
Fast and Post-Quantum Authentication for Real-time
Next Generation Networks with Bloom Filter

Kiarash Sedghighadikolaei
Computer Science and Engineering

University of South Florida
Tampa, FL, USA
kiarashs@usf.edu

Attila A Yavuz
Computer Science and Engineering

University of South Florida
Tampa, FL, USA

attilaayavuz@usf.edu

Abstract—Large-scale next-generation networked systems like
smart grids and vehicular networks facilitate extensive au-
tomation and autonomy through real-time communication of
sensitive messages. Digital signatures are vital for such appli-
cations since they offer scalable broadcast authentication with
non-repudiation. Yet, even conventional secure signatures (e.g.,
ECDSA, RSA) introduce significant cryptographic delays that
can disrupt the safety of such delay-aware systems. With the
rise of quantum computers breaking conventional intractability
problems, these traditional cryptosystems must be replaced with
post-quantum (PQ) secure ones. However, PQ-secure signatures
are significantly costlier than their conventional counterparts,
vastly exacerbating delay hurdles for real-time applications.

We propose a new signature called Time Valid Probabilistic
Data Structure HORS (TVPD-HORS) that achieves significantly
lower end-to-end delay with a tunable PQ-security for real-time
applications. We harness special probabilistic data structures as
an efficient one-way function at the heart of our novelty, thereby
vastly fastening HORS as a primitive for NIST PQ cryptography
standards. TVPD-HORS permits tunable and fast processing for
varying input sizes via One-hash Bloom Filter, excelling in
time valid cases, wherein authentication with shorter security
parameters is used for short-lived yet safety-critical messages.
We show that TVPD-HORS verification is 2.7× and 5× faster
than HORS in high-security and time valid settings, respectively.
TVPD-HORS key generation is also faster, with a similar signing
speed to HORS. Moreover, TVPD-HORS can increase the speed of
HORS variants over a magnitude of time. These features make
TVPD-HORS an ideal primitive to raise high-speed time valid
versions of PQ-safe standards like XMSS and SPHINCS+, paving
the way for real-time authentication of next-generation networks.

Index Terms—Internet of Things; post-quantum security; dig-
ital signature; next-generation networks; Bloom filter

I. INTRODUCTION

The Internet of Things (IoT) and mobile cyber-physical
systems rely on Next-Generation (NextG) networks to enable
large-scale autonomy through real-time communication among
network entities. Smart-grids [23] and the Internet of Vehicles
are some examples in which real-time communication is essen-
tial to maintain the reliability of the application. For instance,
in smart grids, the timely verification of command and control
messages and fast yet accurate analysis of measurements (e.g.,
from smart meters) are vital to avoid cascade failures and
damages [19], [32]. Similarly, vehicular network standards
[1] emphasize the importance of delay awareness for safe
operation for autonomous driving [3], [11].

The trustworthiness of such delay-aware applications re-
quires that security-sensitive real-time communication is au-
thenticated and integrity-protected. Digital signatures permit
scalable broadcast authentication with non-repudiation and
public verifiability and are foundational tools for NextG net-
worked systems. For example, some vehicular communica-
tion standards require broadcasting several digital signatures
per second (e.g., ECDSA [21]) to enable secure vehicular
communication [1]. NISTIR 7628 [32] recommends digital
signatures in smart grids for authentication. However, the
overhead of digital signatures may negatively impact the reli-
ability of delay-aware applications [16]. For instance, ECDSA
introduces a significant end-to-end delay, impacting function-
alities like timely break [38], similar concerns applicable for
potential cascade failures in smart grids with stringent delay
requirements (e.g., a few msecs [32]).

The emergence of quantum computers, capable of breaking
conventional secure signatures based on the discrete logarithm
and integer factorization problems using Shor’s algorithm [35],
necessitates the adoption of post-quantum (PQ) safe alterna-
tives. Despite the selection of three schemes—CRYSTALS-
Dilithium [14], FALCON [15], and SPHINCS+ [7]—for stan-
dardization by NIST in response to this threat [2], [13], current
PQ-safe signatures are significantly more costly than conven-
tional secure ones, exacerbating the risks of cryptographic
delays. For instance, SPHINCS+ is several magnitudes and
a magnitude slower than ECDSA in signing and verifying, re-
spectively. Similarly, Dilithium and Falcon are also much more
computationally costlier than their conventional-secure NIST
standards (and even more compared to their faster variants
such as Ed25519 [6], FourQ [9]). Moreover, as shown in [22],
Falcon-512 requires 117KB, Dilithium requires 113KB, and
SPHINCS+ requires 9KB (excluding its very large signature
being around 31 KB) for both code and stack memory on
ARM Cortex-M4, which represents a significant overhead
for resource-constrained devices. Hence, delay-aware systems
should prioritize post-quantum security solutions that ensure
security for short durations while maintaining computational
and communication efficiency. We further discuss related work
and research challenges in section VI.



A. Our Contribution

We created a new lightweight (one-time) PQ secure sig-
nature called Time Valid Probabilistic Data Structure HORS
(TVPD-HORS) to fill the need for a fast and security-adaptable
digital signature for delay-aware applications. At the core
of our innovation lies harnessing PDS with special features
to attain rapid and tunable OWF, thereby enhancing the
performance of HORS. Specifically, we synergies One-hash
Bloom Filter (OHBF) [27], which requires only a single size-
compatible hash call with a small-constant number of modular
arithmetic, with precise parameter tuning. We enhanced our
scheme by incorporating weak message resilience. We outline
some of TVPD-HORS’s desirable properties below:
• Fast Signature Verification: TVPD-HORS offers 2.7×

and up to 5× faster signature verification for high (up to
128-bit) and time valid security (between 32-64 bit) pa-
rameters, respectively, against HORS with standard-compliant
SHA256/512, and with similar performance advantages if size-
speed optimized Blake family used in time valid cases. These
performance advantages persist against HORS variants with
standard cryptographic hashes, for example, over magnitude
speed differences versus HORSIC [24] and HORSIC+ [25].
• Fast Key Generation with Equal Signing Performance:

TVPD-HORS key generation is 6× and up to 1.3× faster
than that of HORS with SHA256/512 for time valid and high-
security settings, respectively, also being up to 4× faster for
the time valid case against HORS with Blake. The signing
speed and signature size of TVPD-HORS are the same as with
HORS. Therefore, TVPD-HORS offers the lowest end-to-end
delay among its counterparts thanks to its faster verification
and key generation with a similar signing speed.
• A Fast and Tunable PQ-Secure Building Block: One-

time TVPD-HORS outperforms HORS in almost all settings
but especially in time valid cases. Therefore, it is a suitable
candidate to serve as a building block for PQ-secure standards
like XMSS and SPHINCS+ that rely on HORS variants. In
particular, TVPD-HORS is ideal for constructing time valid
versions of these PQ-secure standards to support real-time
applications via one-time to multiple-time transformations.
• Full-fledge Implementation: We fully implemented

TVPD-HORS scheme on a commodity hardware available at:
https://github.com/kiarashsedghigh/tvpdhors

II. PRELIMINARIES AND MODELS

Notations: || and |x| denote concatenation and the bit
length of x, respectively. x

$← S means x is chosen uni-
formly at random from the set S. m ∈ {0, 1}∗ is a finite-
length binary message. {qi}bi=a denotes {qa, qa+1, . . . , qb}.
log x is log2 x. [1, n] denotes all integer values from 1 to n.
f : {0, 1}∗ → {0, 1}κ is an OWF. H : {0, 1}∗ → {0, 1}L
and h : {0, 1}∗ → {0, 1}L′

denote cryptographic and non-
cryptographic hash functions, respectively.

