
Post-Quantum Forward-Secure Signatures with
Hardware-Support for Internet of Things

Saif E. Nouma and Attila A. Yavuz

{saifeddinenouma, attilaayavuz}@usf.edu
Department of Computer Science and Engineering

University of South Florida
Tampa, FL, USA

Abstract—Digital signatures provide scalable authentication
with non-repudiation and therefore are vital tools for the Internet
of Things (IoT). IoT applications harbor vast quantities of low-end
devices that are expected to operate for long periods with a risk of
compromise. Hence, IoT needs post-quantum cryptography (PQC)
that respects the resource limitations of low-end devices while
offering compromise resiliency (e.g., forward-security). However,
as seen in NIST PQC efforts, quantum-safe signatures are ex-
tremely costly for low-end IoT. These costs become prohibitive
when forward security is considered.

We propose a highly lightweight post-quantum digital signature
called HArdware-Supported Efficient Signature (HASES) that meets
the stringent requirements of resource-limited signers (processor,
memory, bandwidth) with forward security. HASES transforms a
key-evolving one-time hash-based signature into a polynomially
unbounded one by introducing a public key oracle via secure
enclaves. The signer is non-interactive and only generates a
few hashes per signature. Unlike existing hardware-supported
alternatives, HASES does not require a secure-hardware on the
signer, which is infeasible for low-end IoT. HASES also does not
assume non-colluding servers that permit scalable verification. We
proved that HASES is secure and implemented it on the commodity
hardware and the 8-bit AVR ATmega2560 microcontroller. Our
experiments confirm that HASES is 271× and 34× faster than
(forward-secure) XMSS and (plain) Dilithium. HASES is more
than twice and magnitude more energy-efficient than (forward-
secure) ANT and (plain) BLISS, respectively, on an 8-bit device.
We open-source HASES for public testing and adaptation.

Index Terms—Authentication; Internet of Things; post-quantum
security; embedded devices; lightweight cryptography.

I. INTRODUCTION

The Internet of Things (IoT) is comprised of vast quantities
of connected computing devices that collect, process, and trans-
mit sensitive data at large scales. Authentication and integrity
are fundamental security services to protect sensitive data and
critical IoT infrastructures from various attacks such as man-
in-the-middle, impersonation, data tampering, and others.

Digital signatures provide scalable authentication and in-
tegrity via public key infrastructures. Furthermore, they offer
non-repudiation and public verifiability, which are useful for
various real-life applications (e.g., financial, legal). Therefore,
digital signatures are essential primitives to ensure security and
trust for the IoT. However, emerging IoT applications demand
security and performance features beyond what classical digital

signatures offer. An ideal digital signature for the emerging IoT
should offer (at minimum) the following properties:

(i) Post-quantum Security: With the arrival of quantum-
computers, Shor’s algorithm [1] can break cryptosystems
that rely on conventional intractability assumptions (e.g.,
ECDSA [2], SchnorrQ [3]). IoT infrastructures are expected
to operate for long periods of time and offer long-term security
for sensitive data. Therefore, IoT ideally needs Post-Quantum
(PQ) digital signatures to achieve long-term trust and security.
Despite their merits, PQ signatures are significantly more
expensive than conventional pre-quantum signatures [4].

(ii) Compromise-resiliency: In IoT applications such as
smart-city and smart-building, sensors/actuators work in open
environments that make them vulnerable to compromise. More-
over, military IoT needs to work in hostile environments.
Overall, IoT devices are vulnerable to breaches via either
physical means or malware [5]. Hence, it is important for
a digital signature to offer compromise-resiliency properties
like forward security. This property guarantees authenticity and
integrity before a system breach point [6]. The forward-security
involves updating the secret key periodically. Forward-secure
(FS) signatures are (in some cases significantly) costlier than
their standard (plain) signature counterparts.

(iii) High Efficiency and Architectural Feasibility: IoT appli-
cations harbor a large number of resource-limited devices [5],
which have limited processing, memory, and battery capacities.
Hence, it is paramount for a digital signature to be lightweight
in terms of computation, communication, and space. However,
PQ signatures are extremely costly for low-end devices, even
without considering features like forward-security. Moreover,
such low-end devices cannot harbor sophisticated hardware
(e.g., secure enclaves) or participate in highly interactive proto-
cols that usually benefit resourceful architectural entities only.

