice-based candidate [5] is also based on. Specifi-
cally, we introduce a distributed public key construction algorithm,
which exploits the key aggregation property of one-time lattice-
based signature via a set of honest-but-curious servers, without
requiring any intervention from the signer. This saves the signer
from the burden of generating and transmitting one-time public
keys, thereby offering a near-optimal yet polynomially-unbounded
number signing capability. We also propose a forward secure vari-
ation of ANT that vastly enhances its breach-resiliency. Lastly, we

propose a Merkle tree based variant to enable an efficient certifica-
tion , which is often omitted in the context of one-time signatures.

1.3 Desirable Properties

Some of the desirable properties of our schemes are as follows:
(i) Near-optimal signing efficiency: The signature generation of ANT is

almost as efficient as its underlying (near-optimal) one-time sig-
nature. This high signing efficiency directly translates to a lower
energy consumption and longer operation time when implemented
on battery-powered devices. As depicted in Table 1, ANT is 8x and
16X faster than its most efficient conventional (i.e., SchnorrQ [9])
and post-quantum (BLISS [11]) counterparts, respectively, when
implemented on 8-bit microcontroller. The signing of ANT is also
comparable to one of the most efficient conventional (EC-based)
signatures with distributed verification called ESEM [10], and this
is even without considering the recent attacks on the optimizations
used in ESEM. When implemented on commodity hardware (see
Table 2), ANT is at least 10X faster than its counterparts, currently
in the third round of NIST PQC standardization.

(ii) Memory efficiency: ANT is memory efficient for the signer. Firstly,
the private key size of ANT is as small as those in ECDSA and
SchnorrQ [9]. Secondly, since ANT does not require the signer to
compute a commitment (unlike done in BLISS [11] or Dilithium
[5]), it has minimal (compared to its post-quantum counterparts)
memory expansion at the signer’s side. Moreover, unlike some
online/offline and token-based schemes, ANT does not require the
signer to generate and store tokens that will be depleted after a
certain number of signatures are generated [19].

(iii) Compact signature: ANT and its variants, unlike its lattice-based
counterparts (BLISS [11] or Dilithium [5]), are not based on the
Fiat-Shamir with aborts (FSA) paradigm [20]. In the FSA paradigm,
the masking term, which directly affects the signature size, needs to
have a large norm to fully mask the private key. Therefore, ANT and
its variants enjoy from a smaller signature size than their post-
quantum counterparts. For instance, the signature size of ANT-II is
about 5.5X smaller than the ones in Dilithium-II

(iv) Side-channel resiliency: Current lattice-based signatures [20]
(e.g., [5, 21]) based on the FSA paradigm rely on methods such as
Gaussian or rejection sampling that are shown to be prone against
side-channel attacks [22-24]. Moreover, there exist side-channel
attacks exploiting the weak random number generators (specially
in low-end devices) in signatures based on Fiat-Shamir transform

Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things

[25]. However, ANT does not require any Gaussian or rejection
sampling during the signing. Moreover, the private key components
are generated deterministically, and therefore, it is not prone to the
common side-channel attacks mentioned above.

(v) Forward Security: The forward security property ensures the au-
thenticity and integrity of the data items before an attack point. It
is achieved by evolving the secret key periodically (e.g., every hour
or per signing). Forward secure signatures can substantially en-
hance the breach resiliency of critical infrastructures, and therefore
have various applications in IoTs and forensics (e.g., [26]). To our
knowledge, ANT-FS is the first signer-optimal polynomially-bounded
lattice-based signature with forward security.

(v) Improved Post-quantum Security: ANT, unlike lattice-based sche-

mes [5, 21] relying on the FSA paradigm [20], does not use random
oracles model (ROM). As it is shown in [27], the transformation to
provide quantum security proof for signature schemes in the ROM
could incur some efficiency loss. Since ANT security is not based on
such assumption, the post-quantum security is achieved without a
significant efficiency loss.

1.4 Limitations

The high signer efficiency in ANT is achieved by moving the burden
of public key computation to a set of servers. More specifically,
the verifier needs to contact the server(s) to obtain the public key
of the signer corresponding to a particular signature. The high
bandwidth requirement for the servers and the verifier is due to
the fact that the public key communication overhead in the new
scheme is per signature. This should be particularly considered
for communication-heavy applications. However, as stated in our
use-cases, we assume the verifier’s machine is at least a commodity
hardware with a stable high-bandwidth connection. Note that in our
scheme, the signer does not need to interact with any party to gen-
erate the signature. We assume that servers are honest-but-curious
and t-private (Definition 4). That is, ANT will remain secure even if
(t — 1) parties collude. ANT is a suitable candidate for applications
where highly efficient signing is a priority and few milliseconds of
delay on the verifier’s side (due to the interaction with servers) is
tolerable.

2 PRELIMINARIES

Notation. We work on a ring R = Zg[x]/(x™ + 1) for a prime q
with n being a power-of-two. Each element of R is represented
as a polynomial of degree n — 1. The scheme is parametrized by
n,q,k,1, ﬂxy,/)’c and fyer. We denote vectors as bold letters (i.e., a)

while scalars are denoted non-bold. a i D denotes a is being
sampled randomly from set the D. |a| denotes the bit length of a,
ie., |a| = log, a. For a vector a = (ay,...,a,) we define ||a||c =
max{|a;| :i=1,...,n}. We use k to denote our security parameter.

We define K C R with small coefficients (i.e., < fyy) as our
private key space. S C R is defined as our signature space with
coefficients < fiyer. We use Hi(+) to map arbitrary length messages
to our message space M with vectors with exactly . number of
1 or —1 with the rest fo the elements being 0. We also set Hy :
{0,1}* x Zp — {0,1}". We define a Pseudo Random Function
PRFq : {0,1}* — {0,1}*.

Conference’21, June 2021, ,

o« Sig(m,sk,c) {0,1} « Ver(m, o, pk.)

pk. < PKConstr(c,I)

v v
'\g \né ‘\é
Server 1 Server 2 Server 3
sk sko sks

Figure 1: System model with three public key servers

DEFINITION 1. Given the ring R and a matrix A € R the
Small Integer Solution over Rings problem (Ring-SIS,, ,, & 1, ﬁxy) asks

to find a non-zero vector s € R! such that ||s||eo < Pxy and As = 0
mod q.

DEFINITION 2. A signature scheme consists of four algorithms
SGN = (Setup,Kg,Sig, Ver) defined as follows.

- params < SGN. Setup(1%): Given the security parameter 1%,
it sets up the systems by outputting the system parameters
params.

- (sk, pk) < SGN.Kg(params): Given params, it outputs the
private and public key pair (sk, pk).

— 0 < SGN.Sig(m, sk): Given the message m and the signer’s
private key sk, it outputs the signature o.

- {0,1} « SGN.Ver(m, o, pk): Given a message-signature pair
(m, o), and the claimed signer’s public key pk, it outputs a
decision bit {0, 1}.

We define Lyubashevsky and Micciancio one-time signature
(LM-0TS) scheme [18] as follows.

DEFINITION 3. Lyubashevsky and Micciancio one-time signature
LM-0TS = (Setup, Kg,Sig,Ver) is defined as follows.

— params <« LM-0TS.Setup(1%): Given security parameter
K, system setup starts by selecting the parameters g, n, k, [,
and the ring R. It then selects A € R}XL and publishes
params = (q,n, k, 1, A) for all the users in the systems.

