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Abstract—Given the rise in cyber threats to networked
systems, coupled with the proliferation of AI techniques and
enhanced processing capabilities, Denial of Service (DoS) attacks
are becoming increasingly sophisticated and easily executable.
They target system availability, compromising entire systems
without breaking underlying security protocols. Consequently,
numerous studies have focused on preventing, detecting, and
mitigating DoS attacks. However, state-of-the-art systematization
efforts have limitations such as isolated DoS countermeasures,
shortcomings of AI-based studies, and a lack of DoS integration
features like privacy, anonymity, authentication, and transparency.
Additionally, the emergence of quantum computers is a game
changer for DoS from attack and defense perspectives, yet it
has remained largely unexplored. This study aims to address
these gaps by examining (counter)-DoS in the AI era while
also considering post-quantum (PQ) security when it applies.
We highlight the deficiencies in the current literature and
provide insights into synergistic techniques to bridge these
gaps. We explore AI mechanisms for DoS intrusion detection,
evaluate cybersecurity properties in cutting-edge machine learning
models, and analyze weaponized AI in the context of DoS.
We also investigate collaborative and distributed counter-DoS
frameworks via federated learning and blockchains. Finally, we
assess proactive approaches such as honeypots, puzzles, and
authentication schemes that can be integrated into next-generation
network systems for DoS prevention and mitigation.

Index Terms—Counter-DoS; Artificial intelligence (AI); post-
quantum security; next-generation networks; deep learning.

I. INTRODUCTION

The increasing prevalence of cyber-attacks on advanced
network systems (e.g., 5G/6G, SDNs, wireless communication
networks [1], etc.), along with the rise in botnet and IoT
applications, underscores the heightened significance and
frequency of these security threats. Denial-of-Service (DoS)
attacks, the most widespread and alarming among them, pose a
direct threat to network infrastructure, target service availability,
causing interruptions in resource access, potentially crippling an
entire network without compromising the underlying security
framework and at minimal cost [2]. The advent of open-source
tools, enhanced processing power, and widespread inexpensive
devices has facilitated the evolution of DoS attacks into diverse
and increasingly sophisticated forms. These include large-scale

Distributed DoS (DDoS) attacks and stealthy Low-rate DoS
(LDoS) attacks that can evade conventional countermeasures
[3]. Growing concern over DoS cyber threats and their profound
impact on real-world applications has led to the deployment
of various technologies for DoS prevention, detection, and
mitigation. Numerous studies, primarily based on AI methods,
focus on developing effective counter-DoS mechanisms.

A. Limitations of Existing Systematization Efforts on DoS

Despite extensive studies into DoS attacks and
countermeasures over the years, notable gaps remain regarding
systematization efforts, as some discussed below:

Isolation of DoS Countermeasure Silos: Most studies
concentrate on singular aspects of DoS such as detection,
mitigation, or prevention mechanisms individually, while they
mainly provide a taxonomy of DoS attacks and present potential
solutions within specific applications (such as SDNs [4], Delay
Tolerant Networks [5], and Blockchains [6].). They mainly
address a single architecture (centralized or decentralized [7]),
or a specific type of DoS attacks and often omit other variants
(e.g., DDoS, Low-rate DoS [8]). This isolated treatment limits
their potential impact, and while synthesizing counter-DoS is
beneficial, no survey has analyzed in depth the synergy of
counter-DoS techniques or the challenges of combining them.

Gap on Synergies for DoS Countermeasures and Various
Cyber-security Services: Existing systematization efforts
mainly focus on DoS, addressing the availability aspect
but overlooking other critical properties such as privacy,
authentication, anonymity, and accountability. For instance,
from the user’s perspective, their privacy is of primary
importance, and it may outweigh the benefits of participating
in counter-DoS mechanisms unless some assurance is given.
Therefore, it is crucial to analyze these seemingly contradictory
properties via privacy-enhanced counter-DoS mechanisms. An
authentication DoS-resistant scheme applies to many real-world
scenarios but may undermine user privacy and anonymity
concerns. There is a significant gap in the systematization
literature for counter-DoS methods and their intersections with
critical cybersecurity techniques.



Lack of Post-Quantum Threat Analysis: The advent of
quantum computers fundamentally alters the cybersecurity
landscape including DoS attacks and countermeasures. It poses
a substantial threat to the long-term security of next-generation
networks by rendering conventional cryptographic techniques
vulnerable [9]. Quantum capabilities have demonstrated
advantages in breaking Proof of Work (PoW) and proactive DoS
solutions, and they might impact ML/AI approaches. Moreover,
they could enhance the efficiency and scope of DoS attacks.
Despite the profound implications of the PQ threat on DoS
and its countermeasures, existing systematization efforts have
not yet captured this vital aspect.

