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Abstract—End-to-end encrypted file-sharing systems enable
users to share files without revealing the file contents to the storage
servers. However, the servers still learn metadata, including user
identities and access patterns. Prior work tried to remove such
leakage but relied on strong assumptions. Metal (NDSS ’20) is not
secure against malicious servers. MCORAM (ASIACRYPT ’20)
provides confidentiality against malicious servers, but not integrity.

Titanium is a metadata-hiding file-sharing system that offers
confidentiality and integrity against malicious users and servers.
Compared with MCORAM, which offers confidentiality against
malicious servers, Titanium also offers integrity. Experiments show
that Titanium is 5× to 200× faster or more than MCORAM.

I . I N T R O D U C T I O N

Many companies offer cloud storage with end-to-end encryption,
such as BoxCryptor [1], Icedrive [2], Keybase Filesystem [3],
MEGA [4], pCloud [5], PreVeil [6], Sync [7], and Tresorit
[8]. The enthusiasm in end-to-end encryption stems from the
public’s concerns about how personal data is misused [9] and
how hackers have stolen databases of large enterprises [10].

However, end-to-end encryption is not the end, because
cloud servers still see metadata. Metadata such as whom the
user shares files with is similar to communication privacy—the
Stanford MetaPhone study [11] found that phone call metadata
is “densely interconnected, susceptible to re-identification, and
enables highly sensitive inferences”. A former NSA General
Counsel said, “Metadata absolutely tells you everything about
somebody’s life” [12].

Extracting secrets from access patterns has been an im-
portant area of security research, with much success. There
are works that deanonymize users using social connections
[13–21], compromise encrypted databases with access patterns
[22–28], and break secure hardware with memory access pat-
terns [29, 30]. These attacks might also be applied to end-to-end
encrypted file-sharing systems.

To understand the impact of metadata leakage, consider an
application (Fig. 1) and how it would benefit from metadata
protection. A whistleblower, Alice, wants to report a company’s
scandal to a journalist. If they communicate via the end-to-end
encrypted storage, the servers know that Alice shares files with a
journalist and when the files are accessed. If the servers collude
with the company, the company may find out the whistleblower.

End-to-end encrypted storage Metadata-hiding file-sharing systems

Alice and Journalist have accounts Users remain anonymous
Alice and Journalist share file F
• Alice has write permission
• Journalist has read permission

F’s access control list is unknown

Alice wrote to F on May 26
Journalist read F on May 27

Someone accessed some file on May 26
Someone accessed some file on May 27

On May 28, the scandal was reported

Fig. 1: Comparison of security guarantees between end-to-end
encrypted storage and metadata-hiding file-sharing systems.

Moreover, a hacker or a malicious employee of the cloud may
already know the whistleblower’s identity.

Alice and the journalist need a storage system that hides
metadata from the servers. This system must have anonymity,
so the server does not learn whom it is talking to. It must hide
access patterns, so the server cannot infer the user behaviors.

Does such a metadata-hiding file-sharing system exist? In
the last decade, researchers have been trying to design practical
metadata-hiding storage [31–35]. This is challenging because
there is almost nothing to trust: both users and servers can be
malicious. We need malicious security.1

A. The need for malicious security
The first step toward malicious security is to handle malicious
users. For anonymity, there must be many users, and we cannot
assume that none of them are malicious. Over the years, security
against malicious users has been achieved, as shown in Tab. I.

In contrast, there is no solution to guarantee security against
malicious servers. Several constructions [31–33, 35] all assume
semi-honest servers. A recent work [34] is the closest to this
goal, but it does not offer integrity against malicious servers.

Malicious security should be the standard for distributed
applications, rather than semi-honest security. This is because
malicious attacks can even look indistinguishable from honest
executions, so the attackers will never be caught for behaving
maliciously. The possibility of undetectable malicious attacks
is concerning to users who need metadata privacy to protect
themselves, such as Alice and the journalist.

In §II, we present several malicious attacks on semi-honest
constructions. Though these attacks fall beyond the scope of

1Malicious security ensures security against adversaries who can behave
arbitrarily to compromise privacy and integrity of the system. This is in contrast
to semi-honest security, where adversaries will follow the protocol faithfully.
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TABLE I: Comparison of cryptographic metadata-hiding file storage systems.

Scheme
Security Functionality Server overhead

Anonymity Malicious Malicious Tolerate t out of N Multi- File Computation Server-server
users servers corrupted servers owner sharing communication

GORAM [31] No No No

(1, 1)

No Yes polylog

N/APIR-MCORAM [32] No Yes No No Yes linear
AnonRAM-lin [33] Yes Yes No Yes No linear
FHE-MCORAM [34] Yes Yes Partial† No Yes linear
AnonRAM-polylog [33] Yes Yes No (1, 2) Yes No polylog polylog
Metal [35] Yes Yes No (1, 2) Yes Yes polylog polylog
DPF-MCORAM [34] Yes Partial† Partial† (

√
N − 1, N) ‡ Yes Yes linear N/A

Titanium (this paper) Yes Yes Yes (N − 1, N) Yes Yes polylog polylog

† FHE-MCORAM does not offer integrity against malicious servers, and DPF-MCORAM does not offer integrity against malicious servers or users.
‡ DPF-MCORAM supports only N = 4, 9, 16, i.e., security against 1-out-of-4, 2-out-of-9, or 3-out-of-16 corrupted servers, which is indeed weaker than
those under (N − 1, N), such as 1-out-of-2, 2-out-of-3, and 3-out-of-4, respectively.

semi-honest assumptions, our goal is to show why malicious
security is necessary. Particularly, one of the attacks, ciphertext-
substitution attack (in §II-A), can decrypt the entire storage
in Metal [35], and the attack is indistinguishable from normal
execution, so the attacker will never be caught.

Moreover, integrity, which is not ensured in [34], is critical.
Malicious users should not be able to write to other users’
files. Malicious servers should not be able to serve incorrect or
outdated files without being caught. Achieving integrity in the
presence of a malicious adversary is challenging, and sometimes
impossible. For example, in any single-server construction, it
is impossible to have integrity [36–41] against the malicious
server because the server can always present different versions
of the files to different users, which we discuss in §II-B.

B. Toward efficient file access
As one may expect, hiding access patterns will incur significant
overhead, and we cannot expect it to catch up with existing
cloud storage like Dropbox [42]. However, we want it to be at
least practical enough so that users who need metadata privacy
can use it at a reasonable cost.

The dominating overhead is server computation. As Tab. I
shows, some prior constructions have a linear overhead, where
they perform linear passes on the entire storage to hide access
patterns, while others have a smaller overhead.

Linear passing is expensive. For example, in a file-sharing
system with ten million files, when the user writes to a file of
16KB, it needs to write at least 150 GB to the disk. Even if
the disk is a solid-state drive, it would take twelve minutes.2
Moreover, solid-state drives naturally cannot sustain such mas-
sive write accesses [43, 44]. A common solid-state drive with
a lifetime write limit of 150 TB can only sustain 1000 such
writes, and then be disposed as e-waste.

For efficiency, it is necessary to avoid linear passes. This
requirement rules out the single-server construction due to a
lower bound by Maffei, Malavolta, Reinert, and Schröder [32]:
in a single-server file-sharing system, hiding file access patterns
must incur a linear overhead. This lower bound holds even
for the semi-honest server, meaning that the server can simply
look at the trace of disk accesses and infer file access patterns
unless linear passes over the entire storage are used.

For this reason, our construction, named Titanium, distributes
trust across multiple servers like [33–35]. Titanium can tolerate

2Measured on an AWS gp2 solid-state drive block storage.

up to N − 1 out of the N servers being maliciously corrupted.
This is the best we can achieve without being subject to the
lower bound. Titanium avoids linear passes by using a sublinear
oblivious access algorithm on the multi-server model, Circuit
ORAM [45], and making improvements that reduce its eviction
overhead by up to a half.

C. Titanium’s goals and techniques
Titanium offers confidentiality and integrity guarantees against
malicious servers and users, as well as a sufficient level of
efficiency for sensitive file sharing scenarios. To understand
how Titanium achieves these properties, we give a high-level
overview of Titanium’s techniques, organized by the goals it
achieves and our approaches.

Goal 1: security against malicious users. The standard
solution to hide access patterns, oblivious RAM (ORAM) [46–
53], is inherently single-user, meaning that if the ORAM storage
is shared with malicious users, the privacy vanishes. To share
files securely with many users, new approaches are needed.
• Approach: We make Titanium secure against malicious users
by minimizing the users’ participation in the protocol. The
only operations that the users perform are sending requests and
receiving the responses, through an API we define in §III. The
users never touch the data stored on the servers. This approach
provides a clean interface and makes it easy to reason about
security against malicious users.

…

…users

servers

Run a proxy
in secure computation

storage
The proxy obliviously 
accesses the storage.

Fig. 2: Titanium’s system model.
As Fig. 2 shows, when a Titanium user wants to read or write
a file, the user sends a request to the N servers. This request
is sent in secret shares so that any N − 1 servers do not know
what the request is. The servers together run a proxy in an
N -party secure computation, where the proxy’s state is hidden
from the servers. The proxy checks whether the user’s request
is legitimate, and if so, on behalf of the user, accesses the
storage and responds to the user (through the servers). Now,

2



malicious users can at most craft an unauthorized request, but
the proxy will not process it. By doing so, Titanium achieves
malicious security against users.

