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Internet of Things (IoT) and Storage-as-a-Service (STaaS) continuum permit cost-effective maintenance of security-sensitive information

collected by IoT devices over cloud systems. It is necessary to guarantee the security of sensitive data in IoT-STaaS applications.

Especially, log entries trace critical events in computer systems and play a vital role in the trustworthiness of IoT-STaaS. An ideal log

protection tool must be scalable and lightweight for vast quantities of resource-limited IoT devices while permitting efficient and public

verification at STaaS. However, the existing cryptographic logging schemes either incur significant computation/signature overhead to

the logger or extreme storage and verification costs to the cloud. There is a critical need for a cryptographic forensic log tool that respects

the efficiency requirements of the IoT-STaaS continuum.

In this paper, we created novel digital signatures for logs called Optimal Signatures for secure Logging (OSLO), which are the first (to

the best of our knowledge) to offer both small-constant signature and public key sizes with near-optimal signing and batch verification via

various granularities. We introduce new design features such as one-time randomness management, flexible tag aggregations along with

various optimizations to attain these seemingly conflicting properties simultaneously. Our experiments show that OSLO offers 50× faster

verification (for 235 entries) than the most compact alternative with equal signature sizes, while also being several magnitudes of more

compact than its most logger efficient counterparts. These properties make OSLO an ideal choice for the IoT-STaaS continuum, wherein

lightweight logging and efficient batch verification of massive-size logs are vital for the IoT edge and cold storage servers, respectively.
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1 INTRODUCTION

System logs are vital tools for any security-critical applications [12]. They capture important events (e.g., user activity,

errors, security breaches), making them an important target for attackers. Recent cyberattacks employ anti-forensics

techniques to hide any evidence, namely by deleting or modifying log files. As such, administrators and/or verifiers

cannot identify the source of errors during an incident investigation. Thereby, ensuring the trustworthiness of log files is a

well-known topic for both authorities 1 and practitioners [20, 30].
1https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
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The emerging IoT harbors a sheer amount of IoT devices (e.g., sensors) that collect sensitive information (e.g., financial,

health, personal) from the environment. These sensitive data and their metadata (i.e., log files) must be protected against

such cyber attacks (e.g., impersonation, tampering) by ensuring their authentication, integrity, and confidentiality.

However, IoT devices are known to be resource-limited, rendering them more vulnerable to such cyber attacks. Indeed,

IoT devices do not have the necessary storage capacity to keep locally the log files. Additionally, they are more vulnerable

to (especially cyber-physical) attacks, and therefore there is a major risk of log tampering.

A common practice is to securely offload log streams to a cloud storage solution for future analytics and forensic

investigation. Storage-as-a-Service (STaaS) 2 offers advanced data storage and infrastructure for end-users. However,

it is highly expensive to retain append-only files (i.e., logs) on fast-access cloud servers which are usually dedicated

to frequently accessed data. Cold storage solution [15] is a new type of data warehouse, designed to host large-scale

archives. As such, Cold-STaaS becomes the best alternative to keep such rarely used yet valuable log files.

An ideal secure log authentication scheme for IoT-STaaS should offer (at minimum) the following properties:

• Scalability, Public Verifiability, and Non-Repudiation: (i) The cryptographic solution should be scalable to large IoT

networks. (ii) It should allow any entity to verify the trustworthiness of information (e.g., meta-data, logs) by external

parties. (iii) It should provide non-repudiation feature, which is essential for digital forensics and legal dispute resolution

(e.g., financial, health). These features are usually offered by digital signatures [11, 24].

• Logger Efficiency: The cryptographic mechanisms must respect the limited resources (e.g., battery, memory, CPU)

for low-end IoT devices (e.g., sensors), which are expected to operate for long durations without a replacement. (i) The

authentication process should introduce a low computational overhead that translates into minimum energy consumption.

(ii) The signatures should be compact to reduce the memory and transmission overhead. (iii) A small cryptographic code

size is desirable to reduce the memory footprint.

• Cloud Storage and Verification Efficiency: Cold storage systems maintain sheer sizes of data (e.g., order of TBs).

This requires an ability to compress cryptographic data, while periodic security controls necessitate fast batch verification.

• Flexible Verification Granularity: There is usually a performance and precision trade-off for secure log verification.

For example, the authentication of the entire log stream with a single condensed tag offers minimal storage and fast

verification time. However, having a single altered log entry renders the overall authentication invalid. Alternatively,

signatures can be kept individually, per log entry, for the highest precision, but with high storage overhead. Hence, the

cryptographic solution should permit for both logger and cold storage to adjust the storage granularity and verification

precision depending on the application requirements [10, 19] .

It is a highly challenging task to devise a digital signature scheme that meets the stringent performance and security

requirements of both IoT devices and STaaS simultaneously. The state-of-the-art techniques prioritize the needs of either

the logger or verifier side while omitting performance and security features for the other side. In the following, we outline

the research gap in the existing secure logging schemes by focusing on digital signatures.

1.1 Related Work and Research Gap

We first discuss the closest related works to our solutions with a focus on digital signature-based approaches. We then

discuss other relevant and complementary works.

Related Work in our Scope: OSLO follows a prominent aggregate signature (AS)-based secure logging models (e.g.,

[10–12, 14, 18, 19, 24, 30]), where the logger compute an aggregate signature on its log entries so they can be attested
2https://www.intel.com/content/www/us/en/cloud-computing/storage-as-a-service.html
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later. Digital signatures offer public verifiability and non-repudiation via Public Key Infrastructures (PKI). Therefore, they

are suitable tools to provide scalable authentication for IoT and cold storage systems. Hereby, we outline the state-of-art

signatures that are applicable in our context.

The standard digital signatures (e.g., RSA, Ed25519 [3]) involve expensive operations (e.g., modular exponentiation,

Elliptic Curve (EC) scalar multiplication), which are costly for resource-limited IoTs. They do not offer aggregation

property. Therefore, they introduce O(𝑇 ) signature overhead for 𝑇 log entries putting a heavy storage burden on cold

storage. Finally, the majority of them do not offer batch verification, which is important for fast authentication.

Aggregate Signatures (AS) [4, 29] can aggregate multiple distinct signatures into a single compact tag. Some aggregate

signatures offer batch verification. Hence, they are instrumental tools for building cryptographic forensic schemes [12,

19, 20, 24, 30]. The Condensed-RSA (C-RSA) [29] and BLS [4] are two essential aggregate signatures but with a costly

computation in both signing and verification. BLS requires highly expensive pairings and EC scalar multiplication with a

heavy special hash function at the verifier and signer sides, respectively. C-RSA requires costly modular exponentiation

with large key sizes. As shown in our experiments, they are highly costly for our envisioned IoT-STaaS applications.

Forward-secure and Aggregate Signatures (FAS) [14, 24, 30] offer breach-resiliency and signature aggregation. Despite

their merits, FAS schemes introduce significant computational and storage overhead either at the signer and/or verifier

sides. Some of these are signer-efficient signatures [30, 31], which makes them ideal choices for secure logging in

resource-constrained IoT. However, this comes at the cost of a linear public key size. Our experiments proved that this

introduces costly cloud storage overhead. Moreover, they cannot offer storage at different granularities due to fixed public

key sizes. Hence, they are not suitable for emerging cold storage applications.

Recent AS schemes with extended properties for IoTs (e.g., [16, 25, 26, 32]) are either based on BLS [4] or Schnorr [6].

Hence, they inherit similar computational overhead (e.g., pairing, EC scalar mul) at the signer, which was demonstrated

by our analysis that it might not be suitable for highly resource-limited devices. Additionally, we observe the absence of

performance evaluations on low-end devices (e.g., 8-bit ATMega2560). In our comparisons, we focus on Ed25519 [3],

SchnorrQ [6] and BLS [4] to represent the signer overhead schemes that rely on such cryptographic operations.

Other/Complementary Related Work: Our proposed scheme (OSLO) is a special class of aggregate digital signature,

and therefore does not offer data confidentiality that can be achieved by: (i) data encryption at the logger [8], (ii)

private-auditing at STaaS side, (iii) privacy-enhancing tools like searchable encryption [27].

There is a line of work focuses on Proof of Data Possession (PDP) [2] and Proof of Retrievability (PoR) [1] on the

outsourced user data. Some works cope with privacy-preserving public auditing [28]. These works differ from our system

model and primary performance objective. IoT devices do not compute a signature, but just transfer log files to STaaS,

without initiating data authentication/integrity check. Rather, administrators (or STaaS) initiates usually an interactive

integrity check protocol to audit the outsourced data, whereas AS-based schemes are generally non-interactive. PoR/PDP

schemes offer fast audit time that is achieved by homomorphic linear authenticators (HLA) [28]. These enable an external

entity to audit the data without having to retrieve the entire set. However, it comes at the cost of a very high computational

overhead on IoT devices since the most deployed HLAs (i.e., BLS, RSA) suffer from expensive signing (see Table 1 and

Fig. 7). In a different line, Li et al. in [17] proposed a public auditing protocol with data sampling for IoT networks.

Herein, our goal is to achieve optimal signing and small cryptographic payload for IoT devices, while offering compact

storage and plausible verification efficiency at STaaS. By doing so, we permit low-end IoT to actively compute signatures,

thereby ensuring public verifiability and non-repudiation. We note that OSLO can be transformed into a homomorphic

3



IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Saif E. Nouma and Attila A. Yavuz

authenticable signature (via Map-to-Point operation akin to BLS [4]). However, this would result in a high computational

signing, due again to reliance on BLS/RSA. Therefore, our scope and counterparts are AS-based secure logging schemes.

1.2 Our Contribution

In this work, we created a new series of secure logging schemes that we refer to as Optimal Signatures for secure

Logging (OSLO). To the best of our knowledge, OSLO schemes are the first AS-based secure logging schemes that achieve

small-constant tag and public key sizes with near-optimal signing and batch verification via various granularities. These

features make them ideal for IoT-STaaS applications, wherein efficient signing and batch verification are critical for the

resource-limited IoTs and cold storage servers, respectively.

Main Idea: Elliptic-Curve (EC)-based signatures usually offer the most compact tag sizes with a better signing

efficiency compared to RSA-based [29] and pairing-based [4] alternatives. However, the most efficient EC-based

signatures (e.g, Ed25519 [3], SchnorrQ [6]) still require at least one expensive operation (i.e., EC scalar multiplication)

during signing. Many techniques attempted to address this bottleneck. A naive approach is to pre-compute private/public

commitments during the key generation. This is at the cost of a linear storage overhead on the signer. As the number of

log entries grows, such storage becomes infeasible on resource-constrained devices.

An alternative approach is to eliminate the public commitments (both computation and storage) from signature

generation, by replacing them with one-time random seeds [21, 30]. Despite being highly signer efficient, these

approaches require linear public key storage at the verifier, which incurs extreme overhead on Cold-STaaS (e.g., ≈ 3.3 TB

for 235 log entries). Overall, AS scheme is either efficient for the signer but with the expense of extreme storage cost and

verification overhead, or expensive for the low-end device in terms of signing and storage overhead. In Section 1.1 and

Section 6, we discuss AS-based signatures in terms of their conundrums.