— (sk, pk) « LM-0TS.Kg(params): The user selects [s1,s2] €
K!>2 a5 their private key and compute t = As; € R, t’ =
Asy € R. It sets sk < [s1,s2] and pk « (t,t').

- z « LM-0TS.Sig(sk, m): Given sk and m, the signer first
computes the signature as z « s;H1(m) + s2.

- {0,1} « LM-0TS.Ver(m, z, pk): Given a message-signature
pair (m,z) and the public key pk, the verifier checks if
ATz = tH;(m) + t’ holds, outputs 1, else outputs 0.

DEFINITION 4. A protocol is called computational t-private [28] if
it is computationally hard for any subset of serversT" where [T'| < t, to
produce/compute any information other than what could have been
computed individually from their set of private inputs.

3 MODELS

In this section, we define our system and security models.

Conference’21, June 2021, ,

3.1 System Model

Our system model is designed around heterogeneous IoT systems
where battery-powered and low-end devices, which may need to
operate for long periods of time, broadcast signed measurements
to the resourceful verifiers (e.g., a laptop). As shown in Fig. 1, there
are three type of entities in our system model: (i) The singer which
is deemed to be highly resource-limited. The signer is not expected
to store and/or communicate the public keys, it only uses its private
key to compute the signature o¢, for period c. This is crucial to
enable efficient signing and meet the stringent requirements of the
low-end signer in our system model. (ii) The verifier is considered
to be a rather resourceful machine (e.g., commodity hardware) with
high bandwidth connection, capable of communicating with the
public key servers. (iii) Lastly, ¢ distinct honest-but-curious (t = 3 in
Fig. 1) and t-private servers (Definition 4).

After the initialization step, we assume the existence of a network
that consists of a verifier and our servers. In our model, the public
key pk. is constructed in a distributed fashion. The verifier can
query for public key components pkj ¢ (for 1 < j < t) from the
distributed servers before or after receiving the signature o, from
the signer.

We call our model a signature scheme with distributed public key
computation (DPC). In addition to the algorithms defined in Defi-
nition 2, the new scheme has a public key construction algorithm
PKConstr(-) that enables the verifier to obtain the public key for
a particular signature. We will discuss different variations of our
models with different features/properties in Section 4.

DEFINITION 5. A signature scheme with distributed public key
computation consists of four algorithms SGN-DPC =
(Kg,Sig,Ver,PKConstr) defined as follows.

- params < SGN-DPC. Setup(1¥): Given the security param-
eter 1%, it sets up the systems by outputting the system
parameters params.

- (sk,c.(ski,...,sks)) < SGN-DPC.Kg(params): Given the pa-
rameter params, the signer computes the initial state ¢ and
its private key sk. Using the private key sk it computes the ¢
private key components {ski, ..., sk; } to be securely trans-
mitted to the servers. Note that this algorithm would only
takes place once to sign polynomial number of signatures.

— 0 « SGN-DPC.Sig(m, sk, ¢’): Given a message m, the signer’s
private key sk and the current state ¢’, it outputs the signa-
ture o = (z, c), where c is the updated state.

- pke < SGN-DPC.PKConstr(c, I): Given c and server indexes
I = (1,...,t), it queries the partial public key pkj . that
corresponds to the ¢’ h signature, for each server in I and
computes the final public key pk, for state c.

- {0, 1} « SGN-DPC.Ver(m, o, pk.): Given a message-signature
pair (m, o), and the claimed signer’s public key pk., obtained
from the above algorithm, it outputs a decision bit {0, 1}.

3.2 Security Model

Following the system model given above, we assume our ¢ public
key servers are t-private (Definition 4). We also assume that our
servers are honest-but-curious where they follow the protocol but
strive to learn as much as possible from the information being
received, observed or shared.

Rouzbeh Behnia and Attila A. Yavuz

In the following definition, we define the security of signature
schemes. Our only deviation of the standard EU-CMA definition
[29] is that we equip A with two additional oracles defined below.

- CrptServer(j): For 1 < j < t, this oracle provides A with
the secret seed associated with server j. This oracle can be
queried for up to t — 1 different servers and it is essential to
capture the t-private property of our DPC model.

— PKConstr(st, j): Given the state ¢, and 1 < j < ¢, this oracle
returns the partial public key pk; ..

After the initialization phase (i.e., SGN-DPC.Setup(-) and
SGN-DPC.Kg(+)), A is given access to the signature generation ora-
cle, CrptServer(-) and PKConstr(-).

A wins, if it outputs a valid message-signature pair (that was not
previously outputted from the sign oracle) after making polynomially-
bounded number of queries.

DEFINITION 6. Existential Unforgeability under Chosen Mes-
sage Attack (EU-CMA) experiment for a signature scheme with

Lo o EU-CMA ;
distributed verification Exptg ;e is defined as follows.

- params < SGN-DPC. Setup(1%)

- (sk, st) < SGN-DPC.Kg(params)

_ (m* 0'*) - ﬂSGN—DPC.Sig(~),CrptServer(-),PKConstr(-)(.)

- If 1 « SGN-DPC.Ver(m®*,o*, pk), m* was not queried to
SGN-DPC. Sig(-), and CrptServer(-) has been only called on

maximum of ¢ — 1 servers, return 1, else, return 0.
The EU-CMA advantage of A is defined as AdvELCMA -

o SGN-DPC.
Pr[Expté ght = 11.

Forward Security. A forward secure (FS) signature scheme is a
key-evolving digital signature scheme where the operation of the
signature generation is divided into time periods, and each time
period uses a different private key to sign a message [30]. Hence,
FS signature scheme has an additional key update algorithm to
evolve the secret key at the end of each time period. In our model,
since we update the secret key after each instance of signature
generation, to reduce the complexity of our model, we incorporate
the private key update functionality in both SGN-DPC. Sig(-) and
SGN-DPC.PKConstr(-). Where in SGN-DPC. Sig(-) the update hap-
pens after every instance of signature generation algorithm and
in SGN-DPC.PKConstr(-), happens after each public key query on
distributed servers.

The security model of FS signatures is similar to the model in
Definition 6 except that the adversary is equipped with an addi-
tional oracle, BreakIn(-), which returns the current private key to
the adversary A . In the case of our scheme, if the adversary has
queried j signature queries to the signing oracle, the BreakIn(:)
oracle will return the (j + 1)-th private key to the adversary. In
addition to the winning condition in Definition 6, the secret key
corresponding to the forgery signature should have never been
outputted by BreakIn(-) (i.e., to prevent trivial forgery).

4 PROPOSED SCHEME

The main requirement for our proposed scheme is to ensure commu-
nication, computation and storage efficiency for the signer, while
maintaining a reasonable overhead for the verifiers with a dis-
tributed public key computation. We assume that the verifiers are
resourceful, as it is typically the case for many IoT applications

Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things

(e.g., resourceful servers collect the data and verify it). Our design
objectives are as follows: (i) An efficient signing algorithm that
avoids costly operations (e.g., rejection sampling) and only requires
efficient symmetric key based operations and efficient arithmetics.
(ii) Avoiding online/offline methods that require the signer’s in-
tervention after a certain time period (e.g., singing T signatures).
(iii) The signer should not store precomputed tokens (e.g., unlike
online/offline signatures, optimization tables) for efficient memory
usage. (iv) The signature should be small-constant size.

We achieve the above properties by efficiently transforming an
efficient one-time signature [18] to a polynomially-bounded many
time signature. This is done by shifting the public key generation
and communication to a set of ¢ public key construction servers
where the verifier would communicate with before attempting to
verify a signature. We emphasis that, after offline initialization
phase, the signer never interacts with the public key servers, and
operates as in traditional signature schemes. This is a key design
property for ANT to achieve near-optimal signer efficiency.