A. Related Work and Limitations of the State-of-the-Art

NIST PQC Standards: NIST recently announced the PQ
digital signatures to be standardized [11], namely Dilithium [4],
Falcon [11], and SPHINCS+ [12]). The hash-based SPHINCS+
offers high security, but with very large signature sizes (e.g.,
35.66 KB) and signer computation, making it prohibitively
costly for low-end devices. Dilithium and Falcon are lattice-
based signatures, where Dilithium offers better signer effi-

TABLE I
PERFORMANCE COMPARISON OF HASES SCHEMES AND THEIR COUNTERPARTS ON AVR ATMEGA2560 MICROCONTROLLER

Scheme Signing
Cycles

Private
Key (KB)

Signature
Size (KB)

CPU
Energy (mJ)

Post-Quantum
Promise

Forward
Security

Rejection/Gaussian
(Sampling)

Deterministic
Signing

ECDSA [2] 81, 324, 870 0.03 0.06 508.28 × × × ×
SchnorrQ [3] 5, 211, 321 0.03 0.06 32.57 × × × ×
BLISS-I [7] 10, 537, 981 2 5.6 65.86 X × X ×
ANT-FS-II [8] 718, 678 0.09 0.432 4.49 X X × X

HASES 306,762 0.03 0.424 1.92 X X × X

We have excluded both EPID [9] and SCB [10], as they are not inline with our system model (i.e., signers are resource-limited devices that cannot encapsulate secure enclaves).
The details of experiment settings, hardware/software configurations, and cryptographic parameters are given in Section V.

ciency. However, it is significantly more expensive than conven-
tional (pre-quantum) solutions (e.g., ECDSA [2]) on commod-
ity hardware. It is extremely costly for low-end devices (no
open-source implementation available on 8-bit hardware). To
the best of our knowledge, BLISS-I [7] is the only lattice-based
scheme with an open-source implementation on 8-bit devices
but was eliminated from the NIST competition.

Forward-secure (FS) PQ Signatures: FS signatures employ
a key-evolution strategy by periodically updating the private
key (and managing the corresponding public key(s)). NIST
PQC standards are not FS. One can transform them into FS by
applying generic transformations (e.g., [6]). However, the most
efficient generic method introduces a log2(J) signing overhead
blow-up (J is the maximum number of signatures). For exam-
ple, Dilithium [4] with J = 220 will be at least 20× costlier,
which is impractical for low-end devices. XMSSMT [13] is
currently the only FS and PQ candidate being considered for
future recommendation by NIST. However, it is more than
a magnitude times costlier than Dilithium, and is currently
impractical for low-end platforms.

Distributed Verification: One line of research (e.g., lattice-
based ANT [8]) enables signers to delegate the public key
construction to a set of distributed servers to achieve PQ and
FS signatures. Despite their merits, such approaches assume
non-colluding servers, which might be a risky assumption for
some real-life applications. Moreover, distributed verification
introduces heavy network delays and outage risks.

Secure Hardware-based Solutions: Another line of research
exploits the availability of trusted execution environments in
modern architectures to achieve higher cryptographic function-
alities: (i) It is possible to emulate asymmetric cryptosystems
from symmetric-key only schemes (e.g., MACs) with a secure
enclave (e.g., Intel Software Guard (SGX) [14]). While effi-
cient, such approaches require each party to have a local secure
enclave (e.g., SCB [10]), which is not practical for low-end IoT
devices. Moreover, they provide restricted public verifiability
(only SGX-enabled devices) and lack non-repudiation (due to
shared symmetric keys), which is a critical need for numerous
real-life applications. (ii) Initially formalized by IRON [15],
and followed by many others (e.g., IBBE-SGX [16]), it is
possible to build a generic functional encryption framework
based on secure enclaves. Alternatively, EPID [9] proposes
a group signature that achieves anonymous signing by using
secure enclaves on the signer side. However, the vast majority
of these works require secure enclaves on the senders, which is
not feasible for low-end IoT. Moreover, they focus on privacy

enhancement, which is orthogonal to our work.
We aim to address the following research challenges: How

to achieve forward-secure and post-quantum signatures that
are practical for highly resource-limited IoT devices? How to
achieve this goal without assuming a secure enclave on the
signer or non-colluding distributed servers at the verifier?

B. Our Contribution

We created a new highly lightweight PQ signature called
HArdware-Supported Efficient Signature (HASES) that achieves
near signer optimal efficiency and forward-security without
assuming non-colluding distributed verification or secure en-
claves at the signer. Our approach is to transform near-optimal
one-time hash-based signatures [17], which form the basis
of NIST PQC finalist SPHINCS+ [12] and recommendation
XMSSMT [18], into a multiple-time hash-based signature, but
without consorting with heavy sub-tree construction or secure
enclaves at the signer. Instead, we eliminate the burden of
public key generation/transmission from the signer via the
public key oracle PUKO, which is realized via secure enclaves.
We outline the desirable properties of HASES as below:

(1) Signer Computation/Energy Efficiency: HASES exe-
cutes only a small-constant number of hash calls (e.g., 13)
per forward-secure signing. This makes it 271× and 34×
faster than XMSSMT and Dilithium, which is the only FS
and the most efficient NIST PQC finalist candidate (not FS),
respectively. As shown in Table I, HASES is 34× and 2.4×
more energy efficient than BLISS and ANT, which are the
only feasible alternatives with an implementation on an 8-bit
device, with standard and distributed verification, respectively.
Moreover, HASES is even 16× more energy efficient than
SchnorrQ [3], which is neither PQ nor FS. Hence, HASES is
the most energy-efficient PQ and FS alternative.