In OSLO, we attempt to address these limitations by putting forward several new design approaches. (i) We introduce a

new randomness management mechanism that achieves O(log2𝑇 ) intermediate and O(1) final one-time seed storage

and computation. Our approach eliminates the linear server storage while preserving optimal and deterministic signing

via a tree-based seed data structure that respects the post-signature disclosure requirement of EC-based signatures. (ii)

Our schemes can aggregate additive and multiplicative homomorphic signature components separately with any desired

granularity. This permits us to compress tags either at the IoT side per epoch, and/or compact them individually at the

verifier. (iii) We propose two instantiations of OSLO: Signer-Optimal Coarse-grained OSLO (SOCOSLO) and FIne-grained

Public-key OSLO (FIPOSLO). OSLO significantly outperforms their counterparts for the cold storage and verification

time, with various granularities and high signer performance. In Table 1, we show a high-level comparison of OSLO with

their counterparts (selection rationale to be discussed in Section 6) and outline their desirable properties below:

• Compact Cold Cryptographic Storage and Fast Verification: We compared our schemes with their alternatives for

cryptographic storage and total verification times for 235 entries (each is of size 32 bytes). OSLO achieves the fastest

verification and compact storage among their counterparts. (i) They enable total storage of just 0.10 KB, which is

several magnitudes more compact than alternative EC-based signatures (e.g., Ed25519, FI-BAF) with TBs of storage.

(ii) SOCOSLO has 7× smaller signature than C-RSA and the same size as BLS, but with 9× and 50× faster verification,

respectively. It is 24× faster than its most signer-efficient counterpart FI-BAF.

• Flexible Verification Granularities and Architectures: (i) In some IoT applications, IoT devices periodically stream

their sensing reports to a verifier. In SOCOSLO, the logger signs each entry as collected and sequentially aggregates into a

single “umbrella signature” to be uploaded to the verifier per epoch. SOCOSLO has a compact signature with the fastest

4



Practical Cryptographic Forensic Tools for
Lightweight Internet of Things and Cold Storage Systems IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA

Table 1. Performance comparison of OSLO and its counterparts on embedded IoT and cold storage servers

Scheme

Logger (Signer)
IoT Device: AtMega2560 (8-bit)

Cold Storage Server
Commodity Hardware (Desktop) Ver time (ms)

(per epoch)
Dynamic

Granularity
Granularity

Level
Initial/Final
Public KeySigning (in sec) Cryptographic Priv Key Cold Cryptographic Data Ver Time

(hours)(per item) Payload (KB) Size (KB) Entire Sig/PK Set
(for 235 entries)

One Sig
(KB)

Ed25519 [3] 1.45 16.38 0.03 2.20 TB 0.10 2243.12 56.78 × Fine O(1) / O(1)
SchnorrQ [6] 0.27 16 0.03 2.20 TB 0.10 154.92 4.16 × Fine O(1) / O(1)
FI-BAF [30] 0.01 0.05 0.10 3.30 TB 0.77 164.90 4.44 × Coarse O(𝑇 ) / O(𝑇 )
C-RSA [29] 83.26 0.25 0.51 0.77 KB 4.72 73.22 2.05 ✓ Coarse/Fine O(1) / O(1)

BLS [4] 4.08 0.03 0.03 0.10 KB 0.10 432.55 15.15 ✓ Coarse/Fine O(1) / O(1)
SOCOSLO 0.01 0.05 0.06 0.10 KB 0.11 8.33 0.17 ✓ Coarse O(𝑇 /𝐿1) / O(1)
FIPOSLO 0.09 16 65.6 0.10 KB 0.10 8.12 3.80 ✓ Fine O(1) / O(1)

The details of experiment settings, hardware/software configurations, and cryptographic parameters are given in Section 6. We chose our counterparts to cover the primary signature
schemes, deployed for secure logging in the IoT domain. More details about our selection rationale can be found in Section 6.1. The total number of entries and the size of an epoch
are𝑇 = 235 and 𝐿2 = 28 , respectively. At the cold storage server, the cryptographic storage (i.e., cold cryptographic data) is the total size of signatures and public keys needed to
verify𝑇 entries. The verification time (in hours) is the total runtime of the batch verifying𝑇 items. At the logger (signer), the signature size is measured for an epoch. The signing
time (in seconds) is given for a single entry. The verification time (in ms) is for all the collected items in a given epoch.

verification ( 89× than BLS) for an epoch level (e.g., 𝐿1 = 256 items) of granularity (i.e., coarse-grained). However, it

requires O(𝐿1) initial public keys at the verifier but with O(1) final public key at the cold storage. (ii) FIPOSLO keeps

every signature separately to be authenticated and aggregated at the distiller. This enables the highest level of granularity

(i.e., fine-grained) and O(1) public key size. (iii) OSLO introduces a distillation process, in which the entries are verified

and organized with a desired degree of granularities. The distillation can be done with an intermediate verifier (e.g., an

edge cloud) or by the cold storage server itself.

• Near-optimal Logging Efficiency: OSLO schemes are highly signing efficient makes them ideal alternatives for

logging in the resource-limited IoT devices. (i) SOCOSLO achieves a near-optimal signing by eliminating costly operations

(e.g., EC multiplication). This makes it 27× and 40× faster than the most compact traditional and aggregate counterparts

SchnorrQ and BLS, respectively. While as fast as FI-BAF, SOCOSLO is also many magnitudes more compact at the

cold storage with 20× faster verification. (ii) FIPOSLO is the second-fastest alternative at the signer but with the finest

granularity and O(1) public-key storage advantage over SOCOSLO and FI-BAF. It has the largest private key to enable

pre-computation, but this can be replaced with scalar multiplication for a compact private key.

• Full-fledge Implementation: We implemented OSLO schemes on a low-end IoT device and commodity hardware and

compared their performance with that of their counterparts. Our experiments confirm that the asymptotic advantages of

OSLO translate into practical performance. We open-source our implementation for public testing and adaptation purposes

in the following online repository: https://github.com/SaifNOUMA/OSLO

2 PRELIMINARIES

Notation: | | and |𝑥 | denote concatenation and the bit length of variable 𝑥 , respectively. 𝑥
$← S means variable 𝑥

is randomly selected from the finite set S using a uniform distribution. |S| denotes the cardinality of set S. {0, 1}∗

denotes a set of binary strings of any finite length. {𝑥𝑖 }𝑛𝑖=1 denotes the set of items (𝑥1, 𝑥2, . . . , 𝑥𝑛). log𝑥 denotes log2 𝑥 .

𝐻𝑖 : {0, 1}∗ → {0, 1}𝜅 , 𝑖 ∈ {0, 1} are distinct Full Domain Hash Functions [13], where 𝜅 is the security parameter. 𝑇

denotes the maximum number of items to be signed in a given signature scheme. Our schemes operates over epochs,

in which 𝐿2 items are processed, with a total 𝐿1 epochs available such that 𝑇 = 𝐿1 · 𝐿2. The variable 𝑠 𝑗0, 𝑗1
𝑖

denotes the

aggregated (or derived) value of 𝑠 for the iteration range 𝑗0 ≤ 𝑗 ≤ 𝑗1 in the epoch 𝑖. 𝑀 𝑗
𝑖
∈ −→𝑀𝑖 means that 𝑀 𝑗

𝑖
belongs to

set of items
−→
𝑀𝑖 .
−→
𝑀 = {−→𝑀𝑖 }

𝑖∈−→𝑖 denotes a super vector where each
−→
𝑀𝑖 contains 𝐿2 messages and

−→
𝑖 are epoch indices of

−→
𝑀 .

Definition 2.1. An aggregate signature scheme ASGN consists of four algorithms (Kg, Agg, ASig, AVer) as follows:

5
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- (𝐼 , sk, PK) ← ASGN.Kg(1𝜅 ,𝑇 ): Given the security parameter 𝜅 and the maximum number of messages to be signed 𝑇 ,

it returns a private/public key pair (sk, PK) with a public parameter 𝐼 .

- 𝜎1,𝑢 ← ASGN.Agg(𝜎1, . . . , 𝜎𝑢 ): Given a set of signatures {𝜎𝑖 }𝑢𝑖=1, it combines them and outputs an aggregate tag 𝜎1,𝑢 .

- 𝜎𝑖 ← ASGN.ASig(sk, 𝑀𝑖 ): Given the secret key sk and a message 𝑀𝑖 , it returns a signature 𝜎𝑖 as output.

- 𝑏 ← ASGN.AVer(PK, {𝑀𝑖 }𝑢𝑖=1, 𝜎1,𝑢 ): Given the public key PK , a set of messages {𝑀𝑖 }𝑢𝑖=1 and their corresponding

aggregated signature 𝜎1,𝑢 , it outputs 𝑏 = 1 if 𝜎1,𝑢 is valid or 𝑏 = 0 otherwise.

OSLO schemes rely on the intractability of Discrete Logarithm Problem (DLP) [13].

Definition 2.2. Let G be a cyclic group of order 𝑞, let 𝛼 be a generator of G, and let DLP attacker A be an algorithm

that returns an integer in Z𝑞 . We consider the following experiment:

Experiment 𝐸𝑥𝑝𝑡𝐷𝐿
G,𝛼
(A):

𝑏
$← Z∗𝑞 , 𝐵 ← 𝛼𝑏 mod 𝑞, 𝑏 ′ ← A(𝐵),

If 𝛼𝑏
′
mod 𝑝 = 𝐵 then return 1, else return 0

The DL-advantage of A in this experiment is defined as:

AdvDL
𝐺
(A) = 𝑃𝑟 [𝐸𝑥𝑝𝑡𝐷𝐿

G,𝛼
(A) = 1]

The DL advantage of (G, 𝛼) in this experiment is defined as follows:

AdvDL
𝐺
(𝑡) = max

A
{AdvDL

𝐺
(A)}, where the maximum is over all A having time complexity 𝑡 .

SOCOSLO uses Boyko-Peinado-Venkatesan (BPV) generator [5]. It reduces the computational cost of expensive

operations (e.g., EC scalar mul.) via pre-computation technique. It consists of two algorithms described as follows:

1) (Γ, 𝑣, 𝑘) ← BPV.Offline(1𝜅 , 𝑝, 𝑞, 𝛼): It chooses BPV parameters (𝑣, 𝑘) as the size of the pre-computed table and

number of randomly selected elements, respectively. Then, it generates the pre-computed table Γ = {𝑟𝑖 , 𝑅𝑖 }𝑣𝑖=1.

2) (𝑟, 𝑅) ← BPV.Online(Γ): It generates a random set 𝑆 ∈ {1, . . . , 𝑣} of size |𝑆 | = 𝑘. Then, it computes a one-time

commitment pair (𝑟 ← ∑
𝑖∈𝑆 𝑟𝑖 mod 𝑞 , 𝑅 ← ∏

𝑖∈𝑆 𝑅𝑖 mod 𝑝).

3 MODELS

System Model: Our system model follows a well-known AS-based secure logging models (e.g., [11, 12, 18, 19, 24, 30]),

in which logger (i.e., IoT device) computes authentication tags on its log entries to be publicly verified later. Specifically,

we consider an IoT-Cloud continuum wherein vast quantities of IoT devices generate log streams and report them to an

(edge) cloud for analysis. As depicted in Fig. 1, our model consists of three main entities:

(i) Logger (Signer): represent the end-user IoT devices (e.g., medical sensors). They collect sensitive information (e.g.,

personal, health), and periodically upload them with their corresponding log entries to a nearby edge server (e.g., access

point). They are expected to be resource-limited in terms of computation, storage, battery, and bandwidth.

(ii) Distiller: Any authorized entity can verify the log files and their digital signatures via corresponding public keys.