4.1 The Basic Scheme

In this section, we describe our basic scheme ANT, followed by its
forward security version ANT-FS and variations to allow for more
efficient public key certification methods. and Samp; : {0,1}* —
K’ and Samp, : {0,1}* — K’!. The distribution of X" is computed
based on the number of public key servers and K.

We propose a distributed post-quantum signature scheme with
efficient signature generation for low-end devices. We present our
basic scheme ANT in Algorithm 1. As depicted in Algorithm 1, in
the ANT.Kg(-) algorithm, the signer will generate ¢ private key
components (ski, .. ., sk;) and sends them to the ¢ servers. Note
that the servers could also be preloaded with these secret keys,
upon the production of the low-end device.

The signature generation of the one-time scheme [18], presented
in Definition 3, requires the signer to generate a new public key
for each signature. This significantly increases signer computation
and transmission overhead (signature plus public key per message),
and likely inhibits its practice uses for low-end IoT systems. We
address this significant limitation by leveraging the additive ho-
momorphism of the keys in [18] to shift the public key generation
burden to the distributed servers in our model. Therefore, the sig-
nature generation algorithm ANT. Sig(-) is highly efficient and does
not require any involvement of the server and is completely non-
interactive. The verifier can initiate the ANT.PKConstr(-) algorithm
to obtain the public key pk, for the time period ¢ by interacting
with the t servers. Note that the verifier can initiate this algorithm
at any time (e.g., before the time period c).

After obtaining the public key pk., the verifier initiates ANT . Ver(-)
which is again non-interactive, to verify the signature.

4.2 The Forward Security Scheme

Forward secure signatures are designed to improve the breach re-
siliency of cyber infrastructures by mitigating the consequences of
attacks where private keys (signing keys) are compromised. The
main idea is therefore to update the private key(s) after each signa-
ture generation/public key query such that the new key cannot be
used to sign for past time periods.

Conference’21, June 2021, ,

Algorithm 1 ANT: Basic Scheme

(params) « ANT.Setup(1%): Given 1%, generate the parame-
ters based on LM-0TS.Setup(1%).
1: return params = (q,n,k, 1, Pxy, Puer, fc, A € RI;XI)

(sk,c.(sk1,...,sks)) < ANT.Kg(params): Given 1%, generate
the signer’s private key and the private seeds for the ¢ servers.
sk & (o, 1)%
: Set statec =0
: for j e Iwherel ={1,...,t} do
skj < PRF{(sk,)
: Send the private key components {skq, . .
6: return (sk,c)

N T N

v

. sk¢} to the ¢t servers

o « ANT.Sig(m, sk, c): Run by the singer to issue a signature
on m.

cce—c+1

cforj=1,...,tdo

skj < PRF1(sk,)

Xj,c < Sampy(skj,c),yj,c < Sampa(skj,c)
Xe < Xc +Xj e, Ye < Ye T Yjc

: 2z «— XcHi(m, ¢) + ye

7: return o = (¢, z)

1S I N I

=

pke < ANT.PKConstr(c, I): This algorithm is initiated by the

verifier. Given ¢ and j € T each server returns (tc,j,t, j) and

the verifier computes the full public key pk..
. At server j do:
Xj,c < Sampy(skj, c),yjc < Sampy(skj, c)
tjc Xj’CA,t}’C —¥jcA
Send pkj,c < (tj,c, t}’c) to the verifier
. Verifier computes te < te + tj ¢, t; < t; + t},c

Lo S O R

: return pk; = (t, t}.)

{0,1} « ANT.Ver(m, o, pk.): Given pk. obtained from the
above algorithm, the verifier verifies the signature as follows.
1: if ||z|lo < Pver then:
2 Parse pk, as (¢, t..)
3: if Az = tcHi(m, ¢) + t, holds, then return 1

4: else return 0

In this section, we present a forward secure variation of ANT, called
ANT-FS, in Algorithm 2. The initial seed is generated as a x bit
string sk. sk is then used to generate server seeds skj . (Step 4 in
ANT-FS.Kg(-)) and then deleted immediately (Step 5 in ANT-FS.Kg(-)).
ANT-FS achieves forward security by using a hash chain on the
server’s seeds on the signer’s side during signature generation and
evolving the seeds on the server’s sides using a new public key con-
struction algorithm ANT-FS.PKConstr(-). Additionally, ANT-FS en-
joys from a fast singing since it does not require the regenerating of
the server seeds via PRF calls. However, this comes with the cost of
having a linear (to the number of servers) private key size. Note that
the verification algorithm for ANT-FS is identical as in the original
scheme in Algorithm 1.

Conference’21, June 2021, ,

—" o= (z,¢) ﬁ

o < Sig(m, sk,c) {0,1} < Ver(m,o, pk, Auth,)

I(pkc, Auth,) < PKConstr(c,I)

N O [1
s1 ios2, i s3

§ &> g & ied
sky A S £ sk A S 5 sk A

(L 1)xasuopin — (0043490 ‘#0%4yd)

Figure 2: Batch Certification with Merkle Tree

4.3 Signer independent offline certification
management

As discussed, the scheme proposed in Section 4 is the base ver-
sion of ANT, where the verifier contacts each server through the
ANT . PKConstr() algorithm to receive the corresponding public key
pk¢ . We do not consider public key certification in the base ver-
sion of the scheme proposed in Algorithm 1. In this section, we
provide two variations of ANT which focus on different public key
certification methods.

There has been a wide array works to efficiently transform one-
time signatures to multiple-time [31] or polynomially-bounded
many time signatures [32, 33]. However, generally, whenever a
one-time signature is used arbitrary number of times, it will require
arbitrary number of public keys and certificates. This problem is
addressed in hash-based signatures by bounding total number of
signatures (albeit polynomially-bounded in [32]) and building a
Merkle tree MT on top. This is the main reason that such schemes
suffer from very large signatures. Here, due to the main purpose of
the scheme to be suitable of resource-limited devices (often operat-
ing on low-bandwidth networks), we avoid very large signatures by
presenting two methods that enable public key certification with-
out the involvement or incurring additional costs on the (low-end)
signer in our design.

4.3.1 Individual Public Key Certification. In order to provide public
key certification, we propose a variation of the ANT.PKConstr(-) in
Algorithm 4. In the new ANT.PKConstr(-) algorithm, every server
Jj € I computes their public key components pkj . using the pro-
vided secret seed and sends it to all other servers. In the second step,

Rouzbeh Behnia and Attila A. Yavuz

Algorithm 2 ANT-FS: The Forward Secure Variant

(params) « ANT-FS.Setup(1%): This algorithm is identical to
the one in Algorithm 1.

(c, (ski,c, ... sks,c) < ANT-FS.Kg(params): Given 1¥, gener-
ate the signer’s private key and the private seeds for the ¢
servers.

sk & {0, 1)%

: Set statec =0

: for j e IwhereI={1,...,t} do

Skj’c — PRFl(Sk,j)

: delete sk

6: Send private key components for period c, {ski,c, ... sks ¢}, to
the t servers.