(2) Compact Signatures: The signature size of HASES is
identical to HORS, which makes it the most compact signature
among its counterparts. Notably, its signature is a magnitude
smaller than XMSSMT (only hash-based FS alternative), while
still being smaller than ANT without non-colluding servers.

(3) Non-Interactive and Scalable Multi-Users: HASES alle-
viates the burden of conveying/certifying public keys from
the signer, thereby making it independent from PUKO and
verifiers. PUKO can supply any public key of a valid signer
to verifiers either beforehand or on-demand, with adjustable
storage overhead, permitting a scalable public key management
service for massive-size IoT networks with millions of users.

(4) Architectural Feasibility: (i) Unlike some secure-
hardware-based solutions (e.g., [9], [10]), HASES does not
require a secure-enclave on the signer, which is not feasible for
low-end IoT. (ii) Unlike ANT [8], which is currently the only
feasible FS and PQ signature on 8-bit devices, HASES does
not assume non-colluding servers while also being faster.

(5) High Security: i) HASES only relies on hash calls, and
therefore is free from rejection/Gaussian sampling that permits
devastating side-channel attacks [19] in its lattice-based coun-
terparts (e.g., BLISS-I [7]). (ii) HASES signature generation
is deterministic and therefore avoids vulnerabilities of weak
pseudo-random generators typically found in low-end IoT de-
vices. (iii) HASES schemes achieve both PQ and FS properties.

(5) Full-fledge Implementation: We fully implemented
HASES on both 8-bit AVR microcontroller and commodity
hardware at the signer side, and with Intel SGX as the
PUKO, and with commodity hardware at the verifier side. Our
implementation can be found below:

https://gitfront.io/r/user-1234/yLKDQH1FqMzV/HASES

We note that, compared to existing PQ signatures (Table
1 and Section V), HASES attains its significant performance
advantages and forward-security by introducing a public key
oracle via secure enclaves at the verifier. Our analysis shows
that this is a highly favorable trade-off given the signer opti-
mality, forward security, avoidance of secure hardware at the
signer, verification flexibility (e.g., no non-colluding servers),
and the availability of secure enclaves in the modern clouds.

II. PRELIMINARIES

Notation: ‖ means string concatenation. |x| denotes the bit
length of variable x. x $← S means selecting x randomly from
set S. We denote by {0, 1}∗ the set of binary strings of any
finite length. The set of items qi for i = 0, . . . , n−1 is denoted
by {qi}n−1

i=0 . f : {0, 1}∗ → {0, 1}κ is one-way function.
Hi : {0, 1}∗ → {0, 1}κ, i ∈ {0, 1, 2} are cryptographic hash
functions. Hk(.) means k consecutive applications of H to form
a hash chain on the given input.

Definition 1 A Hardware-assisted Forward-Secure Multi-User
signature scheme consists of four algorithms HFMU-SGN =
(Kg,Sig,PKConstr,Ver):

- (msk ,
−→
sk1,
−→
skp, I)← HFMU-SGN.Kg(1κ,

−→
ID, J): Given

the security parameter κ, the signer identifier list
−→
ID and

the maximum number of signatures to be computed J , it
returns the master key msk , the initial and precomputed
private key set

−→
sk1 and

−→
skp, respectively, for

−→
ID and the

system-wide parameters I .
- σij ← HFMU-SGN.Sig(sk ij ,M

i
j): Given the private key

sk ij of IDi and a message M i
j , it returns the signature σij ,

updates sk ij ← sk ij+1 and j = j + 1, and deletes sk ij .
- PK i

j ← HFMU-SGN.PkConst(msk ,
−→
skp, IDi, j): Given

the signer identifier IDi ∈
−→
ID and state j, it returns the

corresponding public key PK i
j under msk .

- b← HFMU-SGN.Ver(PK i
j ,M

i
j , σ

i
j): Given PK i

j , a mes-
sage M i

j , and its corresponding signature σij , it returns a
bit b, with b = 1 meaning valid, and b = 0 otherwise.

Definition 2 Hash to Obtain Random Subset [17] HORS =
(Kg,Sig,Ver) is defined as follows:

- (sk ,PK , I)← HORS.Kg(1κ): Given the security param-
eter κ, it first generates I ← (l, k, t), and then t random
l-bit strings {si}ti=1 and vi ← f(si) ,∀i = 1, . . . , t. It sets
sk ← {si}ti=1 and PK ← {vi}ti=1.

- σ ← HORS.Sig(sk ,M): Given (sk ,M), it computes
h← H0(M), splits it as {hj}kj=1 where |hj | = log t and
interprets them as integers {ij}kj=1. It sets σ ← {sij}kj=1.

- b← HORS.Ver(PK ,M, σ): Given PK , M , and σ, it
computes {ij}kj=1 as in HORS.Sig(.) and checks if
f(s′j) = vij , j = 1, . . . , k, returns b = 1, else b = 0.

