
Received January 30, 2021, accepted February 17, 2021, date of publication February 24, 2021, date of current version March 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3061706

Anonymous Dynamic Spectrum Access and
Sharing Mechanisms for the CBRS Band
MOHAMED GRISSA 1, (Student Member, IEEE), ATTILA ALTAY YAVUZ 2, (Member, IEEE),
BECHIR HAMDAOUI1, (Senior Member, IEEE), AND CHITTIBABU TIRUPATHI1
1Electrical Engineering and Computer Science (EECS) Department, Oregon State University, Corvallis, OR 97331, USA
2Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA

Corresponding author: Attila Altay Yavuz (attilaayavuz@usf.edu)

This work was supported in part by the US National Science Foundation through NSF awards under Grant CNS-1162296 and Grant
CNS-1917627.

ABSTRACT The Federal Communications Commission (FCC) has released the 3.5 GHz (3550-3700 MHz)
band, termed Citizens Broadband Radio Service (CBRS), for shared broadband use between incumbent
federal and secondary users through dynamic and opportunistic spectrum access. FCC requires that this
band be operated and managed through the use of spectrum access systems (SASs), which are to be deployed
specifically for this purpose. The challenge is that SAS requires that secondary users provide some of their
private operational data, such as their physical location, identity and spectrum usage, in order for them to
acquire spectrum availability information. In this paper, we propose a privacy-preserving SAS framework,
TrustSAS, that synergizes state-of-the-art cryptographic mechanisms with blockchain technology to enable
anonymous access to SAS by protecting users’ privacy while still complying with FCC’s regulatory design
requirements and rules. We evaluate the performance of TrustSAS through theoretic analysis, computer
simulation and testbed experimentation, and show that it can offer high security guarantees, making it suitable
for SAS environments without needing to compromise private information of its secondary users.

INDEX TERMS Blockchain, Citizens Broadband Radio Service, operational privacy, spectrum access
system, spectrum databases.

I. INTRODUCTION
The Federal Communications Commission (FCC) con-
tinues its effort to promote dynamic and opportunistic
access to spectrum resources, and has recently promul-
gated, in its Report and Order [1], the creation of the
Citizens Broadband Radio Service (CBRS) in the 3.5 GHz
band (3550 - 3700 MHz). This opens up previously pro-
tected spectrum used by the US Navy and other Depart-
ment of Defense (DoD) members to enable spectrum sharing
between government incumbents and commercial systems.
In its CBRS report [1], [2], FCC prescribes the use of a
centralized spectrum access system (SAS) to enable and gov-
ern the sharing of the CBRS spectrum among incumbent (or
primary) users and CBRS (or secondary) users. Like the case
of TV white space (TVWS) access, SAS comprises multiple
geolocation spectrum databases (DBs) operated by different
SAS administrators. These DBs are required to communicate

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski .

amongst themselves to assure consistent and accurate fre-
quency use information across one another. Also, like in
the case of TVWS access, SUs seeking to obtain spectrum
resources need to query SAS using their exact location infor-
mation to be able to learn about spectrum opportunities in
their vicinity.

A typical SAS supports a three-tiered access model, with
three types of users: primary users (PUs), priority access
license (PAL) users, and general authorized access (GAA)
users. PUs are top/first tier users with the highest priority,
while new CBRS users, considered as secondary users, oper-
ate either at the second tier as priority access license (PAL)
users or at the third tier as general authorized access (GAA)
users [3]. PAL users are assigned through a competitive auc-
tion process and have priority over GAA users. They are,
however, required to vacate the spectrum upon the return of
PUs. GAA users, on the other hand, operate opportunisti-
cally, in that they need to query SAS to learn about which
portions of the spectrum are vacant—not being used by higher
tier (PU or PAL) users. Even though both PAL and GAA

33860 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-8684-3337
https://orcid.org/0000-0002-8680-9307
https://orcid.org/0000-0001-6829-2263


M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

users are considered as secondary users, in the remaining
parts of this paper, for ease of illustration, SU refers to a
GAA user, since only GAA users need to query DBs to learn
spectrum availability; PAL users acquire spectrum access via
bidding.

For completeness, we next list some of the key design
requirements that FCC has imposed for SAS in the 3.5 GHz
band.

A. KEY SAS REQUIREMENTS
As stipulated by FCC [1], SAS will have capabilities and
responsibilities that exceed those of TVWS databases [6]. It is
projected to bemore dynamic, responsive and generally capa-
ble of supporting a diverse set of operational scenarios and
heterogeneous networks [7]. While some of FCC’s require-
ments and rules for are similar to TVWS systems, other
requirements are only specific to SAS, which include [2]:

• Information gathering and retention: SAS administra-
tors are required to maintain accurate data about current
frequency usage at all time and in all different locations.
To meet this requirement, SUs must notify SAS with
their current operating parameters and the channels they
intend to use upon gaining knowledge of available fre-
quencies.

• Coexistence: This is to prevent interference among
the three tiers of users and assure a stable spectral
environment for commercial operations in the CBRS
band [2], [8].

• Auditability: SAS must maintain audit logs of all opera-
tions and events taking place in the system [9], including
write operations to DBs, users’ membership changes,
etc. These logs are used to verify system identities’
compliance with regulatory rules and policies.

It is therefore of paramount importance to incorporate and
meet these requirements when designing SAS. The challenge,
however, is that meeting such requirements presents great
privacy risks to SUs and, as a result, may impact the adoption
of this promising technology. We next discuss such privacy
risks.

B. SUs’ PRIVACY ISSUES IN SAS
There is a subtle privacy concern that arises with SAS, which
pertains merely to the fact that SUs are required to share
sensitive operational information with DBs in order for them
to be able to learn about spectrum opportunities in their vicin-
ity [2]. This information, which may include SUs’ sensitive
data, such as their locations, identities, spectrum usage meta-
data, and transmission parameters, may be collected by an
adversary or a malicious SAS administrators (also referred to
as service provider throughout) and exploited for economic,
political, or other purposes [10]. For instance, fine-grained
location information can easily reveal other personal infor-
mation about SUs including their behavior, health condition,
personal habits or even beliefs, especially when combined
with publicly available information [11]. Things could even

get worse when users are required to reveal their true iden-
tities, as it is the case in SAS, which could lead to more
serious privacy infringements as the gained knowledge can be
linked to specific individuals. Moreover, revealing spectrum
usage information can give a compromised SAS operators full
access to the spectrum usage habits, device type, times of
operation, and mobility information, just to name a few.

It will not be acceptable for most users to expose such
a sensitive information, especially in the presence of mali-
cious entities that are eager to exploit this information for
malicious purposes [12]. Such privacy risks may hinder the
wide adoption of this promising spectrum sharing technology.
Calls are starting to arise within the wireless community
to raise awareness about this issue as it is the case with
Federated Wireless in their comments to FCC regarding its
report and order [2]. Therefore, it is necessary to design
privacy-preserving mechanisms that protect SUs’ sensitive
information while at the same time abiding by FCC’s rules
and policies prescribed for SAS.

As most of these rules require SUs to share a great deal
of sensitive information, they seem to be conflicting with
SUs’ privacy objective. As a result, we are facing a dilemma:
On one hand, all SAS entities need to comply with SAS’s
requirements to have a stable, interference-free radio envi-
ronment. On the other hand, it is important to offer privacy
guarantees to SUs so as to promote this new spectrum shar-
ing technology. This dilemma makes the task of designing
SAS mechanisms that provide privacy guarantees to SUs,
while allowing them to use the system in compliance with
SAS’s requirements and rules a very challenging one. We
strongly envision that the public’s (long-term) acceptance of
the SAS paradigm will greatly depend on the robustness and
trustworthiness of SAS vis-a-vis of its ability to address these
privacy concerns.

C. LIMITATION OF THE STATE-OF-THE ART
Existing privacy-protection approaches have mostly focused
on preserving the location privacy of SUs in TVWS
database-driven spectrum sharing systems [11]–[16], which
have different requirements compared to the new CBRS SAS.
For instance, unlike SAS, these TVWS systems are not con-
cerned with coexistence and interference protection amongst
SUs, nor do they require SUs report their spectrum usage
information to the databases upon determining which bands
they will be using. Some of these approaches have relied on
the concept of k-anonymity, which provides a simple way to
hide the location of an SU by sending k queries that include
the location of the querying SU and some k − 1 randomly
chosen other locations which do not necessarily belong to the
same cluster or region. This kind of approaches offers weak
privacy guarantees unless the value of k is very large, in which
case it may pose practicality issues. Remark that k-anonymity
approaches do not offer a provable security guarantee, which
are necessary to precisely quantify and offer a high-level of
security.

VOLUME 9, 2021 33861



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

There have been some efforts that aim to preserve opera-
tional privacy for SAS in the 3.5 GHz band, but only for PUs,
which are, in this case,military and governmental entities. For
instance, Clark et al. [7] propose a general privacy framework
to evaluate the privacy of PUs in SAS and model the PU pri-
vacy problem as an optimization problem that aims to select
obfuscation strategies to protect privacy without severely
reducing the utility of the shared spectrum. Bhattari et al. [18]
propose an obfuscation strategy that can be implemented by
the spectrum database to perturbate responses to SUs spec-
trum queries in order to maximizePUs location privacy while
ensuring that the expected degradation in SUs access to the
spectrum does not exceed a threshold. While the PU privacy
issue is critical in SAS, it is, however, orthogonal to the work
that we present in this paper. Privacy preserving techniques
designed to protect the location information of PUs cannot
be applied directly to protect SUs’ location mainly because
PUs and SUs do not share the same kind of information with
DBs.

Despite the importance of providing privacy protection of
SUs in SAS, only a handful of approaches were proposed
to address this problem. P2-SAS [19] relies on multi-party
computation via Paillier partial homomorphic encryption.
This severely limits the type of functions that this scheme
can compute over the encrypted operational data of both
SUs and PUs to only some limited/basic operations. These
operations might not capture the complex models required
to calculate spectrum availability information. A direct use
of generic secure multi-party computation (SMPC) tech-
niques might also not be practical in SAS, since PUs are
military and governmental entities that do not want to con-
tinuously engage in an interactive protocol with SUs and
the spectrum database. Another limitation of SMPC solu-
tions is that they are vulnerable to collusion among multiple
parties.

PSEO in [5] requires DB to share an attenuation map of
the whole covered region with all SUs, who should use it to
calculate the interference that they may cause to a PU . This is
done by trying different combinations of PU operational data
at each possible location of the region covered by SAS, then
encrypt this map with Paillier partial homomorphic encryp-
tion along with the public key of the PU , and finally sends
them to the spectrum database. Each PU is also required
to calculate an interference map by trying all possible com-
binations of a SU operational data at every single location
of the covered region, then it encrypts the resulting map
using its public key and Paillier cryptosystem, and sends the
ciphertext to the spectrum database. The spectrum database
will multiply the two ciphertexts together and sends the
result back to the PU , who can decrypt it to compare the
maps. Based on this comparison, PU will decide whether
to allow the SU to use its resources. One can observe that
this scheme requires a very large number of costly Paillier
encryption over a large input size. Hence, it cannot scale for
a large number of SUs with a large area coverage, especially
with the fact that SAS is designed for highly dense areas

[21], [22]. It also places a high trust on SUs by assuming that
they will accurately and honestly calculate the interference.
This overwhelms SUs with heavy computation, and reduces
the role of DBs to just a simple gateway between PUs and
SUs. Finally, PSEO requires that SUs communicate directly
with PUs, which is not a realistic assumption as PUs in
SAS systems are military entities that will not be willing to
engage in an interactive protocol with all SUs that seek to
use their spectrum.

It is also worth to note that, aforementioned approaches
consider a single-service provider SAS architecture, which
deviates from the real-world architecture proposed by the
FCC. Moreover, various SAS specific requirements were not
considered. Specifically, they focus on the spectrum sharing
between PUs and SUs and do not consider the coexistence
between SUs themselves, the spectrum usage notification and
system auditability, all of which are requirements specifically
introduced for SAS by the FCC.

Tackling this issue is challenging, mostly due to the con-
flicting interests of guaranteeing SUs’ privacy protection
while meeting SAS’s design requirements. Besides, relying
on traditional privacy enhancing technologies to achieve
these goals is not be possible. For instance, simply using
digital signatures to satisfy the authentication requirement
will obviously expose the user’s identity which conflicts with
the anonymity goal. On the other hand, ensuring anonymity
may conflict with the authentication and the accountability
requirements of SAS and may, as a result, lead to external
adversaries gaining access and posing a serious risk to the
whole SAS.

Next, we summarize our main contributions in this work.