Goal 2: integrity for data storage. Prior work cannot guaran-
tee integrity for data in the storage against malicious servers. A
malicious server can, for example, perform an rollback attack,
where a user receives an outdated file from malicious servers.
In §II-B, we show that malicious servers (or users) can break
integrity in some prior semi-honest constructions.
• Approach: We want files to be written only by users who
are authorized to write, and wants all the authorized readers
to see the latest version of the file. This requires some sort of
message authentication code (MAC), over the entire file storage.
What is challenging is that such MACs must not reveal user or
file identities. Titanium uses authenticated secret sharing [54]
to store the data, which hides the MACs from all the parties
and thus retains confidentiality. Moreover, at least one of the
servers is assumed to be honest. The MACs enable this server
to detect if an incorrect version of the file is sent to the user
or another file that the user did not request, thereby ensuring
integrity, as shown in Fig. 3.

…

…users

servers

Proxy storage

integrity via authenticated 
secret sharing 

integrity via input 
consistency checking

Fig. 3: Providing integrity in Titanium for (1) data in the storage
and (2) user inputs and outputs.

Goal 3: integrity for user inputs and outputs. Though au-
thenticated secret sharing provides integrity for the data storage,
it does not provide integrity for data sent to and received from
the user. If a malicious server can modify such data, a user may
read another file, write data into another file, or share a file with
a stranger. Attaching a signature does not work because it is not
anonymous. An existing primitive designed for the client-server
model, secret-sharing non-interactive proofs (SNIP) proposed
in Prio [55–57], does not work either because it does not offer
integrity against malicious servers.
• Approach: We design a maliciously secure input/output pro-
tocol between the servers and users, so users can confirm that
the proxy receives the correct inputs and the user receives
the correct outputs from the proxy, as shown in Fig. 3. This
protocol also provides privacy, as the servers do not see the
inputs and outputs. We adopt a tool commonly used in cryp-
tographic proof systems, Schwartz-Zippel lemma [58–60], for
this consistency checking.

Goal 4: efficient file access. As Tab. I shows, several prior
works [32–34] have a linear server overhead. Though linear-time
protocols could sometimes be faster than sublinear protocols,
as shown by Floram [61], it is not the case when there are a
lot of files. Linear-time protocols may cause a long waiting
time for the users and incur an unreasonable amount of cost
for the servers.

• Approach: Titanium distributes the trust among N servers
in a way that it tolerates up to N − 1 servers being corrupted.
This model allows Titanium to avoid the linear lower bound
in [32]. Then, Titanium uses an existing sublinear oblivious
access protocol, Circuit ORAM [45], and makes improvements
to reduce its overhead, as shown in Tab. II. Our improvement
removes a significant amount of unnecessary computation in
Circuit ORAM, and is equivalent to the original algorithm.

TABLE II: Comparison with the eviction in Circuit ORAM
[45] and our improved eviction. The number of AND gates
represents the cost of secure computation in boolean circuits.

Circuit ORAM Improved Improvement
[45] (§V)

# AND gates
14.2 million 7.7 million 1.8×

(4 KB blocks)
# AND gates

55 million 29 million 1.9×
(16 KB blocks)

D. Summary of contributions
Our contributions are as follows.
• We study the vulnerabilities of semi-honest file-sharing sys-

tems against malicious attackers with concrete attacks (§II).
• We present Titanium, a metadata-hiding file-sharing sys-

tem with confidentiality and integrity against both malicious
servers and users (§VIII).
• We design new protocols for users to communicate with N

servers with confidentiality and integrity against malicious
servers (Tab. III).
• We propose an optimized algorithm to perform the Circuit-

ORAM eviction [45] in secure computation more efficiently
(§V). Our method reduces the overhead of Circuit-ORAM
eviction in secure computation by up to a half.

I I . W H Y M A L I C I O U S S E C U R I T Y ?
In this section, we discuss why semi-honest security is insuffi-
cient in practice, by presenting several classes of attacks. We
stress that all these attacks fall beyond the threat models of
these semi-honest systems, and are not one of their design goals.
We show these attacks to support our statement that malicious
security is necessary in practice.

A. Data confidentiality attacks
Semi-honest constructions may be vulnerable against a mali-
cious attacker, which might allow a malicious attacker to break
basic security guarantees, such as data confidentiality.

Ciphertext-substitution attack in Metal [35]. Metal assumes
two semi-honest servers that do not collude. We show that in
Metal, if one of the servers is malicious and colludes with a
malicious user, it can learn the content of any file of its choice,
by substituting ciphertexts in the protocol with the ciphertext
that the server wants to decrypt.

As Fig. 4 shows, (a) in Metal, each file is encrypted under
two keys, and each belongs to one server; (b) when the user
accesses a file, the two servers run an oblivious selection to
locate the ciphertext for the file that the user requests, and then
perform a distributed decryption over the ciphertext, using their
keys; here, Server 1 provides the candidates for the selection and
Server 2 receives the selection result and initiates the distributed
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Dual Encryption

(a) Metal encrypts the file’s data
under two keys, where each server
has one of the keys.

Oblivious Select

Distributed Decrypt

(b) A file access operation in
Metal consists of oblivious selec-
tion and distributed decryption.

Ciphertext Substitute

(c) Server 1 can substitute the ci-
phertext in oblivious selection and
learns its plaintext.

Ciphertext Substitute

(d) Server 2 can substitute the ci-
phertext in distributed decryption
and learns its plaintext.

Fig. 4: A data confidentiality attack to Metal [35], in which a malicious server substitutes ciphertexts in the protocol.

decryption over it. Ciphertexts are properly rerandomized so
the data access is oblivious.

(c) Server 1 sees all the ciphertexts of the files in the system.
If Server 1 wants to decrypt a specific ciphertext C∗ (the gray
box in Fig. 4), it colludes with a user (which can be a secret
account owned by Server 1) and lets the user initiate an arbitrary
file access request. During the protocol, Server 1 replaces all
the ciphertexts for oblivious selection with C∗. So regardless
of the oblivious selection, Server 2 receives C∗, and will run a
distributed decryption protocol for C∗ with Server 1. The user
who colludes with Server 1 receives the decryption of C∗ and
forwards it to Server 1, which concludes this attack.

(d) Server 2 can perform a similar attack as follows. Server
2 also sees a lot of ciphertexts in Metal. If Server 2 wants to
decrypt a specific ciphertext C∗, it colludes with a user and lets
the user initiate an access request. After the oblivious selection
protocol, Server 2 simply ignores the result of the selection
and initiates a distributed decryption of C∗, as in Fig. 4. The
user receives the decryption of C∗ and forwards it to Server 2.

We stress that this attack is concerning because the malicious
attacker will never be caught. Since all the ciphertexts in Metal
are re-randomized, they are indistinguishable from one another,
and the honest server will never know if the other server is
malicious. This limitation may frustrate users, as there is no
deterrence for a server to become malicious.

B. Data integrity attacks
Semi-honest constructions may be vulnerable against a mali-
cious attacker who wants to tamper with the honest user’s data.
Here we present a few examples.

Ciphertext-substitution attack in Metal [35]. The attack in
Fig. 4 can be used to make an honest user receive a manipulated
copy M∗ of the file. When an honest user requests a file, the
malicious server simply encrypts M∗ to obtain ciphertext C∗
and performs the same attack with C∗, so that the honest user
receives M∗ instead of the actual file data.

Overwriting attack in DPF-MCORAM [34]. In [34], a user
writes to a file by sending a distributed point function (DPF)
to the servers. A “good” DPF only updates the user’s file, but
a malicious user can craft a “bad” DPF that modifies someone
else’s file or overwrites the entire storage with random data.
An existing solution, verifiable DPF [62], can only address the
latter but not the former and is extremely slow in this setting.
Solving this problem may require zero-knowledge proofs on
AES operations, which is costly. In addition, since each writing
operation in [34] changes the entire storage on each server,
there are unlikely any frequent backups of the storage, and

such attacks may make data unavailable to honest users, which
affects data availability.

Rollback attacks in single-server constructions. There is an
impossibility result [36–41] saying that single-server storage
systems cannot offer integrity guarantees against the malicious
server, as the server can always present an old version of the
storage to certain users. A separate system, either another server
[39] or blockchain [40, 41], has to be used to recover such
integrity guarantees. In Titanium, we prevent rollback attacks
by authenticated secret sharing that tolerates up to N−1 out of
N servers being malicious. That is, as long as one honest server
has the authentication tag of the storage if other (malicious)
servers provide outdated versions, the integrity check will fail
with overwhelming probability.

C. Metadata confidentiality attacks
Selective-failure attacks [63–68] enable an attacker to learn a
small amount of metadata based on whether a failure happens.
When a malicious server deviates from the protocol, it can ob-
serve whether the user receives the correct data or not (through
side information). If the user receives the incorrect data and
behaves differently, it is considered a failure. Whether or not a
failure happens may depend on the metadata, so a malicious
server can learn some metadata using this attack. We now give
two examples of selective-failure attacks in existing systems.