III. SYSTEM AND SECURITY MODELS

System Model: There are three types of entities in the system.
(i) The signers are storage, computational, bandwidth, and

power-limited IoT devices (e.g., medical implants, RFID tags).
Therefore, signing efficiency and compact signature/key sizes
are in our setting. The signers are not required to have secure
enclaves. They only broadcast messages and signatures without
interacting with any other entity or conveying public keys. (ii)
Verifiers can be any (untrusted) entity (laptop, cloud server)
that receives signatures from the signers and public keys from
a supplier. (iii) We introduce a public key management service
that we refer to as PUblic Key Oracle (PUKO). We realize
PUKO with secure enclave (e.g., Intel SGX, ARM Trustzone
1) due to its broad availability in modern clouds. Unlike the
state-of-the-art rely on non-colluding servers to replenish
public keys (e.g., [8]), our approach permits PUKO to be on
the verifier (immediate public access) or just with a single
round of request to a remote cloud server. We implemented
HASES with Intel SGX. However, HASES can be realized
with any secure hardware offering a trusted execution with
standard cryptographic hash functions.

Signer 𝑰𝑫𝒊 ∈ 𝑰𝑫
Low-end IoT device

Verifier

𝝈𝒋𝒊 ← 𝐇𝐀𝐒𝐄𝐒. 𝐒𝐢𝐠(𝒔𝒌𝒋𝒊,𝑴𝒋
𝒊)

𝒃𝒋𝒊 ← 𝐇𝐀𝐒𝐄𝐒. 𝐕𝐞𝐫(𝑷𝑲𝒋
𝒊,𝑴𝒋

𝒊, 𝝈𝒋𝒊)

𝑷𝑲𝒋
𝒊 ← 𝐇𝐀𝐒𝐄𝐒. 𝐏𝐊𝐂𝐨𝐧𝐬𝐭𝐫(𝑰𝑫𝒊, 𝒋)

𝒔𝒌𝒋𝒊

𝒎𝒔𝒌𝟐. 𝒔𝒌𝒋#𝟏𝒊 ← 𝐇𝟏 𝒔𝒌𝒋𝒊
𝟏. 𝝈𝒋𝒊 ← 𝐇𝐎𝐑𝐒. 𝐒𝐢𝐠(𝒔𝒌𝒋𝒊,𝑴𝒋

𝒊)

(𝑰𝑫𝒊 , 𝝈𝒋𝒊)

PUblic Key Oracle (PUKO)

𝟏.𝐃𝐞𝐫𝐢𝐯𝐞 𝒔𝒌𝒋𝒊 𝐟𝐫𝐨𝐦 𝒔𝒌𝒑𝒊

𝟐. 𝑷𝑲𝒋
𝒊← { 𝐇𝟐(𝐇𝟏 𝒔𝒌𝒋𝒊 || ℓ)}ℓ(𝟏𝒕

Secure
Enclave

(𝑰𝑫𝒊 , 𝒋) 𝑷𝑲𝒋𝒊

4

Public-key Request
Offline or On-demand

(enclave can
live on verifier)𝟑. Delete 𝒔𝒌𝒋𝒊 and 𝒋 ← 𝒋 + 𝟏

3

21

Fig. 1. High-level description of HASES scheme

Security Model: We follow the standard Forward-secure
Existential Unforgeability Under Chosen Message Attack
(FEU -CMA) [6] by incorporating a public oracle as in [8].

Definition 3 FEU -CMA experiment ExptFEU -CMA
HFMU-SGN is as:

- (msk ,
−→
sk1,
−→
skp, I)← HFMU-SGN.Kg(1κ)

1https://www.arm.com/technologies/trustzone-for-cortex-a

- (M∗, σ∗)← ASigskj
(.),PKConstrmsk(.),Break-In(j)

(.)
- If 1 = HFMU-SGN.Ver(PK ∗,M∗, σ∗) and M∗ was

not queried to Sigskj (.) where PK ∗ is output of
PKConstrmsk(.), return 1, else, return 0.

The FEU -CMA advantage of the adversary A is defined as

AdvFEU -CMA
HFMU (t, qs, 1) = Pr[ExptFEU -CMA

HFMU-SGN (A)] = 1]

, where A is having time complexity t, making at most qs
queries and a single query to (Sigskj (.),PKConstrmsk(.))
and Break-In(j) oracles, respectively.

The oracles reflect how a HFMU-SGN scheme works: The
signing oracle Sigskj (.) returns signature σj to A under
sk j on a message Mj . PKConstrmsk(.) acts like PUKO and
returns PK j of ID ∈

−→
ID under msk . Given the state

1 < j < J , Break-In(j) oracle returns sk j+1 to A .