7: return sk « {skqc,...sk; .} and state ¢

T

o

0 « ANT-FS.Sig(m, sk): Run by the singer to issue a signature
on m.

cce—c+1

forj=1,...,tdo

X¢,j < Sampy(skj ¢, c),Ye,j < Sampy(skj ¢, c)
Xe ¢ Xc +X¢,j,Ye < Ve +Ye,j

3kj,c+l — Hg(skj’c), delete Skj’c

G W =

.z «— xcHi(m, ¢) + ye
: return o = (¢, z)

8N o

pke «— ANT-FS.PKConstr(c,I): This algorithm is initiated by
the verifier. Given c and j € I each server returns (tc j,t

o)
updates its private key component, and the verifier computjes
the full public key pk,.

: At server j do:

Xj ¢ < Sampy(skj ¢, c),yj,c < Sampy(skj c,c)

tjc < Xj cA, t}’c —YjcA

skj,c+1 < Ha(skj,c)

Send pkj,c < (tjc, t](,c) to the verifier

. Verifier computes te < tc +tj ¢, t; <t + t},c

: return pk; = (tc, t},)

IR U T

{0,1} « ANT-FS.Ver(m, o, pk¢): This algorithm is identical to
the one in Algorithm 1.

all other servers would use these partial public key components
to compute the final public key pk. and send it to the certificate
authority (CA) to issue the certificate cert,. While this method has
optimal communication overhead, it requires interaction with the
CA (by the distributed public key servers) for a verification request.

The unique design of the new scheme enables the utilization of a
precomputation method to improve the performance of the verifica-
tion algorithm in both ANT and ANT-FS. More specifically, given the
signer in our schemes is not involved in the verification algorithm
and since ANT.PKConstr(-) does not depend on the message, in the
certification methods in Algorithm 4, the servers can precompute
pke for the future 2 signatures (ie, ¢ = 1,...,2Y). The public
keys pk. along with their corresponding certificate cert. can then

Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things

Conference’21, June 2021, ,

Algorithm 3 MT-ANT: Merkle Tree Based Scheme with Certification

Algorithm 4 Public Key Construction with Certification

(params) < MT-ANT. Setup(1%): This algorithm is identical to
the one in Algorithm 1 except, in addition to all the parameters
a parameter y is also selected.

(sk,¢) < MT-ANT.Kg(params): This algorithm is identical to
the one in Algorithm 1.

(pkroot,certroor) <— MT=-ANT.MTConstr(I, y):

i: forj=1,...,tdo

2: forc=0,...,2Y do

3 Xj ¢ < Sampy(zj,c),yj,c < Sampy(zj,c)

4 tjc < Xj cA, t]’.’C —VjcA

5: pkj,c — (tj,c,tjl-,c)

6: Send pk;, ¢ to other t — 1 servers

7. forc=0,...,2Y do

8 After receiving all pkj ¢, egch server computes:

9% te=Xitcandt, =TIt

10: pke — (tc,t)

11: (MT, pkrootr) «— MT.Init(pke,..., pkar)

12: All servers store the MTwith root pkyoor

13: Send pkyoor to the CA to obtain certroor

14: We assume all users are initialized by pkyoor and certypor
15: return (pkroor, certroor)

o « MT-ANT.Sig(m, sk, c): Run by the singer to issue a signa-
ture on m.

c—c+1

cforj=1,...,tdo

skj «— PRFy(sk, j)

Xj ¢ < Sampy(skj,c),yj,c < Sampy(skj,c)
Xe < Xc +Xj e, Ye < Ye V)

2« XcHi(m, ¢) + ye

7. return o = (c, z)

Do Wy e

=y

(pke¢, Auth) < MT-ANT.PKConstr(c, I): This algorithm is ini-
tiated by the verifier. Given c , the servers return the leaf pk,
and the corresponding authentication path.

1: A server j € I works as follows:

2: Runs (pkc, Authg) < MT.Output(c)

3: return (pk¢, Auth,)

{0,1} «~ MT-ANT.Ver(m, o, pkc, Authc): Given pk. obtained
from the above algorithm, the verifier verifies the signature as
follows.

1: if 1 & MT.Verify(pkroot, pkc, Auth.) then:

2: if ||z]joo < Prer then:

3: Parse pk. as (tc, t}.)

4: if Az = tcHi(m, ¢) + t. holds, then return 1

5. else return 0

be either stored on the servers to be downloaded on demand or
directly downloaded to the verifiers’. This will significantly reduce
the online overhead of ANT.PKConstr(-) algorithm.

(pke, certe) « ANT.PKConstr(c):
i: forj=1,...,tdo
2 Xj,c < Sampy(skj,c),yj,c < Sampy(sk;,c)
3 te XAt < YA
4
5

Pkj.c < (L.t)
Send pkj, ¢ to other t — 1 servers
6: After receiving all other pkj . from severs compute: t;
te +ti o, t, —t. +t;’c
7: pke — (te,t))
8: Send pk, to the CA to receive cert,
9: return (pk., certc)

4.3.2 Batch Certification with Merkle Tree. To minimize certificate
request, our construction also allows for the adoption of Merkle
Tree (MT) [34]. This well-studied method has been adopted in a
number of other schemes as well (e.g, [33]). Generally, an MT-based
scheme consists of the following algorithms:

- (MT, pkroot) < MT.Init(xy,...,x,):Givennvaluesxy,...,xn,

this algorithm will construct a tree of hight |n| with n leaves
and outputs MT and its root pkyoo;-

— (pke, Authg) < MT.Outputt(c): Given the index c, this al-
gorithm outputs the leaf at location ¢, i.e., pk¢ and its corre-
sponding authentication path Auth.

- {0,1} « MT.Verify(, pkc, pkroot, Authc): Given the root
pkroot, aleaf at location ¢, i.e., pk¢, and its alleged authenti-
cation path, this algorithm outputs a decision bit {0, 1}.

We present our signature scheme with a Merkle tree called
MT-ANT in Algorithm 3. The new scheme requires an additional
algorithm called MT-ANT.MTConstr(-) that is run once (for every 2V
signatures) among the servers to construct the MT by initiating
the MT.Init() algorithm. As also depicted in Fig. 2, the servers
collaborate to compute a MT by computing 2V public keys and then
use them to construct the tree. For certification purposes, root can
then be sent to the CA for certification. This method simplifies
the public key certification process by requiring to contact the CA
only once (to authenticate the root of the tree) to sign 2¥ messages.
All the dashed lines in Fig. 2 are only executed once for every 2V
messages signed. We note that once all the leaves are depleted, the
servers, without the intervention of the signer, can generate a new
tree.

Using this method, signature verification will require the servers
to send the authenticating path along with the final public key
pke, and therefore it incurs additional y communication overhead.
Note that, unlike other solutions, this does not imply that our
scheme is 2 time since, after the depletion of 2V public keys, a
new tree (of arbitrary size) can be generated by the server, without
the interaction of the signer. One can see the direct relationship
between y (i.e., the size of the tree) and the communication overhead
between the verifier and the public key generation servers. However,
since the tree generation does not require any signer intervention,
if the communication bandwidth is a concern, to improve verifier
communication, once can keep y smaller.

Conference’21, June 2021, ,

5 SECURITY ANALYSIS

THEOREM 1. If there exist an adversary A that breaks the EU-
CMA property (as defined in Definition 6) of ANT in Algorithm 1, then
one can construct another algorithm B that runs A as a subroutine
and breaks the SIS problem.