D. CONTRIBUTIONS
In this paper, we propose TrustSAS, a trustworthy design
framework that enables SUs to make use of spectrum oppor-
tunities in the CBRS band but without needing to compromise
their privacy, while at the same time complying with FCC’s
requirements and rules as outlined in Section I-A. More
specifically, this work, which is, to the best of our knowledge,
the first to achieve these seemingly conflicting goals, makes
the following contributions:

1) TRUSTWORTHY SAS FRAMEWORK
We observe that most of SAS’s design requirements conflict
with the privacy of SUs. This led us to design TrustSAS which
synergizes multiple cryptographic building blocks in an
innovative way and leverages the unique properties of the
blockchain technology to preserve SUs’ operational privacy
while meeting these requirements.

2) CLUSTERED SAS ARCHITECTURE
We propose to rely on a clustered system architecture
that helps TrustSAS enjoy a reasonable overhead while
offering high privacy and security guarantees for entities
in SAS.

33862 VOLUME 9, 2021



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

3) DETAILED PERFORMANCE ANALYSIS
We provide a thorough performance analysis that com-
bines theoretical cost estimation, simulation and experimen-
tation using implementations of the cryptographic building
blocks to measure the overhead introduced by the different
SAS components.
Improvements Over the Infocom’19 Conference Ver-

sion [23] This article is the extended version of [23], which
includes the following substantial improvements: (i) In this
submission, we address the case where malicious secondary
users may misbehave and operate on channels that are differ-
ent from the ones that were assigned to them.We rely on spec-
trum permits that are embedded to the physical-layer signals
to detect such behavior. (ii) In this submission, we provide
a more detailed security analysis of the proposed frame-
work and its different algorithms by including proofs to
the previously obtained security results. (iii) In this sub-
mission, we provide a more detailed performance analysis
that assesses the performance of the different algorithms and
building blocks of the proposed framework. We also evaluate
the impact that this framework might have on the system
level. This is achieved via simulation by modelling users’
join events, activities and placement within the clusters using
random processes.

The remainder of this paper is organized as follows:
Section II presents a high-level overview of the proposed
framework. Section III provides an overview of the main
building blocks used in our framework. Section IV describes
the proposed framework, TrustSAS. The security analysis
and performance evaluation of TrustSAS are provided in
Sections V and VI, and the paper is concluded in Section VII.

II. SYSTEM AND FRAMEWORK OVERVIEW
In this section, we present the system architecture and
provide a high-level overview of TrustSAS, the proposed
design framework that preserves SUs’ operational privacy
while meeting FCC’s design requirements and rules for SAS.
Detailed description of TrustSAS will be provided in later
sections.

A. ARCHITECTURAL COMPONENTS
As illustrated in Fig. 1, TrustSAS comprises three main
architectural entities: FCC, multiple DBs, and multiple SUs.
Without loss of generality, throughout the paper, we use FCC
to refer to FCC itself, or to any trusted third-party entity
that is appointed by FCC to act on its behalf. In TrustSAS,
FCC is responsible for enforcing compliance with regulatory
requirements, providing system keying materials, handling
the registration of SUs, and granting them permissions to
join TrustSAS. TrustSAS leverages and relies on the exis-
tence of multiple DBs for spectrum access, each typically
run by a different service provider. These DBs are assumed
to be synchronized and to be sharing the same content,
as mandated by FCC. TrustSAS also comprises multiple SUs
including a set of pre-registered SUs, that are assumed to be

deployed specifically for playing the role of anchor nodes in
TrustSAS. These anchor SUs serve to establish a peer-to-peer
(p2p) network for SUs and make it discoverable by new SUs.
As the focus of this framework is mainly on the security and
privacy mechanisms aimed at enabling anonymous access to
SAS by protecting the privacy of SUs while still complying
with FCC’s design requirements and rules, we do not consider
the impact of wireless channel reliability, and instead, assume
that SUs have reliable wireless access to the system. This pro-
posed TrustSAS is orthogonal (and hence complementary) to
the new and existing approaches that can be used to mitigate
the impact of the wireless channel impairments.
TrustSAS also maintains one global blockchain for the

entire system, and one local blockchain for each of its clusters
(see Fig. 1). Only DBs and cluster leaders can be validators
in the global blockchain to validate and propose blocks. For
the local blockchains, cluster leaders propose new blocks,
and these blocks are validated by the members of the cluster.
Using blockchains at the cluster as well as at the system
levels enables TrustSAS to log and keep track of all activities
and key events in a way that is available, yet immutable,
to all entities in the system, thereby allowing TrustSAS to
meet the auditability requirement, as we stated in Section I-A.
The two levels of blockchains that we have in the system
allow to separate cluster level information, which is recorded
in the cluster blockchain, from system level operations and
events, which are recorded in the global blockchain, for better
auditability. It also helps reducing the communication and
storage overheads in the system, and the amount of exposed
information regarding each cluster operations and its mem-
bers to other clusters and DBs. Cluster-level blockchains are
also used as a trusted infrastructure to generate and keep track
of the keys generated collaboratively by the member SUs
which are used to sign the information that the cluster will
share with the rest of the system.

FIGURE 1. TrustSAS architecture and initial operations.

Initial system setup has three main phases (refer to Fig. 1):
The content of eachDB can be viewed/modelled as an r×b

matrix D of size η bits, where r is the number of records
in the database, each of size b bits. Each record in D is a
unique combination of a cell number, representing the loca-
tion, a channel number, and other transmission parameters

VOLUME 9, 2021 33863



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

(e.g., max transmit power, duration, etc). In TrustSAS, each
record in D contains a smart contract that is to be created
by DBs to define channel usage rules, such as the maxi-
mum number of SUs allowed to transmit simultaneously in
given location over a specific channel, the maximum transmit
power each SU is allowed to use given the current number of
SUs present in a location, etc. Spectrum assignment within
each cluster follows the constraint imposed by the smart
contracts defined by the SAS spectrum databases specific to
each channel in each location. With these smart contracts,
TrustSAS ensures fair sharing of the spectrum resources
within each cluster, and limits the interference among SUs.
As the spectrum databases are aware of the spectrum usage
information of each cluster, and they have a global view of
the system-wise spectrum usage, it is up to the spectrum
databases to construct the spectrum availability information
in a way that also minimizes interference with PUs trans-
mission and also inter-cluster interference. All of this will
enable SAS to satisfy the coexistence requirement, described
in Section I-A.

We further assume that each record is signed with a com-
mon private key that is shared among DBs so that record
integrity could be verified later when fetched by SUs using
the corresponding public key. For simplicity, we assume that
channel usage is permitted over a fixed duration indepen-
dently from the channel, and that SUs need to query DBs
for an updated channel availability information periodically
every Tepoch, where Tepoch is a tunable system design param-
eter. The geographical area serviced by TrustSAS is modeled
as a grid of N × N cells of equal sizes, and an SU ’ location
is expressed through its cell index.

B. TrustSAS INITIAL SETUP
1) BOOTSTRAPPING PHASE
FCC needs to first create system parameters and keys, spe-
cific to TrustSAS, and share them with DBs. Also, before
joining TrustSAS, an SU first needs to register and request
SAS access privileges from FCC. Once registered, FCC pro-
vides the SU with the anchor SU list, membership keys, and
the procedure necessary for the SU to authenticate with and
join TrustSAS. Note that, in TrustSAS, all messages commu-
nicated between the SUs and the DBs are established over
secure channels, so as to ensure that the spectrum queries are
authenticated, not tampered with, and performed privately.
Secure channels will be established via traditional mecha-
nisms, and such mechanisms are ignored in this framework
to keep the focus on the other security aspects.

2) JOINING AND CLUSTERING PHASE
Registered SUs that join TrustSAS will maintain communi-
cation with one another via an overlay peer-to-peer (p2p)
network, and a newly joining SU will rely on anchor SUs
to discover and join the p2p network. As we discuss later,
TrustSAS relies on an anonymous digital signature tech-
nique, explained in Section III-C, to enable all these SUs to

anonymously authenticate and verify each other’s legitimacy
while peering with each other. This anonymous authentica-
tion will also enable SUs to enjoy system services anony-
mously, yet in a verifiable way, to break the link between their
sensitive operational data and their true identities.
TrustSAS adopts a clustering approach, where joined SUs

group themselves into clusters and elect cluster leaders, with
the leaders being responsible for representing their SUs for
interacting with other system entities. Not only will this
improve TrustSAS scalability, but also protect SUs’ privacy,
as it will limit the interaction withDBs to only cluster leaders.

Leader election could be achieved by making participant
SUs generate a random number using a verifiable random
function (VRF) similar to several blockchain protocols such
as Algorand [24], Dfinity [25], and Ouroboros Praos [26].
If the resulting random number satisfies a certain pre-defined
condition, it means that the SU was elected as a leader. The
leader can then broadcast a block along with the associ-
ated proof generated by the VRF to the network to cryp-
tographically prove that it was elected. This election could
be triggered anytime SUs within the cluster, through a BFT
consensus round, agree that a new leader needs to be elected.
There could be several ways to incentivize SUs to become
leaders. One possible way may be to guarantee that the leader
always has access to the spectrum during resource allocation,
no matter what the number of SUs is in the cluster, while
other SUs will have intermittent access to the resources if
these resources are overbooked.

Once clusters are established, SUs within each cluster dis-
tributively and collaboratively generate their cluster-specific
keys, which will be used later for blockchain related opera-
tions inside the cluster and for signing cluster-wise spectrum
agreements.

3) PEERING WITH DBs PHASE
Once clusters are formed, the leaders will anonymously
authenticate with DBs, and upon authentication, these DBs
will join and be part of the established p2p network. This
way,DBs will not be involved in the initial clustering of SUs,
and therefore they will not be able to infer the SUs’ location
information.

C. TrustSAS MAIN OPERATIONS
TrustSAS has two main operations (refer to Fig. 2):

1) QUERYING SPECTRUM AVAILABILITY INFORMATION
Each cluster leader acts on behalf of its SU members and
privately queries DBs for spectrum availability information.
Even though the true identities of all SUs, including lead-
ers, are hidden in TrustSAS, this is not sufficient to pre-
serve their operational privacy. In fact, since each record in
DBs is associated with a unique location, DBs may infer
the location of the leaders from their queries and can still
use this information for tracking purposes. To prevent this,
TrustSAS protects the leaders’ queries through the adoption
of private information retrieval (PIR) protocol [27], which is

33864 VOLUME 9, 2021



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

FIGURE 2. TrustSAS operations.

a mechanism that enables a user to retrieve a record from
a database while preventing the database from learning any
information about the identity of the record, nor that of the
user; this will be explained in Section III-D. After learning the
spectrum availability information, members of each cluster
will distributively reach an agreement on how the spectrum
resources are to be assigned among them.

2) NOTIFYING ABOUT SPECTRUM USAGE
Once a spectrum assignment agreement is reached, the cluster
leader will notify the DBs about its cluster spectrum usage,
as required by FCC. This information includes channels that
are to be used, total aggregate transmission power for each
channel at each cell, time of use, and other transmission
parameters. It will be used by TrustSAS to build knowledge
of the spectral environment and to maintain an accurate avail-
ability information to comply with the information gathering
and retention requirement. As we discuss in more details in
Section IV, TrustSAS ensures that cluster leaders report an
accurate and non-altered spectrum usage information that is
easily verifiable. Other leaders and DBs will distributively
reach an agreement about the validity of this information,
which, if valid, will be included in DBs’ records.
Please remark that the use of an overlay peer-to-peer net-

work, the clustering of SUs into multiple clusters based on
location, the use of the blockchain technology, and the key
management that involves the FCC, were not part of the orig-
inal design proposals for SAS systems. We have incorporated
these new aspects into our design to enforce the location
privacy of SUs but also abide by the requirements imposed by
the FCC as we show in the remaining parts of this manuscript.

In Section III, we explain the different technologies that
TrustSAS builds on to create a trustworthy SAS before we
present the details of TrustSAS in Section IV.

III. PRELIMINARIES AND BUILDING BLOCKS
A. THRESHOLD SIGNATURES
A (t, n)-threshold signature scheme is a special type of group
signatures, where n members jointly set up a group public

key while each retaining an individual secret key share.
At least t + 1 out of the n members of the group are
required and sufficient to create a group signature which
validates against the group public key. TrustSAS uses the
robust (t, n)-threshold BLS (TBLS) signature scheme [28],
which transforms BLS [29] into a threshold signature scheme
using secret sharing [30]. For completeness, we next briefly
describe TBLS.