• EU-CMA experiment for HORS: It is as in FEU -CMA ex-
periment but without Break-In(j) and PKConstrmsk(.).
Sigskj (.) is queried once as HORS is a one-time signature.
• Assumption 1: PUKO has a secure enclave as described in

the system model. The post-quantum PUKO is easily achieved
by using a quantum-safe signature in the enclave.

IV. PROPOSED SCHEMES

We now present our proposed scheme HASES. We outline the
main signature functionalities based on a high-level depiction
in Fig.1 and a formal description in Alg.1.

In HASES.Kg(.), for a given set of users
−→
ID, first generates

the master key msk (Step 1) and then derives the initial private
key sk i1 ∈

−→
sk1 for each IDi ∈

−→
ID (Step 2-3). It also accepts as

input (J1, J2) as the number of precomputed and interleaved
keys, respectively. According to J1, it derives the precomputed
keys

−→
sk ip from the initial sk i1 (Step 4-6). Each private seed

sk i1 is sent to its corresponding signer (Step 7), while (msk ,−→
sk ip) are solely placed on the secure enclave of PUKO (Step 1).
HASES.PKConstr harnesses PUKO to offer a trustworthy

and flexible public key and identity management service for the
verifiers, without interacting with signers. The verifier requests
public key PKi

j of IDi for state j. PUKO first identify the
corresponding precomputed key (Step 1) and then derive the
jth secret key (Step 2). Finally, it generates the public key
PK j

i and returns it to the verifier (Step 3-5). PUKO can derive
any public key PK i

j of any IDi ∈
−→
ID on demand, making

HASES fully scalable for millions of users with an adjustable
O(J1) cryptographic data storage. Moreover, the verifier can
obtain any public key(s) 1 ≤ j ≤ J from PUKO in batches
before receiving signatures (HASES.PKConstr is indepen-
dent from the signer). This permits verifiers to immediately
verify signatures. Also, PUKO can either present on the verifier
machine (e.g., laptop), or a nearby edge-cloud server, and
therefore can effectively deliver public keys on demand.

As shown in Fig.1, the signing algorithm HASES.Sig re-
lies on HORS signature generation but with a forward-secure
pseudo-random number generation. Specifically, given sk ij , the

Algorithm 1 HArdware-Supported Optimal Signature (HASES)

(msk ,
−→
sk1,
−→
skp, I)← HASES.Kg(1κ,

−→
ID = {IDi}Ni=1, J1, J2):

1: Generate the master key msk
$← {0, 1}κ and set I ← (l, k, t) as

in Definition 2 and (J ←J1 · J2). msk is provisioned to PUKO.
2: for i = 1, . . . , N do
3: sk i1 ← H0(msk‖IDi)
4: for j1 = 2, . . . , J1 − 1 do
5: sk ij1·J2+1 ← HJ2

1 (sk i(j1−1)·J2+1)

6:
−→
sk ip ← {sk ij1·J2+1}J1−1

j1=1

7:
−→
sk1 ← {sk i1}Ni=1, where sk i1 is provisioned to IDi.

8:
−→
skp ← {

−→
sk ip}Ni=1, are provisioned to PUKO, as precomputed seeds.

9: return (msk ,
−→
sk1,
−→
skp, I)

σij ← HASES.Sig(sk ij ,M
i
j): Init (j = 1) and require j ≤ J

1: h ← H0(M
i
j) and split h into k substrings {hi}ki=1 such that

|hi| = log2 t, where each hi is interpreted as an integer xi
2: for ` = 1, . . . , k do
3: s` ← H1(sk

i
j ‖ x`)

4: σij ← (s1, s2, . . . , sk, j, IDi)
5: Update j ← j + 1 and sk ij as sk ij+1 ← H1(sk

i
j), and delete sk ij

6: return σij

PK i
j ← HASES.PKConstr(msk ,

−→
skp, IDi, j): Require IDi ∈

−→
ID and j ≤ J

1: j1 ← b j−1
J2
c and j2 ← (j − 1) mod J2

2: Load sk ij1·J2+1 from
−→
sk ip and derive sk ij ← Hj2

1 (sk ij1·J2+1)
3: for ` = 1, . . . , t do
4: v` ← H2(s`), where s` ← H1(sk

i
j‖`)

5: return PK i
j ← (v1, v2, . . . , vt)

b← HASES.Ver(PK i
j ,M

i
j , σ

i
j): Step 1 can be run offline.

1: PK i
j ← HASES.PKConstr(IDi, j,msk ,

−→
skp)

2: Execute Step (1) in HASES.Sig
3: if H0(s`) = vx` , ∀` ∈ [1, k] and 1 ≤ j ≤ J then return bji = 1

else return bji = 0

signer computes subset resilient indexes and derives HORS one-
time signature components (steps 1-4 in Alg. 1). The current
private key is then updated and the previous key is deleted. The
signing is near-optimal with respect to forward-secure hash-
based signatures since it only requires one HORS call (around
10 hash calls) and a single hash for the update. The signer
does not require any usage or interaction with secure hardware.
The algorithm HASES.Ver also relies on HORS, except that
it invokes HASES.PKConstr to obtain the public key (Phase
(1-2) in Fig. 1). We remind that HASES distinct itself from
symmetric-key approaches (e.g., MACs alone or use of secure-
hardware to verify/compute MACs) via achieving public verifi-
ability and non-repudiation. The verifier can check the received
signatures with an offline interaction with PUKO, which only
supplies public keys but does not perform verification itself.