Need for Comprehensive AI-based DoS Coverage: The
studies on AI algorithms for DoS detection and mitigation,
primarily focus on algorithm performance evaluation metrics
[10]. However, a vast majority of these studies lack
comprehensive analysis of cutting-edge AI techniques (e.g.,
Generative AI, Large Language Models, Incremental Learning)
and do not cover proactive approaches (e.g., AI-based tokens,
puzzles, and honeypots). Moreover, there is limited analysis on
weaponized AI, Adversarial ML, and AI-powered DoS attacks.

B. Our Contribution

In this study, we systematically investigate DoS and
countermeasures in the context of AI and the PQ era for next-
generation networks. Our analysis encompasses advanced AI
models, collaborative and distributed frameworks, and proactive
cryptographic approaches. We consider PQ security and the
potential integration of DoS resistance with other cybersecurity
services. We further outline our contributions below.

• DoS and Countermeasures in the Post-Quantum Era: We
consider direct quantum solutions such as Quantum Machine
Learning (QML) and Post-Quantum Cryptography (PQC) to
strengthen counter-DoS strategies and hybrid classical-PQ
approaches. Additionally, we investigate the potential of PQC
in tandem with privacy, authentication, and anonymity, when
considered with DoS resistance.

• Synergy of Cyber-Security Properties with Counter-DoS:
We juxtapose privacy with availability (equivalent to Counter-
DoS), exploring anonymous solutions and authentication
techniques while addressing transparency in decision-making
processes, accountability of DoS adversaries, and the
trustworthiness and robustness of counter-DoS systems.
Navigating these conflicting needs, our objective is to prioritize
cybersecurity properties alongside counter-DoS measures,
exploring potential synergies among various techniques for a
more effective and holistic solution.

• Examining Advanced/Weaponized-AI for DoS and
Cryptographic Perspectives: We explore the efficacy of AI-
based solutions tailored for DoS in next-generation networks
during the PQ era. We first delve into ML (shallow and deep
learning) for Intrusion Detection Systems (IDSs), highlighting
their limitations and potential advances. Next, we discuss AI-
driven privacy-preserving countermeasures, transparency and
verifiability in AI, unconditional security with QML, cost-
effective ML optimizations, and the evaluation of cutting-edge

AI models for countering DoS. Leveraging the cybersecurity
features and PQ promises, we identify some shortcomings of
these new AI techniques and provide potential insights for
enhancements. Finally, we capture advanced weaponized AI
for DoS, wherein the attack is enhanced via offensive AI.
• Examination of DoS in Collaborative and Distributed

Frameworks: First, we explore federated learning (FL)
as a scalable and privacy-preserving solution from a
DoS perspective. Second, we examine blockchains as a
potential architectural solution against DoS. Finally, we
explore cybersecurity features and potential advancements for
collaborative settings in the PQ era.
• Assessment of Proactive Approaches for DoS: We

analyze DoS honeypots, puzzle-based approaches, and token-
based cybersecurity trio (authentication, anonymization, and
privacy). We analyze their advantages and limitations in both
conventional and PQ secure contexts for integration into real-
world applications.

Taxonomy and Organization: Figure 1 illustrates the
taxonomy of our paper. Section II presents defensive AI-based
mechanisms, while Section III elaborates on weaponized AI
concerning DoS attacks. Section IV explores DoS strategies
in collaborative and distributed settings. Section V navigates
the proactive approaches for DoS prevention and mitigation.
Section VI concludes the paper.

II. DEFENSIVE AI: FORTIFYING AGAINST DOS ATTACKS

Recent advancements in AI technology have made it a focal
point in cybersecurity, particularly for countering DoS attacks.
However, AI is a double-edged sword. Here, we focus on
its positive aspect as "Defensive AI". We evaluate AI’s role
in DoS detecting and mitigating, considering other crucial
cybersecurity properties such as privacy, transparency, cost-
effectiveness, and importantly, PQ security.