For example, in a smart-building application, the IoT sensors can upload their periodic sensing reports to a nearby edge

cloud. Before placing logs and signatures into the cold storage, we consider that the edge cloud performs a distillation

process. That is, it maintains Cold Cryptographic Data (CCD) that harbors “valid” batches of log entries with their

compressed (and adjustable) tags in various granularities. We assume that it keeps the “invalid” log entry-signature

pairs individually. Remark that in the vast majority of real-life applications, the number of “invalid” (flagged) entries

usually form only a negligible part of the entire log set. Hence, the “valid” entries dominate the storage of CCD. After the

distillation, the edge cloud uploads CCD to the cold storage servers for long-term maintenance and check.
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𝑴𝒊
𝟏 𝑴𝒊

𝟐 𝑴𝒊
𝑳𝟐)…𝑴𝒊 = (

IoT devices: Loggers Edge Cloud: Distiller Cold Storage Server: CSS

𝝈𝒊 ← 𝐎𝐒𝐋𝐎.𝐀𝐒𝐈𝐆(𝒔𝒌,𝑴𝒊)

1 2

𝐛𝐢 ← 𝐎𝐒𝐋𝐎.𝐀𝐕𝐞𝐫(𝐏𝐊,𝑴𝒊, 𝝈𝒊)

𝐎𝐒𝐋𝐎.𝐃𝐢𝐬𝐭𝐢𝐥𝐥

𝒃 ← 𝐎𝐒𝐋𝐎. 𝐒𝐞𝐁𝐕𝐞𝐫(𝑷𝑲,𝑴, 𝑪𝑪𝑫𝑳𝟏, 𝝁)

… 𝑴𝟏 𝑴𝟐 𝑴𝑳𝟏)𝑴 = ( …(𝑴𝒊, 𝑪𝑪𝑫𝒊)
(𝑴𝒊, 𝝈𝒊)

𝑪𝑪𝑫𝒊 ← 𝑪𝑪𝑫𝒊$𝟏 ∪ 𝝈𝒊

𝐎𝐒𝐋𝐎. 𝐀𝐕𝐞𝐫

Fig. 1. A high-level illustration of OSLO system model and algorithms

(iii) Cold Storage Server (CSS) : It gives a STaaS service for our IoT-STaaS continuum. As discussed in Section 1,

STaaS need regular audits to prove that their digital archives are trustworthy [7]. Hence, verifiers periodically check the

authentication and integrity of logs maintained in CSS. For simplicity, verifiers are part of CSS.

Threat and Security Model: We follow the threat model of cryptographic audit log techniques originally introduced

by Schneier et al. in [22] and then improved in various subsequent cryptographic works [10, 12, 18, 30]. In this model,

the adversary is an active attacker that aims to forge and/or tamper audit logs to implicate other users. The state-of-the-art

cryptographic secure logging schemes rely on digital signatures to thwart such attacks with public verifiability and

non-repudiation. As stated in Section 1, we focus on signer-efficient (EC-based) aggregate signature-based approaches

due to their compactness and fast batch verification properties.

We follow the Aggregate Existential Unforgeability Under Chosen Message Attack (A-EU-CMA) [4] security model

that captures our threat model. A-EU-CMA considers the homomorphic properties of aggregate signatures and can

offer desirable features such as log order preservation (if enforced) and truncation detection for signature batches.

OSLO schemes are single-signer aggregate signatures, and therefore we do not consider inter-signer aggregations.

Definition 3.1. A-EU-CMA experiment for ASGN is as follows:

Experiment ExptA-EU-CMAASGN (A)

(𝐼 , 𝑠𝑘, 𝑃𝐾) ← ASGN.Kg(1𝜅 ,𝑇 ),
(𝑀∗, 𝜎∗) ← ARO (.), ASGN.ASig𝑠𝑘 (

−→
𝑀) (𝑃𝐾),

If ASGN.AVer(𝑃𝐾,𝑀∗, 𝜎∗) = 1 &𝑀∗ ⊄ {−→𝑀𝑗 }𝐿1𝑗=1, return 1 else 0.

The A-EU-CMA of A is defined as

AdvA-EU-CMAASGN (A) = 𝑃𝑟 [ExptA-EU-CMAASGN (A) = 1] .

The A-EU-CMA advantage of ASGN is defined as

AdvA-EU-CMAASGN (𝑡,𝑇 ′,𝑇 ) = max
A
{𝐴𝑑𝑣A-EU-CMAASGN (A)},

where the maximum is overA having time complexity 𝑡 , with at most𝑇 ′ queries to RO(.) and𝑇 queries to ASGN.ASig(.).

The oracles reflect how OSLO works as ASGN scheme. The signing oracle ASGN.ASig(.) returns an aggregate

signature 𝜎 on a batch of messages
−→
𝑀 = (−→𝑀1, . . . ,

−−→
𝑀𝐿1 ) computed under 𝑠𝑘 . ASGN.Agg(.) aggregates the individual (or

batch) signatures of these messages. ASGN.Agg(.) can be performed during the signing or before verification (e.g., in

the distillation). It can aggregate additive or multiplicative components 𝛿𝑖 ∈ 𝜎𝑖 . RO(.) is a random oracle from which

A can request the hash of any message of her choice up to 𝑇 ′ messages. In our proofs (see Section 5), cryptographic

hash functions are modeled as a random oracle [13] via RO(.).
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4 PROPOSED SCHEMES

Our goal is to create new cryptographic secure logging schemes that can meet the stringent requirements of low-end IoT

devices with efficient signing and compact signatures while achieving fast verification and optimal storage in the cloud.

We aim to achieve: (i) A near-optimal signer computational efficiency with no costly EC-scalar multiplication or modular

exponentiation. (ii) Compact aggregate tag storage and transmission. (iii) O(1) final cryptographic storage for the cold

storage, which means O(1) public key and signature size for the highest level of compression. (iv) Fast batch verification

for a large number of messages. (v) Ability to aggregate tags in any desired granularity at the signer and/or verifier sides.

We observe that, among the existing aggregate signatures, EC-based signer-efficient variants (e.g., FI-BAF [30]) have

the best potential for IoT, yet lack the necessary compactness and fast verification for cold storage applications (see

Section 1 for a recap). They transform the Schnorr signature [23] into a one-time aggregate signature, in which the

generation and storage of costly commitments (𝑅 ← 𝛼𝑟 mod 𝑞, 𝑟
$← Z∗𝑞) are shifted to the key generation and verifier,

respectively. In a nutshell, the signing process separates the message 𝑀 from the commitment by replacing 𝐻 (𝑀 | |𝑅)
with 𝐻 (𝑀 | |𝑥), where 𝑥 is one-time randomness. “𝑥” cannot be disclosed before signing and does not admit aggregation.

Hence, it enforces 𝑂 (𝑇 ) storage and expensive batch verification, which are extremely costly as shown in Section 6.

We developed several new techniques that address the signer versus verifier bottleneck conundrum. In Fig. 1, we

outline our system model and OSLO’s high-level functionalities. We first describe our data structures and new seed

management strategy to cope with linear seed storage in Section 4.1. We then present our proposed schemes SOCOSLO and

FIPOSLO that offer efficient signing, compact server storage, and batch verification with various granularity options.

4.1 OSLO Data Types and Seed Management

OSLO Data types: OSLO Tree-based structure (OSLOT) is a hash-based tree for seed storage and management, in which

the leaves are one-time random seeds 𝑥 , and the left and right children are computed via 𝐻0,1, respectively. Let 𝐿1 and

𝐷 = log𝐿1 be the maximum number of leaves and tree depth, respectively. OSLOT nodes 𝑥𝑑 [𝑖] at depth 𝑑, 0 ≤ 𝑑 ≤ 𝐷 , for

index 𝑖, 0 ≤ 𝑖 < 2𝑑 , are computed as:

𝑥𝑑 [𝑖] =

𝐻0 (𝑥𝑑−1 [⌊ 𝑖2 ⌋]), if 𝑖 ≡ 0 mod 2

𝐻1 (𝑥𝑑−1 [⌊ 𝑖2 ⌋]), if 𝑖 ≡ 1 mod 2

Disclosed Seeds (DS) is a hash table structure. It maintains the disclosed nodes as values and their coordinates (i.e., depth

𝑑 , index 𝑖) as keys. Formally, it is presented as follows: DS : (𝑑, 𝑖𝑑 ) → 𝑥𝑑 [𝑖𝑑 ], where 0 ≤ 𝑑 ≤ 𝐷 and 0 ≤ 𝑖𝑑 ≤ 2𝑑 − 1.

Non-disclosed Seed

Unreached node 

Disclosed seed
Seed for disclosure𝒙𝟎[𝟎]

𝒙𝟏[𝟎]

𝒙𝟐[𝟎]

𝒙𝟑[𝟎] 𝒙𝟑[𝟏]

𝒙𝟎𝟏

𝒙𝟎𝟐𝟓𝟔

𝒙𝟏𝟏

𝒙𝟏𝟐𝟓𝟔

𝒙𝟕𝟏

𝒙𝟕𝟐𝟓𝟔

𝒙𝟓𝟏

𝒙𝟓𝟐𝟓𝟔

𝒙𝟔𝟏

𝒙𝟔𝟐𝟓𝟔

Reached node 

One-time seeds 
of 2nd epoch

𝒙𝟐[𝟏]

𝒙𝟑[𝟐] 𝒙𝟑[𝟑]

𝒙𝟏[𝟏]

𝒙𝟐[𝟐]

𝒙𝟑[𝟒] 𝒙𝟑[𝟓]

𝒙𝟐[𝟑]

𝒙𝟑[𝟔] 𝒙𝟑[𝟕]

𝑳𝟐

𝑫 = 𝐥𝐨𝐠𝟐 𝑳𝟏

(a) Tree-based seed managment

𝒙𝟎[𝟎]

𝒙𝟏[𝟎]

𝒙𝟐[𝟎]

𝒙𝟑[𝟎] 𝒙𝟑[𝟏]

𝒙𝟐[𝟏]

𝒙𝟑[𝟐] 𝒙𝟑[𝟑]

𝒙𝟏[𝟏]

𝒙𝟐[𝟐]

𝒙𝟑[𝟒] 𝒙𝟑[𝟓]

𝒙𝟐[𝟑]

𝒙𝟑[𝟔] 𝒙𝟑[𝟕]

𝐃S𝟔
(1,0) 𝑥"[0]
(2,2) 𝑥#[2]
(3,6) 𝑥$[6]

𝐱𝟑 𝟑 ← 𝐒𝐑(𝐷𝑆&, 3)

Secret seed
Disclosed seed
Requested seed

Step 1: Retrieve 𝒙𝟏[𝟎]
Step 2: Compute 𝒙𝟑[𝟑] from 
𝒙𝟏[𝟎] via SCT

𝐱𝟑 𝟑 ← 𝐒𝐂𝐓(𝑥" 0 , 1, 0, 3, 3)

Traverse subtree of root 𝒙𝟏[𝟎]
to retrieve 𝒙𝟑[𝟑]

(b) Verifier’s view

Fig. 2. Illustration of tree-based seed management functionalities
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The Seed Management Functions (SMF) are formalized in Fig. 3: (i) Seed Computation (SC) takes the source node

𝑥𝑑0 [𝑖0] and computes the requested child 𝑥𝑑 [𝑖] by traversing OSLOT tree. (ii) Seed Storage Optimizer (SSO) discloses

ancestor nodes progressively when the logger completes a given number of epochs. Given leaf index 𝑖 and the OSLOT root

𝑥0 [1], it outputs a compact DS𝑖 . SSO seeks the seeds that share the same ancestor node, thereby ensuring (at most)

O(log𝐿1) storage. (iii) Seed Retrieval (SR) returns the seed 𝑥𝐷 [𝑖] if DS contains an ancestor for the leaf of index 𝑖.

An instance of OSLOT is provided in Fig. 2a, where (𝐿1 = 23, 𝐿2 = 28). It shows the OSLOT status after completing the

6th epoch. The seeds, to be disclosed, are highlighted. They can be determined by running SSO algorithm. The SSO output

is: DS6 ← SSO(𝑥0 [1], 6) where DS6 = {(1, 0) : 𝑥1 [0]; (2, 2) : 𝑥2 [2]; (3, 6) : 𝑥3 [6]}.
The advantage of OSLOT seed management is apparent over the linear disclosure of one-time commitments in Schnorr-

like schemes. It transforms O(𝑇 ) of both logger transmission and verifier storage into (at most) O(log𝐿1). Upon finishing

all epochs, the logger discloses the OSLOT root 𝑥0 [1], enabling O(1) verifier storage.