Selective-failure attack in Metal [35]. When Server 1 par-
ticipates in oblivious selection in Fig. 4, Server 1 can replace
the first K blocks with dummy data. If a failure happens, it
means that the user is reading a file that has been accessed
recently, which is a small metadata leakage. This is because
Metal uses a tree-based ORAM construction, where the top of
the tree often stores files that are accessed recently.

Selective-failure attack in PIR-MCORAM [32] and FHE-
MCORAM [34]. In a single-server construction that uses
private information retrieval (PIR), a malicious server can per-
form the PIR over a database in which a subset of the data
is replaced with dummy. If a failure happens, it means that
the user is reading a file that belongs to the modified subset,
which is a small metadata leakage. This issue is common in
single-server constructions based on PIR.

I I I . OV E RV I E W

In this section, we define Titanium’s system model, threat model,
and out-of-scope leakages and assumptions.
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user

server

server

server

API
request

proxy

server

server

server

API 
response

user

in secure 
computation

storage

Fig. 5: The workflow of Titanium.

A. System model
We consider a file-sharing system with many users and N
servers. The servers collaboratively provide storage services to
the users. Each user can store a number of files on the servers
and share these files with other users, under some access control
policies. Each user can read or write a file that the user has
permission to.

As Fig. 5 shows, for a user to perform an operation in
Titanium, the user first makes an API request to the servers.
The request is in secret shares, so any (N − 1) servers cannot
recover what is in the request. The N servers, upon receiving
the user’s request in secret shares, forward the requests to the
proxy. The proxy is not a separate entity in the system but is
a program executed in secure computation by the N servers.
Since the proxy’s state is hidden from the servers, we present
it as a separate part for ease of presentation. The proxy checks
(in secure computation) if the user has permission to perform
the action, and if so, interacts with the storage on behalf of the
user, such as reading a file or writing to a file.

Next, the proxy sends the API response to the user and asks
the servers to forward the response. The response is forwarded
also in secret shares, so any (N − 1) servers do not see what
is in the response. The user reconstructs the proxy’s response
from secret shares, which concludes an API call in Titanium.

Titanium’s API. Users in Titanium interact with the servers
through the API defined as follows.
– CreateAccount()→ (uid, credential). A new user joins

the file-sharing system by calling this API. If the system has
capacity for the new user, the user will be assigned a user
ID and the corresponding credential, which is used later by
the proxy to authenticate the user.

– CreateFile(credential)→ fid. Each user can create a
new file by calling this API. If the system has capacity, the
proxy assigns a new file, and the user obtains the file ID
and becomes the owner of this file. The user can grant and
revoke permission of the files to other users.

– Read(credential, fid) → data. A user can request the
latest version of a file that the user has read permission to by
calling this API. The proxy checks if the user has permission
using the credential. If the user has permission, the proxy
responds to the user with the file data.

– Write(credential, fid, data∗)→ ⊥. A user can update
a file with new data that the user has write permission to by
calling this API. The proxy updates the file accordingly.

– Grant(credential, fid, uid, perm)→ ⊥. The owner of a
file can grant permission (defined as “read” and “write”) to
another user, given that the owner knows the other user’s ID,
by calling this API. The proxy checks that the caller of the
API is indeed the owner of the file and modifies the access
control policies of the file accordingly.

– Revoke(credential, fid, uid, perm)→ ⊥. Similarly, the
owner of a file can revoke permission previously granted to
another user. The proxy checks the caller’s ownership of the
file and updates the file’s access control policies.

Toward more privacy. In Titanium, the user and file IDs are
hidden to the servers and to any users that the honest user does
not interact with. However, the API above requires the owner to
know the recipient’s user ID before sharing, and a recipient of
a file knows the file ID after being granted the permission. For
more privacy, the user and file IDs can be hidden from these
users by replacing these IDs with “randomized user ID” and
“randomized file ID”. A user can have many randomized user
IDs that can be provided to a file owner to gain permission,
while the owner cannot link this randomized ID to the other ID
that a user has. Similarly, the owner does not need to provide
the unique file ID to each other user who has access to the file,
but a randomized file ID suffices.

Such randomization has been done and formalized in [35],
where randomized user and file IDs are called anonyms and
capabilities, respectively. For ease of presentation, Titanium’s
API does not specify these IDs to be randomized, but Titanium
can support it by adopting these primitives (which are pretty
lightweight) directly from [35].

B. Threat model
Titanium’s threat model is as follows. Up to N − 1 out of the
N servers can be malicious and collude with one another. We
assume at least one server is honest, which does not collude with
any corrupted servers. All the corrupted servers can arbitrarily
deviate from the protocols.

Titanium can tolerate an arbitrary number of users to be
malicious and collude with one another and with the corrupted
servers. Malicious users may, for example, attempt to access the
data of honest users even though they do not have permission.
For honest users to remain anonymous from the servers in
the system, they are expected to use some sort of anonymity
network where the IP addresses and communication patterns,
such as latency, do not reveal the user identities. Tor [69] can
be one of such solutions, but Titanium can also work with other
anonymous communication solutions.

Metadata-hiding properties. Titanium offers all the metadata-
hiding guarantees covered in existing works, modeled as follows.
LetA denote the adversary that controls all the corrupted parties.
Let U be the honest user who has access to file F .
(a) Data secrecy and integrity. If U has never granted read or

write permission of F to a malicious user corrupted by A,
then A neither learns anything about F nor modifies F .

(b) Read obliviousness. A cannot distinguish which data block
was read by U , even if A has full permission on the entire
storage. That is, A cannot distinguish a read operation
from another read operation, by another honest user, to
another file.

(c) Write obliviousness. If U has never granted the read per-
mission of F to a malicious user corrupted by A, then A
will not realize if F is updated. But if someone among the
corrupted users has read permission to F , they legitimately
learn that F has been changed, but if at least two honest
users have write permission to F , A does not know who
has changed it.
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(d) Read/write indistinguishability. If no one in A has read
permission on F , then A does not know whether an honest
user reads or writes to F .

(e) Anonymity. A cannot distinguish which honest user made
the access requests, if the honest users communicated with
the servers in a way that hid network information.

Formalization. We define the security of Titanium in the real-
ideal paradigm [70], and show that Titanium securely realizes
an ideal functionality, shown in Fig. 6, in Appendix A.

Definition 1. A protocol Π is said to securely realize FFileSharing

in the presence of static malicious adversaries that compromise
up to N − 1 out of N servers, if, for every non-uniform proba-
bilistic polynomial time adversary A in the real world, there
exists a non-uniform probabilistic polynomial time simulator
S in the ideal world, such that the outputs of the two worlds
are computationally indistinguishable.

Out-of-scope leakages and assumptions. In this paper, we
make the following assumptions: (1) DoS attacks are out-of-
scope; (2) the size of a file is fixed, so there is no size leakage;
(3) all the requests are processed in sequential order. These are
also standard assumptions in prior work [34, 35, 45, 71–73].

There are some solutions to partially remove these assump-
tions. To mitigate DoS attacks from users, anonymous payment
or client puzzles can be used (see Appendix B). For size leakage,
to our knowledge, there is no efficient way to prevent it without
padding to the largest file size (which is extremely costly), but
there is mitigation including partial padding [74], differential
privacy, delayed accessing by downloading different chunks of
the file at different times, or only accessing part of the file that
is needed. Finally, to our knowledge, it is unclear how to enable
parallel oblivious access without requiring a strong assumption
[75–78]. Thus, we leave it as an open-research problem.

I V. M A K I N G T H E P R O X Y ’ S A C C E S S T O T H E
S T O R A G E M A L I C I O U S LY S E C U R E

In this section, we describe the instantiation of the Titanium
storage and proxy and how they are made maliciously secure.

A. File storage with authenticated secret sharing
Data in the file storage is secret-shared among the N servers
using authenticated secret sharing [79]. In Titanium, we repre-
sent the file storage as elements in a field F. Each of the N
servers has a share of every field element x, and the sum of
these shares equals x, as illustrated below.∑

i

x(i) = x ∈ F

where x(i) is the share of x held by the i-th server. The secret-
sharing of a field element x effectively hides the value of x
from the servers, thereby providing confidentiality.

Each field element is authenticated by a MAC m = α · x,
where α is the MAC key. The MAC is secret-shared among
the N servers in a similar way. Each server has a share of m,
and the sum equals m, as illustrated below.∑

i

m(i) = m ∈ F, m = α · x ∈ F

The MAC key, α, is also secret-shared among the N servers.
This allows them to perform a few operations over these secret

Ideal functionality FFileSharing

(For ease of presentation, we omit the session sid “sid” below.)