Optimizations: Our design allows verifiers to request the
public keys in offline mode before signature verification oc-
curs. This eliminates potential delays due to network and

PUKO’s public key generation. HASES offer an adjustable
storage-computation trade-off by controlling the number of
pre-computed keys stored at PUKO. We observed a potential
gain at PUKO side via harboring an optimizer that controls
the data storage overhead per IoT device. For instance, it can
be implemented with a Reinforcement Learning algorithm, by
learning from previous verifiers’ requests.

V. PERFORMANCE ANALYSIS AND COMPARISON

Parameters: We choose I ← {l = 256, t = 11966, k = 13}
for κ = 128. Our choice prioritizes optimal signer efficiency as
it only requires k = 13 hash calls for signing. In HASES, the
resource-limited signer is non-interactive and do not communi-
cate the public keys, and therefore the parameter t does impact
the signer performance. We set N = 220 signers and J = 220

signing capability (as in XMSSMT [18]). The users’ identifiers−→
ID are considered as the MAC addresses of signers. The hash
functions {Hi}2i=0 are instantiated with SHA-256.

Configurations: We used a desktop equipped with an SGX-
enabled Intel i9-9900K @ 3.6 GHz processor and 64 GB of
RAM. We implemented HASES with OpenSSL2 and the Intel
SGX SDK v2.15.1 with C/C++ on the commodity hardware and
PUKO, respectively. We utilize Intel Software Guard Extensions
SSL3 for cryptographic operations in the enclave. For the low-
end devices at signer, we used an Arduino Mega 2560 board,
which is based on low-power 8-bit ATmega2560 microcon-
troller and equipped with 256KB flash memory, 8KB SRAM
and 4KB EEPROM, with clock frequency of 16 MHz. We
implemented HASES using the Arduino Cryptography library4.

Performance on Commodity Hardware: Table II shows
the performance comparison of HASES with its counterparts
on the commodity hardware.
• Signature Generation and Size: HASES offers a speedup

of 271× over its only hash-based FS and PQ counterpart
XMSSMT [18]. It is also 19× faster than the most efficient (non-
forward-secure) lattice-based NIST PQC Finalist Dilithium-II
[4], while two magnitudes faster than stateless SPIHINCS+
[12]. The signature size of HASES is the smallest among all PQ
variants. Overall, HASES offers the most efficient and compact
PQ signature among all alternatives with forward-security.
• Public Key Construction: The delay that incur from the

PUKO computation is parameterized by ∆ in Table II. Verifiers
can request the public keys in an Offline or Online mode. In
offline mode, the ver time is independent of the PUKO delays
and therefore achieving a significant efficiency over HASES’s
counterparts. We observe that storing only 3.2 KB of precom-
puted keys at PUKO, yields to a negligible delay ∆ = 4 ms. As
for online mode, verifiers can only request the k components
of the user’s public key to perform verification. Remarkably,
the PUKO delay is only 30 µs for a storage overhead of 320
KB, which only consumes 0.25% of the overall SGX trusted

2https://github.com/openssl/openssl
3https://github.com/intel/intel-sgx-ssl
4https://rweather.github.io/arduinolibs/crypto.html

98.62

96.79

53.37

80.76

21.19

1.38

3.21

46.63

19.24

78.81

0% 20% 40% 60% 80% 100%

HASES

ANT-Ⅱ-FS

BLISS-I

SchnorrQ

ECDSA

Pulse Sensor Signing
Fig. 2. Energy consumption of signing vs pulse sensor. ANT-II-FS assumes
distributed non-colluding servers while others not.

memory. Such delay becomes bounded by HASES online ver
time. Thus, it does not impact the overall verification time.
• Verification: HASES verification significantly outperform

its counterparts. For example, HASES is 6.78× and 302.47×
than Dilithium-II (non-forward-secure) and XMSSMT (forward-
secure), respectively, if the public key’s retrieval is offline.
• Verifier Storage overhead: By harnessing PUKO as a public

key manager, HASES unleash a significant storage burden.
Indeed, verifiers need to store only 6 MB as users’ identities for
a wide network that encapsulates millions of low-end devices.
We note that the counterparts need to store the public keys +
their certificates (e.g., ≈ 10 GB for 220 users) which is not
practical for non-resourceful verifiers (e.g., smartphones).

Performance on 8-bit AVR Microcontroller: Table I and
Figure 2 compare the signer performance of HASES scheme
and its counterparts on the 8-bit microcontroller.