Proor. Our proof technique follows a similar approach in [18].
As state in Section 3, we assume the public key servers are compu-
tational t-private. We assume that the reduction algorithm 5 has
knowledge of the private key components of the t servers (i.e.,
z1,...,zr) secret. Therefore, given the knowledge of 8 of the pri-
vate key components, one can see that it can simulate SGN-DPC. Sig(+)
and PKConstr(-) oracles as in EU-CMA experiment (Definition 6)
exactly as in the original scheme. 8B responds to CrptServer(i) for
i € {1,...,t} queries by returning the corresponding private key
components z;.

Note that following Definition 4, A can only initiate CrptServer(-)
queries on t — 1 distinct servers. Consequently, if we assume A has
knowledge on all but one server, then to guess the private key
components it either has to guess the correct z; or (x;,y;). It can
come up with a correct guess with probabilities 27% and 22nlBy],
Therefore, without knowing at least one of the private key compo-
nents pairs, the adversary has to correctly compute a valid partial
signature x;H;(m, c) + y;. The scheme proposed in Algorithm 1 is
based on the one-time signature obtained from a Ring-SIS based
one-time signature similar to that in [18]. We therefore rely on the
results of Theorem 3.2 in [18].

The theorem states that a OTS scheme is correct and secure if it
meets the following properties.

~ Closure: {z < xH1(:) +y} € S holds for all x,y € fxy and
H; as defined in Section 2, where S = {z € R! : ||z|lo <
26cBy -

— Collision Resistance: The function family {A: S — R"|A €
H} is collision resistance where given A, the adversary
A has only a negligible probability to output a collision
(u #u’,Au = Au’).

- (e,9)-Hiding: Given A, X,y € fxy and h « Hy(m,c), let:

Ta(x,y,h) = {x",y" € By : Ax =AX" AAy = Ay’ Axh +y
=x'h+y’
be the set of keys that are compatible with the public key
pk = (t¢, t.) and signature xh+y for h as defined above. Then
the scheme is (¢, §)-Hiding ifPrx’yeﬂxy [Vh # K, |Ta(x,y, BN
TAG, Y, h')| < elTa(x,y, B[] > .
In the following, we use the hiding property where ¢ = %
and § = 1.

LEMMA 1. For he function {Au:S — R"|A e RIXIY s collision
resistance under the average-case Ring-SISy , k1. By problem defined
in Definition 1.

Proor. Following the results of [18], if the adversary A can
find two vectors u,u’ € S and u # v’ for a random A € RI¥,
such that Au = Au’, then it can find a solution to the average-case
Ring-SIS . k.1, 5,, Problem since A(u —u’) = 0 and [ju — v'fleo <

4B Pxy- O

Rouzbeh Behnia and Attila A. Yavuz

LEMMA 2. The closure property holds for the scheme proposed in
Algorithm 1.

Proor.

IXH1 () + ¥lloo < [IXH1()lloo + Iy lleo < BePry + BeBxy = 2BcPxy

[m]

LEmMA 3. ([18])Letn, I, q and fx be positive integers, R = Z[x]/(x"+

1) a polynomial ring and suppose that fi* > 2X foq™. Then for any
A € R and ¢ € B we have Prx,},(_/gxy[Elx’,y’ € fxy : Ax =
AX' NAy=Ay Ax-c+y=x"-c+y]=1-27%

Proor. For any A € H, lets consider the function {(A,c) :
(x,y) € K — (pk,z)}. The domain size of this function is |K]| =
ﬂxy”l . ﬁxy”l. By Lemma we have z = xH;(-) + y < 2ffyy. There-
fore, the number of possibilities for z is (at most) (48 fxy + .
We also note that there are ¢>" possibilities for pk = (t,t’). For
a fixed A, ¢, and signature, there are at most ((4ffxy + 1Hrhgn
possibilities for (pk, z). Therefore, given the results in [18, Lemma
4.1], the probability is 1 — 27 O

LEMMA 4. For 2fix, +1 2 g/t 2%/" and a large q, the scheme
satisfies the (%)—Hiding property.

Proor. By the result of the previous lemma, over the random
choice of x and y, for every message the size of the set I'(x, y,) (for
h « Hi(m,c)) is at least 2 with probability 1 — 27%. We will then
show that for all A, x,y and h # K/, the size of the set ['(x,y, h) A
I'(x,y,h’) is at most 1. Next, given the definition of I'(-), we have
xh+y=x"h+y’ and xh’ +y = x’h’ +y’. These relations can be
written as (x — x’) - (h — h’) = 0. Since 2fyxy fc(nfc + 1) < g and
since R is an integral domain, we have x = x’ which impliesy = y’
and this concludes our proof.

[m]

Therefore, given the results in [18, Theorem 3.2] and the Lemmas
above, our scheme proposed in Algorithm 1 is secure in the sense
of Definition 6. O

LEmMA 5. The scheme proposed in Algorithm 2 is forward secure.

Proor. Firstly, to respond to BreakIn(c) queries for the state/period

¢, B outputs the full private key of the user (x¢, y¢). Note that this
is much stronger than returning the private key components or
partial signing keys. The scheme proposed in Algorithm 2 utilizes a
hash and delete method on the seeds zj ¢+1 < Ha2(zj,¢) to compute
new seeds for each state/period c+ 1 on both the signer and server’s
side and after the new seed is generated the old will be deleted.
Given the properties of the hash function Hy(-) the provided hash
chain ensures that if one (or all) private key components are com-
promised in time period c, it would be infeasible to compute the
private keys prior to state c. Similar methods has also been used in
other schemes such as XMSS [33]. O

Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things

ANT-FS-II 96.79% 3121%
ANT-II 97.07% 2.93%
ESEM 97.24% 2.76%
SchnorrQ 80.66% 19.34%
Ed25519 39.04% 60.96%
ECDSA 21.74% 78.26%
0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Pulse Sensor Signing

Figure 3: Energy of Signature Generation vs Pulse Sensor

6 PERFORMANCE EVALUATION

In this section we evaluate and compare the performance of ANTand
its variants (i.e., ANT-FS and MT-ANT) with some of its closely related
counterparts.

As compared to the our base scheme in [18], we significantly
reduce the signer memory requirement and communication by not
requiring the signer to store and send the public key. For instance,
even if we do not consider the hurdle of certificates, the public key
size for 138 bits security would be nearly 7.20 KB (for each signa-
ture) to be stored at the signer’s side and be communicated with
each signature. Also note that for a one-time scheme in [18], the
signer needs to compute a vector-matrix multiplication to compute
the public key for every new signature to be generate. As afore-
mentioned, these performance gains at the signer’s side come at
no cost for the signer. Instead, given our model, which assumes a
computationally capable verifier, the verifier needs to obtain the
partial public keys from a set of t distributed servers to form the
final public key.

We have fully implemented ANT and its forward secure vari-
ant (i.e., ANT-FS) on commodity hardware by utilizing the latest
tools that were used in some of the most recent lattice-based candi-
dates in NIST’s PQC standardization process. Note that we did not
provide the performance analysis of the MT-ANT variant since the
signer’s computations will be identical to those in ANT. We have
also performed a very conservative cost estimation of our schemes
on an 8-bit platform.

We compare the performance of our schemes with state-of-the-
art digital signature schemes for both of these platforms, in terms
of computation, storage and communication.

More specifically, we compare our schemes with both conven-
tional and post-quantum signatures on both commodity hardware
and low-end platform (if available). For our lattice-based counter-
parts, we have selected Dilithium and Bliss.