Initialize. Upon invocation, it sends (init) to S. FFileSharing main-
tains the following maps:
• a credential-user map C from credential to user ID uid
• a file-storage map D from fid to file data
• a file-permission map P from (fid, uid) to a permission attribute

set p ⊆ {‘read’, ‘write’, ‘own’}.
CreateAccount. If the system has capacity for the new user, it
creates a random credential, sets C[credential] := uid, sends
(uid, credential) to the user, and sends a signal (create-account)
to S.
CreateFile. If the system has capacity for the new file, it cre-
ates a new file with ID fid, assigns the user with owner permis-
sion P[fid, uid] := {‘read’, ‘write’, ‘own’}, and sends a signal
(create-file) to S.
Read. If the user with ID uid and correct credential sends a request
to read a file with ID fid, it checks if ‘read’ ∈ P(fid, uid). It
returns the data D[fid] (or dummy if the user is not authorized) to
the user and a signal (access) to S.
Write. If the user with ID uid and correct credential wants to write
new data to a file with ID fid, it checks if ‘write’ ∈ P(fid, uid),
and if so, it updates D[fid] and sends a signal (access) to S.
Grant. When the user with ID uid and correct credential wants
to grant read or write permission of file with ID fid to another
user uid∗, it first checks if ‘own’ ∈ P(fid, uid), and if so, adds
the corresponding permission to P(fid, uid∗) and sends a signal
(grant) to S.
Revoke. When the user with ID uid and correct credential wants
to revoke read or write permission of file with ID fid to another
user uid∗, similarly, it first checks if ‘own’ ∈ P(fid, uid), and if so,
drops the corresponding permission from P(fid, uid∗) and sends a
signal (revoke) to S.

Fig. 6: The file-sharing ideal functionality FFileSharing.

shares. For example, the N servers can work together to add,
subtract, or multiply two secret field elements that are repre-
sented in secret shares, and the computation results are also in
secret shares. The servers can also perform integrity checks on
the computation results. Therefore, when a malicious server
manipulates the results of the computation, an honest server
among the N servers can detect such manipulation and refuse
to release the incorrect results to the user. As a result, when a
user in Titanium receives the response from the N servers, the
user is assured that an honest server has checked the response.

In Titanium, the proxy performs two basic types of computa-
tion over the file storage. The first is oblivious data selection, in
which the proxy is given two field elements and wants to select
one of them in secure computation. The proxy performs such
selection in an oblivious manner so that the servers running the
secure computation do not know which one is being chosen.
Each selection operation incurs an overhead, so for efficiency,
we want to do as few selections as possible. This is reflected
in Titanium’s effort to reduce the overhead of Circuit ORAM
in §VIII, which minimizes the number of data selections.

The second is to compute a random linear combination of
a (large) number of field elements, which is used in our in-
put/output checking protocol described in §VI. This can be done
efficiently, which the input/output checking protocol leverages.
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B. Running the proxy in secure multiparty computation
In Titanium, the proxy receives the API request from users,
accesses the file storage, and sends the API response to the users.
This implies that the proxy knows all the secret information in
Titanium, and therefore its state and execution must be hidden
from the servers and users. To do so, Titanium runs the proxy in
an N -party secure computation, which ensures that up to N−1
out of the N servers cannot see what is being executed in the
secure computation, and if malicious servers want to manipulate
the results, the honest servers can detect such discrepancy and
refuse to provide the incorrect results to the users.

Secure multiparty computation [70, 80–85] enables N par-
ties to evaluate a function f(x1, . . . , xN ) where the i-th party
provides input xi. The results, denoted by (y1, . . . , yN ), are
released to the parties, such that the i-th party receives yi. This
allows the proxy to have its private state.

Secure computation comes with an overhead, as it runs
much slower than plaintext computation. Therefore, Titanium
must minimize the amount of computation. The dominating part
of the computation is the data selection during the oblivious
accesses. We discuss how we reduce this overhead in §VIII.

In practice, we can alleviate the user from waiting for the
secure computation to finish and receiving the API response,
by having the N servers precompute some of the proxy’s
secure computation before a user sends an API request and use
the precomputation to run the secure computation faster. We
analyze how this can be useful for users in §IX.

V. M A K I N G T H E P R O X Y ’ S A C C E S S T O T H E
S T O R A G E O B L I V I O U S A N D E F F I C I E N T

In this section, we describe how we make the proxy in Titanium
access the file storage obliviously and efficiently.
• The first requirement, obliviousness, means that the servers

should not know which file is being accessed or which users
have access to this file. This is necessary to hide the metadata,
as we describe in §III-B.

• The second requirement is efficiency, which is to make the
Titanium protocol practical enough for certain use cases
where such a high level of privacy is needed.

Titanium makes the following efforts to fulfill these two require-
ments. Titanium leverages a state-of-the-art oblivious RAM
protocol, Circuit ORAM [45] and then improves its eviction pro-
cedure (the main overhead) for better efficiency, which achieves
an improvement of up to 2×.

A. Background on Circuit ORAM
We now present some necessary background of Circuit ORAM
for readers to understand how our improvement works.

Circuit ORAM enables the proxy in Titanium to access
the file storage, without revealing which file is being accessed.
To do so, Circuit ORAM assigns a random location for each
file, and when a file is being accessed, it is assigned to a new
random location. As a result, for any sequence of file accesses,
the locations being accessed on the physical storage are random
and do not depend on which files are being accessed.

The challenge that Circuit ORAM faces is to securely and
efficiently move the file to a new location, after each access.
First, the moving of the file must be done in a way that hides
the new location, otherwise, the servers can associate the old

stash

tree

eviction

Fig. 7: A “small shopping cart” illustration of how the Circuit
ORAM eviction works.

and new locations. Second, the moving must be done efficiently,
meaning that it should ideally access only a few locations on
the physical storage. A linear pass of the entire storage, in
which security can be achieved trivially, is too expensive.

The solution is to use layers of “write caches” for the
storage, and instead of moving the file to the new location,
the file is first moved to the write cache. These caches are,
during the subsequent accesses to the storage, gradually being
evicted to lower levels of caches, and eventually to the actual
locations where the file should reside. For this reason, when
the proxy wants to read a file, the proxy also needs to look at
the write caches, as the file may have not yet been evicted out
from layers and layers of write caches.

We illustrate the write cache that Circuit ORAM uses in
Fig. 7, which follows a binary tree structure, of k levels. The
leaf layer of the tree contains 2k−1 buckets, where each bucket
can store Z files (often Z = 3). All the other layers, including
the root, are write caches for their descendants. An extra array,
called stash, is the top level of the write caches. Readers who
are familiar with CPU architecture can consider the stash as
the L1 cache, the root of the tree as the L2 cache, and the layer
immediately before the leaf layer as the L(k + 1) cache.

A problem that write caches must handle is space, since
the stash and each bucket in the tree has a limited size, files
in the write cache must be relocated to lower layers of the
cache, or the leaf layer of the tree, to release some space for
higher layers of the cache. Circuit ORAM provides an eviction
procedure for this purpose. Such eviction is in essence similar
to cache replacement for CPU.

This eviction procedure can be illustrated with “small shop-
ping cart”, as in Fig. 7. Circuit ORAM chooses a random path
of the tree, illustrated in a gray background in the figure, and
does a pass over all the caches on this path. The algorithm picks
a file from the top level of the cache, puts it into a “shopping
cart” that is so small that it can only carry at most one file, and
can choose to pick or drop files along the way. A file can move
to any write cache that is its ancestor. The shopping cart is
empty in the end, and write caches along the path are updated.

So far, Circuit ORAM sounds like an efficient algorithm,
but in order to achieve obliviousness, the shopping cart must
update the buckets along the path, in a way that hides what
kind of movement is done. This requires the algorithm, running
inside the proxy in secure computation, to perform the same
data operations regardless of the eviction plan, and therefore
it needs to pad the actual eviction plan with a lot of dummy
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nothing happens

A B C

Old

New
? ?

drop an element

A B C

Old

New
? ?

pick up an element 

A B C

Old

New

Circuit ORAM (6 conditional data operations)
cond_set(new <= A, false) cond_set(new <= A, false) cond_set(new <= A, false)
cond_set(new <= B, false) cond_set(new <= B, false) cond_set(new <= B, true)
cond_set(new <= C, false) cond_set(new <= C, false) cond_set(new <= C, false)
cond_set(A <= old, false) cond_set(A <= old, false) cond_set(A <= old, false)
cond_set(B <= old, false) cond_set(B <= old, true) cond_set(B <= old, false)
cond_set(C <= old, false) cond_set(C <= old, false) cond_set(C <= old, false)
Improved version (3 conditional data operations)
cond_swap(A <=> old, false) cond_swap(A <=> old, false) cond_swap(A <=> old, false)
cond_swap(B <=> old, false) cond_swap(B <=> old, true) cond_swap(B <=> old, true)
cond_swap(C <=> old, false) cond_swap(C <=> old, false) cond_swap(C <=> old, false)
new <= old new <= old new <= old

Fig. 8: Comparison of the eviction procedure in Circuit ORAM and the improved version. Part 1: the simple cases.

?

pick and drop an element 
in Circuit ORAM 

A B C

Old

New
?

pick and drop an element 
in the improved version

A B C

Old

New

drop at the pickup location 

Circuit ORAM (6 operations) Improved version (3 operations)
cond_set(new <= A, false) cond_swap(A <=> old, false)
cond_set(new <= B, true) cond_swap(B <=> old, true)
cond_set(new <= C, false) cond_swap(C <=> old, false)
cond_set(A <= old, true) new <= old
cond_set(B <= old, false)
cond_set(C <= old, false)

Fig. 9: Part 2: the case when pick and drop happen in the same level.

For secure computation over boolean data:
cond_swap(L <=> R, cond)
– diff = 000...0
– cond_set(diff <= L ⊕ R, cond)
– left <= left ⊕ diff
– right <= right ⊕ diff

For secure computation over arithmetic data:
cond_swap(L <=> R, cond)

– diff = 000...0
– cond_set(diff <= L - R, cond)
– left <= left - diff
– right <= right + diff

Fig. 10: Implementation of cond_swap.

data operations. As a result, it becomes the main overhead of
the entire oblivious file access operation.

