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Abstract—Federated learning enables the collaborative learn-
ing of a global model on diverse data, preserving data locality
and eliminating the need to transfer user data to a central server.
However, data privacy remains vulnerable, as attacks can target
user training data by exploiting the updates sent by users during
each learning iteration. Secure aggregation protocols are designed
to mask/encrypt user updates and enable a central server to
aggregate the masked information. MicroSecAgg (PoPETS 2024)
proposes a single server secure aggregation protocol that aims to
mitigate the high communication complexity of the existing ap-
proaches by enabling a one-time setup of the secret to be re-used
in multiple training iterations. In this paper, we identify a security
flaw in the MicroSecAgg that undermines its privacy guarantees.
We detail the security flaw and our attack, demonstrating how an
adversary can exploit predictable masking values to compromise
user privacy. Our findings highlight the critical need for enhanced
security measures in secure aggregation protocols, particularly
the implementation of dynamic and unpredictable masking
strategies. We propose potential countermeasures to mitigate
these vulnerabilities and ensure robust privacy protection in the
secure aggregation frameworks.

Index Terms—secure aggregation, federated learning, deep
learning, data privacy, inference attack

I. INTRODUCTION

Federated Learning (FL) enables collaborative learning of
a shared model between distributed parties while keeping the
data local, mitigating data privacy and collection challenges
common in traditional centralized learning. In large-scale FL,
clients with limited computational resources, such as mobile
devices, can contribute to training a global model with the
assistance of a central server. In each iteration, the central
server collects the local model updates from clients, trains the
global model using the client’s local data, aggregates them,
and refines them. However, recent attacks have demonstrated
that deploying a plain FL paradigm is insufficient to protect
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the privacy of the participating users’ data [1], [2]], [3]. More
specifically, these attacks can undermine the confidentiality of
the training data by only having access to the user updates.

To mitigate these risks, secure aggregation protocol has been
proposed [4]]. One prominent approach is FastSecAgg [5]. It
utilizes multi-party computation (MPC) techniques to securely
aggregate user updates. Another common scheme is masking-
based [6], [7], [8], where random masking terms are added
to user updates and finally cancel out during aggregation to
prevent disclosure of individual information. Despite these
security advancements, the communication and computational
complexity of traditional secure aggregation methods remains
a significant challenge, particularly when applied to large-
scale FL settings or models such as large language models
(LLMs) [9] with many participating users. In response to
this, Guo et al. introduced MicroSecAgg (MicroSecAgg)[10],
which improves upon existing methods by employing a one-
time setup phase that distributes the necessary secret material
for multiple iterations, reducing the overhead caused by con-
tinually refreshing the masking terms [4], [7].

Motivation and Contributions: This paper specifically eval-
uates the MicroSecAgg protocol and identifies a critical
vulnerability that compromises its effectiveness. While Mi-
croSecAgg introduces significant efficiency improvements, we
have discovered that its handling of secret material during
the aggregation phase leaves it vulnerable to privacy attacks.
In particular, an adversary capable of intercepting masked
updates can compute differences between user updates, which
can be exploited to infer private training data [1], [2]. Such
a vulnerability is particularly concerning for applications in-
volving sensitive data, such as healthcare or finance, where
data privacy is paramount.



To address this flaw in MicroSecAgg, we propose several
improvements that strengthen the protocol’s security while
maintaining its efficiency. Specifically, we redesign how secret
material is generated and shared to ensure that the masking
process remains robust, even in the face of sophisticated in-
ference attacks. We introduce a dynamic masking mechanism
that generates unique masks for each iteration, combining
a constant shared key with a dynamic component (e.g., a
random value or iteration number). This ensures that masked
updates remain secure across multiple iterations, preventing
adversaries from inferring private data by comparing updates.
Furthermore, we propose optimizations to the aggregation
phase, which enhance both the security and efficiency of
MicroSecAgg without introducing significant communication
or computational overhead.

In summary, our contributions are as follows:

o« We identify a fundamental vulnerability in the Mi-
croSecAgg protocol that exposes user data to privacy
breaches.

e We present an attack that exploits this vulnerability,
demonstrating how an adversary can compromise the
privacy of individual users’ training data.