Definition 1 A one-time hash-based digital signature SGN
consists of three algorithms:

- (sk, PK, ISGN )← SGN.Kg(1κ): Given the security pa-
rameter κ, it outputs the private key sk, the public key PK,
and the system-wide parameters ISGN .

- σ ← SGN.Sig(sk,m): Given the private key sk and mes-
sage m, it returns the signature σ.

- b← SGN.Ver(PK,m, σ): Given PK, message m, and its
corresponding signature σ, it returns a bit b, with b = 1
meaning valid, and b = 0 otherwise.

Definition 2 Hash to Obtain Random Subset (HORS) [33] is
a hash-based digital signature consists of three algorithms:
- (sk, PK, IHORS)← HORS.Kg(1κ): Given the security pa-

rameter κ, it selects IHORS ← (t, k, l), generates t random l-
bit strings {si}ti=1, and computes vi ← f(si),∀i = 1, . . . , t.
Finally, it sets sk ← {si}ti=1 and PK ← {vi}ti=1.

- σ ← HORS.Sig(sk,m): Given sk and m, it computes h←
H(m) and splits h into k log t-sized substrings {hj}kj=1 and
interprets them as integers {ij}kj=1. It outputs σ ← {sij}kj=1.

- b← HORS.Ver(PK,m, σ): Given PK, m, and σ, it com-
putes {ij}kj=1 as in HORS.Sig(.). If vij = f(σj),∀j =
1, . . . , k, it returns b = 1, otherwise b = 0.

Definition 3 A Probabilistic Data Structure (PDS) [8] for a
set U comprises at least three algorithms:
- (bv,

−→
h , IPDS)← PDS.Init(1κ): Given the security param-

eter κ, it selects IPDS ← (n, k), creates a zeroed n-bit vector
bv[.] and samples k hash functions

−→
h ← {hi}ki=1. It then

outputs (bv[.],
−→
h , IPDS).

- PDS.Insert(bv,
−→
h , u): Given bv,

−→
h , and u ∈ U , it com-

putes the indices {ij}kj=1 ← f(
−→
h , u) and sets bv[ij ] = 1

∀j = 1, . . . , k. f() is design dependent.
- b ← PDS.Check(bv,

−→
h , u): Given bv,

−→
h , and u, it

computes the indices {ij}kj=1 ← f(
−→
h , u) and checks if

bv[ij ] = 1 ∀j = 1, . . . , k. If so, it returns b = 1, meaning u
was probably inserted before, and b = 0 otherwise.

Definition 4 LetH = {Hi,t,k,L} be a function family indexed
by i, where Hi,t,k,L maps an arbitrary length input to a L-
bit subset of k elements from the set {0, 1, ..., t − 1}. H
is r-subset (RSR) and second-preimage resistant (SPR), if,
for every probabilistic polynomial-time (PPT) adversary A
running in time ≤ T :

InSecRSR
H (T ) = max

A
{Pr[(M1,M2, ...,Mr+1)← A(i, t, k)

s.t. Hi,t,k,L(Mr+1) ⊆
r⋃

j=1

Hi,t,k,L(Mj)]} < negl(t, k)

InSecSPR
H (T ) = max

A
{Pr[x← {0, 1}∗;x′ ← A(x) s.t. x ̸= x′

and Hi,t,k,L(x) = Hi,t,k,L(x
′)} < negl(L)

Definition 5 Let PDS = {PDSi,n,k,L′} be a function family
indexed by i, where PDSi,n,k,L′ has an n-bit vector and k L′-
bit hash functions. PDS is collision-resistant (CR) and one-
way (OW) if, for every PPT A running in time ≤ T :



InSecCR
PDS(T ) = max

A
{Pr[u← A(PDSi,n,k,L′) s.t. u was not

inserted before and PDS.Check(u) = 1]} < negl(n, k, L′)

The CR property denotes the false positive probability.

InSecOW
PDS(T ) = max

A
{Pr[u← A(PDSi,n,k,L′) s.t. u was

inserted before and PDS.Check(u) = 1]} < negl(n, k, L′)

System Model: We assume a broadcast environment [38],
in which the signer sends security-sensitive messages to be
authenticated by verifiers. TVPD-HORS is designed for delay-
aware applications in which timely verification is vital, like
smart grids, wherein several low-end peripheral devices (e.g.,
smart meters) periodically upload their telemetry to a cloud-
supported state monitoring system for immediate authentica-
tion [23]. TVPD-HORS is lightweight and suitable for low-end
devices (e.g., 8-bit microcontrollers). However, we assume the
verifiers can store several public keys (e.g., a cloud server).

We consider time valid delay-aware applications, wherein
the security of some transmitted messages remains critical
only for a specific time interval1(see Section VI). Our scheme
also preserves its performance advantage in high-security
parameters but is especially performant on moderate-level
security, making it ideal for time valid applications.
Threat and Security Model: Our threat model assumes an
adversary A that can monitor all message-signature pairs and
aims to intercept, modify, and forge them. A is quantum com-
puting capable and aims at forgery in a designated time interval
to succeed. The digital signature security model capturing
our threat model follows the Existential Unforgeability under
Chosen Message Attacks (EU -CMA).

Definition 6 The one-time EU -CMA (OEU -CMA) experi-
ment for one-time signature SGN is defined as follows:
- (sk, PK, ISGN) ← SGN.Kg(1κ)
- (m∗, σ∗) ← ASGN.Sigsk(.)(PK, ISGN)
- A wins the experiment with a maximum of one query

allowed if 1 ← SGN.Ver(PK,m∗, σ∗) and m∗ was not
queried to the signing oracle SGN.Sigsk(.).