𝑥𝑑 [𝑖 ] ← SC(𝑥𝑑0 [𝑖0 ], 𝑑0, 𝑖0, 𝑑, 𝑖) :

1: Set 𝑥𝑝 ← 𝑥𝑑0 [𝑖0 ] and 𝑖 ← 𝑖𝑑 − (𝑖0 − 1) · 2𝑑−𝑑0
2: for 𝑗 = 𝑑 − 𝑑0 − 1, . . . , 0 do

3: 𝑥𝑝 =

{
𝐻0 (𝑥𝑝 ), if ⌊𝑖/2𝑗 ⌋ ≡ 0 mod 2
𝐻1 (𝑥𝑝 ), if ⌊𝑖/2𝑗 ⌋ ≡ 1 mod 2

4: return (𝑥𝑑 [𝑖 ] ← 𝑥𝑝 )

DS𝑖 ← SSO(𝑥0 [0], 𝑖) :

1: Let 𝛽 = (𝛽1, . . . , 𝛽𝐷 ) be the binary representation of 𝑖
2: 𝐽 ← { 𝑗, 𝑗 ∈ {0, . . . , 𝐷 } \ 𝛽 𝑗 = 0}, DS𝑖 ← {} and counter 𝑙 ← 0
3: for 𝑗 ∈ 𝐽 do
4: 𝑑 ← 𝐷 − 𝑗 ; 𝑖𝑑 ← ⌊𝑙/2𝑗 ⌋
5: 𝑥𝑑 [𝑖𝑑 ] ← SC(𝑥0 [0], 0, 0, 𝑑, 𝑖𝑑 )
6: Add {(𝑑, 𝑖𝑑 ) : 𝑥𝑑 [𝑖𝑑 ] } to DS𝑖 and increment 𝑙 ← 𝑙 + 2𝑗
7: return DS𝑖

𝑥𝐷 [𝑖 ] ← SR(DS, 𝑖) :

1: if ∃(𝑑, 𝑖𝑑 ) ∈ DS, where 𝑥𝑑 [𝑖𝑑 ] is an ancestor node of 𝑥𝐷 [𝑖 ] then
2: 𝑥𝐷 [𝑖 ] ← SC(𝑥𝑑 [𝑖𝑑 ], 𝑑, 𝑖𝑑 , 𝐷, 𝑖)
3: else 𝑥𝐷 [𝑖 ] ← ⊥
4: return 𝑥𝐷 [𝑖 ]

Fig. 3. Seed Management Functions (SMF)

4.2 Signer-Optimal Coarse-grained OSLO (SOCOSLO)

SOCOSLO offers a near-optimal signing efficiency in terms of both computational and storage overhead. It offloads an

aggregate tag upon signing an epoch of individual log entries. Unlike previous EC-based signature designs, SOCOSLO pre-

stores a O(𝐿1) sublinear number of public commitments (𝑅) at the verifier side, and compact them after receiving the

authenticated logs from IoT devices. In the following, we explain the formal description of SOCOSLO routines.

SOCOSLO Digital Signature Algorithms: We give the aggregate signature functions of SOCOSLO in Fig. 4a.

In SOCOSLO.Kg(.), for a given 𝑇 , we first select the number of epochs and items to be signed in an epoch as 𝐿1 and

𝐿2, respectively (Step 1). We then generate the initial ephemeral randomness 𝑟0 and the root of OSLOT tree 𝑥0 [0] (Step

2). These values will be used to generate ephemeral public commitments (𝑅) and one-time randomness (𝑥) for a given

epoch state St : (𝑖). We generate EC-based parameters (𝑝, 𝑞, 𝛼) and private/public key pair (𝑦,𝑌 ) (Step 3-4). SOCOSLO is

coarse-grained, and therefore we combine the commitments for each epoch as in Step (5-7), which results in initial O(𝐿1)
and final O(1) storage at the verifier via aggregation. The private/public key and parameters are as in Steps (8-9).
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(𝐼 , sk, PK) ← SOCOSLO.Kg(1𝜅 ,𝑇 ) :

1: Select integers (𝐿1, 𝐿2) such that 𝐿1 · 𝐿2 = 𝑇 and 𝐿1 is a power of 2

2: 𝑥0 [0]
$← {0, 1}𝜅 ; 𝑟0

$← Z∗𝑞 ; 𝐷 ← log (𝐿1) ; 𝜌
$← [0, 1]

3: Generate large primes 𝑞 and 𝑝 > 𝑞 such that 𝑞 | (𝑝 − 1) . Select a generator 𝛼 of
the subgroup𝐺 of order 𝑞 in Z∗𝑞 .

4: 𝑦
$← Z∗𝑞 ; 𝑌 ← 𝛼𝑦 mod 𝑝

5: for 𝑖 = 0, . . . , 𝐿1 − 1 do
6: 𝑟

1,𝐿2
𝑖
← ∑𝐿2

𝑗=1 𝑟
𝑗
𝑖
mod 𝑞, where 𝑟 𝑗

𝑖
← 𝐻0 (𝑟0 ∥ 𝑖 ∥ 𝑗)

7: 𝑅
1,𝐿2
𝑖
← 𝛼

𝑟
1,𝐿2
𝑖 mod 𝑝

8: sk ← (𝑦, 𝑟0, 𝑥0 [0]) ; PK ← (𝑌,−→𝑅 ) , where
−→
𝑅 ← {𝑅1,𝐿2

𝑖
}𝐿1−1
𝑖=0

9: The system-wide param 𝐼 ← (𝑝,𝑞, 𝛼, 𝐿1, 𝐿2,𝑇 , 𝐷, St : (𝑖 = 0))
10: return (𝐼 , sk, PK)

𝛿1,𝑢 ← SOCOSLO.Agg( {𝛿 𝑗 ∈ 𝜎 𝑗 }𝑢𝑗=1) :

1: if 𝛿 ∈ Z∗𝑞 then 𝛿1,𝑢 ←
∑𝑢

𝑗=1 𝛿 𝑗 mod 𝑞 else 𝛿1,𝑢 ←
∏𝑢

𝑗=1 𝛿 𝑗 mod 𝑝

2: return 𝛿1,𝑢

𝜎
1,𝐿2
𝑖
← SOCOSLO.ASig(sk,−→𝑀𝑖 ) : require 𝑖 < 𝐿1 and

−→
𝑀𝑖 = {𝑀 𝑗

𝑖
}𝐿2
𝑗=1

1: 𝑥𝐷 [𝑖 ] ← SC(𝑥0 [0], 0, 0, 𝐷, 𝑖) and 𝑠0,0
𝑖
← 0

2: for 𝑗 = 1, . . . , 𝐿2 do
3: 𝑟

𝑗
𝑖
← 𝐻0 (𝑟0 ∥ 𝑖 ∥ 𝑗) mod 𝑞

4: 𝑒
𝑗
𝑖
← 𝐻0 (𝑀 𝑗

𝑖
∥ 𝑥 𝑗

𝑖
) mod 𝑞, where 𝑥 𝑗

𝑖
← 𝐻0 (𝑥𝐷 [𝑖 ] ∥ 𝑗)

5: 𝑠
1, 𝑗
𝑖
← SOCOSLO.Agg(𝑠1, 𝑗−1

𝑖
, 𝑠

𝑗
𝑖
) , where 𝑠 𝑗

𝑖
← 𝑟

𝑗
𝑖
− 𝑒 𝑗

𝑖
· 𝑦 mod 𝑞

6: 𝜎
1,𝐿2
𝑖
← ⟨𝑠1,𝐿2

𝑖
, DS𝑖 ← SSO(𝑥0 [0], 𝑖) ⟩ and St : (𝑖 ← 𝑖 + 1)

7: return 𝜎
1,𝐿2
𝑖

𝑏 ← SOCOSLO.AVer(PK,−→𝑀,𝜎) : Set of messages
−→
𝑀 = {−→𝑀𝑖 }

𝑖∈−→𝑖 and re-

quire |−→𝑀𝑖 | ≡ 0 mod 𝐿2, ∀𝑖 ∈
−→
𝑖

1: if 𝑅 ∉ 𝜎 then 𝑅 ← SOCOSLO.Agg( {𝑅1,𝐿2
𝑖

∈ PK }
𝑖∈−→𝑖 )

2: 𝑒 ← 0
3: for 𝑖 ∈ −→𝑖 do
4: 𝑥𝐷 [𝑖 ] ← SR(DS, 𝑖)
5: for 𝑗 = 1, . . . , 𝐿2 do
6: 𝑥

𝑗
𝑖
← 𝐻0 (𝑥𝐷 [𝑖 ] ∥ 𝑗)

7: 𝑒 ← 𝑒 +𝐻0 (𝑀 𝑗
𝑖
∥ 𝑥 𝑗

𝑖
) mod 𝑞

8: if 𝑅 = 𝑌𝑒 · 𝛼𝑠 mod 𝑝 then return 𝑏 = 1 else return 𝑏 = 0

(a) Digital signature algorithms

CCD𝑖 ← SOCOSLO.Distill(PK,CCD𝑖−1,
−→
𝑀𝑖 , 𝜎

1,𝐿2
𝑖
) : Initialize 𝑠𝑑 = 0

and 𝑅𝑑 = 1

1: 𝑏𝑖 ← SOCOSLO.AVer(PK,−→𝑀𝑖 , 𝜎
1,𝐿2
𝑖
)

2: if 𝑏𝑖 = 1 then
3: 𝑠𝑑 ← SOCOSLO.Agg(𝑠𝑑 , 𝑠

1,𝐿2
𝑖
)

4: 𝑅𝑑 ← SOCOSLO.Agg(𝑅𝑑 , 𝑅
1,𝐿2
𝑖
)

5: if 𝑖 mod 𝜌 · 𝐿1 = 0 then
6: 𝑠𝐴 ← SOCOSLO.Agg(𝑠𝐴, 𝑠𝑑 )
7: 𝑅𝐴 ← SOCOSLO.Agg(𝑅𝐴, 𝑅𝑑 )
8: 𝜎𝐴 ← ⟨𝑠𝐴, 𝑅𝐴 ⟩
9: 𝜎𝑢 = ⟨𝑠𝑑 , 𝑅𝑑 ⟩

10: Reset (𝜎𝑑 = 0 , 𝑅𝑑 = 1)
11: CCD𝑉

𝑖
← {𝜎𝐴 }

12: CCD𝑈
𝑖
← CCD𝑈

𝑖
∪ {𝜎𝑢 , ⌊ 𝑖

𝜌 ·𝐿1
⌋ }

13: else
14: 𝜎

1,𝐿2
𝑖
← ⟨𝑠1,𝐿2

𝑖
, 𝑅

1,𝐿2
𝑖
⟩

15: CCD𝐼
𝑖
← CCD𝐼

𝑖−1 ∪ {𝜎
1,𝐿2
𝑖

, 𝑖 }
16: Delete 𝑅

1,𝐿2
𝑖

from PK
17: CCD𝑖 ← (CCD𝑉𝑖 ,CCD𝑈

𝑖
,CCD𝐼

𝑖
,DS𝑖 )

18: return CCD𝑖

−→
𝑏 ← SOCOSLO.SeBVer(PK,−→𝑀,CCD, 𝜇) : require |−→𝑀 | ≡ 0 mod 𝐿2

1: Attach DS to every signature 𝜎 to be verified
2: switch (𝜇)
3: case “V”:
4:

−→
𝑀 ← {−→𝑀𝑖 }

𝑖∈−→𝑖 \CCD𝐼

5: 𝑏𝑉 ← SOCOSLO.AVer(PK,−→𝑀,𝜎𝐴)
6:

−→
𝑏 = 𝑏𝑉

7: case “U”:
8: for (𝜎ℓ , 𝑖ℓ ) ∈ CCD𝑈 do
9:

−→
𝑀 ← {−→𝑀𝑖 }

𝑖∈−→𝑖 \CCD𝐼

10: 𝑏𝑈
ℓ
← SOCOSLO.AVer(PK,−→𝑀,𝜎ℓ )

11:
−→
𝑏 = {𝑏𝑈

ℓ
}
ℓ∈|CCD𝑈 |

12: case “I”:
13: for (𝜎ℓ , 𝑖ℓ ) ∈ CCD𝐼 do
14: 𝑏𝐼

ℓ
← SOCOSLO.AVer(PK,−−−→𝑀𝑖ℓ

, 𝜎ℓ )
15:

−→
𝑏 = {𝑏𝐼

ℓ
}
ℓ∈|CCD𝐼 |

16: return
−→
𝑏

(b) Distillation and selective batch verification

Fig. 4. Signer-Optimal Coarse-grained OSLO (SOCOSLO)

SOCOSLO.Agg(.) is a keyless signature aggregate function with a dual signature combination mode. That is, given

tag element 𝑠 ∈ 𝜎 or 𝑅 ∈ 𝜎 , it performs additive or multiplication aggregation, respectively.