Let G be a gap Diffie-Hellman group of prime order p,
where the computational Diffie-Hellman problem is hard, but
the decision Diffie-Hellman problem is easy [29]. TBLS com-
prises five subroutines as illustrated in Alg. 1. The first
subroutine, DKG, is the distributed key generation protocol
for discrete-log based systems [31]. DKG is jointly executed
by a set of n participants {P1, · · · ,Pn} and takes as input a
global publicly available information I and outputs a group
public key y. The private output of each participant Pi after
the execution of DKG is xi such that (x1, · · · , xn) is a (t, n)-
threshold secret sharing of the private key x = logg y ∈ Zp.
These shares are constructed using Shamir secret sharing [32]
such that any subset S of t + 1 participants can recover x
using Lagrange interpolation x =

∑
i∈S Lixi, where Li =∏

j∈S −zj/(zi − zj) is the Lagrange coefficient, zi = gxi is the
public key of Pi, and g is the generator of group G.

Algorithm 1 TBLS
1: (y, x1, · · · , xn, z1, · · · , zn)← DKG(I )
F y: group public key
F xi: participantPi’s private share of the group private key
x
F zi: public key of participant Pi, zi = gxi

F I ← {g, p,H}: public keying information where g: a
generator of G; p: order of G; H : {0, 1}∗ → G is a
cryptographic hash function.

2: σi← SIGNSHAREGEN(xi,m)
F σi: Pi’s signature share; m: message to be signed

3: valid ∈ {True,False} ← SIGNSHAREVERIF(m, σi, zi)

4: (m, σ )← SIGNRECONSTRUCT(H,L1, · · · ,Ln)
FH: Set of t + 1 honest participants.
F L1, · · · ,Ln: Publicly known Lagrange coefficients
F σ : the group signature over message m

5: valid ← GROUPSIGNVERIF(m, σ, y)

In the SignShareGen subroutine, each Pi computes the
signature share σi = H (m)xi over the message m ∈ {0, 1}∗,
and broadcasts σi. Using SignShareVerif, any member of the
group can verify that Pi is honestly calculating its share σi
by checking that (g, zi,H (m), σi) is a decision Diffie-Hellman
tuple, i.e. logg zi = logH (m)σi given a message m, a signature
σi, and a public key zi. Any participant or set of participants
can then reconstruct the group signature using SignRecon-
struct. For the sake of illustration, we assume this is run

VOLUME 9, 2021 33865



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

by a designated participant. This participant collects t + 1
signature shares from a set of t + 1 participants and checks
the validity of each share using SignShareVerif. If a share is
not valid, a new share is requested from the corresponding
participant, otherwise, it is assumed malicious. When all t+1
shares are valid, the complete group signature σ is recovered
as σ =

∏
i∈H σ

Li
i , whereH is a set of t+1 honest participants.

Finally, the group signature is verified using GroupSignVerif
against y exactly as in SignShareVerif.

Note that in TBLS, it is not necessary to reconstruct the
private key during the signing process. Even after repeated
signing, no one could learn any information about the private
key that would enable them to create signatures without a
(t + 1)-sized group [33].

B. BLOCKCHAINS
Blockchains are a form of a shared decentralized append-only
database, or ledger, maintained by a set of nodes, often mutu-
ally distrusting each other, enabling them to perform write
operations to this shared log [34]. Writes to this shared log,
known as transactions, are organized as blocks each wrapping
multiple transactions into a single atomic write operation.
A block typically contains a timestamp and a hash of the
previous block, making each block chained to its predecessor
to form a chain of blocks that are signed and secured from
adversarial tampering or incidental changes.
Permissioned blockchains are a special type of blockchains

that have evolved as an alternative to permissionless
blockchains, used in cryptocurrencies such as Bitcoin [34],
to tackle the need for running this technology among a set of
known and identifiable members. They have an extra access
control layer [35] and are particularly interesting in business
applications where participants, not necessarily trusting one
another, need a mechanism of identifying each other.
The consensus mechanism is arguably the most important

component of any blockchain system since any update to
the blockchain needs to be agreed upon by all participants.
Otherwise, nodes will have different copies of the distributed
ledger, leading to what is known as forks. Hence, the sys-
tem will no longer be able to maintain a unique reliable
chronology unless these forks are pruned. This becomes
more challenging as nodes in a blockchain system do not
trust each other. As a result, a distributed consensus mech-
anism that tolerates Byzantine failures is required in order to
establish an agreement in the network. Distributed consensus
mechanisms for permissioned blockchain systems [36] rely
on purely communication-based consensus protocols, where
participants usually have equal votes and go through multiple
rounds of communications to reach consensus about a certain
block. These protocols, known as Byzantine fault tolerant
(BFT) protocols, require at least 3f + 1 nodes to reach
consensus provided that up to f nodes are Byzantine [35].
Smart Contracts are scripts meant to perform like reg-

ular contracts and aim to automatically and securely
execute obligations without reliance on a centralized

enforcement authority. Each smart contract is identified by
a unique address, and its code resides on the blockchain as
a special transaction. As such, its code can be examined by
every node in the network. Indeed, since all the interactions
with a contract occur via signed messages on the blockchain,
every node gets a cryptographically verifiable trace of the
contract’s operations [37]. They could be considered as stored
procedures that get invoked and triggered whenever some
conditions are met or whenever a transaction is addressed
to them. Once a smart contract is triggered, it runs indepen-
dently and automatically in a prescribed and deterministic
fashion on every node, in accordance with the data that was
enclosed in the triggering transaction. Their properties make
it possible to have general purpose computations occur on the
blockchain.

C. ENHANCED PRIVACY ID (EPID)
EPID [38], an extension of the Direct Anonymous Attesta-
tion (DAA) protocol [39], is an anonymous digital signature
algorithm that enables members of a group to prove to one
another their group membership legitimacy without revealing
their true identities. EPID generates and uses three main keys:
(i) Membership Verification Public Key (Kpk ), which is cre-
ated by the Issuer (an entity that oversees the group), shared
among all group members, and used by the Verifier (i.e., any
group member) to anonymously verify the membership legit-
imacy of a user; (ii) Membership Issuing Secret Key (Ksk ),
which is kept secret and used only by the Issuer to create a
unique membership private key for each group member; and
(iii) Membership Private Key (skU ), which is created by the
Issuer for a group member U , upon the member’s request.
Each member uses its membership private key to prove its
membership legitimacy to the Verifier anonymously.
EPID also allows revocation of group members. It main-

tains three lists, each for supporting one type of revo-
cation: Lpriv for private key-based revocation, Lsig for
signature-based revocation, and Liss for issuer-based revoca-
tion. Lpriv contains the private keys of all members whose
keys have been compromised. Lsig contains the signatures of
members that have been reported as misbehaving members.
Liss contains the members that have been removed by the
Issuer (e.g., when members leave the group).
EPID typically runs four procedures, which are summa-

rized in Algorithm 2. The first, EPID.Setup() (step 1), is
run by the Issuer and outputs Kpk and Ksk . The second,
EPID.Join() (step 2), is run interactively between a newmem-
ber and the Issuer. It results in the member obtaining a unique
private key, skU . The third procedure, EPID.Sign() (step 3),
allows amember to prove its membership anonymously to the
Verifier by signing a challenge message m provided to it by
the Verifier. During this procedure, the user proves to the
Verifier that its private key and signature do not belong to
the revocation lists, Liss and Lsig. The Verifier validates the
correctness of the EPID signature of a member through the
fourth procedure, EPID.Verify (step 4), using the public key,

33866 VOLUME 9, 2021



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

Algorithm 2 EPID
1: (Kpk ,Ksk )← SETUP(κ) F κ is the security level

2: skU ← JOIN(Kpk , KI ) F skU : private key of user U
F KI : Issuer long-term public key to authenticate with
users

3: (6U ,PU )← SIGN(skU ,Kpk ,m,Lsig,Liss )
F 6U : EPID signature of message m
F PU : Set of non-revocation proofs of user U for each
element in Lsig and Liss
F m: The Verifier’s message as a challenge to the user

4: valid ∈ {success, fail} ← VERIFY(Kpk ,m, 6U ,PU ,L )

Kpk . During this process, the Verifier also checks that the
member does not belong to any of the revocation lists.

EPID enables the Verifier to link any two signatures pro-
duced by the same user, allowing it to prevent any malicious
SU from forging multiple signatures on behalf of other SUs.
EPID relies heavily on the well-known zero-knowledge proof
concept [40] to enable the signer to prove its membership
without needing to share its identity or private key.

D. MULTI-SERVER PRIVATE INFORMATION
RETRIEVAL (PIR)
A PIR protocol enables a user to retrieve a data record of its
choice from a database while preventing the database from
learning anything related to the item being retrieved [27].
Multi-server PIR is a special variant of this protocol that
requires the replication of the database among ` ≥ 2
non-colluding servers [27], [41]. This enables it to efficiently
realize information-theoretic privacy, i.e. privacy against
computationally unbounded servers. The main idea consists
of decomposing each user’s query into several sub-queries
each processed by a different server to prevent leaking any
information about the item that the user is querying. Despite
its efficiency and optimal privacy level, this technology has
remained purely theoretical without a real-life application
due to the database replication requirement. However, thanks
to the inherent design of SAS, which contains and relies on
multiple DBs by design, it was possible for our proposed
SAS framework, TrustSAS, to benefit from such a technology.
TrustSAS is agnostic to which multi-server PIR protocol

is used. However, for the sake of performance evaluation
and security analysis, TrustSAS adopts the PIR protocol pro-
posed by Lueks et al. [42]. Besides, this protocol supports
batching of the queries, i.e. retrieving multiple blocks simul-
taneously, which is a desirable feature for our framework.
It combines Goldberg’s robust information-theoreticPIR [41]
with fast matrix multiplication techniques inspired by batch
codes [43].

In Goldberg’s protocol the database is modeled as a matrix
D of size r × s of elements in finite field F. Every row in
D corresponds to a single block in the database. To request

the jth block (non-privately) the user simply constructs the jth

standard basis vector ej of Fr (which is a vector of length r
with all zeros except for the jth position having a value 1) then
sends it to the server. The server then calculates the product
ej · D to obtain the requested jth block. To make the query
private, the user creates ` Shamir secret shares [32] of ej
and sends one share to each of the ` servers which compute
the product with D and return the result. The user then uses
Lagrange interpolation (explained in Section III-A) of the
results to recover the jth block. Since Lagrange interpolation
of the shared query vectors yields ej and due to the linearity
of matrix multiplication and Lagrange interpolation, then
interpolation of the results yields the desired block. The t-
out-of -` Shamir secret sharing ensures that as long as at most
t servers collude, they learn nothing about the desired block.
This protocol is also robust against Byzantine servers thanks
to its reliance on error-correction codes. Batch queries are
supported in [42] through batch codes [43]. We provide the
parameters required to run this protocol in Alg. 3, which we
will use later

Algorithm 3 Private Information Retrieval
1: Dq← BATCHPIR(DBs, `, t, r, s, q)
FDq: retrieved records fromD
F DBs: database servers; `: number of DBs
F t: number of servers that can collude (i.e. privacy level)
F r : number of rows; s: number of words per row
F q: query vector for multiple blocks

IV. THE PROPOSED FRAMEWORK: TrustSAS
We now present TrustSAS, the proposed trustworthy SAS that
preserves SUs’ operational privacy but while ensuring that
SAS entities abide by the FCC requirements. TrustSAS com-
prises several algorithms, each will be discussed separately
in this Section, synergizing the different technologies that we
presented in Section III in an innovative way to achieve the
aforementioned goals. For convenience, we summarize the
notations used in the remaining parts of this paper in Table 1.
Also, for simplicity, throughout the description of TrustSAS,
whenever some entity submits a block to a blockchain, that
implicitly implies that the entity signed the block and that
the block was validated via BFT consensus by the validators
before it was added to the blockchain.

A. SYSTEM SETUP
The first component of TrustSAS, depicted in Alg. 4, consists
of setting up the system parameters and the required keys at
initialization, as described next.

1) BOOTSTRAPPING PHASE (Alg. 4, STEPS 2-10)
In TrustSAS, FCC plays the role of the EPID Issuer, described
in Section III-C, and establishes a permissioned-group
for TrustSAS. It generates and provides two keys. The
first key, EPID Membership Verification Public Key, Kpk ,

VOLUME 9, 2021 33867



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

TABLE 1. Notations.

is shared among and used by all TrustSAS members/entities
to anonymously authenticate and verify independent signa-
tures among each others, using the EPID.Verify procedure.
The second key is the EPID Membership Private Key, skSU ,
provided to the SU so it can use to prove its membership
legitimacy to other TrustSAS entities. Each SU will have its
own EPID Membership Private Key.