« We propose improvements to the MicroSecAgg protocol
that enhance its security and efficiency by introducing
more robust handling of secret material during the aggre-
gation phase.

Through this work, we aim to advance the state of the art
in privacy-preserving technologies for federated learning and
provide stronger defenses against emerging privacy threats.

II. PRELIMINARY
A. Notions and Cryptographic Primitives

We use [n] to represent the set {1,...,n}. Users are denoted
by ¢ and Server is denoted by S. The number of users in a
list U is represented by ||, while the set of online users is
represented by O. Vectors are denoted by x;, where ¢ indexes
individual vectors of User ¢. A pseudorandom function PRF :
{0,1}* — r is defined where r has the same dimension as the
user update vectors x;.

MicroSecAgg employs Shamir’s t-out-of-n secret shar-
ing [L1], as defined below, to deal with offline users.

Definition 1 (Shamir Secret Sharing). Shamir Secret Sharing
allows a secret s to be split into n shares such that any subset
of t shares can reconstruct the secret, while fewer than t shares
reveal nothing.
o SS.share(s,n,t) — {s1,...,8n}: On the input of a
secret s, the number of desired shares n, and a threshold
t, it splits the secret s into n shares with a threshold t
Sor reconstruction and returns the n shares {s1,...,5,}.
e SS.recon({si,...,S:},t) = s: On the input of at least t
shares, {s1,...,S:}, and the threshold t, it reconstructs
and return the secret s.

Definition 2 (Authenticated Encryption). Symmetric authenti-
cated encryption (AE) scheme ensures that messages between

honest parties cannot be extracted or tampered with by an
adversary. The AE scheme is assumed to satisfy IND-CCA2
security, which includes:

e AE.gen(1") — k: On the input of the security parameter
K, it returns a symmetric key k.

e AE.enc(m,k) — c¢: On the input of the plaintext m
and the key k, it encrypts the message and returns the
ciphertext c.

e AE.dec(c, k) — m: On the input of the ciphertext ¢ and
the key k, it decrypts ciphertext and return the plaintext
message m.

Definition 3 (Decisional Diffie-Hellman (DDH) Assumption).
Given p = 2q + 1, a generator g of 7, and random values
a,b,c chosen from Z,, the distributions (g%, g%, g%°) and
(g%, 9", g°) are computationally indistinguishable.

Definition 4 (Diffie-Hellman (DH) Key Exchange). Diffie-
Hellman key exchange allows two parties to agree securely
on a shared secret over a public channel.

e KA.setup(k) — (G',9,q,H): On the input of security
parameter &, it initializes a group G’ of order q with
generator g and a cryptographically secure hash function
H.

e KA.gen(G',g,q,H) — (x,9%): On the input of group
G’ of order q with generator g and a cryptographically
secure hash function H, it generates and returns a pair

of keys, i.e., a secret key x and corresponding public key

g°.

o Kh.agree(xy, g™ ) — Sy = H((¢"*)*): On the input

of a secret key x,, of party u and the public key g** of

party v, it computes and returns the shared secret s, ,

between two parties u and v.

B. Security Definitions

In this section, we briefly introduce the definitions of secure
aggregation protocol in MicroSecAgg [10].

Definition 5 (Aggregation Protocol). An aggregation protocol
II(U, S, K), with a set of users U, a server S, and parameters
K, consists of two phases: the Setup phase and the Aggrega-
tion phase.

o Setup phase: This phase runs once at the beginning of
the protocol execution.

o Aggregation phase: This phase runs for K iterations. At
the beginning of each iteration k € [K]|, each user i € U
holds an input z¥. At the end of each iteration k, the
server S computes and outputs the aggregated value:

wk:E {Ef

icU
Definition 6 (Correctness with Dropouts). Suppose the total
number of users is |U| = n, the aggregation protocol 11 is said
to ensure correctness with a dropout rate ¢ if, for each iteration
1 < k < K and for any set of offline users offline, C U
such that |offliney| < dn, the server S correctly outputs

the aggregated value wy = ), o, at the end of iteration



k. This holds as long as all users and the server follow the
protocol, with the exception that users in offline,, may drop
offline during iteration k.