Circuit ORAM, in order to reduce the amount of data oper-
ations, intentionally makes the eviction a single pass along the
path and makes the shopping cart small, to reduce the number
of fake operations used for padding. Circuit ORAM has been
implemented in many libraries [61, 86–94]. We now introduce
an improved eviction subroutine that cuts the eviction overhead
by up to a half, and this approach has not been explored before
in the literature or implemented in any existing libraries.

B. Our improved eviction procedure
One challenge in developing Titanium proxy is to reduce the
file access latency. When the file size increases, the eviction
overhead in secure computation becomes the dominating cost.
An eviction in a store of 220 4KB files requires conditional data
operations on about 1MB of data. For efficiency, it is important
to reduce the number of such conditional data operations.

We contribute an improved eviction procedure for Circuit
ORAM, which reduces the overhead by up to a half, as already
shown in Tab. II. The new procedure is general-purpose in that it
improves Circuit ORAM in any setting, but the improvement is
larger when file sizes are large. The new procedure is equivalent
to the original Circuit ORAM algorithm, thereby reusing its
security analysis. We believe that existing implementations of

Circuit ORAM should use this new procedure.
Our observation is that Circuit ORAM (shown in Fig. 11)

is paying unnecessary overhead due to its modular design.
At each level, eviction consists of “pick” and “drop”. When
dropping, the original procedure invokes a general-purpose
subroutine to conditionally insert the file. However, such a
modular design obscures an opportunity for optimization. There
is a specialized subroutine, in which “pick” and “drop” do not
need to be separate, and their conditional data operations can
be combined.

We formally present our eviction algorithm in Fig. 12 and
compare it with the original Circuit ORAM algorithm in Fig. 11.
But we feel it is easier to understand by illustrating the differ-
ences with the “small shopping cart” example again.

As shown in Fig. 8 and Fig. 9, when the shopping cart arrives
at a specific layer, it interacts with the bucket that represents
the write cache. We present the cart before the interaction as
“old” and the cart after as “new”. There are four cases: (1)
nothing happens, (2) drop an element, (3) pick up an element,
and (4) pick and drop an element. In all these cases, Circuit
ORAM performs six conditional-set operations, which amount
to six data selections. Especially, in the most complicated case
in Fig. 9, six seems necessary because “pick” and “drop” may
interact with different slots in the bucket, since Circuit ORAM
always drops the element in the first availability in each bucket.

8



Get the target array from prior steps.
hold :=⊥, dest :=⊥.
for i = 0 to L do

towrite :=⊥.
if (hold 6=⊥) and (i == dest) then

towrite := hold.
hold :=⊥, dest :=⊥.

if target[i] 6=⊥ then
hold := read and remove deepest block in path[i].
dest := target[i].

Place towrite into bucket path[i] if towrite 6=⊥.

Fig. 11: The original Circuit ORAM eviction algorithm.

Get target, isdeepest, and isfirstempty arrays from prior steps.
hold :=⊥, dest :=⊥.
for i = 0 to L do

for b = 0 to Z do . Z = 3
swap := false.
if target[i] 6=⊥ then . pick or pick and drop

swap := isdeepest[i][b].
dest := target[i].

else if i = dest then . drop only
swap := isfirstempty[i][b].

swap path[i][b] and hold if swap is true.

Fig. 12: The improved variant of eviction algorithm.

Indeed, the first availability is not a requirement. As the
slots in the bucket are equivalent, the file in the old cart can be
dropped to any empty slot in the bucket. It happens that after
we pick up the file, the place where we pick becomes empty,
and is okay to drop the file simply at the location where we
pick. With this observation, we can replace the six conditional-
set operations with three conditional-swap operations, while
each conditional-swap can be efficiently implemented with one
conditional-set, for both secure computations based on boolean
and arithmetic circuits, as we show in Fig. 10.

The new procedure also appears simpler than the original
algorithm. As shown in Fig. 12, the swap conditions can be
computed simply from two arrays isdeepest and isfirstempty,
indicating whether a slot is deepest and whether it is the first
empty in the bucket, which are free byproducts of prior steps
in the computation of the eviction plan.

V I . S E C U R I N G T H E P R O X Y ’ S C O M M U N I C AT I O N
W I T H U S E R S

We now describe the protocol that enables the proxy to commu-
nicate with the user securely. The protocols must ensure that
malicious servers cannot see the content of such communication
or manipulate such communication, as long as at least one of
the servers is honest. At the core of this protocol is an efficient
batch check protocol that ensures the user receives the same
data as what the proxy wants to send. This batch check uses
an algebraic tool, Schwartz-Zippel lemma, which is a common
tool in cryptographic proof systems.

Batch checking using Schwartz-Zippel lemma [58–60]. Let
us consider that the proxy wants to send n field elements
to the user, denoted by s1, s2, ..., sn. The proxy can sample
a random number r and ask the servers to send their secret
shares of these field elements to the user, so the user receives
r′, s′1, s

′
2, ..., s

′
n where r = r′ , si = s′i unless malicious servers

have manipulated the data.
Now the user and the proxy want to check if they have the

same data. There are many possible ways to do so, such as
evaluating a collision-resistant hash function over these field
elements. However, since these methods must be evaluated
inside the secure computation, they would be much slower than
the one based on polynomial identity testing we now present.
Titanium lets the proxy and the user each construct a univariate
degree-n polynomial using the data.
Proxy : f(x) = r + s1 · x+ s2 · x2 + s3 · x3 + ...+ sn · xn

User : f ′(x) = r′ + s′1 · x+ s′2 · x2 + s′3 · x3 + ...+ s′n · xn

The proxy outputs data to the user, as follows:
1: To send s1, s2, ..., sn, the proxy samples a random number r

and asks the servers to send shares of r and {si}n to the user.
2: The user reconstructs r and {si}n from the shares, samples a

random β ∈ F, and broadcasts β to all the servers.
3: The proxy receives β from the servers, computes f(β) ←
r +

∑n
i=1 β

i · si, releases f(β) to the servers, and asks each
server to forward f(β) to the user.

4: The user receives f(β), computes f ′(β) locally, and checks
if f(β) = f ′(β).

The proxy receives data from the user, as follows:
1: The proxy samples some random elements r1, r2, ..., rn and

uses the output protocol to deliver them to the user securely.
2: The user broadcasts s′i ← si − ri to all servers.
3: The servers provide {s′i}n to the proxy, which reconstructs
si ← s′i + ri.

Fig. 13: The maliciously secure input/output protocols.

The user then chooses a random point x = β ∈ F and tells
all the servers this point. If at least one server is honest, the
proxy can either receive the correct β or detect a malicious
attack (and terminate the protocol). Now, both the proxy and
the user knows β, they evaluate this polynomial over point β,
and the proxy releases f(β) to all the servers.

Each server sends f(β) to the user. If at least one server is
honest, the user can either receive the correct f(β) or detect a
malicious attack and terminate the protocol. The user checks
if f(β) = f ′(β). If so, the Schwartz-Zippel lemma shows that,
with a probability of 1− n/|F|, the two polynomials are the
same: that is, si = s′i. We present the protocols in Fig. 13.

Reducing the number of client-server rounds with Fiat-
Shamir transform [95]. The protocols in Fig. 13 have two
client-server rounds for input and output. It can be reduced to
one round, with some small amount of additional computation,
if one uses Fiat-Shamir transform. In the output protocol, the
servers can first commit to the shares of r and {si}1,..,n they are
going to send to the user and broadcast these commitments to
each other. The broadcast needs to be made in a way that servers
cannot change their messages after seeing someone else’s. This
is done by requiring the servers to commit to the message first
and then open it. Then, they use a cryptographically secure
hash function (modeled as a random oracle) to derive β from
these commitments and let the proxy compute f(β). So, each
server now, in addition to sending the shares, also sends the
commitments that they receive from each other, the opening
of their own commitments, as well as β and f(β) to the user.
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TABLE III: Comparison with prior works on input/output check.
[96] [97] Ours

Input
� # client-server comm. rounds 1 1 2 or 1
� # random shares n ·N + 3 3n n+ 1
� # multiplications 1 2n 0

Output
� # client-server comm. rounds 1 1 2 or 1
� # random shares n ·N 2n 1
� # multiplications 0 2n 0

N : number of servers, n: number of inputs/outputs.

If the user receives the same set of commitments from all
the servers, the user verifies that β is derived correctly, that
commitments are opened correctly, and that f ′(β) = f(β). The
input protocol, which uses the output protocol as a subroutine,
also reduces to one client-server round.

Comparison with prior works. Securing a client’s commu-
nication to an entity in secure computation has been explored
before, by Jakobsen, Nielsen, and Orlandi [96] and Damgård,
Damgård, Nielsen, Nordholt, and Toft [97]. Compared with
them, our protocol requires much fewer operations in secure
computation, at the cost of one more round (a very minor cost
in our use case), or no additional round if Fiat-Shamir transform
is used, as shown in Tab. III.