SuccOEU -CMA
SGN (A) = Pr[ExptOEU -CMA(A) = 1]

InSecOEU -CMA
SGN (T ) = max

A
{SuccOEU -CMA

SGN (A)} < negl(T )

III. PROPOSED SCHEME

We propose TVPD-HORS that synergizes special PDS with
efficient hash functions to enable overall high performance
with significantly faster operations in time valid settings. Re-
call that using standard BF with HORS (e.g., [34]) yields highly
inefficient results due to excessive hash calls to maintain false
positives at par with security parameters. We overcome this
challenge by adapting the One-hash Bloom Filter (OHBF) [27]
that utilizes only one efficient hash operation combined with

1We indicate time valid forgery attacks targeting temporal (real-time)
messages but not the long-term attacks aiming at components like master
certificates in public key infrastructures.

fast modulo operations suitably selected for the target security
levels. Finally, we introduce weak key mitigation [4] into
TVPD-HORS often omitted in its counterparts. We describe
TVPD-HORS in Algorithm 1 and elaborate it as follows:
TVPD-HORS.Kg(.) sets system-wide parameters

ITVPD-HORS, comprising HORS parameters (Definition 2),
OHBF parameters (n, p), and time epoch parameter T∆ for
potential time valid settings (Step 1). Next, a zeroed n-bit
vector bv[.] with p partitions of each of size ni, satisfying
Σni ≥ n and gcd(ni, nj) = 1 for all i, j ∈ [1, p], is
created [27] (done as PDS.Init(n, k = 1)) (Step 2). The
HORS private key is generated (Step 3), and each element si is
inserted, along with its index i, into the bv[.] by setting the bit
of every partition j ∈ [1, p] at index (h(si||i) mod nj) (Step
4). Time synchronization parameters are set if a valid setting
is selected (Step 5). This step is skipped for high-security
levels (e.g., 72-bit to 128-bit security).
TVPD-HORS.Sig(.) resembles the HORS signing. In time-

valid settings, signing occurs only in a given time slice T∆,
while at high-security levels, no such restriction is imposed
(Step 1). To eliminate weak message vulnerability, m is
concatenated with counter Ctr to ensure its hash contains k
distinct log t-sized parts (Steps 2-6). Since only k log t bits of
the hash are used (security reduction from L-bit to k log t-bits),

Algorithm 1 Time Valid Probabilistic Data Structure HORS

(sk, PK, ITVPD-HORS)← TVPD-HORS.Kg(1κ) :

1: Set ITVPD-HORS ← (IHORS, n, p, T∆)
2: Create zeroed bv[.] having p partitions {Pi}pi=1 each of size ni

3: Generate t random l-bit strings {si}ti=1: si
$← {0, 1}l, ∀i ∈ [1, t]

4: Insert si into the bv[.] by setting the bit (h(si||i) mod nj) of
jth partition to 1, ∀i ∈ [1, t] and ∀j ∈ [1, p]

5: if time valid setting then set Ts and Tv to T0 // T∆ depends on
κ and application needs (e.g., ranging from a minute to days).

6: return the private key sk ← {si}ti=1, the public key PK ←
bv[.], and the system-wide parameters ITVPD-HORS

σ ← TVPD-HORS.Sig(sk,m): Ctr ← 0 continue as follows:

1: if κ is high security level or Ts ∈ [T0, T0 + T∆]
2: hash← H(m||Ctr)
3: hash′ ← Trunc(hash, k log t)
4: Split hash′ into k substrings {hash′

j}kj=1 s.t. |hash′
j | = log t

5: Interpret each hash′
j as an integer ij , ∀j ∈ [1, k]

6: if there are p, q ∈ [1, k] s.t. ip = iq and p ̸= q then
Ctr ← Ctr + 1 and goto step 2

7: return σ ← ({sij}kj=1, Ctr)

b← TVPD-HORS.Ver(PK,m, σ) :

1: if κ is not high security level and Tv /∈ [T0, T0 + T∆] then
return b = 0

2: hash← H(m||Ctr)
3: hash′ ← Trunc(hash, k log t)
4: Split hash′ into k substrings {hash′

j}kj=1 s.t. |hash′
j | = log t

5: Interpret each hash′
j as an integer ij , ∀j ∈ [1, k]

6: if ∃ p, q ∈ [1, k] s.t. ip = iq and p ̸= q then return b = 0
7: if all the bit indices (h(s′j ||ij) mod ni) of the ith partition in

the bv[.] are set, ∀j ∈ [1, k], ∀i ∈ [1, p] then return b = 1 else
return b = 0



the hash output is truncated to k log t (Step 3).
TVPD-HORS.Ver(.) first checks if the verification occurs

within its designated time interval (Step 1) in time-valid
settings (skipped for high-security levels). Next, it checks
weak message conditions with the received Ctr by ensuring
hash′ contains k distinct parts (Steps 2-6). Finally, it verifies if
the signature elements (s′j) are valid by checking the existence
of (s′j ||ij) in the bv[.] (done as PDS.Check(.)) (Step 7). If
all the signature elements exist, then the signature is valid.

A. One-time Key Management for Longevity, Storage, and
Scalability

It is necessary to consider the implications of time-bounding
the generation and use of TVPD-HORS public keys while
binding them with long-term secure certificates. We consider
two practical directions when TVPD-HORS is extended from
OTS to a scalable N -time signature: (i) N TVPD-HORS public
keys are derived from a seed [39], masked with a random
pad, and stored on the verifier. During each signing round,
the signer derives the signature and pad, while the verifier un-
masks the public key using the pad, and verification proceeds
as in TVPD-HORS. This method provides long-term protection
via certificates, sustainable signature services, and long-term
security through masking. (ii) Utilizing secure enclaves via
Intel SGX [28] as explored in [30] can eliminate the need
for signers to provide commitments and certificates. This
approach may extend OTSs for multiple signatures and faster
key generation. In this method, the verifier generates the public
key using the master key in a secure enclave and then loads
it into main memory for verification, as in TVPD-HORS.

IV. PERFORMANCE ANALYSIS AND COMPARISON

We first present a comprehensive performance comparison
of TVPD-HORS with HORS for time valid and full-security
settings and then compare TVPD-HORS with other HORS vari-
ants to showcase its potential.

A. Evaluation Metrics and Experimental Setup

We evaluate private/public key and signature sizes, and then
key generation (done offline), signature generation, and verifi-
cation times for all compared schemes. We implemented com-
pared schemes on a desktop with an Intel i9-11900K@3.5GHz
processor and 64GB of RAM. We used (i) LibTomCrypt2 to
implement SHA2(256/512), (ii) Blake23, and (iii) CityHash4

and xxHash35 as non-cryptographic hash functions.

B. Parameter Selection

Selecting parameters for a specific security level involves
considering: (1) the hash function for message hashing, (2)
k log t bits of the hash output, (3) HORS signature security
k(log t − log k), (4) OHBF hash collision security, and (5)
OHBF false positive probability. Grover’s algorithm [18] can

2https://github.com/libtom/libtomcrypt
3https://github.com/BLAKE2/
4https://github.com/google/cityhash
5https://xxhash.com/

reverse a black-box function with input size N in O(
√
N)

steps and O(log2 N) qubits. We use this model to evaluate
the security of our hash function for message signing and the
OHBF hash function. Thus, a hash function with L-bit output
provides L

2 bits of security against quantum adversaries.
Based on [27], the false positive probability (fpp) of OHBF is

calculated as follows, where k denotes the number of parti-
tions, n the number of elements inserted, and mi the size of
the ith partition:

fpp =

1− k

√√√√ k∏
i=1

e
− n

mi

k

(1)

To adapt this to our signature, we replaced n with t, renamed
k to p, and mi to ni to avoid parameter conflicts. We used
Algorithm 1 from [27] to determine the partition size ni, with
a Python3 implementation available in our repository 6. Using
the algorithm, partition sizes are derived by specifying the total
OHBF size in bits, the number of partitions, and the number of
elements. Once partitions are set, the false positive probability
can be calculated as given above.