A. State-of-the-Art ML Techniques for DoS-Specific IDSs

In essence, ML-based DoS IDS functions as a sophisticated
classification mechanism, utilizing statistical network
transmission details to identify and block malicious entities.
Their effectiveness depends on the types of DoS attacks,
selected features, and network parameters. Despite extensive
studies on ML-based IDSs for DoS attack detection, whether
using shallow learning (SL) algorithms or deep learning (DL)
models, there are still gaps in their utility and integration into
real-world applications. The most common approach involves
SL algorithms (e.g., SVM, Naive Bayes), which are typically
supervised and more efficient than conventional counter-DoS
measures (e.g., network-based filtering). However, they are
not 100% accurate and face issues such as misclassification,
false positives, and the need for periodic re-evaluation. They
require human intervention, are weak against zero-day (ZD)
attacks, and typically need structured data, which is unrealistic
and costly. Recent advancements are increasingly favoring
DL models (e.g., CNN, RNN, GAN) to address these issues,
leveraging their high accuracy, lower false alarm rates, and
improved performance against ZD attacks [11]. Despite
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Fig. 1: Taxonomy and Prospective on DoS and Counter-DoS Mechanisms in AI and PQ era

the challenges posed by low-rate DoS attacks, which are
hard to distinguish from normal network traffic patterns and
require intricate network design for effective countermeasures,
DL-based IDSs are capable of detecting these complexities.
However, they are generally more complex, involve long
training times, require high computational power, and are
unsuitable for real-time networks. In summary, ML techniques
(SL or DL) employed for DoS-specific IDSs have shortcomings
that impede their full implementation in real-world scenarios.
These issues and their potential solutions are discussed in the
next subsections and summarized in TABLE I.

B. AI-Driven Privacy-Preserving DoS IDS Frameworks

When addressing system cybersecurity, particularly regarding
DoS attacks which often require extensive network data
monitoring, prioritizing data confidentiality and user privacy
is paramount. In practical terms, cybersecurity services are
commonly outsourced to third parties for efficiency, cost-
effectiveness, and seamless security, raising significant privacy
concerns. This creates a clear conflict between the system’s
need for availability through counter-DoS mechanisms and
the users’ right to privacy and data protection. From users’
perspectives, privacy considerations outweigh the need for
service availability, making any defense mechanism lacking
privacy prioritization impractical for real-world deployment
[12]. As a result, the concept of Privacy-Preserving IDS

Issues Limitations as Counter-DoS Potential Solutions

Dataset
Mostly Synthetic Datasets Dataset Benchmarking
Mostly Outdated Datasets Use Honeypots/Honeynets
Lack of DoS Specification Generative AI

Performance
High Misclassification Rate Train on Real-Time Network
High False Alarms Rates Use Advanced DL Models
Inability to Detect ZD Attacks Incremental Learning

Overhead
Heavy Computational Costs Online-Offline Structure
Time-Consuming Labeling Outsourcing Operations
Long Training Time Transfer Learning

Applicability
Limited Scalability Collaborative-IDS
for Large-Scale Networks Use Blockahins
for IoT Environment Federated Learning

Missing

Confidentiality & Privacy Privacy-Preserving-IDSs
Transparency & Trustworthiness Explainable AI
Verifiability & Accountability Zero-Knowledge Proofs

Cyber- PQ Promises Quantum-ML
Security Cost-effectiveness Transfer Learning

Properties Dynamicity Incremental Learning
Fully Autonomous Large Language Models
Fairness & Robustness Federated Learning

TABLE I: Limitations of ML Techniques for DoS-Specific IDSs

(PPIDS) has emerged, leveraging various cryptographic
approaches to address these concerns [13].

PPIDS can be implemented through several approaches,
as demonstrated in TABLE II: 1) AutoEncoders (AE) are
unsupervised compression engines that preprocess raw data into
an encoded form for ML classification, thereby preserving data
privacy. 2) Encryption-based techniques, such as Homomorphic
Encryption (HE) and Functional Encryption (FE), enable



PP-IDS Advantages Limitations PQ Promises

AE • Low Probability of Reverse-Engineering • Introduce Delays in the IDS Unexplored• Suitable for Distributed Environments • Unsuitable for Real-Time Networks

HE/FE
• Full Confidentiality & Privacy • Substantial Computational Overhead Lattice-based
• Require No Honest-But-Curious Entity • Require Significant Computational Resources & Multivariate
• Applicable to Centralized & Distributed Architectures • Require Implementation & Hardware Optimizations Cryptography

MPC
• Model and Data Privacy • Impose High Communication Burden PQ-Secure Primitives,
• Low Computational Requirements • Scalability Issues on Large-Scale Networks Symmetric Cryptography,
• Applicable to Distributed and IoT Environments • High Bandwidth Requirements & Encryption Techniques