V I I . P E R F O R M I N G F I L E A C C E S S C O N T R O L I N T H E
P R O X Y

In Titanium, we want to enable the owner of a file to grant
permission to another user and to revoke previously granted
permission. A user has one of the five types of permission to a
file: no permission, read-only, write-only, read-and-write, and
ownership. There are several ways to implement this access
control without leaking metadata, with different trade-offs, and
one may be more suitable than others sometimes. We summarize
their pros and cons in Tab. IV.

A. Our main approach: access control matrix
The main approach for Titanium is to store the access control
policies in a matrix of size that is the number of users times the
number of files, where each entry of the matrix stores a three-
bit value representing which permission the user has for this
file. This appears to be practical in a few setups. For example,
assuming that the number of users equals

√
number of files,

for a system with 224 files, each file stores about 1 KB of the
data for a column in the access control matrix. To check and
update permission, the proxy simply does a linear scan. This
method allows the owner to grant and revoke permission with
the same experience as in traditional file-sharing systems. A
file can also be shared with a large number of users. For this
reason, we use it as the main approach and evaluate it in §IX.

B. Alternative: access control list
If the system has many users, the access control matrix becomes
impractical. In practice, most files are shared with only a few
users, and to handle a file shared with a lot of users, one may
instead share a special “group” account between these users
instead of adding each of them into the file’s access control
list. In this case, we can limit the number of users/groups who
share a file to a number d that is much smaller than the total

TABLE IV: Summary of pros and cons of several access control
methods that hide metadata.

Method Pros and cons
Access control ma-
trix (§VII-A)

Pros: efficient revocation, many users can
share the same file
Cons: large server storage overhead

Access control list
(§VII-B)

Pros: efficient revocation; small server stor-
age overhead
Cons: a file can only be shared with a few
users (or entities)

Capabilities
(§VII-C)

Pros: small server overhead; many users
can share the same file
Cons: users need to store capabilities lo-
cally; inconvenient revocation

number of users in the system (e.g., d = 10), which suffices
for many use cases, and the overhead is much smaller.

C. Alternative: capabilities
Another approach, proposed in Metal [35], is, instead of storing
access control lists on the servers, the proxy gives users some
cryptographic tokens (called “capabilities”), where each token
represents permission to a file. To check permission, the proxy
checks if the token is valid. This alleviates the servers from
storing any access control data. However, in this approach, it
is hard to revoke permission: the owner has to invalidate the
old file (aka, revoke everyone), create a new file and reshare
the permission with any user whose permission is not revoked.
The cost increases when the file is shared with many users.

V I I I . P U T T I N G I T T O G E T H E R

We have presented all the components of Titanium and showed
how they provide malicious security. In this section, we describe
how they are put together as a metadata-hiding file-sharing
system. For ease of description, we use the example of Alice
and the journalist from §I.

Onboarding. Alice joins the storage system by installing a
client software from a trusted source, in which Alice selects
a set of N servers who are providing this service and already
have a lot of users (for anonymity). Throughout the description,
we assume Alice has found a way to hide the network patterns.
This includes using the free WiFi services in a café or store,
using relays such as Mozilla VPN or Apple Private Relay, using
Tor, or a combination of them. The anonymity network does
not need to be perfect, as the servers can only know an API
request comes from a specific IP address, but do not know
what is inside the API request. We assume the client software
can block other software on the device from connecting to the
Internet during the use of the software, which reduces the risk
of de-anonymization due to other software on the device.

Create an account and a file. Alice sends an API request for
registration, and the proxy running inside secure computation
(§IV-B) on the server-side assigns a user ID and credential to
Alice. The journalist joins the system as well. To prepare the
materials to be shared with the journalist, Alice creates a file
in the storage system via an API call. The proxy assigns a file
ID to Alice, and Alice is the owner of the file (§VII). Alice
receives the user ID, the credential, and the file ID through the
output protocol (§VI) for integrity.

Uploading the file. Alice uploads the file using the client
software. The client software makes the API call and transfers
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Fig. 14: Comparison between DPF-MCORAM (tolerating 1-out-of-4 corruption), Titanium, and Metal (both tolerating 1-out-of-2).

the data to the proxy using the input protocol (§VI) for integrity.
Then the proxy checks if Alice has permission to write to the
file, by looking up the access control matrix (§VII), from which
the proxy knows Alice is the owner of the file. If so, the proxy
accesses the file storage (§IV-A). The file access is followed
by an eviction procedure using our improved algorithm (§VIII).
In the end, though this is a write request, the proxy still returns
a dummy file to make read and write indistinguishable from
the servers and network. Alice receives the dummy file using
the output protocol (§VI).

Sharing the file. Alice obtains the journalist’s user ID through
a reliable mechanism, such as from an in-person meeting with
the journalist. Alice uses the client software to invoke the API
to grant read permission to the journalist, through the input
protocol (§VI). The proxy, after checking the integrity of the
request and Alice’s ownership of the file, modifies the access
control matrix to grant the journalist read permission to the file.
The journalist, who receives the file ID from Alice in some
way, such as through an anonymous broadcast service already
shown in Metal [35], can now read the file. To make this read
request indistinguishable from a write request, the journalist’s
client software uploads a dummy file in the input protocol. The
remaining operations are similar to writing a file.

Revoking the permission. When the journalist receives the
file and reports the scandal, Alice can revoke the journalist’s
access to the file, as a precaution in case the journalist’s account
is compromised. To do so, Alice uses the client software to
communicate with the proxy and submit the revocation API
request using the input protocol (§VI).

In Appendix A, we give proof sketches of the following security
theorem for Titanium.

Theorem 1. Assuming secure multiparty computation and other
standard cryptographic assumptions, Titanium securely realizes
FFileSharing against malicious adversaries that corrupt up to
N − 1 out of the N servers and an arbitrary number of users.
For every non-uniform probabilistic polynomial-time adversary
A in the real world, there exists a non-uniform probabilistic
polynomial time simulator S in the ideal world, such that the
outputs of the two worlds are computationally indistinguishable.

I X . E VA L U AT I O N

In this section, we answer the following questions:
1) What is the overhead of Titanium?
2) How does Titanium compare with the state-of-the-art?
3) What is the breakdown of the overhead of Titanium?
4) How does the improved ORAM eviction protocol in §VIII

compare with the original Circuit ORAM algorithm?
5) If servers can do precomputation, what is the latency that a

user in Titanium would experience?

A. Setup
We implemented Titanium and benchmarked its performance
using standard libraries for secure computation, including
EMP-toolkit [98], SCALE-MAMBA [94], and MP-SPDZ [92].
Specifically, since MP-SPDZ has an efficient offline phase via
LowGear, we used it to generate Beaver triples for secure com-
putation in arithmetic circuits. On the other hand, we used
SCALE-MAMBA for the online phase due to its support of
mixed circuit. The field size for authenticated secret sharing
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is 64 bits. Since the users simply interact with the API, our
evaluation focuses on the server overhead.

We used c4.8xlarge AWS instances for the servers, each
with 36 CPU cores and 60 GB RAM. We used Linux tc tool
to limit the bandwidth of each server to 2 Gbps and added a
network round-trip latency of 20 ms between them.

We evaluate on a file storage with 220 to 224 files of size
ranging from 4 KB to 16 KB, which we consider to be the
practical region of Titanium. As for the access control matrix,
we consider

√
224 = 212 users, the same as in [35].

We note that due to ORAM security, read and write requests
in Titanium are provably indistinguishable and incur the same
overhead (i.e., memory usage, latency, network communication).
In fact, the user who wants to read a file is also performing a
dummy write to the storage and vice versa (see §IX-E).

B. Performance of Titanium over prior multi-server schemes
To understand the price that Titanium pays for malicious secu-
rity, we consider Metal, a two-server semi-honest scheme, as
our baseline for comparison. We then compare Titanium with
DPF-MCORAM scheme in [34] that offers partial malicious
security to showcase our advantages. We compare the case of
(t,N) = (1, 4) in DPF-MCORAM with (1, 2) in Titanium and
Metal (note that (1, 2) is more secure than (1, 4)). Given that
the experimental evaluation of DPF-MCORAM is not available,
we estimated its overhead using the state-of-the-art library in
Express [99] for its distributed point functions (DPF).

Fig. 14 presents the performance of Titanium and its counter-
parts in terms of end-to-end latency, I/O access, and inter-server
communication overhead for each file access request.

As shown in Fig. 14, in a setup with two servers, the
overhead of Titanium grows almost polylogarithmically to the
number of files. The overhead also grows linearly to the file
size. This matches the expectation of the Titanium algorithm:
(1) Titanium uses Circuit ORAM, which can access the storage
in time sublinear to the number of files; (2) when the proxy
performs data operations on the files, the amount of computation
naturally grows linearly to the file size.

Compared with Metal, Titanium is approximately 3− 4×
slower in terms of end-to-end delay. Specifically, Metal takes
1.3 s− 2.7 s to access a file with sizes ranging from 4 KB to
16 KB in storage with 220 to 224 files, while Titanium takes
5.4 s−8.4 s per access. Titanium also incurs higher I/O access
(i.e., around 5×) and inter-server network communication (e.g.,
5 × −11×) than Metal. This is because Titanium needs to
authenticate the data in secure computation, while Metal does
not as it only offers semi-honest security.