Regarding parameter selection, for instance, to achieve 32-
bit security, by selecting t = 64 and k = 16 as in TABLE
I, the SHA2-256 hash function provides 256

2 -bit security, but
only k log t = 96 bits are covered by HORS, reducing the hash
security to 48 bits. The HORS security is k(log t− log k) = 32
bits. Using xxHash3-64 as the OHBF hash function provides
32-bit security. Therefore, the minimum security guarantee is
32 bits, which also requires OHBF’s false positive probability
to be 32-bit. Using Algorithm 1 from [27], we experimentally,
with different sizes and numbers of partitions, obtained p = 8
with a 995-byte OHBF and p = 6 with a 1915-byte OHBF. We
selected the first setting to keep public keys smaller, although
the second option may be preferred if storage is less of a
concern. The parameters yield the following partition sizes in
bits, which are further used to insert the keys:

Partitions = [971, 977, 983, 991, 997, 1009, 1013, 1019]

Note that TVPD-HORS includes a built-in partition calcu-
lator implemented in C; the Python3 script is provided for
demonstration purposes only. The complete parameter list can
be found at our code repository 7.

C. Efficiency Evaluation and Comparison

Our comparison spans various security levels, ranging from
32-bit to 64-bit for time valid applications and 72-bit to 128-
bit for non-time-valid applications (medium/high-security).
Security levels are adjusted based on the underlying primi-
tives and their parameters (e.g., SHA2-256/512, CityHash-256,
xxHash3-64, p in the OHBF, etc.)

In Tables Ia-Ib, we compare TVPD-HORS with HORS when
various hash functions are used as f() or h(), for varying
security levels in time valid (κ=32, 48, and 64) and high-
security (κ=72, 96, and 128) settings. We first instantiated

6https://github.com/kiarashsedghigh/tvpdhors/blob/main/misc/ohbf.py
7https://github.com/kiarashsedghigh/tvpdhors/blob/main/misc/Parameters.png



TABLE I: Performance comparison of TVPD-HORS and HORS

(a) TVPD-HORS vs HORS (f(): SHA2 family)

Scheme (t, k, l, p) PK
(KB)

Kg
(µs)

Ver
(µs) κ

HORS
TVPD-HORS

(64, 16, 32, 8) 2
0.971

12.08
1.99

3.11
0.66 32

HORS
TVPD-HORS

(64, 32, 32, 8) 2
0.971

13.14
1.96

6.32
1.28 32

HORS
TVPD-HORS

(128, 16, 48, 17) 4
1.87

24.99
10.45

3.15
0.709 48

HORS
TVPD-HORS

(256, 16, 64, 28) 8
3.93

48.08
30.84

3.13
0.647 64

HORS
TVPD-HORS

(128, 32, 64, 28) 4
1.95

24.03
16.23

6.19
1.3 64

HORS
TVPD-HORS

(512, 16, 72, 36) 16
7.9

98.37
87.96

3.17
1.12 72

HORS
TVPD-HORS

(256, 32, 96, 38) 8
5.44

46.89
45.81

6.01
2.19 96

HORS
TVPD-HORS

(512, 32, 128, 28) 16
40.73

94.35
72.48

6.01
2.29 128

HORS
TVPD-HORS

(256, 64, 128, 30) 8
17.58

47.26
37.66

11.83
4.37 128

In all settings, f() of HORS was SHA2-256 and h() of TVPD-HORS was xxHash3-64
for 32-bit, xxHash3-128 for (48,64)-bit and CityHash-256 for (72,128)-bit levels.

(b) TVPD-HORS vs HORS (f(): Blake2 family)

Scheme (t, k, l, p) PK
(KB)

Kg
(µs)

Ver
(µs) κ

HORS
TVPD-HORS

(64, 16, 32, 8) 1
0.971

8.51
1.99

1.85
0.66 32

HORS
TVPD-HORS

(64, 32, 32, 8) 1
0.971

7.92
1.96

3.69
1.28 32

HORS
TVPD-HORS

(128, 16, 48, 17) 2
1.87

15.17
10.45

1.81
0.709 48

HORS
TVPD-HORS

(256, 16, 64, 28) 4
3.93

29.55
30.84

1.85
0.647 64

HORS
TVPD-HORS

(128, 32, 64, 28) 2
1.95

15.28
16.23

3.65
1.3 64

HORS
TVPD-HORS

(512, 16, 72, 30) 10
6.28

58.02
76.5

1.91
1.14 72

HORS
TVPD-HORS

(256, 32, 96, 32) 8
6.34

29.02
40.09

3.68
2.22 96

HORS
TVPD-HORS

(512, 32, 128, 28) 16
40.73

71.52
72.48

4.65
2.29 128

HORS
TVPD-HORS

(256, 64, 128, 30) 8
17.58

36.22
37.66

9.12
4.37 128

f() of HORS was Blake2s-128 for (32-64)-bit, Blake2s-160 for 72-bit, and Blake2b-256
for (96-128)-bit. h() of TVPD-HORS was xxHash3-64 for 32-bit, xxHash3-128 for 48 and
64-bit and CityHash-256 for (72,128)-bit levels.

We used SHA-256 for H() in all cases except 128-bit security level with SHA-512. Message size is 256 Bytes in all cases. The private key size is t·l for both schemes, but it
can also be extracted from a constant-size seed. The PK column for TVPD-HORS shows the size of the OHBF (parameter n). The signature size is k ·l plus log |Ctr| variable
(negligible) for both schemes. The signing time is also the same since all signing functionalities are identical.

HORS with SHA2-256 to show its performance with NIST
compliance and then with the Blake family to offer a speed-
optimized time valid comparison against TVPD-HORS. We
used the xxHash3 and the CityHash families as h() for
TVPD-HORS. We outline our findings as follows:

(i) The verification of TVPD-HORS is 3-5× and 2.7×
faster than HORS with standard-compliant SHA-256 (TA-
BLE Ia) in time valid and high-security parameters, re-
spectively. TVPD-HORS is also 2.8× and 2× faster than
HORS with speed-size optimized Blake variants in time valid
and high-security parameters, respectively (TABLE Ib). (ii)
TVPD-HORS key generation shows 1.5-6× improvement for
time valid settings and up to 1.3× for high-security levels
with standard-compliant SHA-256 (TABLE Ia). Moreover,
TVPD-HORS is 4.2× faster for 32-bit and 48-bit security
levels with comparable performance for other levels with
Blake (TABLE Ib). (iii) The PK size of TVPD-HORS is
smaller than that of HORS for all security levels except 128-bit,
for which we opted for a larger key for faster key generation.
Thanks to OHBF, TVPD-HORS permits a more flexible PK
size trade-off, and we can choose smaller public key sizes
with slower key generation (it is offline). (iv) The signing
performance is the same for both schemes.