Initially, some SUs will be appointed to serve as anchor
nodes, and will run the TwoWayEPID subroutine (Alg. 4,
step 1) among themselves as a way to authenticate each other
anonymously before they peer up and initiate the overlay p2p
network. An SU seeking to join TrustSAS needs to initiate
a join request to FCC via the EPID.Join procedure (Alg. 4,
step 9). This step allows SU to obtain Kpk and skSU , as well
as the list of anchor nodes, denoted by A throughout. Note
that this process creates a many-to-1 asymmetric relationship
between Kpk and all skSU s.

2) PEERING AND CLUSTERING PHASE (Alg. 4, STEPS 11-16)
Once the joining SU obtains the list, A, of anchor SUs from
FCC, it uses it to discover and join the ongoing p2p network.
The joining SU then needs to authenticate with its peers and
verify their legitimacy via TwoWayEPID (Alg. 4, step 1).
After enough SUs have joined TrustSAS, these SUs will form
clusters based on their locations; this may require the SUs to
expose their locations to other SUs, but it should be no issue
at this point since DBs are not part of the p2p network yet.
We can add an extra privacy layer to protect these locations by
exposing them to only SUs that are potential cluster members
by adapting the private proximity testing protocol due to
Narayanan et al. [44].

The members of each C(i) will maintain a cluster (local)
blockchain, BC(i), to log and keep track of key events taking
place in the cluster. Also, members of each C(i) will have
to run steps 2-6 of the Rekeying operation described in
Alg 5, to jointly generate the keys required for performing

Algorithm 4 SAS Setup

1: function TWOWAYEPID(A,B,Kpk ,L)
User A sends a challenge mA to user B
User B sends a challenge mB to user A
A: (6A,PA)←EPID.SIGN(skA,Kpk ,mB,Lsig,Liss )
B: vA←EPID.VERIFY(Kpk ,mB, 6A,PA,L )
B: (6B,PB)←EPID.SIGN(skB,Kpk ,mA,Lsig,Liss )
A: vB←EPID.VERIFY(Kpk ,mA, 6B,PB,L )
return vA ∧ vB

Bootstrapping phase

2: FCC: (Kpk ,Ksk )← EPID.SETUP(κ)
3: FCC shares Kpk with DBs
4: (skSU ,Kpk )←EPID.JOIN(Kpk ,KFCC ) ∀SU∈ A
5: for SU k ∈ A do
6: for SU l ∈ A \ {k} do
7: TWOWAYEPID(k, l)
8: All SUs ∈ A peer up with each other
9: Joining SU : (skSU ,Kpk )← EPID.JOIN(Kpk , KFCC )

10: FCC shares A with joining SU

Peering and clustering phase

11: SU joins and discovers the p2p network through A
12: SU runs TWOWAYEPID() with each peer
13: SUs of the overlay network form clusters {C(i)}1≤i≤nC
14: SUs ∈ C(i) elect a leader SU (i)

L , ∀ 1 ≤ i ≤ nC
15: SUs ∈ C(i) maintain a local blockchain BC(i)
16: SUs ∈ C(i) run steps 2-6 of REKEYING(C(i)) (Alg. 5)

Peering with DBs

17: DBs form validators set V
18: Global blockchain BC is created with validators ∈ V
19: DBs ∈ V and FCC maintain full copy of BC
20: for i = 1, · · · , nC do
21: SU (i)

L authenticates with DBs using EPID
22: SU (i)

L peers up with DBs and becomes a validator
23: SU (i)

L submits y(i) to BC
24: SU (i)

L requests a beacon β(i) from a DB
25: DB sends an EPID challenge m to SU (i)

L
26: SU (i)

L :(6L ,PL)←EPID.SIGN(skL ,Kpk ,m,Lsig,Liss)
27: DB verifies (6L ,PL) with EPID.VERIFY()
28: DB issues β(i) to SU (i)

L and submits it to BC
29: SU (i)

L selects SUs ∈ C(i) intoR(i)

30: Every Tβ , SUs ∈ R(i) transmit β i for a duration d

distributed (ti, ni)-TBLS signatures. To do this, SUs of C(i)
need to run the distributed TBLS.DKG protocol, described in
Section III-A, which will result in each SU j in C(i) obtaining
three keys: Cluster Public Key, y(i), which is shared among all
SUs in C(i), Cluster User Secret Key, x(i)j , and Cluster User

Public Key, z(i)j = gx
(i)
j . Cluster User Public Keys will

33868 VOLUME 9, 2021



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

represent SUs’ pseudonyms within C(i) and are also used to
identify SUs’ transactions in BC(i).
To handle system-wise access revocations, TrustSAS

requires that each of these Cluster User Public Keys is
associated with the EPID signatures of the corresponding
SU over some statement that is known by all cluster mem-
bers. To achieve this, each SU signs its Cluster User Pub-
lic Key itself, which is known to all SUs in the cluster,
using EPID.Sign with its EPID Membership Private Key,
skSU (Alg 5, step 4). This serves to create a cryptographic
binding between SU ’s EPID signature and its Cluster User
Public Key. This binding will then have to be submitted
as a transaction to be included in BC(i). This is done by
making SU sign the binding from the previous step using
TBLS.SignShareGen with its Cluster User Secret Key, x(i)j
(Alg 5, step 5). Then each SU will send the signatures,
obtained in steps 4 and 5 of Alg 5, to the leader SU (i)

L , which
will collect all these signatures and include them in BC(i).
Later, when an SU is detected to be malicious, the leader will
add SU ’s Cluster User Public Key along with its EPID signa-
ture to Lsig to revoke its access to the system.

Algorithm 5 Rekeying Within C(i)

1: procedure REKEYING(C(i))
2: {y(i), x(i)1 , · · · , x

(i)
ni , z

(i)
1 , · · · , z

(i)
ni } ← TBLS.DKG(I )

3: for SU j ∈ C(i) do
4: (6j,Pj)← EPID.SIGN(sk j,Kpk , z

(i)
j ,Lsig,Liss )

5: %j← TBLS.SIGNSHAREGEN(x(i)j , 6j,Pj)
6: SU j sends tuple (%j, 6j,Pj, z(i)j ) to SU (i)

L

7: SU (i)
L submits {(%j, 6j,Pj, z(i)j )}j∈C(i) to BC(i)

8: SU (i)
L submits y(i) to BC

3) PEERING WITH DBs (Alg. 4, STEPS 17-30)
Since SUs’ clusters are now established,DBs can join the p2p
network. This is done by making clusters leaders authenticate
with DBs through EPID and then peer up with them.

During this phase, a global blockchain BC is also created
to keep track of the key system-wise events. Only DBs and
clusters leaders can be validators in the global blockchain to
validate and propose blocks toBC. To submit a cluster-related
block for inclusion in BC, the leaders will need to have a key
that identifies them and their clusters but also could be used to
verify the correctness of the submitted block. This is exactly
why each leader is required to submit its Cluster Public Key,
y(i), to BC to be shared with DBs and other leaders. On top of
that, the leader will also share a (ti, ni)-TBLS signature of y(i)

to show that the Cluster Public Key was actually generated in
collaboration with members of the cluster using TBLS.DKG
protocol. The validators will validate the TBLS signature
through a round of BFT consensus by verifying the signature
against y(i).
In TrustSAS, an operational cluster is required to transmit

a beacon for a certain duration, every Tβ period, so that the

cluster could be discovered by nearby joining SUs, as in [45].
Tβ is a system design parameter that could be adjusted
according to system dynamics and how frequent SUs join the
system. A leader needs to request this beacon from one of
the DBs and can acquire it only if it successfully proves its
legitimacy to DB through EPID as depicted in steps 24-28 of
Alg.4. This is achieved by creating an EPID signatures of a
challenge message m that DB has created for this purpose.
If the EPID signatures is successfully verified, DB issues
a beacon to SU (i)

L and submits the beacon to BC so that
accessible by all entites in the system. SU (i)

L picks some
representatives from C(i) to transmit the beacon every Tβ , for a
specific duration over a system control channel that is known
a priori and is assumed to be reserved for this purpose.

Note that SUs in C(i) only need to have a light copy of
BC containing the latest state of the system including the
current number of clusters and their corresponding beacons.
Note also that a secure session is maintained between DBs
and the leader of C(i) as long as EPID revocation lists are
not updated. This is to avoid running the EPID verification
protocol for every block or transaction submitted by SU (i)

L .

B. JOINING TrustSAS
As depicted in Alg. 6, when an SU desires to join TrustSAS,
it needs to tune to the control channel and scans it to detect any
beacons transmitted by any nearby clusters. Failure to detect
any beacons could mean that either no cluster is nearby or
all nearby clusters are not accepting new SUs. In either case,
SU will start a new cluster centered at its location and will
request a beacon from one of the DBs and will itself start
accepting new members, as described in Alg. 4.

Algorithm 6 Join C(i)
1: SU scans control channel for beacons in BC
2: if a beacon β(i) of C(i) is found then
3: SU requests to join C(i)
4: v←TWOWAYEPID(SU , SU (i)

L )
5: if v == True then
6: SU is added to C(i)
7: SU peers up with SUs ∈ C(i) and downloadsBC(i)
8: SUs ∈ C(i) run REKEYING() in the next Tepoch
9: else
10: SU forms new C(i) and becomes a leader SU (i)

L
11: SU (i)

L requests β(i) as in Steps 24-30 of Algorithm 4

When a nearby new SU detects a beacon, it invokes
the two-way verification procedure, TwoWayEPID, with the
cluster leader to ensure that the SU is legitimate and can be
allowed to join the cluster, and that the leader is also in a good
standing. If the two-way verification is successful, the new
SU is admitted to the cluster and will immediately request
BC(i) from the cluster leader and peer with the SUs in the
cluster. Newly admitted SUs will have to wait until the next
Tepoch period to be able to participate in the cluster and enjoy

VOLUME 9, 2021 33869



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

spectrum resources. An SU can be a member of only one
cluster at a time.

Note that the admission of a new SU to a cluster is also
subject to interference constraints. Members of the cluster
must ensure that the entry of this new SU does not lead to an
aggregate interference that is harmful to higher tier users or to
other SUs in the cluster to satisfy coexistence. This could be
resolved by adjusting grants and transmission parameters of
the other SUs in the cluster, or simply deny the entry of a new
SU to the cluster in the extreme case. These scenarios could
be enforced by the cluster leader and agreed upon through
consensus among members of the cluster.

Clusters will also need to perform rekeying operation when
new SUs are added to their clusters. The rekeying steps are
shown in Alg. 5. If rekeying is needed, it will take place at
the end of each Tepoch period, where again Tepoch is a system
design parameter that could be adjusted. Clusters could also
choose to perform rekeying whenmalicious SU s are detected
and denied access to the system, or when faulty SUs are
detected.

C. QUERYING FOR SPECTRUM AVAILABILITY
We now focus on describing the different steps required to
privately query DBs for spectrum availability in a specific
cluster. These steps are also summarized in Alg. 7.

Algorithm 7 Private Spectrum Query

1: SU (i)
L express interest to query DBs

2: DBs send an EPID challenge m to SU (i)
L

3: SU (i)
L : EPID.SIGN(skL ,Kpk ,m,Lsig,Liss )

4: SU (i)
L requests other τ − 1 SUs to EPID.SIGN m

5: SU (i)
L sends τ EPID signatures of m to DBs

6: DBs verify the τ signatures with EPID.VERIFY()
7: if any signature is not valid or signatures are not unique

then
8: DB adds SU (i)

L to Lsig; break
9: if SUs ∈ C(i) experience timeout from SU (i)

L then
10: SUs ∈ C(i) \ {SU (i)

L } elect new leader SU (i)∗
L

11: SUs ∈ C(i) \ {SU (i)
L } run REKEYING()

12: SU (i)∗
L requests β(i) as in steps 24-30 of Alg. 4

13: SU (i)∗
L adds SU (i)

L to Lsig and becomes SU (i)
L

14: go to Step 1
15: SU (i)

L :Dq← BATCHPIR(DBs, `, t, r, s, q)
16: SU (i)

L submitsDq as block Bepoch to BC(i)
17: SUs ∈ C(i) run BFT consensus to validate Bepoch
18: SU (i)

L triggers the smart contracts to divide resources
19: SUs ∈ C(i) are assigned channels for current Tepoch

In TrustSAS, the cluster leaders will be in charge of query-
ing DBs for spectrum availability on behalf of their clus-
ter SU members, and a cluster leader will only query DBs
in one of three scenarios: Period allocated for using some
channel(s) expires, quality of currently assigned channels

degrades, currently used channels are requested to be vacated
(e.g., requested by primary user of the channel).