SOCOSLO.ASig(.) is an aggregate signature generation that signs each entry and sequentially aggregates into a single

umbrella signature (i.e., the tag representing all items in the given epoch). The seed 𝑥𝐷 [𝑖] is computed once per epoch 𝑖

(Step 1) and used to derive one-time seeds 𝑥 𝑗
𝑖

(Step 4). The aggregate signature 𝑠1, 𝑗
𝑖

is computed with only a few hash

calls and modular additions plus a modular multiplication (Step 3-5). This makes SOCOSLO the most signer efficient

alternative. At the end of epoch 𝑖, the logger determines a set of disclosed seeds DS𝑖 via SSO, updates its internal state

(Step 6), and outputs the condensed signature 𝜎1,𝐿2
𝑖

(Step 6-7).

SOCOSLO.AVer(.) receives the public key PK , a set of messages
−→
𝑀 , and their corresponding aggregate signature

𝜎 as input. The verifier checks if messages comply with the epoch size, and then identifies the format of the aggregate

signature to choose component 𝑅 (Step 1). SOCOSLO.AVer(.) can be invoked by the edge cloud or CSS as the final
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verifier. This difference dictates if the aggregate commitment 𝑅 is included in the initial public key PK or the aggregate

signature 𝜎 . Below, we will elaborate further that the SOCOSLO.Distill(.) function can be used to verify the entries

and then compact them according to a granularity parameter 𝜌 . Hence, if the verification is done during the distillation, the

verifier already has 𝑅1,𝐿2
𝑖
∈ −→𝑅 as part of PK and this value is used in the verification (Step 8). Otherwise, if the verification

is run by the CSS, then “𝑅” can be found as a part of the signature in CCD. The verifier retrieves the seeds in the given

epoch (Step 4) and then computes the aggregate hash component 𝑒 (Steps 2-7). Finally, the aggregate signature is verified

(Step 8). Fig 2b depicts the mechanism for seed retrieval. It consists of the verifier’s view after finishing 6th epoch. It

illustrates the request to retrieve the seed of the 3rd epoch.

SOCOSLO Distillation and Selective Batch Verification: The verification involves two entities of our system model

(as in Section 3) (i) Distiller (ii) Cold Storage Server (CSS). The cryptographic data structure (CCD) is maintained by

CSS and updated by distillers. Fig. 4b formally describes the distillation and batch verification processes. First, both entities

initialize CCD as empty sets of signatures. SOCOSLO.Distill(.) updates CCD structure by aggregating valid signatures

in CCD𝑉 (Step 2-12). It keeps valid tags according to the granularity parameter 𝜌. Hence, CSS maintains a condensed

tag 𝜎𝐴, set of umbrella signatures CCD𝑈 , and individual invalid signatures CCD𝐼 (Step 17). SOCOSLO.SeBVer(.) is a

selective batch verification routine that can be run in three modes: (i) Mode “V” verify the valid set which consists of one

aggregate signature for all valid entries (ii) Mode “U” checks partial umbrella signatures in case the overall authentication

(mode “V”) is failed. Depending on the application requirements, CCD𝑈 storage overhead can be adjusted according

to the granularity parameter 𝜌. (iii) Mode “I” checks the invalid set by verifying separately each entry. The generic

SOCOSLO.AVer(.) enables both the verifier and CSS to use it in the distillation and verification processes, respectively.

4.3 FIne-grained Public-key OSLO (FIPOSLO)

FIPOSLO employs BPV pre-computation [5] to pre-store a constant size of one-time commitments at the logger. Previous

works [21] have shown that the incurred storage is negligible for low-end IoT. This is important for immediate and

fine-grained verification at the distiller. More importantly, it enables CSS to authenticate log entries individually, thereby

achieving accurate investigation and optimal recovery. We describe our fine-grained variant (FIPOSLO) in Fig. 5.

(𝐼 , sk, PK) ← FIPOSLO.Kg(1𝜅 ,𝑇 ) : Step 1-4 are identical to SOCOSLO.Kg, the rest is as follows:

1: (Γ, 𝑣, 𝑘) ← BPV.Offline(1𝜅 , 𝑝, 𝑞, 𝛼)
2: sk ← (𝑦, 𝑥0 [0], 𝑟0, Γ) ; PK ← 𝑌

3: The system-wide param 𝐼 ← (𝑝,𝑞, 𝛼, 𝑣, 𝑘, 𝐿1, 𝐿2,𝑇 , 𝐷, 𝜌, St : (𝑡 = 1))
4: return (𝐼 , sk, PK)

𝜎𝑙 ← FIPOSLO.Sig(sk, 𝑀𝑡 ) : require 𝑡 ≤ 𝑇

1: 𝑖 ← ⌊ 𝑡
𝐿2
⌋ ; 𝑗 ← 𝑡 mod 𝐿2

2: if 𝑗 = 1 then 𝑥𝐷 [𝑖 ] ← SC(𝑥0 [0], 0, 0, 𝐷, 𝑖)
3: 𝑥𝑡 ← 𝐻0 (𝑥𝐷 [𝑖 ] ∥ 𝑗)
4: (𝑟𝑡 , 𝑅𝑡 ) ← BPV.Online(Γ, 𝑣, 𝑘)
5: 𝑒𝑡 ← 𝐻0 (𝑀𝑡 ∥ 𝑥𝑡 ) mod 𝑞
6: 𝑠𝑡 ← 𝑟𝑡 − 𝑒𝑡 · 𝑦 mod 𝑞
7: if 𝑗 = 𝐿2 then 𝜎𝑙 ← (𝑠𝑡 , 𝑅𝑡 , 𝑥𝑡 ,DS𝑡 ← SSO(𝑥0 [0], 𝑖))
8: else 𝜎𝑙 ← (𝑠𝑡 , 𝑅𝑡 , 𝑥𝑡 )
9: St ← 𝑡 + 1

10: return 𝜎𝑡

𝑏 ← FIPOSLO.AVer(PK,−→𝑀,𝜎) :
1: if |−→𝑀 | = 1 then 𝑒 ← 𝐻 (𝑀 ∥ 𝑥) mod 𝑞, where

−→
𝑀 = 𝑀

2: else execute SOCOSLO.AVer steps 3-8
3: if 𝑅 = 𝑌𝑒 · 𝛼𝑠 mod 𝑝 then return 𝑏 = 1 else return 𝑏 = 0

Fig. 5. FIne-grained Public-key OSLO (FIPOSLO)
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FIPOSLO provides various performance advantages at the distiller side. For instance, it offers an immediate verification

of each message within an epoch by attaching the seed 𝑥 𝑗
𝑖

to the signature as shown in FIPOSLO.Sig(.) (Step 7). Unlike

SOCOSLO, it permits a O(1) public-key storage at the distiller. That is, the signer generates commitment value 𝑅𝑡 via

BPV (Step 4) and includes it in the signature (Step 8). Therefore, by introducing the BPV generator, FIPOSLO eliminates

the initial O(𝐿1) public key storage and enables the highest level of granularity by verifying signatures individually.

The distillation and selective batch verification functionalities are similar to SOCOSLO with minor differences and

therefore are not repeated. Indeed, the verifier aggregate every signature separately. Thereby, the invalid set CCD𝐼 contains

individual signatures (highest granularity) making CSS verify each invalid entry separately. As such, FIPOSLO offer

better verification precision than SOCOSLO, but with slightly slower verification time.

5 SECURITY ANALYSIS

We prove that OSLO schemes are A-EU-CMA signature schemes in Theorem 5.1 (in the random oracle model [13]) and

Lemma 5.1. We ignore terms that are negligible in terms of 𝜅.

THEOREM 5.1. AdvA-EU-CMA
SOCOSLO(𝑝,𝑞,𝛼) (𝑡,𝑇

′,𝑇 ) ≤ AdvDL
𝐺,𝛼
(𝑡 ′), where 𝑡 ′ = 𝑂 (𝑡) +𝑂 (𝑇 · (𝜅3 + 𝑅𝑁𝐺)).

Proof: Let A be a SOCOSLO attacker. We construct a DL-attacker F that uses A as a sub-routine. That is, we set

(𝑏 $← Z∗𝑞, 𝐵 ← 𝛼𝑏 mod 𝑝) as defined in DL-experiment (i.e., Definition 2.2) and then run the simulator F by Definition 3.1

(i.e., A-EU-CMA experiment) as follows:

Algorithm 𝐹 (𝐵)

Setup: F maintains LH , LM, and LS to keep track of query results in the duration of the experiment. LH is a

hash list in form of tuples (𝑀𝑙 , ℎ𝑙 , 𝑘), where 𝑀𝑙 and ℎ𝑙 denote the 𝑙 th data item queried to RO(.) and its corresponding

RO(.) answer, respectively, while 𝑘 ∈ {0, 1} refers to the selected cryptographic hash function 𝐻𝑘 . LH[𝑙, 0, 𝑘] and

LH[𝑙, 1, 𝑘] denote the access to the element 𝑀𝑙 , ℎ𝑙 , respectively via the hash function 𝐻𝑘 . LM is a list of messages, in

which each of its elements LM[𝑖] is a message set
−→
𝑀𝑖 (i.e., the 𝑖 th batch query). LS is a signature list that is used to

record answers given by SOCOSLO.ASig𝑠𝑘 .

• F creates a simulated SOCOSLO public key PK as follows:

a) 𝑌 ← 𝐵 and 𝑥0 [1]
$← {0, 1}𝜅

b) for 𝑙 = 1, . . . ,𝑇 do
i) 𝑅𝑙 ← 𝑌𝑒𝑙 · 𝛼𝑠𝑙 mod 𝑝 where (𝑠𝑙 , 𝑒𝑙 )

$← Z∗𝑞
c) for 𝑖 = 1, . . . , 𝐿1 do

i) 𝑅1,𝐿2
𝑖
← ∏𝐿2

𝑗=1 𝑅 (𝑖−1) ·𝐿1+𝑗 mod 𝑝

d) Set (𝐿1, 𝐿2, 𝜌) as in SOCOSLO.Kg(.).
e) Set PK ← (𝑌,−→𝑅 ), where

−→
𝑅 ← {𝑅1,𝐿2

𝑖
}𝐿1
𝑖=1

f) Set 𝐼 ← (𝑝, 𝑞, 𝛼, 𝐿1, 𝐿2,𝑇 , 𝐷 = log𝐿1) and init 𝑙 ← 0, 𝑖 ← 0

Execute ARO (.),SOCOSLO.ASig𝑠𝑘 (.) (PK):
- Queries: A queries the SOCOSLO.ASig𝑠𝑘 (.) oracle on 𝑇 messages of her choice. It also queries RO(.) oracle on

up to 𝑇 ′ messages of her choice. These queries are handled as follows:

• How to Handle RO(.) Queries: F implements a function H -Sim(𝛿, 𝑘) that works as RO(.) as follows: If ∃𝑙 ′ : 𝛿 ∈
LH [𝑙 ′, 0, 𝑖] then return LH[𝑙 ′, 1, 𝑖]. Otherwise, return ℎ

$← Z∗𝑞 as the answer for 𝐻𝑘 , insert new tuple (𝛿, ℎ) to LH
12
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as (LH [𝑙, 0, 𝑘] ← 𝛿,LH[𝑙, 1, 𝑘] ← ℎ) and then update 𝑙 ← 𝑙 + 1 . That is, cryptographic hash functions 𝐻𝑘=0,1 used

in SOCOSLO are modeled as random oracles.