Tables IIa-IIb offer a comprehensive performance compar-
ison of TVPD-HORS with other prominent HORS variants
analytically (asymptotic) and experimentally (estimated with
f() as SHA-256 for κ = 32, 64, 128), respectively: (i) The
signature verification of HORSE, HORS++, and TV-HORS
resembles that of HORS. However, HORST requires authen-
tication of each private key element si using a Merkle tree,
making its verification more expensive than others. In HOR-
SIC and HORSIC+, parameters z and w impact the signature
verification, respectively. With the provided configurations,

TVPD-HORS exhibits a 3-32× improvement in time valid
settings and a 1.5-24× improvement in high-security levels.
(ii) While HORSE and HORS++ have similar key generation
as HORS, HORST needs a Merkle tree on top of private
key elements si to derive the public key, doubling the cost.
In HORSIC and HORSIC+, the parameter w significantly
impacts key generation. Opting for small w with minimal
impact on HORSIC and HORSIC+, TVPD-HORS still de-
livers a 6-13× improvement for time valid settings and 1.2-
3× improvement at the 128-bit security level. (iii) HORST,
HORSE, HORS++, and TV-HORS exhibit similar signature
generation as HORS, while HORSIC and HORSIC+ have
costlier signing. All variants consider weak message mitigation
with an extra cost explained in TABLE IIa. (iv) Compared
to Shafieinejad et al. [34] who used standard bloom filter as
OWF, TVPD-HORS shows 20-28× faster key generation and
14-50× faster signature verification in time-valid settings and
4× and 9×, respectively, in 128-bit setting.

In summary, some notable takeaways are: (i) The verifi-
cation speed of TVPD-HORS surpasses that of HORS with
high-security, and with a significantly growing performance
advantage in time valid settings. (ii) The key generation of
TVPD-HORS is faster than HORS in all levels with standard-
compliant hash and remains comparable or slightly lesser in
size-adjusted speed-optimized hashes for HORS. Note that key
generation is mostly done offline, and we can provide size-
speed trade-offs to fasten key generation. (iii) The signing
performance of TVPD-HORS is the same as that of HORS. (iv)
The performance superiority of TVPD-HORS over HORS also
remains valid if not grown in various HORS variants. In com-
parison to NIST’s PQ-secure standards for a 128-bit security
level, signature verification with TVPD-HORS is 103× faster
than SPHINCS+, 15× faster than Dilithium, and 8× faster



TABLE II: Performance comparison of TVPD-HORS and HORS variants
(a) Analytical (asymptotic) comparison results

Scheme sk Size PK Size Signature Size Key Generation Signature Generation Signature Verification

HORS (t, k, l) [33] t·l t·|f ()| k ·l+log |Ctr| t·f () k ·O(1)+µ·H() H()+k ·f ()
HORST (t, k, l) [7] t·l+(t− 1)·|f ()| |f ()| (k + log t)·|f ()|+log |Ctr| (2t− 1)·f () k ·O(1)+µ·H() H()+k(log t+1)·f ()

HORSE (t, k, l, d) [29] t·l+t·(d− 1)·|f ()| t·|f ()| k ·l+log |Ctr| t·d·f () k ·O(1)+µ·H() H()+k ·f ()
HORS++ (t, k, l) [31] t·l t·|f ()| k ·l+log |Ctr| t·f () k ·O(1)+µ·H() H()+k ·f ()

HORSIC (t, k, l, z, w) [24] t·(l+w·|f ()|) t·|f ()| k ·|f ()|+log |Ctr| w·t·f () k ·w·f ()+µ·H()+G()+Ck,z() H()+(z + 2)·f ()+G()+Ck,z()

HORSIC+ (n, t, k, l, z, w) [25] w·l+t·(l+w·|f ()|) (1 + w + t)·|f ()| k ·|f ()|+log |Ctr| w·t·f () k ·w·f ()+µ·H()+G()+Ck,z() H()+k ·w·f ()+G()+Ck,z()

Shafieinejad et al. (t, k, l, n,m) [34] t·l m k ·l+log |Ctr| t·n·h() k ·O(1)+µ·H() H()+k ·n·h()
TV-HORS (t, k, l, T∆, Tϕ) [36] ⌈Tϕ

T∆
⌉·(l+t·|f ()|) (l+t·|f ()|)+O(1) k ·|f ()|+l+log |Ctr|+O(1) ⌈Tϕ

T∆
⌉·t·f () k ·O(1)+µ·H() H()+k ·f ()+O(1)

TVPD-HORS (t, k, l, n, p) t·l
∑p

i=1 ni k ·l + log |Ctr| t·(h()+p·O(1)) k ·O(1)+µ·H() H()+k ·(h()+p·O(1))

The memory complexity of the private key is the memory expansion caused by deriving the private keys from a constant-sized master key. The average value of the message-
dependent µ is tk

t(t−1)...(t−k)
. Hash function G() and the bijective function Ck,z() are specific to HORSIC and HORSIC+. Although HORS variants are different in their design

when used as a one-time signature, their parameters may be ineffective, such as d set to 1 in HORSE, and hence, they perform like HORS.

(b) Experimental performance comparison results (f(): SHA2-256, h(): xxHash3-(64,128)/CityHash-256)

Scheme sk Size (KB) PK Size (KB) Sig Size (KB) Key Gen (µs) Sig Gen (µs) Sig Ver (µs)
κ = 32 κ = 64 κ = 128 κ = 32 κ = 64 κ = 128 κ = 32 κ = 64 κ = 128 κ = 32 κ = 64 κ = 128 κ = 32 κ = 64 κ = 128 κ = 32 κ = 64 κ = 128

HORS (t, k, l) [33] 0.25 1 4 2 4 8 0.06 0.25 1 12.08 24.03 47.26 890.9 893.18 901.02 3.41 6.49 12.13

HORST (t, k, l) [7] 2.21 4.96 11.96 0.31 0.68 1.21 2.25 25.82 51.53 101.83 891.12 893.98 901.42 23.17 52.03 115.08

HORSE (t, k, l, d) [29] 0.25 1 4 2 4 8 0.06 0.25 1 12.05 23.87 48.89 890.97 893.34 900.88 3.28 6.35 11.85

HORS++ (t, k, l) [31] 0.25 1 4 2 4 8 0.06 0.25 1 11.92 24.44 47.78 891.21 893.76 901.76 3.45 6.50 12.32

HORSIC (t, k, l, z, w) [24] 4.25 9 20 2 4 8 0.34 0.56 1 26.03 51.73 102.03 895.97 899.19 904.25 3.14 4.74 7.27

HORSIC+ (n, t, k, l, z, w) [25] 4.257 9.015 20.03 2 4 16 0.17 0.28 1 26.15 52.12 103.66 898.54 899.97 904.49 5.01 7.42 12.51

Shafieinejad et al. (t, k, l, n,m) [34] 0.25 1 4 0.968 1.97 17.57 0.06 0.25 1 56.32 345.6 168.95 891.59 893.61 901.42 14.12 86.5 42.23