Compared with DPF-MCORAM, Titanium is several or-
ders of magnitude faster and has lower I/O overhead as shown
in Fig. 14. In the log scale, we can see that the overhead of
Titanium grows slowly because Titanium’s overhead is polylog-
arithmic to the number of files, while DPF-MCORAM grows
linearly to the number of files (so, it is a straight line in the fig-
ure). One advantage that DPF-MCORAM offers over Titanium
and Metal is that it does not require servers to communicate
with each other as shown in Fig. 14c. Despite such advantage,
DPF-MCORAM requires linear processing and, as a result,
its I/O access, and computation cost is two to three orders of
magnitude of Titanium’s.
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Fig. 15: Overhead with 4KB files and varying number of servers.

C. Experiments with varying numbers of servers
We evaluated the scalability of Titanium with a varying number
of servers. Fig. 15 presents the access latency of Titanium
with two to five servers. We can see that the overhead of
Titanium grows almost linearly to the number of servers. This
matches the expectation as well because the cost of each opera-
tion that the proxy is performing grows linearly to the number
of servers running the secure computation. The linear behaviors
also show a trade-off between security and efficiency. To reduce
metadata leakage for large files, it is preferred to increase the
file size limit, but this would increase the overhead linearly. To
better distribute the trust among the servers, it is preferred to
increase the number of servers, but this would also increase
the overhead. In practice, a user chooses a specific Titanium
system depending on the trade-off that the user would like to
make.

Titanium is more scalable than DPF-MCORAM when in-
creasing the number of servers for higher corruption toler-
ance. Remark that DPF-MCORAM needs N servers to tolerate
t =
√
N corruptions while Titanium requires N servers for

t = N − 1 corruptions. As shown in Tab. V, the cases of
(t,N) = (2, 9) and (3, 16) in DPF-MCORAM, which are less
secure than the cases of (t,N) = (2, 3) and (3, 4) respec-
tively in Titanium, are very expensive. This is due to the high
overhead of running DPF inside homomorphic secret sharing
(which is commonly implemented with leveled fully homomor-
phic encryption) over a large amount of data. We use Gentry,
Halevi, and Smart’s implementation [100] on running ciphers
in homomorphic encryption to approximate these numbers.
Overall, compared with DPF-MCORAM, Titanium has the fol-
lowing advantages: (1) Titanium provides integrity against ma-
licious servers, (2) Titanium does not do linear passes, (3) with
N servers, Titanium tolerates N − 1 corrupted servers, while
DPF-MCORAM tolerates

√
N , (4) Titanium can support many

servers, while DPF-MCORAM is restricted to N = 4, 9, 16.
Note that we did not compare Titanium against Metal in

this experiment because Metal is designed for the semi-honest
setting and is restricted to the two-server model.

TABLE V: More comparison with DPF-MCORAM.
DPF-MCORAM Titanium Titanium
(2,9) or (3,16) (2,3) (3,4)

220 files 0.6 years 6.7 s 8.2 s
221 files 1.3 years 7.5 s 9.3 s
222 files 2.6 years 7.6 s 9.5 s
223 files 5.1 years 7.8 s 9.7 s
224 files 10.2 years 8.0 s 9.9 s
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D. Comparison with single-server counterparts
We compare Titanium with two notable state-of-the-art single-
server counterparts including PIR-MCORAM [32] and FHE-
MCORAM [34]. As discussed previously, the single-server
model means that the system must incur a linear overhead and
cannot provide full integrity against malicious servers.

Since PIR-MCORAM does not have an open-source im-
plementation, we extrapolate its results reported in [32] and
estimate that it would take at least 100 s for the same file access
in our setting.

Though there is neither evaluation nor implementation of
FHE-MCORAM, we can estimate a lower bound of its overhead
based on the FHE cost. To make FHE bootstrapping efficient,
parameter choices are important. An efficient instantiation is
shown by Halevi and Shoup [101], using packed FHE cipher-
texts on a specific cyclotomic ring, so that the per-plaintext-bit
cost of bootstrapping is small. We estimated that the overhead
of single file access in FHE-MCORAM, for a store of 220 files
of size 4 KB, would take 55 days, and for 224 files of size
16 KB, it would be about nine years.

E. Cost analysis
We perform a cost breakdown analysis to investigate how each
processing phase impacts the performance of Titanium. Tab. VI
presents the detailed costs of Titanium in terms of end-to-end
latency, memory usage, and communication when reading or
writing a 4KB file in storage with 220 files.

Due to Circuit ORAM, for each file request, Titanium in-
curs two major processing phases: retrieval and eviction. The
retrieval is to read a file from the storage while the eviction is to
write a file to the storage. Any file request from the user incurs
both retrieval and eviction processing at the proxy. For read
requests, the retrieval phase reads the requested file from the
storage, while the eviction phase writes the retrieved file back
to the storage. For write requests, the retrieval phase reads the
file from the storage but ignores the results, while the eviction
phase writes the file with new data to the storage. Therefore,
any file request in Titanium incurs the same processing over-
head regardless of whether the type of the request is read or
write. The proxy decides whether the user sees the file (in the
case of “read”) and whether the user’s input becomes the new
data of the file (in the case of “write”) using oblivious selection
over the request type indicated by the user.

As shown in Tab. VI, we can see that eviction is the most
dominating part, especially in end-to-end latency where it con-
tributes more than 80% to the total cost. It is because the evic-
tion needs to compute a complicated eviction plan in secure
computation and perform more data operations. The inter-server
communication and I/O costs of the eviction phase are also
higher than that of the retrieval phase. This is because the

TABLE VI: Cost breakdown of Titanium per file request in
storage with 220 files and file size of 4 KB. Read and write
requests incur the same amount of processing overhead.

Latency Memory Inter-server
(s) usage (MB) comm. (MB)

ORAM retrieval
0.53 1.8 108• read request: read the requested file

• write request: read but ignore
ORAM eviction

2.7 5.3 142• read request: evict the file back
• write request: evict with new file
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eviction in Circuit ORAM performs about twice the number
of operations on the files compared with the retrieval phase.

F. Improvement of ORAM eviction procedure
To understand how the new algorithm in §VIII improves over
Circuit ORAM, we evaluate their costs in the eviction procedure.
As shown in Fig. 16a, the computation cost, represented by the
number of AND gates in secure computation based on boolean
circuits, grows linearly to the file size. For all the file sizes that
we consider, the improved protocol performs better than the
original protocol. This improvement varies by file size. When
the file size is 0.5 KB, the improvement brought by §VIII
is 1.7×, and when the file size is 16 KB, the improvement
becomes 1.9×. This is because in Circuit ORAM, besides the
data operations, there is a cost to compute the eviction plan,
which is independent of the file size. When the file is small,
there is still an improvement but is smaller because the cost of
computing the eviction plan remains a significant part. When
the file is large, the data operations dominate the overhead of
eviction, and the improvement gets closer to 2×.

G. User waiting time given precomputation
The main overhead of Titanium is the proxy’s operations, which
are computed in the N -party secure computation, by the N
servers. A common approach to reducing the running time of
secure computation is to do precomputation—when there are
no API requests, the servers themselves precompute part of
the secure computation, so later when a user wants to access a
file, the servers can run the proxy with such precomputation,
so the running time is shorter. However, the precomputation is
one-time. If there is insufficient precomputation, the user will
need to wait for the original execution of the proxy. In practice,
this is still useful in that it can reduce the user waiting time
when the storage system is not overly loaded. Precomputation
can also be done by additional machines.

Precomputation is useful for a few Titanium API functions,
specifically reading a file. As shown in Fig. 16b, with two
servers, the online-only version, which uses precomputation,
reduces the waiting time. The saving is larger with larger
file size. For example, the online-only version can reduce the
waiting time by 30% when the file size is 4 KB. It becomes
40% when the file size is 16 KB. This is because when the
file size is small, the network latency, which precomputation
does not help, contributes more to the user waiting time.

X . R E L AT E D W O R K

We now discuss the related work, organized into four categories.
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Revealing secret information from patterns. Several areas
of security have been exploring how to learn secret information
from patterns. We know social connections can be used to reveal
identities in the social network [13–21], encrypted databases
may leak access patterns that reveal data [22–28, 102], and
secure hardware suffers from side-channel attacks [29, 30].

Single-user oblivious storage. Single-user oblivious storage
has been explored in various system settings including single-
server model [47, 50–53, 103, 104] and distributed (i.e., multi-
server) model [71, 105–108]. Some other works focus on spe-
cific demands for privacy, such as hiding only the write patterns
[109–111], enabling parallel accesses [72, 77, 78, 112, 113],
and building a usable system [75, 114–116].

Sharing oblivious storage among many users. Maffei et al.
[32] showed that a single-server multi-user oblivious storage
must have at least linear server computation for secure data
sharing against client-server collusion. As a result, all single-
server constructions are either linear or insecure upon collusion
[31, 33, 117]. It is also impossible to achieve integrity against
the malicious server in the single-server setting, as the server
can always violate the integrity by serving outdated data to
some users [36–39, 41]. A few recent works [33–35, 117]
explored how to share oblivious storage among many mutually
distrusting users by distributing the trust to multiple servers.

Oblivious storage using trusted hardware. There is a line
of works using secure hardware for oblivious storage sys-
tems, generally built on FPGAs [73, 114] and secure enclaves
[74, 76, 118–121]. Although secure hardware-based construc-
tions tend to be very efficient, it requires a strong security
assumption on the hardware (e.g., isolation, tamper-resistant,
enclaves) unlike Titanium, which only requires the hardware to
operate as normal. To hide the access patterns, these protocols
often need to perform oblivious operations inside the secure
hardware to defend against side-channel attacks [73, 122, 123].