When A queries RO(.) on a message 𝑀𝑙 , F returns ℎ𝑙 ← H -Sim(𝑀𝑙 , 𝑘) as described above. Any call for

SC or SSO functions invoke 𝐻0 call to traverse OSLOT tree (per Fig. 3) that are all simulated via H -Sim as described.

• How to respond to SOCOSLO.ASig𝑠𝑘 (.) Queries:

- For each batch query
−→
𝑀𝑖 , A queries SOCOSLO.ASig(.) on {𝑀 𝑗

𝑖
}𝐿2
𝑗=1 of her choice. If 𝑖 > 𝐿1 F rejects the query

(i.e., the query limit is exceeded), else F continues as follows:

a) F computes 𝑥𝐷 [𝑖] ← SC(𝑥0 [1], 0, 1, 𝐷, 𝑖).

b) Initialize 𝑠1,0
𝑖
← 0

c) for 𝑗 = 1, . . . , 𝐿2 do
i) F sets 𝑥 𝑗

𝑖
← H -Sim(𝑥𝐷 [𝑖] ∥ 𝑗, 0), if (𝑀 𝑗

𝑖
∥ 𝑥 𝑗

𝑖
) ∈ LH then F aborts, else inserts (𝑀 𝑗

𝑖
∥ 𝑥 𝑗

𝑖
, 0) to LH .

ii) F computes 𝑠1, 𝑗
𝑖
← SOCOSLO.Agg(𝑠1, 𝑗−1

𝑖
, 𝑠

𝑗
𝑖
)

d) F sets 𝜎𝑖 ← ⟨𝑠1,𝐿2𝑖
,DS𝑖 = SSO(𝑥0 [1], 𝑖)⟩, inserts (−→𝑀𝑖 , 𝜎𝑖 ) to (LM,LS) and 𝑖 ← 𝑖 + 1.

- Forgery of A : Eventually, A outputs a forgery on PK as (−→𝑀∗, 𝜎∗), where
−→
𝑀∗ = {

−−→
𝑀∗
𝑖
}
𝑖∈−→𝑖 and 𝜎∗ = (𝑠∗,DS∗). By

definition 3.1,A wins A-EU-CMA experiment for SOCOSLO if SOCOSLO.AVer(PK,
−−→
𝑀∗, 𝜎∗) = 1 and

−−→
𝑀∗ ∉ LM

hold. If these conditions hold, A returns 1, else, returns 0.

- Forgery of F : If A loses in the A-EU-CMA experiment for SOCOSLO, F also loses in the DL experiment, and

therefore F aborts and returns 0. Otherwise, if
−−→
𝑀∗ ∈ LH then F aborts and returns 0 (i.e., A wins the experiment

without querying RO(.) oracle). Otherwise, F continues as follows:

𝑅 ≡ 𝑌𝑒 · 𝛼𝑠 mod 𝑝 holds for the aggregated variables (𝑅, 𝑒, 𝑠). That is, given the indices of corresponding previous

messages
−→
𝑖 , F retrieves (𝑠𝑖 , 𝑟𝑖 ) from (LS,LH), and then computes 𝑒 =

∑
𝑖∈−→𝑖

∑𝐿2
𝑗=1 𝑒 (𝑖−1) ·𝐿1+𝑗 mod 𝑞 and 𝑠 =

SOCOSLO.Agg({𝑠1,𝐿2
𝑖
}
𝑖∈−→𝑖 ). Moreover, SOCOSLO.AVer(PK,

−−→
𝑀∗, 𝜎∗) = 1 holds, and therefore 𝑅 ≡ 𝑌𝑒∗ ·𝛼𝑠∗ mod 𝑝

also holds. Note that A queries F on 𝐿1 batches and 𝑇 messages in total. Hence, F disclosed the root of OSLOT tree,

from which required seeds can be derived. F calls 𝑥𝑖 [𝐷] ← SR(DS∗, 𝑖), ∀𝑖 ∈ −→𝑖 , where SR function invoke SC which

already simulated via H -Sim. It then computes 𝑒∗ =
∑
𝑖∈−→𝑖

∑𝐿2
𝑗=1 H -Sim(𝑀 𝑗∗

𝑖
∥𝑥 𝑗∗

𝑖
, 0) where 𝑥 𝑗

𝑖
← H -Sim(𝑥𝑖 [𝐷] ∥ 𝑗, 0)

. Thus, the following equations hold: 𝑅 ≡ 𝑌𝑒 · 𝛼𝑠 mod 𝑝, 𝑅 ≡ 𝑌𝑒∗ · 𝛼𝑠∗ mod 𝑝,
F then extracts 𝑦′ = 𝑏 by solving the below modular linear equations (note that only unknowns are 𝑦 and 𝑟 ), where

𝑌 = 𝐵 as defined in the public key simulation: 𝑟 ≡ 𝑦′ · 𝑒 + 𝑠 mod 𝑞, 𝑟 ≡ 𝑦′ · 𝑒∗ + 𝑠∗ mod 𝑞
𝐵′ ≡ 𝛼𝑏 mod 𝑝 holds, since A ’s forgery is valid and non-trivial on 𝐵′ = 𝐵. By Def. 2.2, F wins the DL-experiment.

The execution time and probability analysis are as follows:

Execution Time Analysis: In this experiment, the runtime of F is that ofA plus the time it takes to respond RO(.) queries.

• Setup phase: F draws 2𝑇 + 1 random numbers, performs 2𝑇 modular exponentiations and multiplications. Hence,

the total cost of this phase is (2𝑇 ) · O(𝜅3 +𝜅2) + (2𝑇 + 1) ·RNG, where O(𝜅3) and O(𝜅2) denote the cost of modular

exponentiation and modular multiplication, respectively. RNG denotes the cost of drawing a random number.

• Query phase: F draws 𝐿1 · log𝐿1 · RNG to compute the epoch seeds and 𝑇 · RNG to derive one-time random keys.

It also draws 𝑇 · RNG to handle A ’s RO(.) queries. The cost of query phase is bounded as O(𝑇 ) · RNG.

13
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Therefore, the approximate total running time of F is 𝑡 ′ = 𝑂 (𝑡) +𝑂 (𝑇 · (𝜅3 + 𝑅𝑁𝐺)).

Success Probability Analysis: F succeeds if all below events occur.

- E1: F does not abort during the query phase.

- E2: A wins the A-EU-CMA experiment for SOCOSLO.

- E3: F does not abort after A ’s forgery.

- Win: F wins the A-EU-CMA experiment for DL-experiment.

- 𝑃𝑟 [Win] = 𝑃𝑟 [E1] · 𝑃𝑟 [E2 |E1] · 𝑃𝑟 [E3 |E1 ∧ E2]

• The probability that event E1 occurs: During the query phase, F aborts if (𝑀 𝑗
𝑖
| |𝑥 𝑗

𝑖
) ∈ LH , 1 ≤ 𝑖 ≤ 𝐿1, 1 ≤ 𝑗 ≤ 𝐿2

holds, before F inserts (𝑀 𝑗
𝑖
∥ 𝑥 𝑗

𝑖
) into LH . This occurs ifA guesses 𝑥 𝑗

𝑖
(before it is released) and then queries (𝑀 𝑗

𝑖
∥ 𝑥 𝑗

𝑖
)

to RO(.) before querying it to SOCOSLO.ASig(.). The probability that this occurs is 1
2𝜅 , which is negligible in terms of

𝜅. Hence, 𝑃𝑟 [E1] = (1 − 1
2𝜅 ) ≈ 1.

• The probability that event E2 occurs: If F does not abort,A also does not abort since theA ’s simulated view is indis-

tinguishable from A ’s real view (see the indistinguishability analysis). Thus, 𝑃𝑟 [E2 |E1] = AdvA-EU-CMA
SOCOSLO(𝑝,𝑞,𝛼) (𝑡,𝑇

′,𝑇 ).
• The probability that event E3 occurs: F does not abort if the following conditions are satisfied: (i) A wins the

A-EU-CMA experiment for SOCOSLO on a message 𝑀∗ by querying it to RO(.). The probability that A wins without

querying 𝑀∗ to RO(.) is as difficult as a random guess. (ii) After F extracts 𝑦′ = 𝑏 by solving modular linear equations,

the probability that 𝑌 ′ . 𝛼𝑦
′
mod 𝑝 is negligible in terms 𝜅, since (𝑌 = 𝐵) ∈ PK and SOCOSLO.AVer(PK, 𝑀∗, 𝜎∗) = 1.

Hence, 𝑃𝑟 [E3 |E1 ∧ E2] = AdvA-EU-CMA
SOCOSLO(𝑝,𝑞,𝛼) (𝑡,𝑇

′,𝑇 ). Omitting the terms that are negligible in terms of 𝜅, the upper

bound on A-EU-CMA-advantage of SOCOSLO is as follows:

AdvA-EU-CMASOCOSLO(𝑝,𝑞,𝛼) (𝑡,𝑇
′,𝑇 ) ≤ AdvDL𝐺,𝛼 (𝑡

′),

Indistinguishability Argument: The real-view of
−→
𝐴 real is comprised of the public key PK , parameters 𝐼 , the answers of

SOCOSLO.ASig𝑠𝑘 (.) (recorded in LS by F ) and the answer of RO(.) (recorded in LH by F ). All these values are

generated by SOCOSLO algorithms as in the real system, where 𝑠𝑘 = (𝑥0 [1], 𝑟0, 𝑦) serves as the initial randomness. The

joint probability distribution of
−→
𝐴 real is random uniform as that of sk.

The simulated view of A is as
−→
𝐴 sim, and it is equivalent to

−→
𝐴 real except that in the simulation, values (𝑠𝑙 , 𝑒𝑙 ) for

𝑙 = 1, . . . ,𝑇 are randomly selected from Z∗𝑞 . This then dictates the selection of 𝑅𝑙 for 𝑙 = 1, . . . ,𝑇 as random via

the public key simulation (step c)-ii). Note that the joint probability distribution of these variables is also random

uniformly distributed and is identical to the original signature and hash outputs (since 𝐻0,1 is modeled as RO(.) via

H -Sim). SOCOSLO.Distill(.) and SOCOSLO.SeBVer(, ) use SOCOSLO.Agg(.) and SOCOSLO.AVer(.), which

are invoked in the signature simulation and forgery/extraction phases. Since CCD only contains the values produced in the

simulation,
−→
𝐴 sim for SOCOSLO.Distill(.) and SOCOSLO.SeBVer(.) are indistinguishable from that of

−→
𝐴 real . □

LEMMA 5.1. FIPOSLO is as secure as SOCOSLO.