III. MICROSECAGG

To protect the privacy of a user’s update w;, traditional
secure aggregation methods based on multi-party computation
(MPC) (e.g., [4]]) require each user P; to generate a masking
value h; to obscure their update during aggregation. The mask
is constructed so that when all masked updates are aggregated,
the sum of the masks cancels out, i.e., Zie[n] h; = 0. To
achieve this, each pair of users P; and P; need to negotiate
pair-wise masks for each iteration - ensuring that the masks
cancel out when both users participate in the aggregation.
Since these masks cannot be reused, users must renegotiate
and generate new masks for each aggregation iteration.

However, traditional methods [4], [7] suffer from certain
drawbacks, requiring users to renegotiate and generate new
masks for each aggregation iteration. This increases both the
communication and computation complexity of such proto-
cols. This process involves exchanging information about the
freshly generated masks with several others (either all users
in [4] or a subset in [7]), resulting in communication costs
growing significantly as the number of users grows.

MicroSecAgg addresses these limitations with a two-phase
secure aggregation protocol, eliminating the need for agreeing
on fresh masks at each iteration [10]. It introduces reusable
masks generated during an initial one-time phase. These masks
are then applied consistently across subsequent iterations.
Specifically, MicroSecAgg operates in two distinct phases: the
setup phase and the aggregation phase.

The setup phase, consisting of 3 to 5 rounds (depending
on the instantiation), is executed only once when the protocol
is initiated. During this phase, the server and users generate
and exchange their public and private keys. The users then
employ a secret sharing scheme (i.e., Shamir’s Secret Sharing)
to create shares of their private inputs and generate masks
from these secrets. These masks subsequently obscure the local
gradients during the aggregation phase. Users apply the pre-
generated masks to their local updates during the aggregation
phase, ensuring that individual inputs remain private. Users
then send their masked updates to a central server, which
aggregates them to compute a global model while preserving
the confidentiality of the user data.

They present three instantiations of MicroSecAgg, namely,
MicroSecAggpr,, MicroSecAgg,pr, and MicroSecAggcr,
each designed with different properties, enabling flexibility
and adaptability in various applications. MicroSecAggpr, is
the basic version, implementing the core concepts of the two-
phase protocol with reusable masks. MicroSecAgg,p;, and
MicroSecAggy, build on the user grouping strategy proposed
by Bell et al. [7]. In these instantiations, users are divided into
groups, and each group runs the MicroSecAggp, protocol in
parallel with the aggregation server. This grouping strategy
reduces communication overhead, as users only interact with
a subset of peers while the server aggregates the results by

each group. Additionally, MicroSecAggc, is optimized for
scenarios with larger participant numbers and input sizes, such
as update vectors of length 100 bits. It uses class groups of
unknown order, allowing the server to efficiently compute
discrete logarithms in the subgroup to recover the sum of
updates. In contrast, MicroSecAggpr, and MicroSecAgg,pr,
handle smaller input domains (up to 20-bit).

In the following, we introduce the detailed design of their
two-phase secure aggregation protocol. In the following, we
review MicroSecAggpr, remarking that other instantiations
follow the same main design principles with minor variations.
Notably, the vulnerability and attack we discuss later on
apply to all instantiations of their protocol. Figure [I] shows
an overview MicroSecAgg protocol workflow. Detailed algo-
rithms are listed in Algorithm [T] and [2]