1) AUTHENTICATION AND PERMISSION
For a cluster to acquire spectrum availability from DBs,
TrustSAS requires that the cluster has a minimum of τ SUs,
where τ is a system parameter that could be tuned depending
on the desired robustness and security levels within each clus-
ter. This will also force SUs to join existing clusters instead
of creating their own clusters and trying to enjoy spectrum
resources just by themselves. Therefore, before the leader
SU (i)

L of a cluster C(i) queries DBs for spectrum availability
information, it needs to show C(i) meets this requirement.
For that, SU (i)

L needs to provide τ EPID signatures created
by different legitimate SUs over a challenge message m that
DBs created for this purpose as depicted in steps 2-5 of Alg.7.
This is to show in a verifiable way that C(i) has the minimum
number of SUs required, and to prevent SU (i)

L from trying to
deceive the system by pretending to meet this requirement.
Note that EPID prevents SU (i)

L from forging these τ signatures
without being detected. TrustSAS will not require these τ
EPID signatures later unless a change in the membership of
C(i) takes place. If the EPID verification of these τ signatures
is successful, then SU (i)

L can proceed with querying DBs
for available channels. Otherwise, DBs will label SU (i)

L as
malicious and will add it to the revocation list,Lsig. To ensure
robustness to SU (i)

L ’s failures, a timeout parameter could be
implemented beyond which if SUs within C(i) do not receive
spectrum availability information from SU (i)

L , it would be
labeled as malicious, added to the revocation list, Lsig, and
a new leader will be elected. The Rekeying procedure is then
run within C(i) without the malicious/revoked leader, and the
new leader will request a new beacon for the cluster as in
steps 24-30 of Alg.4

2) SPECTRUM QUERYING
To privately query DBs for spectrum availability for the
current Tepoch, SU (i)

L collects SUs’ queries in C(i) and
batches them together, and then runs the information the-
oretic PIR protocol with DBs via BatchPIR() described in
Section III-D. SU (i)

L then submits the query response,Dq, as a
block Bepoch for inclusion in local blockchain BC(i). SUs in
C(i) run BFT consensus to validate this Bepoch by simply ver-
ifying the digitally signed database records against the public
key of DBs. This is to prevent the leader from misbehaving
by sharing altered availability information. A leader SU is not
trusted to divide spectrum resources among members of the
cluster, and hence, TrustSAS instead relies on the concept of
smart contracts which include spectrum allocation rules that
are signed and defined by spectrum databases. In fact, once
Bepoch is validated by SUs, SU (i)

L will trigger the execution
of the included smart contracts, which will take as input the
list of SUs in the cluster, their cell indices, and the spectrum
availability information. All this information is already stored
in BC(i) and is accessible by all SUs in C(i). The execution of

33870 VOLUME 9, 2021



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

the smart contracts will result in the automatic assignment
of spectrum resources in a way that follows the guidelines
of the SAS while ensuring coexistence between SUs. This
assignment will be valid for the duration of the Tepoch period.
The smart contract, just like any other transaction in the

blockchain, cannot be modified once added to the ledger.
Thus, it will always be executed in the same way as intended
and will respond to the changes in the state of the cluster-level
blockchain, such as the current number of SUs in the cluster,
the channel of interest, etc. As the execution of the smart
contract will yield the same result for all the SUs within a
cluster, this will give all cluster members an idea about how
spectrum must be assigned, and will set expectations on how
each SU may behave.

D. NOTIFYING ABOUT SPECTRUM USAGE
Once spectrum resources are allocated among SUs, SU (i)

L will
need to share with the DBs the spectrum allocation infor-
mation, including the channels to be used by the members
of C(i), the locations where these channels will be used, and
aggregated transmit power over those chosen channels. The
leader can also collect information regarding the received
signal strength in the used and adjacent frequencies, received
packet error rates and other common standard interference
metrics for all SUs in the cluster. The leader will propose a
block Bi containing this information to the members of the
cluster for validation. They will verify the correctness of this
information and sign the block using TBLS. If the validators
successfully verify that Bi was agreed upon and signed by
members of C(i) via BFT consensus combined with TBLS,
then Bi is added to BC and DBs will include this information
in their records. Otherwise, SU (i)

L will be flagged as malicious
and its EPID signature of y(i) will be added to Lsig. These
steps are summarized in Alg. 8.

Algorithm 8 Spectrum Usage Notification

1: SU (i)
L constructs a block Bi with intended usage informa-

tion
2: SU (i)

L sharesBi with SUs∈ C(i) for validation and signing
3: (Bi, σBi )← TBLS.SIGNRECONSTRUCT(Hi,L1, · · · ,Ln)
4: SU (i)

L submits (Bi, σBi ) to BC
5: V: val ← TBLS.GROUPSIGNVERIF(Bi, σBi , yi) with BFT
6: if val == True then
7: Bi is added to BC
8: DBs update their records
9: else

10: DBs flag SU (i)
L as malicious

11: SU (i)
L is added to revocation list Lsig in BC

12: DBs remove β(i) from list of valid beacons on BC

E. REININTIALISATION PHASE
The blockchains in the system do not need to grow indef-
initely and thus present a storage burden especially on
SUs with limited storage capacity. In fact, the system can

periodically undertake a periodic checkpointing [4] operation
that consists of making all validators of a blockchain reach
consensus on the state of the blockchain at a specific point
in time and create a checkpoint attesting on the validity of
the blockchain up to that point in time. This way, when
validators in the blockchain, which include leader SUs and
DBs in the global blockchain and SUs and leader SU for
each cluster, receive 2f + 1 identical checkpoint messages
from the different members of the blockchain, they can mark
the checkpoint and clear the blocks preceding it [4]. The
checkpoint could be created by hashing the blocks leading to
the current agreed-upon blockchain state [4]. This checkpoint
could also be stored in the global blockchain after being
signed by all members of the cluster. Only a few nodes now
will have to store the whole blockchain and this will help
alleviate the storage overhead especially on SUs.

F. DETECTING MISBEHAVING SUs
Once spectrum resources are assigned and divided among
SUs of a cluster, some SUs may misbehave and not follow
the spectrum assignment rules agreed upon within the cluster.
For simplicity and for illustration purposes, in TrustSAS,
we consider the case where a misbehaving SU uses a channel
that is different from the one that was assigned to it. Such
behavior could be motivated by the fact that current assigned
channel experiences quality degradation or some increased
interference levels. Spectrum usage monitoring happens at
the cluster level at the locations belonging to the cluster
and not system wise. As the number of possible locations,
represented as cells in our system, should be smaller than the
number of member SUs, due to the fact that SAS systems are
highly dense by nature, it should be the case that there will
always be a SU that could be picked as a spectrum misuse
detector in a specific cell/location.

To cope with such misbehaving SUs, TrustSAS follows
an approach inspired by the SpecGuard [46] spectrum mis-
use detection protocol as we discuss in the following.
TrustSAS requires each SU within a cluster to embed a spec-
trum permit into its physical-layer signals using proper power
control in the modulation phase (using QPSK for instance).
A spectrum permit refers to a cryptographic authorization
to use a specific channel in a particular region for a certain
duration [46]. It is assigned to SUs by the cluster leader based
on the outcome of the spectrum assignment agreement within
the cluster. This permit could later be decoded and verified by
other SUs in the cluster.
For this, we assume that time duration for using a channel,

Tepoch, is slotted into γ ≥ 1 slots. Based on the outcome
of the spectrum assignment, SU (i)

L will do the following for
every SU j in the cluster. First, SU (i)

L chooses a random
number λj,γ of sufficient length, 160 bits for instance, and
recursively computes λj,k = h(λj,k+1) ∀k ∈ [0, γ − 1],
where h is a cryptographic hash function. Then it sends λj,γ
to the corresponding SU j who also recursively computes
{λj,0, · · · , λj,γ−1}, where λj,k represents the spectrum permit

VOLUME 9, 2021 33871



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

of SU j in slot k of the current Tepoch. Every SU j has to keep
transmitting the spectrum permit λj,k in slot k (∀k ∈ [1, γ ])
during Tepoch. SU embeds λj,k into physical layer signals
using proper power control in the modulation phase.

Spectrum misuse detection within a cluster could be acti-
vated according to some random schedule over some ran-
domly selected SUs or whenever there is a complaint about
severe interference. For this, TrustSAS requires SU (i)

L to peri-
odically select some SUs from C(i) to scan the channels
allocated to the cluster to detect any misbehaving SUs. The
leader shares with these SUs the channel index, the starting
time of the corresponding transmission time duration and the
hash value λj,0 of every SU j that is being monitored.
Each misuse detector SU attempts to detect the k th spec-

trum permit, denoted as λ′j,k of a monitored SU j, from the
physical-layer signals, in the demodulation phase, over the
specified channel for every time slot k ∈ [1, γ ] of the current
Tepoch. Then, it compares λj,0 with hk (λ′j,k ), where hη(x)
denotes η successive applications of the hash function h to
x. If λ′j,k = λj,k , i.e. the permit is authentic, then the equality
λj,0 = hk (λ′j,k ) should hold. Otherwise, the corresponding
SU j is most likely misusing the spectrum and it will be added
to L.

Besides operating on other channels, malicious SUs may
also try to perform other malicious activities such as pre-
venting the cluster from reaching consensus or from com-
pleting a group signature over a specific statement. These
malicious SUs can easily thanks to the underlying BFT and
TBLSmechanisms and they will be also revoked access to the
system, which complies with the accountability requirement
(stated in Section I-A).

V. SECURITY ANALYSIS
A. THREAT MODEL
TrustSAS assumes that DBs are honest-but-curious, in that
they act ‘‘honestly’’ and follow the protocol in terms of
handling queries and sharing spectrum availability informa-
tion, but they are also ‘‘curious’’ about SUs’ information
and try to infer it from the messages they receive from SUs.
TrustSAS also assumes that these DBs do not collude with
other SUs. Despite the fact that the collusion between DBs
is improbable due to the fact that these DBs are operated
and managed by competing service providers with no/little
incentive to collude and also due to regulatory enforcement
from bodies such as FCC to protect users’ data, our system
tolerates collusion up to a certain limit. This is thanks to the
underlying properties of multi-server information-theoretic
PIRs which are well studied in these works. [11], [47], [48].
We refer to a SU that faithfully follows the protocol as honest;
otherwise, it is referred to as Byzantine. A Byzantine SU may
behave arbitrarily, for instance, by refusing to participate in
the protocol, or by colluding with other SUs to coordinate an
attack on the system. However, TrustSAS assumes that these
Byzantine SUs do not collude withDBs. For each cluster C(i),
TrustSAS requires that at least ti out of the ni SUs participate

in the signature, and that no more than fi = (ni − ti) SUs are
Byzantine. These ti SUs serve as witnesses for the cluster to
make sure that the leader is not communicating compromised
information. Further, it is assumed that a malicious SU can
lie about the channel that it intends to use to mislead DB and
other SUs within the same cluster.

B. SECURITY OBJECTIVES
Given the aforementioned threat model, TrustSAS aims to
achieve the following security objectives:

• Private Spectrum Availability Query: SUs can query
DBs privately, without having to reveal their operational
information.

• Private Spectrum Usage Notification: SUs can notify
DBs about their channel usage and transmission param-
eters privately.

• Robustness to Failures: All security guarantees are
maintained, even when a system entity (SU or DB) fails
or is compromised.

• Immutable Public Log for Auditability: A globally con-
sistent, tamper-resistant public log is maintained, where
each system event, once produced and logged, cannot be
altered or deleted.

• Anonymity and Membership Verifiability: SUs’ authen-
ticity can be verified before the SUs are granted system
access, and SUs cannot be identified at any stage of
protocol execution.

• Location Privacy Protection of SUs: SUs’ physical loca-
tion information is kept private at all times from allDBs.
That is, DBs do not have access to any location traces of
SUs, and even if they did these traces cannot be linked
to specific SUs.

C. SECURITY RESULTS
Corollary 1: TrustSAS achieves unforgeability and robust-

ness of TBLS signatures against an adversary that can corrupt
any fi < ni/2 SUs within a cluster C(i) as long as the Gap-
Diffie-Hellman problem is intractable.
Corollary 2: TrustSAS ensures consistency and resistance

to fork attacks for a permissioned blockchain BC(i) running
BFT consensus in every C(i) if ti ≥ 2fi + 1, where ti is
the number of signature shares required to construct a group
signature for C(i).

Proof: TrustSAS uses BFT consensus in conjunction
with a threshold signature TBLS. BFT consensus within a
cluster C(i) can withstand fi Byzantine SUs, where fi is the
upper bound for BFTmechanisms satisfying ni ≥ 3fi+1 [49].
Since we also require ti-out-of-ni SUs for signing with TBLS,
therefore, at most fi = ni− ti can turn Byzantine. This means
that ti + fi ≥ 3fi + 1, yielding the above result. �
Corollary 3: TrustSAS guarantees unforgeability and

robustness of TBLS signatures while ensuring consistency
and resistance to fork attacks for BC(i) of C(i) against an
adversary that can corrupt any fi < ni/3.