6.1 Parameters

We set parameters for the R-SIS problem to be hard. Following
[5], we set parameters for ANT-II and ANT-III with k = 103 and
k = 138, respectively. Therefore, for both of the variants we set
q = 223 _ 213 _ 1 n = 256 [5]. Additionally, for ANT-II, we set
ﬂxy =6,k = 4 and [= 3 and for For ANT-III, we set ﬁxy =5k=5
and | = 4. Given we use the similar tool sets and hard problems as
the current lattice-based NIST candidates (e.g., [5]), we believe any

Conference’21, June 2021, ,

future improvements in terms of parameters will contribute to the
performance of the new scheme as well.

6.2 Performance on Commodity Hardware

6.2.1 Hardware Configurations. We used a laptop equipped with
Intel i7 Kaby Lake Refresh processor @ 1.90 GHz and 16 GB RAM.
For our distributed public key servers, we set up Amazon EC2
instances, equipped with an Intel Xeon E5 processor that operates
at 2.4 GH. Our servers are located in Oregon.

6.2.2 Libraries. Our implementation is based on PQC NIST candi-
date [5]. PRF is instantiated with AES in counter mode using Intel
intrinsics and used SHAKE256 for hashing. Our implementation is
not optimized for any specific platforms and for our counterparts,
we used their base reference implementations. Our proof-of-concept
implementation is available at https://github.com/Rbehnia/ANT.git.

6.2.3 Experimental Results. Table 2 presents the experimental re-
sults of our schemes along with comparison with its post-quantum
counterparts.

Signer Computation & Storage: ANT is designed to provide ultra-
efficient signing with post-quantum security especially for resource-
limited IoT devices (e.g, a microcontroller). Therefore, the signature
generation algorithm of ANT, after computing the private key (Steps
2-5 in ANT. Sig(+)), only requires a sparse vector multiplication and
one vector addition.

Therefore, as depicted in Table 2, both ANT-II and ANT-III signifi-
cantly outperform their hash-based counterparts. As compared to
one of the most efficient candidates, currently in the third round
of NIST PQC standardization [5], our scheme is significantly faster
and more memory-efficient on the signer’s side. Comparing the
signature generation of [5] with ours, firstly, since we do not need
to have the rejection sampling step (which could require the rep-
etition of the signing algorithm to 10x) we do not require any
repetition of the signing algorithm. Secondly, due to the one-time
nature of our scheme, we do not need to compute a commitment in
our signing which requires a vector-matrix multiplication. These
result in more than 10X faster signature generation in ANT as com-
pared to Dilithium-II and Dilithium-III. In terms of storage and
communication, ANT only a 32 byte seed to regenerate the private
key components using the Samp functions and for signature size,
ANT enjoys from more than 5.5X smaller signature size as compared
to Dilithium variants. Moreover, even though explicit side-channel
attacks have not been discovered, the concern of such attacks has
been studied in [24]. Additionally, while the matrix A does not
need to be stored and can be regenerated via a "Expand" function,
it still requires memory expansion at the signer side, this memory
expansion is up to 14.38 KB for this matrix. Lastly, based on our
analytical analysis, the signature size in [24] will be nearly 1.2 KB
larger than the one in our scheme for 138 bits security.

Verifier Computation & Storage: Even though ANT and its variants
are designed with the focus on providing efficient signature gener-
ation, they still enjoy from a rather efficient verification algorithm,
as compared with its most efficient counterparts. As alluded to,
for each signature verification, ANT requires the verifier to request
public key (components) from the t honest-but-curious public key
servers, and given our setup, this communication overhead is mea-
sured to be on average around 25 ms with our EC2 instance in

https://github.com/Rbehnia/ANT.git

Conference’21, June 2021, ,

Rouzbeh Behnia and Attila A. Yavuz

Table 2: Experimental performance comparison of ANT and its post-quantum counterparts on a commodity hardware

Scheme Signing Private Key' | Signature | Verification | Public Key | Rejection/Gaussian
Cycles (KB) (KB) Cycles (KB) (Sampling)

SPHINCS+ [14] 222, 503, 189 0.06 17, 088 14, 681, 407 0.03 X
XMSS-MT [15] 8, 075, 528 5.86 4.85 2, 490, 844 0.06 X
Dilithium-1II [5] 865, 921 2.288 2.42 216, 654 1.312 v
Dilithium-III [5] 1, 387, 776 3.184 3.293 348, 640 1.952 v
ANT-II 81, 333 0.03 0.432 293, 184 5.89 X
ANT-III 84, 805 0.03 0.56 399, 214 7.36 X
ANT-FS-II 82, 829 0.09 0.432 293, 184 5.89 X
ANT-FS-III 86, 914 0.09 0.56 399, 214 7.36 X

F For SPHINCS+ we use the parameters n = 16, h = 66, d = 22, b = 6, k = 33, w = 16 for 128-bits security. For XMSS-MT, we benchmarked the XMSSMT-
SHA2_20/2_256 variant. Dilithium-II and Dilithium-III provide similar security to our ANT-IIl and ANT-III variants. We consider ¢ = 3 (i.e., three servers setting) which
affects the private key size in our forward secure variant. Note that for ANT the verification cycles does not include the network delay to receive partial public keys

which is around 25 ms per server in our setting. Also, the public size in ANT is per-signature.

Oregon. We also note that as opposed to Dilithium, the public key
storage overhead in our scheme is per signature. We stress that
given our system model and performance gain on the signer we
believe this is a worthy trade-off.

6.3 Performance on microcontrollers

6.3.1 Hardware Configurations. IoT systems employ a plethora of
embedded and resource constraint processors mainly to minimize
the size, power consumption and cost. In one line, ARM Cortex
processors gain popularity. On the another line, truly embedded
devices with popular microcontroller are often 32-,16- or even 8-bit
have been considered in various IoT applications [35]. To ensure
that our proposed system meets the most stringent requirement of
these systems, we selected AVR ATmega 2560 microcontroller as our
embedded device mostly since it is adopted in practice, especially for
medical devices [6]. However, we expect its performance benefits
to apply to other class of IoT devices such as ARM Cortex M4
and others such 32-bit and 16-bit microcontrollers. AVR ATmega
2560 is an 8- bit microcontroller with 8 KB SRAM, 256 KB flash
memory, 4 KB EEPROM and maximum clock speed is 16 MHz. Our
AVR ATmega 2560 operates at 5V voltage level and takes 20 mA of
current. It is powered by a 2200 mAh power-pack. We measured the
energy with th formula E = VxIxt, where I is the amperage/current
and t is the computation time. With the aim of measuring the energy
overhead of our proposed systems on low-end IoT devices, we
measured the energy consumption of a pulse sensor [36] compatible
with the AVR ATmega 2560.

6.3.2 Libraries. We recommend ANT-II for deployment on 8-bit
microcontroller due to its smaller parameter sizes. We have se-
lected our counterparts with a comparable security level. We used
CHACHAZ20 stream cipher [37] for random generation functions
due to its high efficiency. We simulated our hash functions with
BLAKE2s [38] since it is specially optimized for low-end devices.

6.3.3 Experimental Results. Table 1 and Figure 3 presents the ex-
perimental results and energy consumption of our schemes along
with comparison with its post-quantum counterparts.