A. Setup Phase

Algorithm |I| outlines the setup phase in MicroSecAgg,
which is executed once to initialize the protocol’s keys and
configure all entities involved. This phase establishes the
cryptographic foundations and sets up the secure aggregation
process. Specifically, in Round 1, MicroSecAgg employs a
public key infrastructure (PKI) to generate two pairs of private
and public keys for all users and the server, which are used for
both signature and encryption. In Round 2, a Diffie-Hellman
key exchange enables users to establish shared keys (denoted
ek; ;) between users ¢ and j. Each user then generates a
random secret r;, which is used to create a mask for the aggre-
gation phase. To handle cases where a subset of clients drop
out or become unresponsive, MicroSecAgg employs Shamir’s
secret sharing scheme. This allows users to divide their secret
r; into multiple shares (r; ;), ensuring that the original secret
can be reconstructed only when a sufficient number of shares
are combined. This approach not only recovers the secrets
of offline users but also enhances privacy by preventing any
individual participant from possessing the entire secret. In
Round 3, users distribute their secret shares among others,
secured by a CCA2-authenticated encryption scheme using the
shared keys ek; ;. Upon receiving the encrypted shares, users
decrypt and store them for future use.

B. Aggregation Phase

MicroSecAgg organizes its aggregation phase into multiple
rounds of interaction (i.e., multi-iteration) between the users
and the server, allowing for the computation of aggregate
results while preserving the privacy of individual updates.
Algorithm [2| depicts the details of the aggregation phase.
In each iteration, the phase unfolds in three distinct rounds,
allowing the users and the server to securely aggregate updates.

Initially, in Round 1, each user computes its local gradient
update z; and generates a masked update X; by combining
the gradient update with the secret r; created during the Setup
phase. The user then sends the exponential value H(k)X¢ to
the server, which maintains a record of all online users and
their message. In Round 2, the server and the users verify
the set of online users O to ensure that at least ¢ users are
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Fig. 1: High-level overview of MicroSecAgg protocol, i.e., MicroSecAggp, protocol [12].

Algorithm 1 MicroSecAgg Setup

Input: All parties are provided with the security parameter x, the number of users n, a threshold value ¢, a Diffie-Hellman key exchange
scheme (KA.setup,KA.gen,KA.agree), a CCA2-secure authenticated encryption scheme (AE.enc, AE.dec), a Shamir’s secret sharing

scheme (SS.share, SS.recon, SS.exponentRecon).

Every party ¢ holds its only signing key d?% and a list of verification keys df K for all other parties.
Output: Every user i € U either obtains a set of users U; such that |U{;| > ¢ and a share r;; of a secret value r; for each j € U; or aborts.
The server either outputs a set of users /g such that [Us| > t or aborts.

Round 1: Encryption Key Exchange

1: Bach user i € U generates a pair of encryption keys (sk;, pk;) < KA.gen(pp), then signs pk; with d7™ and sends (pk;, ;) to the
g p yp y g g

server, where o; denotes the signature.

2: Server S: On receiving (pk;, o;) from user j, the server verifies the signature o; with df K If the signature verification fails, it
ignores the message from user j. Otherwise, it adds j to a user list Us. If |Us| < t after processing all messages from users, the server
aborts. Otherwise, the server sends all public keys and signatures it receives from users j € Us to each user in Us.

Round 2: Mask Sharing

1: Each user ¢: On receiving (pk;,o;) for a user j € U from the server, each user ¢ verifies the signatures o; with df K1t aborts if any
signature verification fails as that indicates the server is corrupt. Otherwise, it inserts j into a user list I} and stores
ek; ; = KA.agree(pk;, sk;). It then aborts if || < ¢ after processing all received messages. Otherwise, user i uniformly randomly
chooses r;, and calculates the secret shares of r; by r; ; € SS,share(ri,L{il, t). Then it encrypts each share r; ; by
ci,j < AE.enc(ry,j, ek;,;) and sends all encrypted shares {c;,;} ;<1 to the server.

2: Server S: If it receives messages from less than ¢ users, it aborts. Otherwise, it denotes this set of users with Ug. It sends each ci,j to
the corresponding receiver j for each i € Us. Then it outputs the client set Us.