33872 VOLUME 9, 2021



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

Proof: Since TrustSAS combines BFT consensus with
TBLS threshold signatures, then this corollary follows natu-
rally from Corollary 1 and the proof of Corollary 2. �
Corollary 4: TrustSAS guarantees information-theoretic

private spectrum availability query to SUs against the coali-
tion of up to π DBs.

Proof: This is guaranteed by the underlying π -out-of -`
Shamir secret sharing scheme used in the PIR protocol that
TrustSAS adopts. �
Corollary 5: TrustSAS guarantees anonymous member-

ship verification through EPID as long as the Decisional
Diffie-Hellman and the strong RSA assumptions hold and the
underlying primitives they use are secure.
Corollary 6: TrustSAS is robust against Byzantine failures

of both DBs and SUs alike.
Proof: This follows naturally from the fact that

TrustSAS’s underlying primitives, namely BFT consensus,
TBLS signature, and PIR are all robust against Byzantine
failures. �
Corollary 7: TrustSAS guarantees location privacy infor-

mation protection to all SUs.
Proof: In the spectrum availability query phase,DBs will

only learn that SU (i)
L is legitimate via EPID but not the identity

of the records, associated with locations of SUs in C(i), that
SU (i)

L is querying thanks to the information-theoretic PIR that
TrustSAS uses. When sharing spectrum usage information,
TrustSAS uses the Cluster Public Key y(i) as a pseudonym for
C(i), which reveals no information about SUs in C(i) and thus
locations cannot be linked to any specific SUs. �

VI. PERFORMANCE EVALUATION
In this section, we assess the effectiveness of TrustSAS by
evaluating the performance of each its building block and
algorithms. These performances are evaluated both analyti-
cally and empirically via either implementations or bench-
marking of the underlying mathematical and cryptographic
operations using MIRACL library [50]. Experiments are car-
ried out on a testbed that we built on Geni platform [51]
using percy++ library [52]. The testbed consists of 7 VMs
deployed on different Geni sites, each playing the role of a
DB, and a Lenovo Yoga 3 Pro laptop with 8 GBRAM running
Ubuntu 16.10 with an Intel Core m Processor 5Y70 CPU
1.10 GHz to play the role of a cluster leader.

A. CRYPTOGRAPHIC OVERHEAD
1) DISTRIBUTED KEY GENERATION (DKG)
In TrustSAS, DKG is used within each cluster to distributedly
generate the cluster public and user secret keys. Its execution
requires performing a number of elliptic curve point multi-
plications that is proportional to the number of SUs within
the cluster. Using the benchmarking results that we derived
using the MIRACL library [50], we provide in Table 2 an
estimate of the average processing time experienced by each
SU when running DKG. In terms of communication over-
head, DKG requires 2 rounds of broadcasts, yielding O(ni)

TABLE 2. DKG Overhead within cluster C(i ).

messages per SU , or O(n2i ) messages per cluster C(i), when
assuming no faulty SUs, where ni is again the number of SUs
in cluster C(i). Despite its relatively high cost, DKG presents
no bottleneck to the system, as it is only executed at initial-
ization or when group membership changes occur.

2) THRESHOLD SIGNATURE (TBLS)
Table 3 provides the analytical and emirical cost of the dif-
ferent TBLS operations executed by SUs in C(i). SUs repeat-
edly sign the consensus statement at each consensus round
within the cluster. From an SU ’s perspective, this is relatively
fast, as it involves signing a single message whose cost is
dominated by a modular exponentiation operation, as shown
in Table 3. The leader, SU (i)

L , will, however, incur most of
the overhead, as it needs to verify all the signature shares
coming from the t signing SUs of C(i), before multiplying
them to construct C(i)’s signature. These are the most expen-
sive operations involved in TBLS as they require a number
of modular multiplications and exponentiations that is linear
in t as illustrated in Table 3. To have an idea about the
running time of TBLS’s different operations, we use dfinity’s
implementation of TBLS [53].Wemeasure the time it takes to
generate one signature share, which is performed by each SU ,
and the time it takes for the leader to verify all of the t shares
before combining them into one cluster signature, assuming
t = 1000. Finally, we measure the time it takes to verify the
cluster’s signature.

TABLE 3. TBLS complexity within C(i ).

3) ENHANCED PRIVACY ID (EPID)
TrustSAS relies on EPID to allow SUs to anonymously
prove their legitimacy without revealing their true identi-
ties thanks to its underlying zero-knowledge proof mecha-
nism. We evaluate the complexity of EPID by assessing the
cost of running EPID.Sign(), invoked by SU members, and
EPID.Verify(), invoked by any TrustSAS entity. Both analyti-
cal and empirical efficiencies of EPID are depicted in Table 4.

VOLUME 9, 2021 33873



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

TABLE 4. EPID complexity.

Every EPID.Sign() operation requires SU to prove its knowl-
edge of a membership private key and that its private key
does not appear or was not used to create a signature in
Lsig and Liss revocation lists using zero knowledge proofs.
These proofs require the signer to perform 6δ2 + 2δ3 + c
modular exponentiations, where δ2 and δ3 are the sizes of
Lsig and Liss, respectively, and c is a small constant [38].
As for the verification, every EPID.Verify() costs the verifier
δ1 + 6δ2 + 2δ3 + c modular exponentiations, where δ1 is
the size of Lpriv revocation list. To translate these analytic
costs into running time estimates, we use Intel’s publicly
available SDK [54]. These running time results are illustrated
in Table 4.
Even though these delays seem relatively high, they are still

reasonable in our system, especially that these membership
proof operations are independent, unfrequent, and do not
occur simultaneously, once the system setup is completed.
Note that this proof of membership has a linear cost in the
size of the revocation list and could become quite expensive
for both signers and verifiers if such a list becomes large. One
possible way to maintain a good performance of TrustSAS is
to impose a threshold on the list size. In this case, when the
list size exceeds this threshold, FCC can create a new group
and perform a rekeying operation. Each SU will then need to
prove to FCC that it is a legitimate member and that its mem-
bership was not revoked, before acquiring a new membership
private key for the new group from FCC. This would be more
efficient than carrying a large revocation list indefinitely and
run expensive zero-knowledge proof operations on it. The old
list will still be accessible for auditing purposes as it would
have been stored already in BC.

4) PRIVATE INFORMATION RETRIEVAL (PIR)
TrustSAS adopts and relies on the information-theoretic,
batching-enabled PIR proposed in [42] to enable private
querying of DBs. We evaluate this protocol both empiri-
cally and analytically. For the empirical evaluation, we use
percy++ [52] library deployed on a testbed that we built
on Geni [51] cloud infrastructure. This testbed consists of
7 VMs, similar to the number of approved SAS operators,
each playing the role of a DB and distributed over multi-
ple locations. The Lenovo Yoga 3 Pro laptop used to play
the role of the cluster leader. TrustSAS opted for using a
batching-enabled PIR, which enables a cluster leader to lump
together all queries, originated from the different SUs within

its cluster, into one query instead of sending them sepa-
rately to DBs. This reduces the overhead on both DBs and
cluster leaders, as shown in Figs. 3a and 3b. In Table 5,
we provide the analytic overhead expressions of the cluster
leader computation, the DB query processing time, and the
communication overhead.

FIGURE 3. Overhead of PIR on DBs and cluster leaders.

TABLE 5. Multi-server PIR overhead.

B. BLOCKCHAIN OVERHEAD
This is another important component of TrustSAS that is
invoked whenever there is a need to update the state of
either the local or the global blockchains and ensures
agreement among the different TrustSAS entities even in
the presence of Byzantine behavior. It is worth reiterating
that our system does not rely on public blockchains that
require the notion of tokens or cryptocurrencies and use
the computationally-intensive proof-of-work as a consensus
mechanism, but it rather uses private blockchains where
members perform byzantine fault-tolerant (BFT) consensus
to come to an agreement about the state of the system.

For performance evaluation, we opt for the GoSig [56]
protocol, one of the most efficient BFT protocols. We evalu-
ate the communication overhead incurred by each SU in the
cluster, which reflects the number of messages sent during
every consensus round. As illustrated in Table 6, this number
is quasi-linear in the size of the cluster, ni, which translates
into a total communication overhead of O(n2i log ni). GoSig
requires that all users participate in the consensus process. To
have an estimate on how long it takes cluster leaders, SUs
and DBs to reach a consensus over a specific block when
using GoSig, we set the throughput between the nodes to
10 Mbps and the propagation delay among SUs to 20 ms
(since SUs within a cluster are close to each other) and

33874 VOLUME 9, 2021



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

TABLE 6. BFT complexity.

FIGURE 4. GoSig consensus latency.

simulate the protocol. Our results, depicted in Fig. 4, show
that for a system with nC = 15 clusters and ` = 5 DBs where
clusters are of size as large as 1000 SUs, a consensus could
be reached in less than 7 s even if up to 1/3 of the SUs are
Byzantine. This overhead is dominated by the cost of running
BFT inside the clusters as the number of SUs within each
cluster is expected to be larger than the number of clusters
in the system as depicted in Table 6. The overhead of BFT
in TrustSAS depends heavily on the number of participants
and the number of signature verifications required by each
participant. Therefore, BFT will have a different cost for each
of TrustSAS’s algorithms. For instance in Rekeying, BFT
will take as long as 76 s since each SU will need to verify
the signatures of all other SUs in C(i) included in the block
submitted by the leader at step 7 of Alg. 5. Note that the
blockchain technology itself does not really incur a large
computational burden as we are using private blockchains as
opposed to public blockchains that rely mainly on proof-of-
work which is computationally intensive. Most of the com-
putational overhead in our system stems from running the
REKEYING operation which involves verifying the signa-
tures of all members of the cluster. However, REKEYING
will run only occasionally, as membership changes are not
frequent in the system, and most of the time, SUs will need
to verify only a small number of signatures per consensus
round, which will make the cost of running BFT similar to
that depicted in Table 6.

An approach that can further reduce the cost in most of
these algorithms is by not relying on all SUs in the BFT
consensus, but rather use different quorums of users for
every BFT round. This will reduce the overhead but will also
have an impact on the security guarantees and robustness to
failures.

The other main source of overhead in private blockchain
systems such as ours stems from the relatively large com-
munication overhead involved in the byzantine fault tolerant
consensus that is required. We use a hierarchical approach
that consists of dividing the system into two layers: a global
layer where we use a blockchain that only cluster leaders and
spectrum databases and a second layer consisting of multiple
cluster specific blockchains visible only to members of each
cluster. This layered approach saves tremendously in terms of
communication overhead without losing in terms of security
as we discussed earlier. Therefore, the use of blockchain
technology should not present a computational burden on the
system nor on the users’ devices.

C. OVERALL SYSTEM OVERHEAD
1) END-TO-END DELAY OF TrustSAS COMPONENTS
We now estimate and provide the end-to-end delay achieved
under TrustSAS. For this, we consider a 100km × 100km
region, divided into 100m× 100m cells, and ` = 7 spectrum
databases whose content is of size η = 560MB with r =
106 records each. SUs are grouped into 50 clusters each
containing 1000 SUs, and τ is set to 10. TrustSAS entities
communicate via Internet through 10 Mbps data-rate links.
For simplicity, this evaluation assumes no Byzantine failures,
and considers all of TrustSAS’s algorithms except Alg. 4,
which is executed only at system setup. The cost of these
algorithms is summarized in Table 7.

We start with the Rekeying procedure of Alg. 5. It first
involves a DKG key generation operation between the 1000
SUs, which requires 1.05s of computation in total in addition
to one round of reliable broadcast which takes 4.3swithin the
cluster. All members of the cluster need to perform TBLS and
an EPID signature. As these two operations are done by each
SU independently from other SUs in the cluster, performing
them will only add 0.63ms for TBLS and 135 ms for EPID as
illustrated in Tables 4 & 3. BFT consensus is then run to
validate all public keys and signatures before adding them
to the local blockchain, which takes around 72 s. In total,
a Rekeying operation within a cluster of 1000 SUs takes
around 77.47 s. We also evaluate the cost of a join event,
depicted in Alg. 6, assuming that a beacon is detected. A join
operation requires running TwoWayEPID, which involves 2
parallel EPID.Sign (135ms), 2 parallel EPID.Verify (120ms).
It also requires a Rekeying operation (77.47 s) which brings
the total delay for a join event to 78.12 s. Note that the
relatively high cost of the Rekeying operation dominates
the cost of a join operation, driving it to be high as well.
However, this cost may still be reasonable when considering
TrustSAS with unfrequent membership change events. Even
in the case frequent membership change events, the Rekeying
operation frequency can be set to be small enough towait until
enough join events take place before invoking the Rekeying
operation to amortize the cost.