X I . C O N C L U S I O N

We presented Titanium, a metadata-hiding file-sharing system
that offers confidentiality and integrity guarantees against mali-
cious servers and users. We designed new protocols that allow
the user to share files efficiently with integrity guarantees. We
also introduced a new optimization technique to reduce the cost
of Circuit ORAM. Experiments showed that Titanium is one
to two orders of magnitude faster than the state-of-the-art con-
struction that offers partial malicious security, while achieving
competitive performance with the semi-honest counterpart.
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A P P E N D I X

A. Proof sketches
We now present our proof for the security of Titanium. The
proof is straightforward, as we can simply invoke a simulator
for secure computation that captures both the computation in
boolean circuits (used to find the file and compute the eviction
plan) and the authenticated secret sharing that we use.

1) Definitions: We first describe the ideal world, the real
world, and the simulator. Let FFileSharing and S denote the ideal
functionality and the simulator (i.e., the ideal-world adversary),
respectively. Since users are considered anonymous, and the
only thing that identifies them is the credential and the user ID.
In the following discussion, we assume that adversary A can
decide the requests that clients make through the N servers.
The N servers in the ideal world become dummy and simply
forward data between the client software and FFileSharing.

We say that the protocol securely realizes the ideal func-
tionality if the output of the ideal world is computationally
indistinguishable from the output of the real world.

Ideal world:
• Initialization. FFileSharing creates a credential-user map, a

file storage map, and a file permission map.
• Create an account. S can instruct the client software to

send a request to FFileSharing for a new account, where the
client software receives the user ID and a credential, which
is then forwarded to S

• Create a file. S can instruct the client software to send
a request to FFileSharing for a new file, using a user ID and
credential. The client receives the file ID, which is then
forwarded to S.

• Access a file. S can instruct the client software to send a
file access request to FFileSharing, with a credential, a file ID,
and the operation to perform. The client either receives the
file data or dummy data, which is then forwarded to S .

• Grant and revoke permission. S can instruct the client
software to send a permission change request to FFileSharing,

with a credential, the file ID, the other user’s ID, and the
change to make.
• Output. In the end, S outputs the simulated views of the

servers and simulated output of the real adversary A.

Real world:
• Initialization. A chooses a number of servers to corrupt. We

let A choose exactly N − 1 servers. The servers, following
the protocol, initiate the secure computation of the proxy.
• Create an account. A can instruct the client software to

send a request to create an account, where the client software
receives the user ID and a credential and forwards them to
A.
• Create a file. A can instruct the client software to send a

request to create a new file, using a credential, where the
client receives the file ID and forwards it to A.
• Access a file. A can instruct the client software to send

a file access request, with a credential, a file ID, and the
operation to perform. The client either receives the file data
or dummy data as the response, which is then forwarded to
A.
• Grant and revoke permission. A can instruct the client

software to send a permission change request, with a cre-
dential, the file ID, the other user’s ID, and the change to
make.
• Output. In the end, the servers and A output their views.

The simulator:
• Initialization. We assume S has a black-box access to A.
S asks A which servers to corrupt and then simulates the
transcript of corrupted servers in the initialization protocol
to A, by invoking the simulator for secure computation.
• Create an account. If A wants to create an account, S

forwards this request to the dummy servers and returns the
simulated transcript of the corrupted servers to A, by invoking
the simulator for secure computation. S forwards the user
ID and the credential to A.
• Create a file. When A wants to create a file, S forwards

this request to the dummy servers and returns the simulated
transcript of the corrupted servers to A, by invoking the
simulator for secure computation and using random paths to
simulate the Circuit ORAM traces.
• Access a file. When A wants to perform a file access

operation, S forwards this request to the dummy servers and
returns the simulated transcript of the corrupted servers to
A, by invoking the simulator for secure computation and
using random paths to simulate the Circuit ORAM traces.
• Grant and revoke permission. When A wants to perform

a permission change, S forwards this request to the dummy
servers and returns the simulated transcript of the corrupted
servers to A, by invoking the simulator for secure computa-
tion and using random paths to simulate the Circuit ORAM
traces, similar to the file access.
• Output. In the end, S outputs whatever A outputs.

2) Security with abort: In Titanium, A can abort at various
stages. We now discuss why such aborting does not help A
learn any secret.
• Case 1: Aborting the secure computation. IfA corrupts the

servers to perform invalid operations in secure computation,
it will be discovered by the honest servers. The honest servers
will abort the protocol, and no more operations can be done.
The simulator for secure computation can still simulate the
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transcript of the corrupted parties up to the aborting, without
leaking secret data.

• Case 2: Manipulating a user’s input or output. The user
can verify the output from the servers via the input/output
protocol. Due to the Schwartz-Zippel lemma [58–60], the
user can detect if A manipulates the response with an over-
whelming probability. The same applies to the user’s input.

3) Proof of indistinguishability: We now show that the
outputs of the real world and the views of the ideal world are
computationally indistinguishable.

Proof. We prove the security using hybrid arguments. That is,
we use a sequence of hybrids (denoted by H•) to show that the
output of the ideal world is computationally indistinguishable
(denoted by ≈) from the output of the real world. Consider that
there have been q requests, where q is a number polynomially
bounded by the security parameter. We use the same proof
strategy as in Metal [35]: we replace the output of each of the
q requests one by one with the output from real execution. We
let Ht denote the t-th hybrid, in which the outputs of t out of
q requests have been replaced. We start with H0, which is the
output of the ideal world.

Without loss of generality, we assume A does not abort.
For each t ∈ {0, ..., q}, we define Ht as follows: Ht has the
output of the first t requests in the real world, and the output
for the remaining requests is in the ideal world (which would
be a list of the requests and the output of the simulators). Our
goal is to show that for t ∈ {0, ..., q− 1}, Ht ≈ Ht+1. We now
consider several cases.

• Create an account. Note that Ht+1 replaces the S’s sim-
ulated output of the servers corresponding to creating an
account with the real execution. The simulated output is a di-
rect result of the use of the simulator for secure computation.
By the security of the secure computation, we have that the
simulated output is computationally indistinguishable from
the real execution, and therefore Ht ≈ Ht+1.
• Create a file. Similarly, Ht+1 replaces the S’s simulated

output of the servers corresponding to creating a new file
(reserving space for the user’s new file and giving the user
ownership permission to the space) with the real execution.
Besides the use of the simulator for secure computation,
another difference is that the ORAM traces (for updating
the access control matrix) in the ideal world are sampled
from uniform random. Due to the security of Circuit ORAM,
the traces in the real execution are also uniformly random
and statistically independent from the file being accessed.
Adding that the security of secure computation shows that
the simulated output is computationally indistinguishable
from the real execution, we know that Ht ≈ Ht+1.

• Read or write a file. We now discuss “read” and “write”
together since these two operations are designed to be indis-
tinguishable from each other (see §VIII and Tab. VI) and have
the same computation patterns. Ht+1 replaces the simulated
output with the real execution. To generate the simulated
output, S invokes the simulator of secure computation and
uses randomly sampled paths in simulating the ORAM. Due
to the security of Circuit ORAM and secure computation, the
simulated output is computationally indistinguishable from
the real execution, and therefore Ht ≈ Ht+1.
• Grant or revoke permission. In Titanium, the access control

matrix described in §VII-A is stored together with the file

data. So, granting and revoking is similar to writing to a file,
with the difference that the modification is done on the access
control matrix. Therefore, when Ht+1 replaces the simulated
output with the real execution, for the same reasons, the
simulated output is computationally indistinguishable from
the real execution, and therefore Ht ≈ Ht+1.

Now, by hybrid arguments, we know H0 ≈ Hq , which means that
when processing q requests, the output of the ideal world and the
output of the real world are computationally indistinguishable.

B. Prevent DoS attacks from users
In this paper, we do not consider denial-of-services (DoS)
attacks by the users. Nevertheless, it remains an issue in practice.
A user who exhausts the servers’ resources by uploading or
downloading a large amount of data would prevent other users
from using the system. There have been many existing defenses
in systems without anonymity. However, in Titanium, anonymity
must be preserved.

Titanium can leverage the anonymous prevention mecha-
nisms discussed in prior work, Ghostor [41] and Alpenhorn
[124]: (1) anonymous payment and (2) Proof-of-Work (PoW).

– Anonymous payment. Titanium can require a user to pay
for each data access. Specifically, each user deposits some
money by doing a sender-anonymous payment to the servers,
and the user then proves this payment in zero knowledge
to the servers. The servers then issue a number of blind
signatures [125] according to the paid amount, where one
blind signature serves as a “one-time token” for one data
access. The user needs to present an unused blind signature
to the servers for each file access. Since the servers are
“blinded”, the user anonymity is preserved.

– Proof-of-work. Titanium can deter a malicious user by asking
this user to solve a cryptographic puzzle [126–128]—also
commonly known as proof of work—for each data access.
This does not fully prevent DoS attacks and could be ex-
pensive for resource-constrained users, but it can limit the
ability of the malicious attackers, and can be combined with
other mechanisms.
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