To our knowledge, there is no 8-bit implementation of Dilithium
available. Therefore, we have selected BLISS [21] as our post-quantum
counterpart. BLISS and Dilithium are both based on the "Fiat-Shamir
with Aborts" framework [20]. However, BLISS is based on NTRU

(as opposed to LWE and SIS) and is known to have enjoyed from
a faster signature generation than Dilithium. However, note that
BLISS, while being faster than Dilithium, is not considered in NIST
PQC standardization process. One of the reasons could be the lack
of worst case reduction for the NTRU problem as opposed to other
lattice-based problems like the SIS. Another potential candidate
in the current NIST standardization process is Falcon [12]. Unlike
BLISS and Dilithium, Falcon is instantiated over NTRU lattices and
is based on the hash-and-sign paradigm with a trapdoor sampler
called "fast Fourier sampling". Falcon is known to be more RAM
efficient, however, in terms of signing speed, since Falcon relies on
64-bit floating point arithmetic, which is not natively available for
low-end devices (e.g., 8-bit processors), and has to be emulated, it
would become much slower than its FSA-based counterparts [39].
To provide a reference, the performance results reported in [40] on
an ARM Cortex-M at 168 MHz, the signing on Dilithium-III takes
8,348,349 cycles, while Falcon-I takes 80,503,242, that is nearly 10x
slower for a lower security level . For a compete signing speed
analysis between NIST candidates please see [40]. We also compare
ANT with a widely adopted classical scheme.

Singer Computation: Among our classical counterparts, ESEM [10]
performance is nearly comparable to our schemes. However, we
have included ESEM for the sake of completeness and note the
method that ESEM utilizes (BPV method [41]) to achieve this high
efficiency is based on the hidden subset sum problem which was
recently shown to be susceptible to a polynomial time attack [?
]. Therefore, to account for the security loss resulted from the
attack, ESEM parameters should be updated, which could result in
a less efficient scheme. However, the numbers represented here are
based on the original parameters. After ESEM, ANT-II and ANT-FS-
IT are 8% and 7x faster than our closet classical counterpart (i.e.,
SchnorrQ [42]). As depicted in 1, ANT-II and ANT-FS-II signature
generation are 16X and 13X faster than that in BLISS [11]. Similar
to our classical counterparts, ANT-II has an optimal private key size
of 32 bytes only. However, as stated in Section 4.2, the private key
size in ANT-FS is linear to ¢ - the number of public key generation
servers. The signature size in ANT is 30% smaller than that in BLISS.
However, note that since the signer is not involved in computing,
storing or communicating the public keys, the larger public key
size in ANT(and its variants) does not affect the performance of the
signer in any way.

Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things

Energy Consumption of the Signer: As for the energy consumption
of ANT (and its variants), as presented in Figure 3, with a 2200 mAh
battery ANT-II and ANT-FS-II can generate approximately 745,000
and 675,000 signatures. With its current (insecure) parameters, this
number is slightly higher at 798, 000 for ESEM. We estimated this
number to be at least one order of magnitude smaller (compared to
ANT) for BLISS [11].

We compared the energy overhead of our schemes, and their
classical counterparts, on a pulse sensor (with potential medical
applications). We considered the sensor access time interval (read)
to be every 10 seconds. Given its data sheet, the sensor draws 4.5mA
of current at 3 V. Our 8-bit microcontroller (i.e., ATmega2560) takes
1 ms to read from the sensor. While running, it takes 5V X 20mA
X1ms, and pA in standby (power-saving) mode. As depicted in 3,
after ESEM, which is not secure with its current parameters, ANT-II
and ANT-FS-II minimize the energy over head and only consume
2.93% and 3.21% of energy (as compared to the pulse sensor), re-
spectively. This is significantly lower than its closet counterpart
SchnorrQ [42], which consumes around 19% of the energy. Given
the microcontroller type (operating at 32 MHz) and the signing cy-
cles, we anticipate the BLISS would also have a much higher energy
consumption overhead as compared to our schemes. Therefore, our
experiments confirm that ANT (and its variants) significantly reduce
the energy consumption overhead on low-end IoT devices.
Side-Channel Resiliency: To our knowledge, the signing algorithm
of ANT and its variants is not susceptible to side-channel attacks
that are specific to some lattice-based constructions. For instance,
since the singing algorithm of ANT and its variants does not require
any Gaussian sampling or rejection sampling it is not susceptible
to attacks targeting [22-24] these operations. We note that these
attack can be addressed with the cost of additional computation
and/or communication overhead.

Acknowledgment

The work of Attila A. Yavuz is supported by the NSF CAREER
Award CNS-1917627 and an unrestricted gift via Cisco Research
Award.

REFERENCES

[1] C. Camara, P. Peris-Lopez, and J. E. Tapiador, “Security and privacy issues in
implantable medical devices: A comprehensive survey,” Journal of Biomedical
Informatics, vol. 55, pp. 272 — 289, 2015.

[2] Y. Chen, W. Xu, L. Peng, and H. Zhang, “Light-weight and privacy-preserving
authentication protocol for mobile payments in the context of iot,” IEEE Access,
vol. 7, pp. 15210-15 221, 2019.

[3] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303-332,
1999.

[4] ANSI X9.62-1998: Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA), American Bankers Associa-
tion, 1999.

[5] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle,
“Crystals - dilithium: Digital signatures from module lattices,” Cryptology ePrint
Archive, Report 2017/633, 2017, http://eprint.iacr.org/2017/633.

[6] M. Rushanan, A. D. Rubin, D. F. Kune, and C. M. Swanson, “Sok: Security and
privacy in implantable medical devices and body area networks,” in Proceedings
of the 2014 IEEE Symposium on Security and Privacy, ser. SP ’14. IEEE Computer
Society, 2014, pp. 524-539.

[7] K. MacKay, “micro-ecc: Ecdh and ecdsa for 8-bit, 32-bit, and 64-bit processors,”
Github Repository, 2013. [Online]. Available: https://github.com/kmackay/micro-
ecc

[8] M. Hutter and P. Schwabe, “Nacl on 8-bit avr microcontrollers,” in Progress in
Cryptology — AFRICACRYPT 2013, A. Youssef, A. Nitaj, and A. E. Hassanien, Eds.

(12]

(13]

[14]

[15

[16

[17]

(18

[20

[21]

~
5,

(23]

[24]

™~
2

[26]

[27

[28

Conference’21, June 2021, ,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 156-172.

Z.Liu, P. Longa, G. C. C. F. Pereira, O. Reparaz, and H. Seo, “FourQ on embedded
devices with strong countermeasures against side-channel attacks,” in Crypto-
graphic Hardware and Embedded Systems — CHES 2017, W. Fischer and N. Homma,
Eds. Cham: Springer International Publishing, 2017, pp. 665-686.

M. O. Ozmen, A. A. Yavuz, and R. Behnia, “Energy-aware digital signatures for
embedded medical devices,” in 2019 IEEE Conference on Communications and
Network Security (CNS), 2019, pp. 55-63.

T. Giineysu, V. Lyubashevsky, and T. Péppelmann, “Practical lattice-based cryp-
tography: A signature scheme for embedded systems,” in Cryptographic Hardware
and Embedded Systems — CHES 2012, E. Prouff and P. Schaumont, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 530-547.

P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon: Fast-fourier lattice-
based compact signatures over ntru,” Submission to the NIST? post-quantum
cryptography standardization process, 2018.

J. Ding and D. Schmidt, “Rainbow, a new multivariable polynomial signature
scheme,” in International Conference on Applied Cryptography and Network Secu-
rity. Springer, 2005, pp. 164-175.

D. J. Bernstein, A. Hiilsing, S. K6lbl, R. Niederhagen, J. Rijneveld, and P. Schwabe,
“The sphincs⁺ signature framework,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 2129?2146.