Proof: In the sketch proof, we first show that FIPOSLO public key and signature simulations produce random uniformly

distributed values as in SOCOSLO. We then show that the forgery and extraction phases in A-EU-CMA experiment for

both variants are identical. Finally, we provide an indistinguishability argument for the A-EU-CMA for FIPOSLO.

• Public Key Simulation: FIPOSLO.Kg(.) Step 1-4 are identical to that of SOCOSLO, except commitment value 𝑅 are

generated via BPV generator. Therefore, F runs the public key simulation as in SOCOSLO, expect
−→
𝑅 is not pre-stored as

a part of the public key. All {𝑠𝑙 , 𝑅𝑙 , 𝑒𝑙 }𝑇𝑙=1 values are as in SOCOSLO simulation.
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• Signature Simulation: F sets (𝜎𝑙 = ⟨𝑠𝑙 , 𝑅𝑙 , 𝑥𝑙 ⟩), where (𝑠𝑙 , 𝑅𝑙 ) are as defined above, and (𝑒𝑙 , 𝑥𝑙 ) are obtained through

RO(.) as in SOCOSLO via H -Sim function. FIPOSLO.Sig(.) queries are individual, and therefore 𝜎𝑙 is not aggregated

via SOCOSLO.Agg(.). The abort conditions in both SOCOSLO and FIPOSLO are the same.

• Forgery and Extraction: SOCOSLO and FIPOSLO verifications are identical except for the first step, which identifies

if the signature is on a single or batch of messages. If the forgery is an aggregate signature on a batch message,

FIPOSLO.AVer(.) verifies it by performing aggregation as in SOCOSLO.AVer(.). Hence, the forgery and extraction

are identical, wherein A might return a batch or individual forgery (𝜎∗, 𝑀∗). F retrieves (𝑠, 𝑅, 𝑒) from LS since 𝑅

components are the part of signatures but not PK (unlike SOCOSLO).

• Indistinguishability Argument:
−→
𝐴 real of FIPOSLO is as in SOCOSLO except that {𝑅}𝑇

𝑙=1 (generated via BPV) are not

part of PK but in individual signatures {𝜎𝑙 = (⟨𝑠𝑙 , 𝑅𝑙 ,DS𝑙 ⟩}𝑇𝑙=1. The joint probability distribution of the values in
−→
𝐴 real are

random uniformly distributed as all derived from sk (as in SOCOSLO). Remark that each 𝑅𝑙 is also random uniform

because the distribution of BPV output 𝑟𝑙 is statistically close to the uniform random distribution with an appropriate choice

of parameters (𝑣, 𝑘) [5].
−→
𝐴 sim is identical to

−→
𝐴 real since public key and signature simulations produce random uniformly

distributed values with equal size to
−→
𝐴 real . As in SOCOSLO, FIPOSLO.Distill(.) and FIPOSLO.SeBVer(.) call

FIPOSLO.Agg(.) and FIPOSLO.AVer(.), in which CCD values are produced by FIPOSLO.Sig(.) and H -Sim. □

6 PERFORMANCE ANALYSIS

In this section, we give a detailed performance comparison of OSLO schemes with that of their counterparts.

6.1 Evaluation Metrics and Experimental Setup

Evaluation Metrics: We compare OSLO schemes and their counterparts in terms of (i) logger’s energy usage, (ii)

private/public key sizes and signature size, (iii) batch verification time and cryptographic cloud storage,

We select our main counterparts such that they reflect the performance of primary families of aggregate signatures

(ASs) (i) Factorization-based: C-RSA [29] is a AS scheme with a near-optimal signature verification. (ii) ECDLP-based:

SchnorrQ [6] is one of the fastest EC-based signature (compared to ECDSA/Ed25519 [3]) with a high-performance on

embedded devices. FI-BAF [30] is a signer-optimal FAS scheme, which is our closest logger-efficient. (iii) Pairing-based:

BLS [4] is a multi-user AS scheme that relies on bilinear maps. It is the most compact-storage alternative. Also, we

observe BLS is the most deployed signature in recent AS schemes with extended properties (e.g., [16, 26]) in the IoT

networks, thereby inheriting similar efficiency advantage of OSLO over BLS.

Parameter Selection: We set the security parameter as 𝜅 = 128. We used FourQ curve [6] and set |𝑞 | = 256 for the

EC-based schemes. The BPV parameters are (𝑣, 𝑘) = (1024, 16). The composite modulo size in C-RSA is |𝑛 | = 2048.

Hardware/Software Configuration: We fully implemented OSLO, for the signer and verifier sides, on a desktop equipped

with an Intel i9-9900K@3.6 GHz processor and 64 GB of RAM. On the logger, we implemented OSLO on a low-end

device, AVR ATMega 2560 microcontroller, due to its low energy consumption and extensive use in practice. It is equipped

with 256KB flash memory, 8KB SRAM, and 4KB EEPROM, with a clock frequency of 16MHz. Our comparisons are

based on the following software libraries: (i) MIRACL3 for C-RSA [29] and BLS [4]. (ii) FourQlib4 for the EC-based

schemes (i.e., SchnorrQ [6], FI-BAF [30], and OSLO schemes). (iii) We used OpenSSL5 to implement the cryptographic

hash functions 𝐻𝑖=0,1 via SHA-256. We open source our implementation for public testing purposes (see Section 1.2).
3https://github.com/miracl/MIRACL
4https://github.com/microsoft/FourQlib
5https://github.com/openssl/openssl
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6.2 Performance Evaluation and Comparison

In this section, we give a performance comparison of OSLO with its counterparts analytically and experimentally.

6.2.1 Analytical Performance Comparison. We present an analytical performance analysis of our schemes with their

counterparts. In Table 2, we give the overhead of the main signature functions at the signer and distiller sides w.r.t our eval-

uation metrics. It also provides the distillation cost w.r.t the failure rate. In Table 3, we provide an analytical comparison

for the CSS cost w.r.t the cryptographic storage and the batch verification. We highlight takeaways from our analysis below.

• Seed Management Overhead Analysis: One of OSLO’s contributions is the seed management (see Section 4.1) that

enable both near-optimal signer efficiency and O(1) storage at the CSS and distiller. The amortized seed management

overhead of OSLO signing algorithms across𝑇 messages is on average one hash call based on the derivation and disclosure

of seeds by SC and SSO algorithms, respectively. The resulting average amortized cost is ( log𝐿1 · (4+log𝐿1)4𝐿2 · 𝐻 ), which

corresponds to less than a single hash call, and therefore we conservatively accept it as 𝐻 in our performance analysis.

The average seed storage is O( log𝐿1
𝐿2
) at CSS. At the end of last epoch, the signer disclosed the OSLOT root, with

which the CSS can verify any prior log entry-signature pair with O(1) final storage.

Table 2. Private/public key and signature sizes, and signature generation/verification costs of OSLO and its counterparts

Scheme Logger (Signer) Verifier
Sig Gen Private Key Sig Size Public Key Sig Ver (×𝐿) Distill & Agg (×𝜏𝑆 · 𝐿)

SchnorrQ [6] 2𝐻 +𝐴𝑑𝑑𝑞 +𝑀𝑢𝑙𝑞 + 𝐸𝑀𝑢𝑙 |𝑞 | 2 |𝑞 | |𝑞 | 𝐻 + 1.3 · 𝐸𝑀𝑢𝑙 N/A
FI-BAF [30] 3𝐻 + 2𝐴𝑑𝑑𝑞 +𝑀𝑢𝑙𝑞 2 · ( |𝑞 | + 𝜅) |𝑞 | + 𝜅 2𝐿 · ( |𝑞 | + 𝜅) 2 · (𝐻 +𝐴𝑑𝑑𝑞 ) + 2.3 · 𝐸𝑀𝑢𝑙 𝐴𝑑𝑑𝑞

C-RSA [29] 𝐻 + 𝐸𝑥𝑝 |𝑑 ||𝑛 | 2 |𝑛 | |𝑛 | 2 |𝑛 | 𝐻 + 𝐸𝑥𝑝 |𝑒 ||𝑛 | 𝑀𝑢𝑙𝑛

BLS [4] 𝑀𝑡𝑃 + 𝐸𝑀𝑢𝑙 ′ |𝑞 | |𝑞 | 2 |𝑞 | 𝑀𝑡𝑃 + 𝑃𝑟 𝑀𝑢𝑙𝑞

SOCOSLO 3𝐻 + 2𝐴𝑑𝑑𝑞 +𝑀𝑢𝑙𝑞 |𝑞 | + 2𝜅 |𝑞 | 𝐿1 · |𝑞 | 3𝐻 +𝐴𝑑𝑑𝑞 + 1.3 · 𝐸𝑀𝑢𝑙/𝐿2 𝐴𝑑𝑑𝑞 + 𝐸𝐴𝑑𝑑/𝐿2
FIPOSLO

3𝐻 +𝐴𝑑𝑑𝑞 +𝑀𝑢𝑙𝑞
+𝑘 · (𝐴𝑑𝑑𝑞 + 𝐸𝐴𝑑𝑑) 2 · 𝑣 · |𝑞 | + 𝜅 2 |𝑞 | + 𝜅 |𝑞 | 𝐻 + 1.3 · 𝐸𝑀𝑢𝑙 𝐴𝑑𝑑𝑞 + 𝐸𝐴𝑑𝑑

𝐴𝑑𝑑𝑞 and 𝑀𝑢𝑙𝑞 denote modular addition and multiplication, respectively, with modulus 𝑞. 𝐸𝑀𝑢𝑙 , 𝐸𝑀𝑢𝑙′ are EC scalar multiplication on FourQ and pairing-based curves,

respectively. We used double-point scalar multiplication (e.g., 1.3𝐸𝑀𝑢𝑙 instead of 2𝐸𝑀𝑢𝑙 for FourQ). 𝑃𝑟 is a pairing operation. 𝐸𝑥𝑝 |𝑥 ||𝑦 | denotes modular exponentiation with

exponent 𝑥 and modulus 𝑦. 𝐿 denotes the batch size of signatures.

Table 3. Storage and computation costs of OSLO variants and its counterparts at the cold storage side

Scheme

Cold Storage Server (CSS)
Cold Cryptographic Data (CCD)

Verification Valid Time Umbrella Verification SignaturesValid Storage Invalid Storage
Pub Key Sig Pub Key

SchnorrQ [6] |𝑞 | 2 · 𝜏𝑆 ·𝑇 · |𝑞 | |𝑞 | 𝜏𝑆 ·𝑇 · (𝐻 + 1.3 · 𝐸𝑀𝑢𝑙) 𝜏𝑆 ·𝑇 · (𝐻 + 1.3 · 𝐸𝑀𝑢𝑙)
FI-BAF [30] 2 · 𝜏𝑆 ·𝑇 · ( |𝑞 | + 𝜅) |𝑞 | + 𝜅 2 · 𝜏𝐹 ·𝑇 · ( |𝑞 | + 𝜅) 𝜏𝑆 ·𝑇 · (2𝐻 + 2𝐴𝑑𝑑𝑞 + 1.3 · 𝐸𝑀𝑢𝑙 ′) + 1.3 · 𝐸𝑀𝑢𝑙 ′ 𝜏𝑆 ·𝑇 · (2𝐻 + 2𝐴𝑑𝑑𝑞 + 1.3 · 𝐸𝑀𝑢𝑙 ′) + 1

𝜌
· 𝐸𝑀𝑢𝑙 ′

C-RSA [29] 2 |𝑛 | |𝑛 | 2 |𝑛 | 𝜏𝑆 ·𝑇 · (𝐻 +𝑀𝑢𝑙𝑛) + 𝐸𝑥𝑝 |𝑒 ||𝑛 | 𝜏𝑆 ·𝑇 · (𝐻 +𝑀𝑢𝑙𝑛) + 1
𝜌
· 𝐸𝑥𝑝 |𝑒 ||𝑛 |

BLS [4] 2 |𝑞 | |𝑞 | 2 |𝑞 | 𝜏𝑆 ·𝑇 · (𝑀𝑡𝑃 +𝑀𝑢𝑙𝑞 ) + 𝑃𝑟 𝜏𝑆 ·𝑇 · (𝑀𝑡𝑃 +𝑀𝑢𝑙𝑞 ) + 1
𝜌
· 𝑃𝑟

SOCOSLO 2 |𝑞 | |𝑞 | 𝜏𝐹 · 𝐿1 · |𝑞 | 𝜏𝑆 ·𝑇 · (3𝐻 +𝐴𝑑𝑑𝑞 ) + 1.3 · 𝐸𝑀𝑢𝑙
𝜏𝑆 ·𝑇 · (3𝐻 +𝐴𝑑𝑑𝑞 ) + 1.3

𝜌
· 𝐸𝑀𝑢𝑙

FIPOSLO |𝑞 | 2 |𝑞 | |𝑞 | 𝜏𝑆 ·𝑇 · (3𝐻 +𝐴𝑑𝑑𝑞 ) + 1.3
𝜌
· 𝐸𝑀𝑢𝑙

𝜏𝐹 and 𝜏𝑆 denote, respectively, the valid and invalid rates. The signature size in the invalid set and the verification invalid time are as in in table 2 multiplied by 𝜏𝐹 ·𝑇 .