To provide longer battery life, it is particularly important
to reduce the energy consumption of cryptography in IoT. We
compared the energy overhead with a pulse sensor that has a
sampling time of 10 sec and a read time of 1 ms. HASES re-
duces the energy usage remarkably to 1.38% compared to
that of the pulse sensor. This is 2.3× more energy-efficient
than its closest counterpart ANT, which assumes multiple non-
colluding servers to generate public keys. HASES is 34× more
energy-efficient than BLISS-I consuming comparable energy
with the sensor. BLISS-I is not forward secure and suffers from
side-channel attacks due to Gaussian/rejection sampling while
introducing a large signature size. HASES is even 16× faster
than EC-based SchnorrQ that is not PQ or FS. Therefore, our
experiments confirm that HASES is significantly more energy-
efficient than their counterparts with advanced security features.

VI. SECURITY ANALYSIS

We formally prove the security of our scheme as follows.

Theorem 1 If a polynomial-time adversary A can break the
F-EU-CMA secure HASES in time t and after qs signature and
public key queries with a break-in query, then one can build
polynomial-time algorithm F that breaks the EU-CMA secure
HORS in time t′ and q′s queries under Assumption 1.

AdvFEU -CMA
HASES (t, qs, 1) ≤ J ·AdvEU -CMA

HORS (t′, q′s),

, where q′s = qs + 1 and O(t′) = O(t) + k ·H0.

Proof: F is given the challenge public key PK ′, where
(sk′, PK ′, I) ← HORS.Kg(1κ) . F is given a HORS signing

TABLE II
PERFORMANCE COMPARISON OF HASES VARIANTS AND ITS COUNTERPARTS ON A COMMODITY HARDWARE

Scheme Signing
Cycles

Private
Key

Signature
Size

Verification
Cycles

Verifier
Storage (GB)

Post-Quant
Promise

Forward
Security

Rejection/Gaussian
(Sampling)

Deterministic
Signing

ECDSA [2] 691, 768 0.03 0.06 691, 768 0.09 × × × ×
SchnorrQ [3] 32, 016 0.03 0.06 60, 453 0.09 × × × ×
SPHINCS+ [12] 112, 080, 752 0.1 35.66 10, 249, 926 35.71 X × × X
BLISS-I [7] 870, 770 2 5.6 748 12.6 X × X ×
Dilithium-II [4] 210, 188 2.53 2.42 88, 400 3.73 X × X ×
XMSSMT [18] 3, 011, 720 3.11 2.61 3, 944, 441 3.36 X X × X

HASES 11,101 0.03 0.42 13, 041 + ∆ 6 MB X X × X
The private/public key and signature sizes are in KB. We benchmarked the XMSSMT-SHA20/2 256 variant. For SPHINCS+ parameters, n = 16, h = 66, d = 22, b = 6, k =

33, w = 16 and κ = 128. ∆ denotes the PUKO delay for public key construction. It depends on the storage overhead of the pre-computed secret keys, per user,
−→
ski

p. For example,
if J1 = 1 then ∆ = 172.69 ms. If J1 =

√
J = 210 and the public key was requested in offline mode, then ∆ = 4.27 ms. Otherwise, if it was in online mode, ∆ = 0.2 ms.

oracle, to which it can query a signature computed with sk′.

Algorithm FHORSsk′ (·)(PK ′): F is run per Definition 3:

• Setup: A selects an ID and gives it to F . If ID /∈
−→
ID,

then F aborts, else continues the setup (index i is omitted
for the brevity). F runs HASES.PKConstr(msk ,

−→
skp, ID, j)

to obtain sk j (step 2) and PKj (step 5), for j = 1, . . . , J .
F randomly selects a target forgery index w ∈ [1, J] and
overrides PKw = PK ′. F stores these values in the list LS .
• Queries: F handles A ’s queries as follows.
(1) Sigskj (.): If A queries F on Mw then F returns σj ←

HORSsk′(Mj) by querying HORS signing oracle. Otherwise,
F returns σj ← HASES.Sig(sk j ∈ LS,Mj).

(2) PKConstrmsk(.): F returns PKj ∈ LS to A .
(3) Break-In(j): If 1 < j ≤ w then F aborts, else it

returns sk j ∈ LS and ends the experiment.
• Forgery: A outputs a forgery (M∗, σ∗) on PK∗. F wins

the experiments if A wins the experiments by producing a
valid forgery on PKw. That is, F returns 1 if PK∗ = PKw

and 1 = HORS.Ver(PK∗,M∗, σ∗) and M∗ was not queried
to Sigskj (.). Otherwise, F returns 0 and aborts.
• Success Probability and Indistinguishability: Assume that

A wins FEU -CMA experiment against HASES with the
probability AdvFEU -CMA

HASES (t, qs, 1). F wins the EU -CMA ex-
periments against HORS if and only if A produces a forgery on
the challenge public key PKw and does not abort during the
experiment. Since w ∈ [1, J] is selected randomly, the success
probability of A can be bounded that of F as