A. Hiilsing, L. Rausch, and J. Buchmann, “Optimal parameters for xmssmt,” in
Security Engineering and Intelligence Informatics, A. Cuzzocrea, C. Kittl, D. E.
Simos, E. Weippl, and L. Xu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 194-208.

A. Hilsing, J. Rijneveld, and P. Schwabe, “Armed sphincs,” in Public-Key
Cryptography—PKC 2016. Springer, 2016, pp. 446-470.

J. W. Bos, A. Hiilsing, J. Renes, and C. van Vredendaal, “Rapidly verifiable xmss
signatures,” IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 137-168, 2021.

V. Lyubashevsky and D. Micciancio, “Asymptotically efficient lattice-based digital
signatures,” J. Cryptology, vol. 31, no. 3, pp. 774-797, 2018.

A. A. Yavuz, “Eta: efficient and tiny and authentication for heterogeneous wireless
systems,” in Proceedings of the sixth ACM conference on Security and privacy in
wireless and mobile networks, ser. WiSec *13. New York, NY, USA: ACM, 2013,
pp. 67-72.

V. Lyubashevsky, “Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures,” in Advances in Cryptology — ASTACRYPT 2009: 15th International
Conference on the Theory and Application of Cryptology and Information Security,
Tokyo, Japan, December 6-10, 2009. Proceedings, M. Matsui, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 598-616.

L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice signatures and
bimodal gaussians,” in Advances in Cryptology — CRYPTO 2013: 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, R. Canetti and J. A. Garay, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 40-56.

L. Groot Bruinderink, A. Hiilsing, T. Lange, and Y. Yarom, “Flush, gauss, and reload
- a cache attack on the bliss lattice-based signature scheme,” in Cryptographic
Hardware and Embedded Systems — CHES 2016: 18th International Conference,
Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, B. Gierlichs and A. Y.
Poschmann, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp.
323-345.

T. Espitau, P. Fouque, B. Gérard, and M. Tibouchi, “Side-channel attacks on
BLISS lattice-based signatures: Exploiting branch tracing against strongswan
and electromagnetic emanations in microcontrollers,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
2017, pp. 1857-1874.

V. Migliore, B. Gérard, M. Tibouchi, and P. Fouque, “Masking dilithium - efficient
implementation and side-channel evaluation,” in Applied Cryptography and Net-
work Security - 17th International Conference, ACNS 2019, Bogota, Colombia, June
5-7, 2019, Proceedings, 2019, pp. 344-362.

C. Pereida Garcia, B. B. Brumley, and Y. Yarom, “"make sure dsa signing expo-
nentiations really are constant-time",” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: ACM, 2016, pp. 1639-1650.

H. N. Noura, O. Salman, A. Chehab, and R. Couturier, “Distlog: A distributed
logging scheme for iot forensics,” Ad Hoc Networks, vol. 98, p. 102061,
2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
$1570870519306997

E. Kiltz, V. Lyubashevsky, and C. Schaffner, “A concrete treatment of fiat-shamir
signatures in the quantum random-oracle model,” in Advances in Cryptology —
EUROCRYPT 2018,]. B. Nielsen and V. Rijmen, Eds. Cham: Springer International
Publishing, 2018, pp. 552-586.

Y. Ishai and E. Kushilevitz, “Improved upper bounds on information-theoretic
private information retrieval (extended abstract),” in Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing, ser. STOC '99. New

“n.

http://eprint.iacr.org/2017/633
https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc
https://www.sciencedirect.com/science/article/pii/S1570870519306997
https://www.sciencedirect.com/science/article/pii/S1570870519306997

Conference’21, June 2021, ,

York, NY, USA: Association for Computing Machinery, 1999, p. 79?88. [Online].
Available: https://doi.org/10.1145/301250.301275

[29] M. Bellare and P. Rogaway, “The security of triple encryption and a framework
for code-based game-playing proofs,” in Advances in Cryptology - EUROCRYPT
2006, S. Vaudenay, Ed. Springer Berlin Heidelberg, 2006, pp. 409-426.

[30] M. Abdalla and L. Reyzin, “A new forward-secure digital signature scheme,” in
Advances in Cryptology — ASIACRYPT 2000, T. Okamoto, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 116-129.

[31] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signatures with
fast signing and verifying,” in Proceedings of the 7th Australian Conference on
Information Security and Privacy (ACIPS *02). Springer-Verlag, 2002, pp. 144-153.

[32] D. J. Bernstein, D. Hopwood, A. Hiilsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn, “SPHINCS:
Practical stateless hash-based signatures,” in Advances in Cryptology — EURO-
CRYPT 2015: 34th Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer Berlin Heidelberg, April 2015, pp. 368-397.

[33] J. Buchmann, E. Dahmen, and A. Hiilsing, “Xmss - a practical forward secure
signature scheme based on minimal security assumptions,” in Proceedings of the
4th International Conference on Post-Quantum Cryptography, ser. PQCrypto’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 117-129.

[34] R.C.Merkle, “A certified digital signature,” in Proceedings on Advances in cryptol-
o0gy, ser. CRYPTO ’89. New York, NY, USA: Springer-Verlag, 1989, pp. 218-238.

Rouzbeh Behnia and Attila A. Yavuz

D. Atkins, “Requirements for post-quantum cryptography on embedded devices
in the iot”

“Pulse sensor by world famous electronics llc.” https://pulsesensor.com.

D. J. Bernstein, “New stream cipher designs,” M. Robshaw and O. Billet, Eds.
Berlin, Heidelberg: Springer-Verlag, 2008, ch. The Salsa20 Family of Stream
Ciphers, pp. 84-97.

[38] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “Sha-3 proposal

blake,” Submission to NIST (Round 3), 2010. [Online]. Available: http:
//131002.net/blake/blake.pdf

M. J. Kannwischer,]. Rijneveld, P. Schwabe, and K. Stoffelen, “pqm4: Testing and
benchmarking nist pqc on arm cortex-m4,” 2019.

A. Khalid, S. McCarthy, M. O?Neill, and W. Liu, “Lattice-based cryptography for
iot in a quantum world: Are we ready?” in 2019 IEEE 8th International Workshop
on Advances in Sensors and Interfaces (IWASI), 2019, pp. 194-199.

V. Boyko, M. Peinado, and R. Venkatesan, “Speeding up discrete log and factor-
ing based schemes via precomputations,” in Advances in Cryptology — EURO-
CRYPT’98: International Conference on the Theory and Application of Cryptographic
Techniques Espoo, Finland, May 31 — June 4, 1998 Proceedings. ~Springer Berlin
Heidelberg, 1998, pp. 221-235.

C. Costello and P. Longa, “Schnorrq: Schnorr signatures on fourq,” MSR Tech
Report, 2016. Available at: https://www. microsoft. com/en-us/research/wp-
content/uploads/2016/07/SchnorrQ. pdf, Tech. Rep., 2016.

https://doi.org/10.1145/301250.301275
https://pulsesensor.com
http://131002.net/blake/blake.pdf
http://131002.net/blake/blake.pdf

	Abstract
	1 Introduction
	1.1 Research Gap
	1.2 Our Contribution
	1.3 Desirable Properties
	1.4 Limitations

	2 Preliminaries
	3 Models
	3.1 System Model
	3.2 Security Model

	4 Proposed Scheme
	4.1 The Basic Scheme
	4.2 The Forward Security Scheme
	4.3 Signer independent offline certification management

	5 Security Analysis
	6 Performance Evaluation
	6.1 Parameters
	6.2 Performance on Commodity Hardware
	6.3 Performance on microcontrollers

	References