Table 4. Bandwidth overhead and signature generation time of OSLO variants and its counterparts at the signer side
````````Scheme

Epoch size Analyticl complexity Cryptographic payload (KB) Signing (in sec)
16 32 64 128 256 (per item)

SchnorrQ [6] 2 · 𝐿2 · |𝑞 | 1 2 4 8 16 0.27
FI-BAF [30] |𝑞 | + 𝜅 0.05 0.05 0.05 0.05 0.05 0.01
C-RSA [29] |𝑛 | 0.25 0.25 0.25 0.25 0.25 83.26

BLS [4] |𝑞 | 0.03 0.03 0.03 0.03 0.03 4.08

SOCOSLO |𝑞 | + 𝜅 0.05 0.05 0.05 0.05 0.05 0.01
FIPOSLO 2 · 𝐿2 · |𝑞 | 1 2 4 8 16 0.09
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• Logger (signer): Table 2 show that the SOCOSLO signature generation only requires 3 hash calls (in average), two

and one modular additions and multiplication, respectively. This makes it as lightweight as its most signer efficient

counterpart FI-BAF, but with vastly superior performance at CSS. SOCOSLO is significantly more logger efficient than

all other alternatives in terms of runtime, with a highly compact signature and small key sizes. FIPOSLO is the second

most signer efficient alternative requiring constant number (e.g., 16) of 𝐸𝐴𝑑𝑑 operations. It relies on a pre-computed

BPV table, which increases its private key size in exchange for better signing efficiency. Note that the use of BPV can

be avoided by accepting single 𝐸𝑀𝑢𝑙 , which makes FIPOSLO signing cost equal to that of SchnorrQ. We remind that

FIPOSLO accepts extra signing/verification cost over SOCOSLO in exchange for finer granularity.

• Verifier/CSS: Table 3 shows the overall performance of OSLO schemes and their counterparts at the server side. The

aggregate signatures offer batch ver. for all valid entries (i.e., the success rate 𝜏𝑆 = 1) and umbrella signatures. The batch

ver. of all valid entries requires only one 𝐸𝑀𝑢𝑙 , while umbrella signatures are based on granularity parameter 𝜌 . In terms

of storage, the final public key and aggregate tag sizes of OSLO schemes are as efficient as the most compact alternative

BLS, but with a faster runtime since they do not require expensive pairing (𝑃𝑟 ) and map-to-point (𝑀𝑡𝑃) operations.

6.2.2 Experimental Evaluation. In Table 1 (see Section 1), we outlined the experimental performance of

OSLO schemes and their counterparts at a high level. We now provide details on the signing energy efficiency at the

logger side. Then, we outline the computational/storage performance at the cold storage (i.e., CSS).

• Logger: Figure 7 showcases the energy usage of OSLO schemes and their counterparts compared to that of sensors

typically found in IoT devices. Specifically, we compared the energy usage of a single signature generation with that of

sampling via pulse6 and pressure7 sensors (10𝑠 per sampling time with 1𝑚𝑠𝑒𝑐 reading time).

SOCOSLO and FIPOSLO have remarkably low energy usage with 0.88% and 7.38%, respectively, compared to that

of the pulse sensor. For SOCOSLO, this translates into 4.5× and 9× lower energy usage than the most efficient standard

SchnorrQ and verifier compact BLS, respectively. SOCOSLO is equally energy efficient to FI-BAF, but with substantial

gains on the cold storage to be further discussed below. FIPOSLO is the second most energy-efficient alternative, while

offering a fine granularity and higher verification efficiency.

Traffic Variation and Bandwidth Usage: Table 1 depicts the signer cryptographic payload, by enabling full aggregation

(per epoch). The signer-efficient variant, SOCOSLO, has equal and lesser bandwidth overhead compared to the short

signature scheme BLS and the most signer-efficient counterpart FI-BAF, respectively. SOCOSLO is the most suitable

during a low-frequency upload since it has a lightweight signature generation with a compact signature size. For a

high-frequency upload and/or more available battery lifetime, FIPOSLO offer higher precision by uploading individual

signatures to a nearby edge cloud, to be verified and distilled separately. Table 4 depicts the variation of the signer’s

cryptographic payload under different epoch sizes. Recall that the epoch size represents the number of individual

tags to be aggregated. That is, the low-end devices can increase the epoch size when low bandwidth is observed.

FIPOSLO have equal cryptographic payload compared to SchnorrQ, while having 3× faster signature generation time.

Similarly, SOCOSLO have equal bandwidth overhead compared to the most signer-efficient counterpart FI-BAF but with

constant and flexible storage at the distiller and CSS sides. SOCOSLO is considered the best scheme to offer both low

bandwidth overhead and fast signature generation on the signer side.

One can adopt the sign-aggregate-forward approach in a hop-by-hop setting, wherein each IoT device signs a set of log

entries, aggregates the individual signatures, and forward the resulting tag to the next IoT device. Another possible design
6https://pulsesensor.com/
7https://cdn-shop.adafruit.com/datasheets/1900_BMP183.pdf
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Fig. 6. Comparison of OSLO schemes and their counterparts at the cold storage side
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Fig. 7. Energy consumption of OSLO schemes and their counterparts at the logger side

is to employ a clustering approach [9] wherein the IoT devices elect a cluster leader to communicate the authenticated log

entries to the distiller. The leader adjusts the cryptographic payload based on the network conditions. For instance, for a

set of 210 loggers and 28 of epoch size, the bandwidth overhead for a maximum compression across multiple signers is

16.03KB, which is 3× and 171× smaller than single-signer aggregate and non-aggregate approaches, respectively.

• Distiller: The distiller storage overhead is more cumbersome than the cold storage server, especially when the

hardware is not a resourceful device (e.g., hotspot). The latter receives sets of authentication tags, from a large number of

IoT devices, to be verified and aggregated following a pre-determined policy. Thus, the authentication mechanism must

have a low-cost verification algorithm and a flexible aggregation capability. By introducing the granularity parameter 𝜌 ,

the distiller can adjust the tag sizes depending on its resource capabilities and/or the network conditions.

• CSS: Fig. 6 shows the verification time and the storage overhead for different sizes of log entry set (each entry is 32

bytes) and failure rates 𝜏𝐹 . Recall that 𝜏𝐹 denotes the ratio of entries with “invalid” verification. As discussed in Sec. 3, in

the vast majority of real-world applications, the “invalid” logs (flagged events) are expected to be only a small fraction of

the entire log. Therefore, it is preferable to not compress invalid tags, so that they can be attested individually.

In the case of full signature aggregation (i.e., 𝜏𝐹 = 0), we refer the reader to Table 1 that summarizes the verification

time and storage advantages of our schemes. In Fig. 6, we further investigate the efficiency of compared schemes for

varying failure (𝜏𝐹 ) and granularity (𝜌) rates. Specifically, we vary 𝜏𝐹 = 0, 1, 5% to observe verification time and storage

overhead in Fig. 6-([a],[b],[c]) and Fig. 6-([d],[e],[f]), respectively. We increase the size of log entries from 64 GB (231

entries) to 2 TB (236 entries). We eliminated the counterparts, having linear server storage (i.e., SchnorrQ and FI-BAF)

from the storage graphs. In our experiments, for large log sizes, we processed them in small batches and included repeated
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disk I/O time in our results. We experimented with 𝜌 from 10−7% to 1%. We observed that 𝜌 has a minimal impact on

performance in these margins, and further increase mainly impacts storage with only a slight increase in verification time.

Disk I/O and Cold Storage Cost: Considering a large IoT network where several low-end IoT devices are offloading

their authenticated log entries to a remote edge cloud, and ultimately to the cold storage server (CSS). The overall storage

at both the edge clouds and CSS become exponentially large and costly. Recall that log files are infrequently accessed

data, and therefore it is preferred to store them at cold line solution (e.g., Google cloud solutions 8), which is relatively

low-priced (i.e., $49.15/year for each Terabyte). However, we argue that OSLO is able to offer the best trade-off between

low-cost compact server storage, low disk I/O, and fast verification. According to Table 1, SOCOSLO’s cryptographic

storage overhead is only 0.10KB for 1TB of log entries, whereas it is 3.3TB for the most signer-efficient counterpart

FI-BAF. Thus, SOCOSLO have lower disk I/O time and cheaper storage cost since both metrics are directly proportional

to the storage overhead. Additionally, OSLO optimizes the disk memory access time by only loading the overall aggregate

tag to verify the set of log files. In case the verification is failed, the partially condensed signatures are loaded to locate the

invalid log file. The storage cost at the distiller side is more expensive than that of the cold storage server. As the distiller

represents the medium between low-end devices and CSS, its stored data is frequently accessed since it receives the

authenticated log entries, and distill them after performing the verification. Afterward, it offloads the log files along with

the associated cryptographic payload upon finishing a pre-defined set of epochs. This fits the standard storage for data

stored within only brief periods of time. Based on the Google cloud solution, the storage cost of one Terabyte is equal to

$245.76/year. Similarly, the disk I/O becomes a key metric since the distiller is frequently accessing the stored data.

OSLO schemes prove excellent verification performance for both runtime and storage. They outperform all of their

counterparts in both metrics for varying failure rates. For instance, OSLO schemes are significantly faster than their most

storage-efficient alternative BLS and much more compact than their fastest counterpart C-RSA with significant speed

superiority. Therefore, OSLO schemes are the most efficient alternatives for secure logging in IoT-StaaS applications.

7 CONCLUSION

In this work, we created a new series of aggregate signatures, called OSLO, for secure logging in resource-constrained

IoT networks. To the best of our knowledge, OSLO offer the best trade-off between security guarantees and compu-

tational/storage efficiency. OSLO embeds a new seed management design via tree-based structure and post-signature

disclosure of one-time commitments in EC-based schemes. This enables a compact public key and signature with

significant speedup gains for both signing and verification, compared to the state-of-the-art. To avoid losing verification

granularity, we introduce an adjustable parameter to keep additional condensed tags after the distillation. This allows

more flexibility for verifiers to control the verification precision and the cryptographic data stored on the cold storage

servers. We presented an extensive performance analysis with state-of-the-art on both commodity hardware and low-end

IoTs. Our experiments show that OSLO represents the best secure logging candidate for numerous recent works in the IoT

domain. We formally proved that OSLO is secure and our implementation is open-source for public testing and adaptation.
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