AdvFEU -CMA
HASES (t, qs, 1) ≤ J ·AdvEU -CMA

HORS (t′, q′s)

A ’s real AR and simulated AS views are indistinguishable.
F ’s transcripts in LS are identical to the real execution except
that PKw is replaced with HORS public key PK ′. Hence,
skw = sk′ is not the part of hash chain generated from sk1 via
H1. As in HORS, H1 is a random oracle. Therefore, wth element
of LS in AR and AS have identical distributions. HORS is
post-quantum secure, and so as HASES. �

VII. CONCLUSION

We created a novel post-quantum forward-secure signature
HASES that achieves the highest signer efficiency among its
counterparts. It is at least two and one magnitudes faster than

the best forward-secure hash-based signature XMSSMT and
non-forward-secure lattice-based signature BLISS-I, respec-
tively. HASES is also more than twice efficient over its fastest
lattice-based alternative ANT without requiring non-colluding
servers or secure enclaves on signers. HASES has the smallest
signature and private key sizes among its alternatives. We
formally proved that HASES is secure and open-sourced its
implementation to enable public testing and broader adaptation.

ACKNOWLEDGMENT

This research is supported by the unrestricted gift from the
Cisco Research Award (220159), and the NSF CAREER Award
CNS-1917627.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Review, vol. 41, no. 2,
pp. 303–332, 1999.

[2] ANSI X9.62-1998: Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA),
American Bankers Association, 1999.

[3] C. Costello and P. Longa, “Schnorrq: Schnorr signatures on fourq,” Tech.
Rep., 2016.

[4] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “Crystals-dilithium: A lattice-based digital signature
scheme,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 238–268, 2018.

[5] L. Tawalbeh, F. Muheidat, M. Tawalbeh, and M. Quwaider, “Iot privacy
and security: Challenges and solutions,” Applied Sciences, vol. 10, no. 12,
p. 4102, 2020.

[6] T. Malkin, D. Micciancio, and S. K. Miner, “Efficient generic forward-
secure signatures with an unbounded number of time periods,” in Proc.
of the 21th International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT ’02), 2002, pp. 400–417.

[7] T. Pöppelmann, T. Oder, and T. Güneysu, “High-performance ideal lattice-
based cryptography on 8-bit ATxmega microcontrollers,” in Int. conf. on
cryptology and information security in Latin America, 2015, pp. 346–365.

[8] R. Behnia and A. A. Yavuz, “Towards practical post-quantum signatures
for resource-limited internet of things,” in Annual Computer Security
Applications Conference, 2021, pp. 119–130.

[9] D. Boneh, S. Eskandarian, and B. Fisch, “Post-quantum EPID signatures
from symmetric primitives,” in CT-RSA Conference, 2019, pp. 251–271.

[10] W. Ouyang, Q. Wang, W. Wang, J. Lin, and Y. He, “Scb: Flexible
and efficient asymmetric computations utilizing symmetric cryptosystems
implemented with intel sgx,” in 2021 IEEE International Performance,
Computing, and Communications Conference (IPCCC), 2021, pp. 1–8.

[11] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey, J. Lichtinger,
C. Miller, D. Moody, R. Peralta et al., “Status report on the third round
of the nist post-quantum cryptography standardization process,” National
Institute of Standards and Technology, Gaithersburg, 2022.

[12] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and
P. Schwabe, “The SPHINCS+ signature framework,” in Proceedings of
the 2019 ACM SIGSAC conference on computer and communications
security, 2019, pp. 2129–2146.

[13] D. A. Cooper, D. C. Apon, Q. H. Dang, M. S. Davidson, M. J. Dworkin,
C. A. Miller et al., “Recommendation for stateful hash-based signature
schemes,” NIST Special Publication, vol. 800, p. 208, 2020.

[14] Intel, “Intel® Software Guard Extensions,” https://www.intel.com/
content/www/us/en/developer/tools/software-guard-extensions/overview.
html, accessed: Oct 6, 2022.

[15] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron: func-
tional encryption using intel sgx,” in Proc of the 2017 ACM SIGSAC Conf
on Computer and Communications Security, 2017, pp. 765–782.

[16] S. Contiu, R. Pires, S. Vaucher, M. Pasin, P. Felber, and L. Réveillère,
“IBBE-SGX: Cryptographic group access control using trusted execution
environments,” in 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2018, pp. 207–218.

[17] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signatures
with fast signing and verifying,” in Information Security and Privacy: 7th
Australasian Conference, July 2002, pp. 144–153.

[18] A. Hülsing, L. Rausch, and J. Buchmann, “Optimal parameters for XMSS
MT,” in International conference on availability, reliability, and security.
Springer, 2013, pp. 194–208.

[19] X. Lou, T. Zhang, J. Jiang, and Y. Zhang, “A survey of microarchitectural
side-channel vulnerabilities, attacks, and defenses in cryptography,” ACM
Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–37, 2021.