TV-HORS (t, k, l, T∆, Tϕ) [36] 2.003 4.007 8.015 2.015 4.019 20.03 0.515 1.015 2.015 12.23 23.89 47.15 891.33 893.24 901.18 3.79 6.81 12.41

TVPD-HORS (t, k, l, n, p) 0.25 1 4 0.97 1.95 17.58 0.06 0.25 1 1.96 16.23 37.66 891.33 893.42 901.54 0.96 1.6 4.67

Message size is 256 Bytes. For HORS, HORST, HORSE, HORS++, and TV-HORS, the parameters (t, k, l) have been set to (64, 16, 32) for κ = 32, (128, 32, 64) for κ = 64,
and (256, 64, 128) for κ = 128. The parameter d of HORSE and the ratio ⌈

Tϕ
T∆

⌉ of TV-HORS have been set to 1 as we are using them as one-time signature. For HORSIC the
parameters (t, k, l, z, w) have been set to (64, 11, 32, 12, 2) for κ = 32, (128, 19, 64, 20, 2) for κ = 64, and (256, 32, 128, 33, 2) for κ = 128. For HORSIC+ with n = 256
the parameters (t, k, l, z, w) have been set to (64, 11, 32, 12, 2) for κ = 32, (128, 18, 64, 19, 2) for κ = 64, and (256, 32, 128, 33, 2) for κ = 128. For Shafieinejad et al.
[34], the parameters (t, k, l, n,m) where n and m denote the number of hashes and size of the Bloom Filter, respectively, have been set to (64, 16, 32, 8, 0.96KB) for κ = 32,
(128, 32, 64, 27, 1.97KB) for κ = 64 and (256, 64, 128, 30, 17.57KB) for κ = 128. Moreover, xxHash3-64 was used for κ = 32, xxHash3-128 for κ = 64 and CityHash256
for κ = 128. For TVPD-HORS, the parameters of (t, k, l, n, p) have been set to (64, 16, 32, 8) for κ = 32, (128, 32, 64, 28) for κ = 64, and (256, 64, 128, 30) for κ = 128.

than Falcon. Additionally, as shown in [22], for code and
stack, Falcon-512 requires 117KB, Dilithium 113KB, and
SPHINCS+ 9KB of storage on ARM Cortex-M4, making them
impractical for resource-constrained devices. (v) End-to-end
speed advantage, especially due to faster verification, makes
TVPD-HORS suitable for real-time applications, and its per-
formance with other HORS variants demonstrate its potential
for advancing multiple-time signatures such as XMSS and
SPHINCS+ in time valid settings.

V. SECURITY ANALYSIS

Theorem 1 TVPD-HORS is OEU -CMA secure if H() is r-
subset-resilient and second-preimage resistant, and OHBF is
collision resistant and one-way:

InSecOEU -CMA
TVPD-HORS (T ) = InSecRSR

H (T ) + InSecSPR
H (T )+

InSecCR
OHBF(T ) + InSecOW

OHBF(T ) < negl(t, k, n, p, L, L′)

Proof: Given valid message-signature pair (m,σ), there are
the below cases leading to a forgery:
- A breaks r-subset-resilient of H: A finds m∗ such that
H(m∗) has the same k distinct elements as H(m) but
H(m∗) ̸= H(m). The success probability of A is (kt )

k,
which denotes that after k elements determined by H(m),
the k elements of H(m∗) are a subset of them and is
negligible for appropriate values of k and t. Depending on

m, H(m) may lack k distinct elements, which are called
weak messages. They increase the forgery probability as A
may require fewer si elements from the sk, which might be
found in the current signature σ. To ensure H(m) possesses
k distinct elements, we employ the incremental variable Ctr
in concatenation with the message, generating the desired
hash as shown in Steps 2-6 of TVPD-HORS.Sig(.).

- A breaks the second-preimage resistance of H: A can find
m∗ such that H(m) = H(m∗) and output valid (m∗, σ). As
H is anf L-bit cryptographic hash function, the probability
of finding such collision is 1

2
L
2

. In addition, the selection of
parameters k and t impacts the security of H . As in HORS,
the condition k log t = L must hold. If k log t < L, then
the success probability of A increases from 1

2
L
2

to 1

2
k log t

2

.

Therefore, the success probability of A is max( 1

2
L
2
, 1

2
k log t

2

).
In TVPD-HORS, to ensure k log t = L, we truncate the mes-
sage’s hash to the size k log t using the Trunc(.) function.

- A finds collision on OHBF: A generates σ∗ ← {ri}ki=1,
where ri is a random value, on m∗, such that when the veri-
fier checks the existence of signature elements as {rj ||ij}kj=1

(where ij is derived as Step 5 in TVPD-HORS.Ver(.)),
it outputs 1, indicating that the signature is valid. That
is, A tries to find ri such that when concatenated with
their index from the truncated value of H(m∗||Ctr), step
7 of TVPD-HORS.Ver(·) returns 1. Given OHBF as the



underlying PDS with p partitions {Pi}pi=1 each of size
ni, the collision probability (false positive probability) of

inserting N items is (1− p

√
Πp

i=1e
− N

ni )−p [27]. Moreover,
as h() is an L′-bit hash function, the collision probability
based on the Birthday paradox is 1

2
L′
2

. Hence, the advantage

of A is max( 1

2
L′
2

, (1− p

√
Πp

i=1e
− t

ni )p) given N = t.

- A inverts OHBF: Given bv[.], A recovers the secret key
elements {si}ti=1 inserted into the bv[.] as {si||i}ti=1 during
TVPD-HORS.Kg(.) (with sk, A can forge signature on any
message). Let Hashes = {

⋂p

i=1
{x s.t. bv[x mod ni] =

1,∀i ∈ [1, p]}} as the set of all possible h()’s output x who
caused the bits bv[.] to be set. Given that OHBF is using L′-
bit h() and based on the Birthday paradox, the probability
of finding t distinct si such that {si||i} hashes to a value
in Hashes is 1

2
L′
2

. Therefore, the success probability of

recovering the whole secret key will be ( 1

2
L′
2

)t. However,
A does not need the entire secret key but only k elements
of it such that {sj ||ij}kj=1 (where ij is derived as Step 5 in
TVPD-HORS.Ver(.)) hashes to a value in Hashes. There-
fore, the probability is ( 1

2
L′
2

)k. This case closely resembles
the previous case where OHBF is not collision-resistant as A
can distinguish the new si from the actual secret key element
with advantage of 1

2
L′
2

. Overall, we conclude:

InSecOEU -CMA
TVPD-HORS (T ) = max(

1

2
L
2

,
1

2
k log t

2

) + (
k

t
)k + (

1

2
L′
2

)k+

max(
1

2
L′
2

, (1− p

√
Πp

i=1e
− t

ni )p) < negl(t, k, L, L′, n, p)

VI. RELATED WORK AND RESEARCH CHALLENGES
TO BE ADDRESSED

Standard signatures based on Elliptic Curve Cryptography
(ECC) [6], [21] are mentioned in smart-grid [32], 5G, and
vehicular standards [1] with an expressed need for faster al-
ternatives. Various high-speed signatures proposed (e.g., [38]),
but they mostly rely on conventional intractability assumptions
(e.g., (EC) Discrete Log Problem, factorization), which can be
broken by quantum computers [35].