Round 3: User Receiving Shares

1: Each user i: If it receives c; ; for less than ¢ users j from the server, it aborts. Otherwise, it decrypts each encrypted share by
rj; = AE.dec(c;,;, €k;, ;). If the decryption of the share from user j fails, it ignores the encrypted share. Otherwise, it inserts j into a
user set L{f and stores 7; ;. If |L{f| < t after processing all shares, it aborts. Otherwise, it stores r;, the set U; = L{f, and all r;; for

jel/{i.

involved in the Aggregation phase. After that, in Round 3,
each user is asked to provide a sum of secret shares of the
online users (Zjeo r;,:) they store in the Setup phase and
to send the exponential value H(k)2-ic0 " to the server.
The server finally aggregates the masked updates and secret
shares, performs a discrete logarithm to eliminate the masks,
and derives the aggregated result without accessing individual

updates.

IV. MICROSECAGG VULNERABILITY

The reusable masks in MicroSecAgg significantly enhance
aggregation efficiency but introduce a critical vulnerability.
Each user employs the same constant mask to protect client
updates in every iteration. As illustrated in Round 1.2 of
the Aggregation phase (Algorithm [2)), each user uses r; as
their update masks, while r; is generated in Round 2.1 of

the Setup phase (Algorithm [I). These masks r; are kept
constant and are used repeatedly for each iteration during
the Aggregation phase. If an adversary obtains two masked
client updates in two iterations, it can compute the difference
between them. The difference between two gradients will then
leak information about the user’s training data, potentially
compromising privacy [[13], [14].

This differs from other approaches like Flamingo [8]] and
e-SeaFL [6], where although the secret remains unchanged
after the setup phase, the masking terms are dynamically
derived from the secret using a pseudorandom function (PRF)
combined with a seed, such as the iteration number. This
ensures that the masking terms differ across iterations, enhanc-
ing security. In contrast, MicroSecAgg reuses the same secret
throughout the aggregation phase, resulting in constant masks
across iterations. As a result, this introduces a significant



Algorithm 2 MicroSecAgg Aggregation

Input: Every user 4 holds its own signing key d?™ and all users’ verification key df K for j € [n], 74, a list of users U;, and r; ; for every
§ € U; it obtains in the Setup phase. Moreover, it also holds a secret input ¥ for every iteration k. The server S holds all users’ verification
keys, all public parameters it receives in the Setup phase, and a list of users Us which is its output of the Setup phase.

Output: For each iteration k, if there are at least ¢ users being always online during iteration k, then at the end of iteration k, the server S
outputs » . z¥, in which O denotes a set of users of size at least .

Note: For simplicity of exposition, we omit the superscript k of all variables when it can be easily inferred from the context.

1: for Iteration k =1,2,... do
Round 1: Secret Sharing:

2: User i: It calculates X; = x; + 7; and sends H (k)™ to the server.

3: Server S: Denote the set of users it receives messages from with O. If |O] < ¢, abort. Otherwise, it sends O to all users ¢ € O.
Round 2: Online Set Checking (Only needed in Malicious setting):

4: User i: On receiving O from the server, it first checks that O C U; and |O| > ¢, then signs the set O and sends the signature o; to

the server.

5: Server S: If it receives less than ¢ valid signatures on O, abort. Otherwise, it forwards all valid signatures to all users in O.
Round 3: Mask Reconstruction on the Exponent:

6: User i: On receiving signatures from the server, it first verifies the signatures with O and the verification keys of the other users. If
there are less than ¢ valid signatures, abort. Otherwise, it calculates ¢; = H(k:)zjeo 3¢, Tt sends (; to the server.

7: Server S: If it receives (; from less than t users, abort. Otherwise, let O’ denote the set of users i successfully sends (; to the
server. The server reconstructs Ro = SS.exponentRecon({(;,},cor,t) and calculates the discrete log of H(k)>ico Xi/Ro to get
Zz‘eo Li-

8: end for

privacy risk, as an adversary could exploit the constant masks
to infer sensitive user data.

Note that the MicroSecAgg implementation of the protocol
is only for one gradient update [15]]. However, in real world,
machine learning models often include at least thousands of
gradient elements. Based on practicality and our engineering
experience, each gradient element requires a corresponding
mask, indicating the mask length must match the length of the
gradient update. To achieve it, we consider that MicroSecAgg
would generate a new secret for each coordinate of the gradient
in the Setup phase and then use it as corresponding mask
elements in the Aggregation phase. In that case, a similar
attack can still be applied and expose user training data from
the difference of two gradients in two iterations.