We also evaluate the end-to-end delay of running the
private spectrum query depicted in Alg. 7. This involves

VOLUME 9, 2021 33875



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

TABLE 7. End-to-end delay of TrustSAS algorithms.

τ parallel EPID.Sign operations with an overhead of 135ms,
τ EPID.Verify operations with an overhead of 1.2 s, one
BatchPIR operation taking a total of 7.52 s for both SU (i)

L
and DBs to process q = 25 PIR batched queries, and one
round of BFT consensus within C(i) taking 4.3 s. Running the
smart contracts is done individually by each SU and does not
require going through a consensus round. All giving a total of
13.15 s for running Alg. 7.
Finally, we evaluate the cost of the spectrum usage notifi-

cation operation depicted in Alg. 8. This involves ti = ni/2
parallel TBLS.SignShareGen operations, taking 0.63 ms, ti
TBLS.SignShareVerif operations run by SU (i)

L , taking 1.15 s,
and one TBLS.SignReconstruct operation also run by SU (i)

L ,
taking 461 ms. In total it takes C(i) 1.61 s to prepare Bi.
Then, Bi goes through a round of BFT consensus between
members of V containg ` = 7 DBs and 50 clusters leaders
to validate the block using TBLS.GroupSignVerif, requiring
237 ms. In total, the spectrum usage notification operation
takes around 1.85 s.
Despite the relatively high cost of these algorithms, espe-

cially the rekeying and join operations, note that these opera-
tions are not frequent as we are not considering highly mobile
SUs. Also the operations that are considered to be executed
continuously and more frequently are the private spectrum
queries and spectrum usage notifications, but even for these
operations clusters are expected to query and notify DBs
every few hours, as it is the case for TVWS systems which
require SUs to query DBs every 24 hours.

2) SYSTEM LEVEL EVALUATION
To better understand the previously discussed results, in this
section, we mimic a real system setup through simulation and
assess the impact that TrustSAS might have on the operations
of SUs. We run this simulation for 1000 Tepochs, which rep-
resent the lifetime of the system in this simulation.

For that, we model SUs’ cluster join events during each
Tepoch as a Poisson arrival process of rate λ (joining SUs per
Tepoch). SUs are distributed among the cells of the cluster fol-
lowing a two dimensional spatial Poisson process.We assume
that each Tepoch, set to 5 hours, is divided into small time slots
each of duration t = 15min. Each SU could be either active or
inactive during a time slot with its ON/OFF activity modelled
as Bernoulli process with parameter p.
As discussed earlier, once the system is setup, join events

are expected to be rare, and hence so do the Rekeying

FIGURE 5. Percentage of time spent on Rekeying within a cluster.

operations. We assess how frequent a cluster needs to run this
operation for different SUs joining rates and we calculate the
percentage of time the cluster needs to spend on this operation
in the lifetime of the simulation. We set the maximum cluster
size to 2000 SUs, beyond which the cluster will not accept
any new members and therefore no rekeying will be needed.
As depicted in Figure 5, this operation, despite its relatively
high cost, will be run only for a small percentage of time of
the system lifetime. When λ is small, Rekeying operations
become frequent, and hence, it takes more Tepochs to reach
the cluster capacity. As λ increases, the cluster capacity will
be reached faster.

We also study the impact of the activity of SUs within
the cluster on the number of disruptions that every SU will
experience. A disruption occurs due to a spectrum reassign-
ment operation executed when the leader triggers the smart
contracts on the local blockchain. A reassignment operation
takes place if one or multiple SUs switch from an inactive
state to an active state, and aims to adjust transmission param-
eters within the cluster to accommodate the newly active
SUs. If SUs are active or inactive all the time, then they will
not experience any disruption of their transmissions. A more
reasonable scenario is that during a Tepoch, every SU within
the cluster could be active for some time slots and inactive for
the remaining time slots. Here we assume that the leader has
already acquired spectrum availability information for all the
cells in its cluster. As depicted in Figure 6, as p increases, SUs
experience more disruptions to their transmissions. This is
due to the fact that higher values of p imply more contiguous
active time slots for each SU whichmakes SUsmore sensitive
to any change of other SUs’ states, i.e. from inactive to active.

33876 VOLUME 9, 2021



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

FIGURE 6. Average number of disruptions experienced by a
SU depending on p.

D. COMPARISON WITH EXISTING APPROACHES
In this section we aim to compare TrustSAS to the two
approaches that we believe are the closest to our work which
are P2-SAS [19] and PSEO [5].
P2-SAS [19] relies on secure multi-party computa-

tion (SMPC) via Paillier partial homomorphic encryption.
This severely limits the type of functions that this scheme
can compute over the encrypted operational data of both SUs
and PUs to only some limited/basic operations which may
not work with the complex models used in SAS to calculate
spectrum availability information. The use of SMPC may not
be practical in SAS, since PUs are military and governmental
entities that do not want to continuously engage in an inter-
active protocol with SUs and the spectrum database. Another
limitation of SMPC solutions is that they are vulnerable to
collusion among multiple parties. On top of these limitations,
P2-SAS necessitates on average 6.96 seconds [19] to process
a single spectrum query from a single SU , which means it
would take P2-SAS 1.93 h to process requests from 1000
SUs. Our proposed protocol TrustSAS, on the other hand,
needs only 13.15 s to handle a batched spectrum query of
all 1000 SUs of a cluster in our system.
PSEO [5], on the other hand, requires DB to share an

attenuation map of the whole covered region with all SUs to
be used it to calculate the interference that SUs may cause
to a PU . As discussed in Section I-C, this scheme requires a
very large number of costly Paillier encryption over a large
input size. Hence, it cannot scale with large numbers of
SUs, expected to exist in large areas, especially given the
fact that SAS is designed for highly dense areas [21], [22].
It also places a high trust on SUs by assuming that they will
accurately and honestly calculate the interference. This over-
whelms SUs with heavy computation, and reduces the role of
DBs to just a simple gateway between PUs and SUs. Finally,
PSEO requires that SUs communicate directly with PUs,
which is not a realistic assumption as PUs in SAS systems
are military and governmental entities. In terms of overhead,
it takes PSEO 9.61 s to process a single SU request, or 2.67 h
to process requests from 1000 SUs [5].
It is therefore clear that it takes existing approaches hours

to perform what TrustSAS achieves in few seconds. It is

also worthwhile noting that these aforementioned approaches
consider a single-service provider SAS architecture, which
deviates from the real-world architecture proposed by the
FCC. Moreover, various SAS specific requirements were not
considered. Specifically, they focus on the spectrum sharing
between PUs and SUs and do not consider the coexistence
between SUs themselves, the spectrum usage notification and
system auditability, all of which are requirements specifically
introduced for SAS by the FCC.

In summary, the main benefits that TrustSAS brings com-
pared to alternative techniques are:

• Compliance with FCC’s SAS requirements.
• Higher privacy and security guarantees achieved via
existing privacy enhancing technologies.

• Is not concerned only with the privacy of SUs but also
of all the entities involved in the system.

• Does not require PUs’ involvement as done by
some existing approaches, which use interactive secure
multi-party computation that requires PUs’ participa-
tion. This may not be practical in these systems since
PUs are usually military and governmental entities.

However, there are still some limitations that require fur-
ther investigation:

• Achieving higher privacy and security performances
comes always at the cost of increased overhead. How-
ever, most of the overhead is incurred during the initial-
ization phase or membership change events, which are
expected to be infrequent in these studied systems.

• The storage overhead may also get relatively high, but
this could be easily alleviated by performing a periodic
re-initialization operation as discussed in Section IV-E.

We reiterate that this framework strikes a good balance
between achieving high privacy guarantees to all system enti-
ties while complying with FCC’s requirements and incurring
an overhead that outweighs these benefits.

VII. CONCLUSION
In this paper, we propose TrustSAS, a trustworthy frame-
work for SAS that preserves SUs’ operational privacy while
adhering to regulatory requirements mandated by FCC in
the 3.5 GHz CBRS band. To realize this, TrustSAS syn-
ergizes state-of-the-art cryptographic mechanisms with the
blockchain technology in an innovative way. We have shown
the privacy benefits that TrustSAS brings to SAS environ-
ments through security analysis. We have also studied the
performance of the proposed framework through theoretical
analysis, simulations, and experimentation.

The preliminary results that we obtained in this paper are
very promising, and show that it is possible to implement
a SAS system that satisfies the FCC requirements while
preserving the users privacy but still holding these users
accountable if they misbehave. All is achieved while keeping
a reasonable overhead that could be further optimized, as dis-
cussed in this paper, knowing that most of this overhead stems
from operations that we believe will not be very frequent in

VOLUME 9, 2021 33877



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

this kind of system. In light of this work and the results that
we obtained, we highly recommend that the FCC considers
some, if not all, of the proposed techniques to enhance secu-
rity and privacy in SAS systems. In fact, we strongly believe
that SAS systems are a natural application of multi-server
PIR due to the fact that these systems satisfy the main require-
ment of multi-server PIR, the existence of multiple replicas
of the spectrum database as mandated by the FCC. This will
help provide location privacy to the users and encourage them
to rely on this technology. The use of blockchains, as we
demonstrated in this work, could also bring additional bene-
fits especially in terms of auditability and accountability and
also a platform for enforcing fair allocation of the spectrum
through the use of smart contracts. FCC could also rely on
EPID-like mechanisms to anonymously authenticate users
to preserve their privacy while at the same time preserving
the capability of evicting them from the system when they
misbehave.

REFERENCES
[1] Report and Order and Second Further Notice of Proposed Rulemaking,

document FCC 15-47, Federal Communications Commission, 2015.
[2] Order on Reconsideration and Second Report and Order,

document FCC 16-55, Federal Communications Commission, May 2016.
[3] Y. Ye, D. Wu, Z. Shu, and Y. Qian, ‘‘Overview of LTE spec-

trum sharing technologies,’’ IEEE Access, vol. 4, pp. 8105–8115,
Apr. 2016.

[4] G. D. H. Hunt and L. Koved, ‘‘Blockchain checkpoints and certified
checkpoints,’’ U.S. Patent 10 586 210, Mar. 10, 2020.

[5] Q. Cheng, D. N. Nguyen, E. Dutkiewicz, and M. Mueck, ‘‘Preserving hon-
est/dishonest users’ operational privacy with blind interference calculation
in spectrum sharing system,’’ IEEE Trans. Mobile Comput., vol. 19, no. 12,
pp. 2874–2890, Dec. 2020.

[6] V. Chen, S. Das, L. Zhu, J. Malyar, and P. McCann, Protocol to Access
White-Space (PAWS) Databases, document RFC 6953, 2015.

[7] M. A. Clark andK. Psounis, ‘‘Trading utility for privacy in shared spectrum
access systems,’’ IEEE/ACM Trans. Netw., vol. 26, no. 1, pp. 259–273,
Feb. 2018.

[8] P. Marshall, Three-Tier Shared Spectrum, Shared Infrastructure, and a
Path to 5G. Cambridge, U.K.: Cambridge Univ. Press, 2017.

[9] CBRS Communications Security Technical Specification,
document WINNF-15-s-0065, Wireless Innovation Forum, Apr. 2017.

[10] CBRS Threat Model Technical Report, document WINNF-15-p-0089,
Wireless Innovation Forum, May 2016.

[11] M. Grissa, A. A. Yavuz, and B. Hamdaoui, ‘‘When the hammer meets
the nail: Multi-server PIR for database-driven CRN with location privacy
assurance,’’ in Proc. IEEE Conf. Commun. Netw. Secur. (CNS), Oct. 2017,
pp. 1–9.

[12] M. Grissa, B. Hamdaoui, and A. A. Yavuz, ‘‘Location privacy in cognitive
radio networks: A survey,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1726–1760, 3rd Quart., 2017.

[13] Z. Gao, H. Zhu, Y. Liu, M. Li, and Z. Cao, ‘‘Location privacy in database-
driven cognitive radio networks: Attacks and countermeasures,’’ in Proc.
IEEE INFOCOM, Apr. 2013, pp. 2751–2759.

[14] C. Guan, A. Mohaisen, Z. Sun, L. Su, K. Ren, and Y. Yang, ‘‘When
smart TV meets CRN: Privacy-preserving fine-grained spectrum access,’’
in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017,
pp. 1105–1115.

[15] M. Grissa, A. A. Yavuz, and B. Hamdaoui, ‘‘Cuckoo filter-based location-
privacy preservation in database-driven cognitive radio networks,’’ in
Proc. World Symp. Comput. Netw. Inf. Secur. (WSCNIS), Sep. 2015,
pp. 1–7.