NIST Post-Quantum Cryptography (NIST-PQC) standard
[10], which includes lattice-based (e.g., Dilithium [14]) and
hash-based (HB) (SPHINCS+ [7]) alternatives, offer quantum-
safe signatures. Despite their merits, these general-purpose
signatures are not suitable for delay-aware applications since
they are costlier than their conventional-secure counterparts. In
particular, HB standards (XMSS [20], SPHINCS+ [7]) offer
high PQ-security without relying on any number-theoretical
assumption making them preferable for security-critical ap-
plications. Yet, they introduce high signing and verification
overhead. Hence, creating delay-aware HB signatures is a
valuable research direction, and we aim to do so by enhancing
their underlying building blocks and enabling tunable security
and performance trade-offs.

Quest for Efficient One-way Functions (OWF) for Faster
HB Signatures: One of the most efficient HB one-time sig-
nature schemes is Hash-to-Obtain Random Subset (HORS)

[33], known for its computational efficiency, also serving
as the building block for XMSS and SPHINCS+. Several
HORS variants are proposed (e.g., [25], [26], [29], [31], [36])
relying on various chaining techniques, time valid security, or
offering extended functionalities on top [41].

The verification and key generation overhead of HORS is
dominated by one-way functions (OWFs) typically imple-
mented with SHA-256/512 [12]. While standard cryptographic
hashes are efficient for general-purpose applications, they in-
cur substantial computational overhead when invoked in mass,
as in XMSS or SPHINCS+. Therefore, an often omitted but
crucial means to enhance HORS like signatures is to identify,
improve, and integrate efficient OWFs into their design.

Time Valid Security and Need for Tunable OWFs: In a time
valid application, security-sensitive yet short-lived messages
need authentication and integrity only for relatively short time
durations [36]. For instance, real-time command and telemetry
for rapid decision-making in a smart-grid system permit the
adversary only a brief amount of time (e.g., a few seconds) to
forge their corresponding signature. Otherwise, the adversary
misses her opportunity to influence the system as the target
message has already been processed. In such cases, timely
verification of the short-lived message is the priority, which
raises a time valid design relying on private/public key pairs
with shorter security parameters and lifespan.

HB-signatures are ideal for time valid schemes [36], since
unlike lattice-based signatures [5], [14] with various mutually
dependent parameters, one can only adjust the length of the
hash function with a smooth security response. Yet, the lack of
efficient OWFs with variable (small) input sizes is an obstacle
to building time valid HB schemes. For instance, consider
a time valid HORS that aims security levels 32 ≤ κ ≤ 72
depending on the application requirements, where κ (bit)
denotes the security parameter. For κ = 40, only 40-bit private
key elements are inputted to OWF. Regardless of the length of
the short input, SHA256 always performs the same amount of
computation; in this example, it processes 40 bits with the cost
of a full 256 bits. One may try to mitigate the waste via non-
standard lightweight cryptographic hash functions like Blake-
128; however, they still lack tunable and fast OWF capabilities
as they inherently process fixed block sizes.

In this work, we harness and optimize probabilistic data
structures (PDS) to attain better OWF efficiency for HORS.
Note that Bloom-filters (BFs) are often used for privacy-
enhancing technologies (e.g., [17]), but to a lesser extent for
authentication purposes (e.g., [37], [40]). The closest (and
to our knowledge only) alternative to our work is in [34],
which suggests using a basic BF in HB signatures. However,
we identify that a straightforward use of BF in HORS does
not improve but worsens the performance. This is due to
BF’s false positive (FP) rate impacting that of HORS. Even
FP rates approaching only low-to-moderate security levels
(e.g., κ = 64) require an excessive number of BF (non-
cryptographic) hash calls, incurring an overhead significantly
more than just implementing HORS with SHA256 as OWF.

There is a significant need for novel signature building



blocks that can offer fast and tunable performance to meet
the stringent delay requirements of real-time NextG networked
systems in the post-quantum era.

VII. CONCLUSION

Next-generation networked systems, like smart grids and
vehicular networks, rely on real-time communication to en-
able automation and autonomy. However, conventional-secure
cryptosystems are vulnerable to emerging quantum computers,
while existing PQ signatures are significantly costlier than
their traditional counterparts, exacerbating delay and relia-
bility hurdles. In response to these challenges, we propose
a novel signature scheme called Time Valid Probabilistic
Data Structure HORS (TVPD-HORS), designed to achieve
significantly lower end-to-end delays while offering tunable
PQ security. We innovate on HORS by introducing special
PDS with minimal overhead, speed-optimized hashes with
fine-grained parameterization, and weak-message countermea-
sures. TVPD-HORS achieves 3-5× and 2.7× faster verifi-
cation in time-valid and high-security settings, respectively,
compared to HORS with SHA256. The speed advantages of
TVPD-HORS remain valid against HORS using lightweight
hashes, with identical signing speed and comparable key sizes
to ensure low end-to-end delay in all cases. TVPD-HORS also
offers over-magnitude speed gains when used with HORS vari-
ants, showcasing its versatility to support various HB signa-
tures. Our results indicate that TVPD-HORS has a significant
potential to fasten HB signature standards and serve as an ideal
building block to secure NextG real-time networks.

VIII. ACKNOWLEDGMENT

This research is partially supported by the NSF CNS-
2350213 grant and Cisco Research Award (220159).

REFERENCES CITED

[1] Ieee approved draft standard for wireless access in vehicular
environments–security services for applications and management mes-
sages. IEEE Std 1609.2-2022 (Revision of IEEE Std 1609.2-2016), 2023.

[2] Gorjan Alagic, Gorjan Alagic, Daniel Apon, David Cooper, Quynh
Dang, Thinh Dang, John Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl
Miller, et al. Status report on the third round of the nist post-quantum
cryptography standardization process. 2022.

[3] John Anderson, Qiqing Huang, Long Cheng, and Hongxin Hu. A zero
trust architecture for connected and autonomous vehicles. IEEE Internet
Computing, 2023.

[4] Jean-Philippe Aumasson and Guillaume Endignoux. Clarifying the
subset-resilience problem. Cryptology ePrint Archive, 2017.

[5] Rouzbeh Behnia and Attilla Altay Yavuz. Towards practical post-
quantum signatures for resource-limited internet of things. In Annual
Computer Security Applications Conference, ACSAC, page 119–130,
New York, NY, USA, 2021. Association for Computing Machinery.

[6] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of Cryptographic
Engineering, 2(2):77–89, Sep 2012.

[7] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The sphincs+ signature framework.
Association for Computing Machinery, 2019.