V. ATTACK ON MICROSECAGG

Attacks on federated learning (FL) systems primarily target
the integrity and confidentiality of these systems, as outlined
in previous work [4], [7], [8]. These include traditional Man-
in-the-Middle (MITM) attacks, as well as more sophisticated
approaches like model inversion attacks, which aim to extract
sensitive information from the model and its updates. In this
paper, we propose a novel attack on MicroSecAgg that com-
bines both traditional MITM techniques and model inversion
methods to compromise the privacy of user training data. In the
following, we present the adversary’s capabilities and outline
the attack steps in detail.

A. Adversary Model

The primary objective of the adversary in our proposed
attack is to undermine the privacy of the user training data.
A large body of research [14f], [16l, [17], [18], [19] has
demonstrated that attackers can infer sensitive information
about user private data by accessing either the user gradients
or their differences (between different iterations).

To launch the attack and compromise the user privacy in Mi-
croSecAgg protocol, the adversary should be able to intercept
and analyze network traffic, capturing the packets exchanged
between the clients and the server during the aggregation
phase. This is feasible given that the communication between
clients and the server in FL systems typically occurs over
public or semi-secure channels, making them vulnerable to
traffic sniffing. We note that MicroSecAgg already accounts
for this type of adversary within its security framework. More-
over, the adversary is equipped with sufficient computational
power to perform operations such as calculating the discrete
logarithm of intercepted messages. Finally, the adversary is
aware of the MicroSecAgg protocol’s structure and has the
ability to reverse-engineer or manipulate the updates to infer
private information about the data used in local training.

B. Attack Steps

The attack progresses through the following steps:

1) Interception of Masked Updates: During the aggre-
gation phase, the adversary first intercepts the masked
updates H (k)™ sent by users over multiple iterations.
For instance, the adversary can get gradient updates of
user ¢ during iterations k; and ko as H(kl)Xfl
H (ko) X:.

2) Computing the Update Differences: Leveraging the
intercepted masked updates, the adversary then calculates
the difference between the updates from the user in two
different iterations. This can be done by solving the dis-
crete logarithm problem on the intercegted messages. ]}?y
calculating the discrete log of H (k)X ' and H (ko)™ ?
the adversary can then get the difference, i.e., X ik"’ -X ikl,
where X represents the local model update of user i at
iteration 1.

and



3) Model Inversion Attack: Using the difference between
updates across iterations, the adversary performs a model
inversion attack, such as gaining private information
via the gradient difference [17], the gradient inversion
attack [16], and the membership inference attack [19].
Typically, this involves inferring information about the
training data by exploiting the relationship between the
model updates and the underlying data distributions. In
particular, the adversary attempts to reconstruct private
training samples or identify membership information of
specific data points.

Note that for MicroSecAgg,pr and MicroSecAggcr, an
additional masking item is included in the user updates,
ie., X; = x; +r; + h;, where h; is derived from secrets
shared within the user group. Similar to r;, h; is generated
during the Setup phase and remains constant throughout the
Aggregation phase. Therefore, our attack remains effective
against MicroSecAgg,pr, and MicroSecAggcr, as the differ-
ence in user gradients can be determined using the two masked
updates across two iterations.

VI. ENHANCED SOLUTIONS

In this section, we propose three enhancements to improve
MicroSecAgg secure aggregation protocols, focusing on attack
mitigation and efficiency improvements.

A. Addressing the Attack Vulnerability

The primary cause of the identified attack is the lack of
dynamic masking for client updates across iterations. Cur-
rently, MicroSecAgg negotiates shared secrets between users
but uses these secrets directly as static masks without the
masks being updated throughout the training process. As a
result, an adversary intercepting traffic can compare updates
from the same client across iterations, potentially extracting
private training data by calculating the difference [17].