[16] M.Grissa, A. Yavuz, andB.Hamdaoui, ‘‘An efficient technique for protect-
ing location privacy of cooperative spectrum sensing users,’’ in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr. 2016,
pp. 915–920.

[17] M. Clark and K. Psounis, ‘‘Achievable privacy-performance tradeoffs for
spectrum sharing with a sensing infrastructure,’’ in Proc. 14th Annu.
Conf. Wireless On-Demand Netw. Syst. Services (WONS), Feb. 2018,
pp. 103–110.

[18] S. Bhattarai, P. R. Vaka, and J.-M. Park, ‘‘Thwarting location inference
attacks in database-driven spectrum sharing,’’ IEEE Trans. Cognit. Com-
mun. Netw., vol. 4, no. 2, pp. 314–327, Jun. 2018.

[19] Y. Dou, K. C. Zeng, H. Li, Y. Yang, B. Gao, C. Guan, K. Ren, and
S. Li, ‘‘P2-SAS: Preserving users’ privacy in centralized dynamic spectrum
access systems,’’ in Proc. 17th ACM Int. Symp. Mobile Ad Hoc Netw.
Comput., 2016, pp. 321–330.

[20] Q. Cheng, D. N. Nguyen, E. Dutkiewicz, and M. D. Mueck, ‘‘Protecting
operational information of incumbent and secondary users in FCC spec-
trum access system,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2018,
pp. 1–6.

[21] Google Spectrum Access System. Accessed: Sep. 11, 2019. [Online]. Avail-
able: https://www.google.com/get/spectrumdatabase/

[22] M. D. Mueck, S. Srikanteswara, and B. Badic, ‘‘Spectrum sharing:
Licensed shared access (LSA) and spectrum access system (SAS),’’ Intel,
Portland, OR, USA, White Paper, 2015.

[23] M. Grissa, A. A. Yavuz, and B. Hamdaoui, ‘‘TrustSAS: A trustworthy
spectrum access system for the 3.5 GHz CBRS band,’’ in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2019, pp. 1495–1503.

[24] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, ‘‘Algorand:
Scaling Byzantine agreements for cryptocurrencies,’’ in Proc. 26th Symp.
Operating Syst. Princ., Oct. 2017, pp. 51–68.

[25] T. Hanke, M. Movahedi, and D. Williams, ‘‘DFINITY technology
overview series, consensus system,’’ 2018, arXiv:1805.04548. [Online].
Available: http://arxiv.org/abs/1805.04548

[26] B. David, P. Gaži, A. Kiayias, and A. Russell, ‘‘Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,’’
in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn. Cham,
Switzerland: Springer, 2018, pp. 66–98.

[27] B. Chor, O. Goldreich, E. Kushilevitz, andM. Sudan, ‘‘Private information
retrieval,’’ in Proc. IEEE 36th Annu. Found. Comput. Sci., Oct. 1995,
pp. 41–50.

[28] A. Boldyreva, ‘‘Threshold signatures, multisignatures and blind signa-
tures based on the gap-Diffie-Hellman-group signature scheme,’’ in Proc.
Int. Workshop Public Key Cryptogr. Berlin, Germany: Springer, 2003,
pp. 31–46.

[29] D. Boneh, B. Lynn, and H. Shacham, ‘‘Short signatures from the Weil
pairing,’’ J. Cryptol., vol. 17, no. 4, pp. 297–319, Sep. 2004.

[30] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook
of Applied Cryptography. Boca Raton, FL, USA: CRC Press, 1996.

[31] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, ‘‘Secure distributed
key generation for discrete-log based cryptosystems,’’ in Proc. Int. Conf.
Theory Appl. Cryptograph. Techn. Berlin, Germany: Springer, 1999,
pp. 295–310.

[32] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[33] S. Goldfeder, J. Bonneau, R. Gennaro, and A. Narayanan, ‘‘Escrow
protocols for cryptocurrencies: How to buy physical goods using bit-
coin,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur. Cham,
Switzerland: Springer, 2017, pp. 321–339.

[34] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System. Pseudonym
in Bitcoins, 2008.

[35] M. Vukolić, ‘‘Rethinking permissioned blockchains,’’ in Proc. ACMWork-
shop Blockchain, Cryptocurrencies Contracts, Apr. 2017, pp. 3–7.

[36] M. Vukolić, ‘‘The quest for scalable blockchain fabric: Proof-of-work vs.
BFT replication,’’ in Proc. Int. Workshop Open Problems Netw. Secur.
Cham, Switzerland: Springer, 2015, pp. 112–125.

[37] K. Christidis and M. Devetsikiotis, ‘‘Blockchains and smart contracts for
the Internet of Things,’’ IEEE Access, vol. 4, pp. 2292–2303, 2016.

[38] E. Brickell and J. Li, ‘‘Enhanced privacy ID: A direct anonymous attesta-
tion scheme with enhanced revocation capabilities,’’ IEEE Trans. Depend-
able Secure Comput., vol. 9, no. 3, pp. 345–360, May 2012.

[39] E. Brickell, J. Camenisch, and L. Chen, ‘‘Direct anonymous attesta-
tion,’’ in Proc. 11th ACM Conf. Comput. Commun. Secur. (CCS), 2004,
pp. 132–145.

[40] C. Rackoff and D. R. Simon, ‘‘Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack,’’ in Proc. Annu. Int. Cryptol.
Conf. Berlin, Germany: Springer, 1991, pp. 433–444.

[41] I. Goldberg, ‘‘Improving the robustness of private information retrieval,’’
in Proc. IEEE Symp. Secur. Privacy (SP), May 2007, pp. 131–148.

33878 VOLUME 9, 2021



M. Grissa et al.: Anonymous Dynamic Spectrum Access and Sharing Mechanisms for CBRS Band

[42] W. Lueks and I. Goldberg, ‘‘Sublinear scaling for multi-client private
information retrieval,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur.
Berlin, Germany: Springer, 2015, pp. 168–186.

[43] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, ‘‘Batch codes and their
applications,’’ in Proc. 36th Annu. ACM Symp. Theory Comput. (STOC),
2004, pp. 262–271.

[44] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh,
‘‘Location privacy via private proximity testing,’’ in Proc. NDSS, vol. 11,
2011, pp. 1–17.

[45] T. Chen, H. Zhang, G. M. Maggio, and I. Chlamtac, ‘‘CogMesh: A cluster-
based cognitive radio network,’’ in Proc. 2nd IEEE Int. Symp. New Fron-
tiers Dyn. Spectr. Access Netw. (DySPAN), Apr. 2007, pp. 168–178.

[46] X. Jin, J. Sun, R. Zhang, Y. Zhang, and C. Zhang, ‘‘SpecGuard: Spec-
trum misuse detection in dynamic spectrum access systems,’’ IEEE Trans.
Mobile Comput., vol. 17, no. 12, pp. 2925–2938, Dec. 2018.

[47] M. Grissa, B. Hamdaoui, and A. A. Yavuz, ‘‘Unleashing the power of
multi-server PIR for enabling private access to spectrum databases,’’ IEEE
Commun. Mag., vol. 56, no. 12, pp. 171–177, Dec. 2018.

[48] M. Grissa, A. A. Yavuz, and B. Hamdaoui, ‘‘Location privacy in cogni-
tive radios with multi-server private information retrieval,’’ IEEE Trans.
Cognit. Commun. Netw., vol. 5, no. 4, pp. 949–962, Dec. 2019.

[49] M. Castro and B. Liskov, ‘‘Practical Byzantine fault tolerance,’’ in Proc.
OSDI, vol. 99, 1999, pp. 173–186.

[50] Multiprecision Integer and C Rational Arithmetic. (2013). C++
Library (Miracl). Accessed: Jun. 2, 2018. [Online]. Available:
https://github.com/miracl/MIRACL

[51] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-
huri, R. Ricci, and I. Seskar, ‘‘GENI: A federated testbed for innovative
network experiments,’’ Comput. Netw., vol. 61, pp. 5–23, Mar. 2014.

[52] Percy++ Library. Accessed: Jun. 14, 2018. [Online]. Available:
http://percy.sourceforge.net

[53] Threshold BLS Dfinity Implementation. Accessed: Jun. 2, 2018. [Online].
Available: https://github.com/dfinity/random-beacon

[54] The Intel(r) Enhanced Privacy Id Software Development Kit. Accessed:
Jun. 2, 2018. [Online]. Available: https://github.com/Intel-EPID-SDK

[55] BlueKrypt—V32.3, Damien Giry, Cryptographic Key Recommendation.
Accessed: Jun. 2, 2018. [Online]. Available: https://www.keylength.com/

[56] P. Li, G. Wang, X. Chen, and W. Xu, ‘‘Gosig: Scalable Byzantine
consensus on adversarial wide area network for blockchains,’’ 2018,
arXiv:1802.01315. [Online]. Available: http://arxiv.org/abs/1802.01315

MOHAMED GRISSA (Student Member, IEEE)
received the Diploma of Engineering degree
(Hons.) in telecommunication engineering from
the Ecole Superieure des Communications de
Tunis (Sup’Com), Tunis, Tunisia, in 2011, and
the M.S. and Ph.D. degrees in electrical and
computer engineering (ECE) from Oregon State
University, Corvallis, OR, USA, in June 2015 and
September 2018, respectively.

Before joining Oregon State University,
he worked as a Value Added Services Engineer with the Orange France
Telecom Group, from 2012 to 2013. His research interests include privacy
and security in computer networks, cognitive radio networks, spectrum
access systems, the IoT, Blockchain, and eHealth systems.

ATTILA ALTAY YAVUZ (Member, IEEE) received
the M.S. degree in computer science from
Bogazici University, Istanbul, Turkey, in 2006, and
the Ph.D. degree in computer science from North
Carolina State University, in August 2011. He was
a member of the Security and Privacy Research
Group with the Robert Bosch Research and Tech-
nology Center North America, from 2011 to 2014.
He was an Assistant Professor with the School
of Electrical Engineering and Computer Science,

Oregon State University, from August 2014 to August 2018. He is cur-
rently the Director of the Applied Cryptography Research Laboratory and
the Co-Director of the Center for Cryptographic Research with the Uni-
versity of South Florida (USF). He has authored 79 products, including
research articles in top conferences, journals, and patents. His research
on privacy-enhancing technologies and intra-vehicular network security is
in the process of technology transfer with potential worldwide deploy-
ments. He is broadly interested in the design, analysis, and application
of cryptographic tools and protocols to enhance the security of computer
networks and systems. He is a member of ACM. He was a recipient of
the NSF CAREER Award, the Cisco Research Award (twice), the USF
Faculty Outstanding Research Achievement Award, and the USF College
of Engineering’s Outstanding Research Achievement Award.

BECHIR HAMDAOUI (Senior Member, IEEE)
received the M.S., C.S., and Ph.D. degrees
in electronics and communications engineer-
ing (ECE) from the University of Wisconsin-
Madison, in 2002, 2004, and 2005, respectively.

He is currently a Professor with the School
of Electrical Engineering and Computer Science,
Oregon State University. His research interests
include computer networking, network security,
and wireless communication, with a current focus

on edge cloud computing, network analytics, autonomous systems, dynamic
spectrum management, 5G systems, and datacenters. He is a Senior Member
of the IEEE Computer Society, the IEEE Communications Society, and the
IEEE Vehicular Technology Society. He won several awards, including the
ISSIP 2020 Distinguished Recognition Award, the ICC 2017 Best Paper
Award, the 2016 EECS Outstanding Research Award, and the 2009 NSF
CAREER Award. He also chaired/co-chaired many IEEE conference pro-
grams/symposia, including the 2017 INFOCOM Demo/Posters program,
the 2016 IEEE GLOBECOM Mobile and Wireless Networks symposium,
and many others. He served as a Distinguished Lecturer for the IEEE
Communication Society for 2016 and 2017. He currently serves as the
Chair for the IEEE Communications Society’s Wireless Technical Com-
mittee (WTC). He serves/served as an Associate Editor for several jour-
nals, including IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE
TRANSACTIONS ONWIRELESS COMMUNICATIONS, IEEE NETWORK,
and IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

CHITTIBABU TIRUPATHI received the B.Tech.
degree in computer science engineering from AP
IIIT, India, in 2015. He is currently pursuing the
M.Sc. degree from the School of Electrical Engi-
neering and Computer Science (EECS), Oregon
State University, Corvallis, OR, USA. Before pur-
suing masters, he worked as an Assistant Sys-
tem Engineer with Tata Consultancy Services
Ltd., Bengaluru, India, from 2015 to 2017. His
research interests include computer networks, net-

work security, and applying machine learning techniques to IoT devices to
make them intelligent enough to be more useful in the real world.

VOLUME 9, 2021 33879