[8] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[9] Craig Costello and Patrick Longa. Schnorrq: Schnorr signatures
on fourq. Technical report, MSR Tech Report, 2016.
Available at: https://www. microsoft. com/en-us/research/wp-
content/uploads/2016/07/SchnorrQ. pdf, 2016.

[10] Post-Quantum Cryptography. Selected algorithms 2022. URL:
https://csrc. nist. gov/projects/post-quantum-cryptography/selected-
algorithms-2022, 2022.

[11] Josh Dafoe, Harsh Singh, Niusen Chen, and Bo Chen. Enabling real-time
restoration of compromised ecu firmware in connected and autonomous
vehicles. In International Conference on Security and Privacy in Cyber-
Physical Systems and Smart Vehicles, pages 15–33. Springer, 2023.

[12] Quynh Dang. Secure hash standard, 2015-08-04 2015.
[13] Saleh Darzi, Kasra Ahmadi, Saeed Aghapour, Attila Altay Yavuz, and

Mehran Mozaffari Kermani. Envisioning the future of cyber security
in post-quantum era: A survey on pq standardization, applications,
challenges and opportunities. arXiv preprint arXiv:2310.12037, 2023.

[14] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A
lattice-based digital signature scheme. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2018.

[15] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler,
William Whyte, Zhenfei Zhang, et al. Falcon: Fast-fourier lattice-based
compact signatures over ntru. Submission to the NIST’s post-quantum
cryptography standardization process, 36(5):1–75, 2018.

[16] Benjamin Glas, Jorge Guajardo, Hamit Hacioglu, Markus Ihle, Karsten
Wehefritz, and Attila Yavuz. Signal-based automotive communication
security and its interplay with safety requirements. In Proceedings of
Embedded Security in Cars Conference. Citeseer, 2012.

[17] Mohamed Grissa, Attila A. Yavuz, and Bechir Hamdaoui. An efficient
technique for protecting location privacy of cooperative spectrum sens-
ing users. In IEEE Infocom Green and Sustainable Networking and
Computing Workshop, 2016 (GSNC ’16)., April 2016.

[18] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing, STOC ’96, pages 212–219, New York, NY,
USA, 1996. ACM.

[19] Mohammad Kamrul Hasan, AKM Ahasan Habib, Zarina Shukur, Fazil
Ibrahim, Shayla Islam, and Md Abdur Razzaque. Review on cyber-
physical and cyber-security system in smart grid: Standards, protocols,
constraints, and recommendations. Journal of Network and Computer
Applications, 209:103540, 2023.

[20] Andreas Hülsing, Denis Butin, Stefan Gazdag, Joost Rijneveld, and Aziz
Mohaisen. Xmss: extended merkle signature scheme, 2018.

[21] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve
digital signature algorithm (ecdsa). International Journal of Information
Security, 1(1):36–63, Aug 2001.

[22] Matthias J Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stof-
felen. pqm4: Testing and benchmarking nist pqc on arm cortex-m4.
2019.

[23] V. Kounev, D. Tipper, Attila A. Yavuz, B.M. Grainger, and G.F. Reed.
A secure communication architecture for distributed microgrid control.
Smart Grid, IEEE Transactions on, PP(99):1–9, May 2015.

[24] J. Lee, S. Kim, Y. Cho, Y. Chung, and Y. Park. HORSIC: An efficient
one-time signature scheme for wireless sensor networks. Information
Processing Letters, 112(20):783 – 787, 2012.

[25] Jaeheung Lee and Yongsu Park. Horsic+: An efficient post-quantum
few-time signature scheme. Applied Sciences, 11(16):7350, 2021.

[26] Lingyun Li, Xianhui Lu, and Kunpeng Wang. ebiba: A post-quantum
hash-based signature with small signature size in the continuous com-
munication of large-scale data. The Computer Journal, 2023.

[27] Jianyuan Lu, Tong Yang, Yi Wang, Huichen Dai, Linxiao Jin, Haoyu
Song, and Bin Liu. One-hashing bloom filter. In 2015 IEEE 23rd
international symposium on quality of service. IEEE, 2015.

[28] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon
Johnson, Rebekah Leslie-Hurd, and Carlos Rozas. Intel® software guard
extensions (intel® sgx) support for dynamic memory management inside
an enclave. In Proceedings of the Hardware and Architectural Support
for Security and Privacy 2016, HASP 2016, New York, NY, USA, 2016.
Association for Computing Machinery.

[29] William D Neumann. Horse: an extension of an r-time signature scheme
with fast signing and verification. In International Conference on
Information Technology: Coding and Computing, 2004.

[30] Saif E Nouma and Attila A Yavuz. Trustworthy and efficient digital
twins in post-quantum era with hybrid hardware-assisted signatures.
ACM Transactions on Multimedia Computing, Communications and
Applications, 2023.



[31] Josef Pieprzyk, Huaxiong Wang, and Chaoping Xing. Multiple-time
signature schemes against adaptive chosen message attacks. In Selected
Areas in Cryptography: 10th Annual International Workshop, SAC.
Springer, 2004.

[32] Victoria Y Pillitteri and Tanya L Brewer. Guidelines for smart grid
cybersecurity. 2014.

[33] Leonid Reyzin and Natan Reyzin. Better than biba: Short one-time
signatures with fast signing and verifying. Springer, 2002.

[34] Masoumeh Shafieinejad and Reihaneh Safavi-Naini. A post-quantum
one time signature using bloom filter. In 2017 15th Annual Conference
on Privacy, Security and Trust (PST), pages 397–3972. IEEE, 2017.

[35] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Review, 1999.

[36] Qiyan Wang, Himanshu Khurana, Ying Huang, and Klara Nahrstedt.
Time valid one-time signature for time-critical multicast data authenti-
cation. In IEEE INFOCOM 2009, pages 1233–1241. IEEE, 2009.

[37] Zheng Yang, Chenglu Jin, Yangguang Tian, Junyu Lai, and Jianying
Zhou. Lis: Lightweight signature schemes for continuous message
authentication in cyber-physical systems. In Proceedings of the ACM
Asia Conference on Computer and Communications Security, 2020.

[38] A. A. Yavuz, A. Mudgerikar, A. Singla, I. Papapanagiotou, and
E. Bertino. Real-time digital signatures for time-critical networks. IEEE
Transactions on Information Forensics and Security, 2017.

[39] A. A. Yavuz and M. O. Ozmen. Ultra lightweight multiple-time digital
signature for the internet of things devices. IEEE Transactions on
Services Computing, pages 1–1, 2019.

[40] Gaofeng Zhao, Rui Liu, Yang Li, Jin Huang, Mingxuan Zhang, and
Weiwei Miao. Multi-user broadcast authenticaiton in power lte private
network with compressed bloom filter. In 2021 IEEE 5th International
Conference on Cryptography, Security and Privacy. IEEE, 2021.

[41] Fei Zhu, Xun Yi, Alsharif Abuadbba, Junwei Luo, Surya Nepal, and
Xinyi Huang. Efficient hash-based redactable signature for smart
grid applications. In European Symposium on Research in Computer
Security. Springer, 2022.