To mitigate this, we suggest generating unique masks for
each iteration to safeguard client updates. Drawing on the
approaches in [8], [6], clients can create fresh masks for every
iteration by combining a constant shared key with a dynamic
component, such as a random value known by both parties
or the iteration number. This dynamic masking would prevent
adversaries from inferring private data, even if they obtain
masked updates across different iterations. We note that this
can be enabled by adopting methods such as key-homomorphic
PRF [20]. Another method would be to generate T X |w]
shares, where 7' is the maximum number of iterations and
|w| is the size of the weight vector. However, the latter would
incur significant communication and storage overhead for the
setup phase.

B. Security Improvements

Another potential security threat, in addition to the pro-
posed attack, is the vulnerability to model poisoning attacks,
which have been shown to affect existing FL protocols [21],
[22], [23]. Model poisoning attacks occur when a malicious
adversary intentionally manipulates the local model updates

to skew the global model’s performance, potentially causing
it to misclassify data or behave unpredictably. These attacks,
though not captured by current security models like [10], are
especially concerning in critical applications such as malware
detection [24], cyber threat intelligence [235]], and object de-
tection [26], where even minor disruptions can have severe
consequences.

One major factor enabling these attacks in MicroSecAgg
is the lack of authentication during the transmission of local
updates. Specifically, in the first round of the aggregation
phase (i.e., Secret Sharing), users compute and send their
masked updates to the server without any encryption or au-
thentication. An adversary who intercepts these updates could
tamper with them, altering or falsifying the values without
detection. This could allow a malicious actor to influence the
global model’s training, leading to degraded performance or
targeted misclassifications.

To mitigate this risk, we propose an enhancement whereby
clients sign their masked updates before sending them to the
server. By transmitting both the signature and the masked
update, the system can ensure the integrity and authenticity
of the updates. This measure would prevent adversaries from
tampering with the updates, thereby protecting the system from
model poisoning attacks. Given that MicroSecAgg already
uses a key agreement protocol, this signing process can be
efficiently implemented using symmetric cryptographic tech-
niques such as HMAC [27]], which provides both integrity and
authenticity with minimal computational overhead.

C. Efficiency Improvements

Inspired by [4], [[7], MicroSecAgg [10] addresses the
costly requirement to compute new masking terms at
each iteration by utilizing the homomorphic property of
Shamir’s secret sharing [28]. They proposed three proto-
cols where MicroSecAgg,pr and MicroSecAggcr employ
the grouping method similar to that in Bell et al. [7].
During the online phase (i.e., the Aggregation phase),
the MicroSecAggpr,, MicroSecAgg,p;, and MicroSecAggcr,
protocols incur O(|U|), O(log |U]) and O(log |U|) commu-
nication complexity for users, respectively, where |U| repre-
sents the number of participating users. Particularly, in the
second round of the aggregation phase in MicroSecAggpr,
(i.e., Online Set Checking), each user generates a signature
on the list of participants and sends it to the server, which
distributes it to all users. During the third round, i.e., Mask
Reconstruction, each user receives |U| signatures and verifies
them to ensure |U| > v is met, where v is the threshold for
the underlying secret sharing scheme. This process imposes
O(|U|) communication and computational overhead on each
user, as they must verify all received signatures.

To further reduce the overhead, we propose an enhance-
ment for MicroSecAgg that minimizes the communication
and computation complexity for users in malicious settings.
Instead of each user verifying O(|U|) individual signatures, we
suggest adopting multi-signature schemes [29]], which enable
the server to aggregate all user signatures into a single compact




signature. This modification reduces the complexity for users
to O(1), as they would only need to verify one aggregated
signature rather than multiple individual ones, thereby stream-
lining the verification process and minimizing overhead.

VII. CONCLUSION

The MicroSecAgg protocol is an efficient solution for secure
aggregation in federated learning as it reduces the communica-
tion overhead through reusable masks and a two-phase design.
However, the reuse of static masks introduces a significant
security vulnerability, allowing adversaries to infer private
data by comparing updates across iterations. In this paper,
we discuss the root cause of such a security vulnerability as
well as the practical attack vector. Moreover, we also outline
potential enhanced solutions to mitigate privacy risks and
improve the security and efficiency of MicroSecAgg secure
aggregation protocol, making it more robust for real-world
federated learning applications.
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