DP • Preserve Individual Privacy • Low Accuracy of The Detection Model Quantum Noise
• Resistant to Inference & Data Extraction Attacks • Require an Honest-But-Curious Entity Quantum-DP

TEE • Preserve the Data and Code Privacy • High Hardware Requirements & Costs Requires Employment of
• Hardware Security Guarantees • Performance Issues and Delay PQ-Secure Primitives in TEE

TABLE II: DoS-Tailored Privacy-Preserving Intrusion Detection System Approaches

training on encrypted data, while due to the substantial
computational overhead, most approaches use pre-trained
models for prediction or classification over encrypted inputs
[14]. 3) Multi-party computation (MPC) enables the secure
distribution of a function (such as an ML model) on private
inputs among parties without mutual trust [15], [16]. 4)
Differential Privacy (DP) involves adding controlled noise
or making dataset-swapping modifications to preserve the
statistical characteristics of the ML model while protecting
individual data privacy [17]. 5) Trusted Execution Environment
(TEE) is a hardware-based approach that creates a secure and
trusted environment for protecting ML data and code [18], [19].

C. Transparency and Verifiability in DoS Defense

The effects of selected DoS attack features on the accuracy
of the IDS, along with the need for clear decision-making
in AI, highlight the massive consequences of backdoors,
which could lead to wrong predictions and undetected attacks.
This undermines mitigation efforts and exposes systems to
cyber threats. Thus, the transparency, interpretability, and
trustworthiness of the employed AI-based IDSs are crucial for
DoS detection-mitigation. Henceforth, there is a global effort
to standardize trustworthy AI [20] where institutions like ISO
and NIST, along with numerous countries are working to define
trust in AI and address its associated issues. Additionally, in
real-world scenarios where DoS defense is outsourced or pre-
built tools are used, verifying the integrity of computations and
AI models is also crucial. Zero-knowledge proofs (ZKP) serve
as a complementary solution to privacy-enhancing frameworks,
ensuring the correctness of model outputs, and detecting faulty
behaviors, especially when the model owner might engage in
malicious activities or use a poisoned model [21]. Despite the
importance of verifiability in AI-based IDSs and the availability
of various PQ ZKP schemes, few studies address this feature,
and none focus on their application in DoS defense.

Furthermore, most AI-based IDSs are trained to detect
anomalies mainly with binary classification but often
lack justification, explanation, or confidence regarding the
attack itself. Clear distinguishing factors are essential for
integrating IDSs into real-world applications. Trust is built
on understanding, necessitating knowledge of AI decision-
making for full confidence. Explainable AI (XAI) addresses
this by offering clarified decision-making and explanations of
local and global model behaviors, contrasting with black-box

AI systems [22]. XAI, primarily uses game theory and XAI
graphs to elucidate model operations, providing transparency,
trustworthiness, and interpretability in next-gen networks.

However, despite XAI fostering trust in the utilized tools,
it can suffer from lower accuracy and performance in
DoS detection-mitigation. In this context, there are two
potential future approaches for improving XAI: 1) Model-
Specific XAI: Tailoring XAI specifically for DoS detection-
mitigation to enhance accuracy. This approach requires training,
implementing, and testing XAI on real-time networks rather
than static datasets. 2) Model-Agnostic XAI (suitable for
any ML model): Integration of model-agnostic XAI with
conventional AI systems known for high DoS detection
accuracy. This is a perfect fit for distributed architecture and
can involve combining XAI at both local and global levels
with distributed collaborative IDSs that develop a global model
based on local training. Also, XAI for cyber-threat detection
should be evaluated from a human perspective (e.g., security
analysts) to enhance its utility and user-friendliness.

D. Next-Generation Defense: Quantum ML for DoS Attacks

From a PQ perspective, QML represents the optimal
synergy of quantum computing and ML, offering quadratic
to exponential speedup and addressing key performance-
related issues in traditional ML [23]. Concretely, given their
parallelization and computational power, and considering the
long training times and complex operations required on large
datasets, QML is an ideal solution. In the context of DoS
IDSs, proposed schemes either deploy Quantum-enhanced ML
by executing classical data on quantum computers or use
Quantum-inspired ML, where classical data and computations
are optimized by quantum mechanics principles. These schemes
are typically evaluated on Noisy Intermediate-Scale Quantum
(NISQ) processors, which serve as an alternative to quantum
computers [24]. Additionally, various pure quantum DoS
countermeasures, such as IDSs using quantum ML algorithms
(e.g., Q-SVM, Q-CNN), are applicable to real-world (quantum)
applications like Quantum Key Distribution (QKD) systems
[25]. However, these schemes are still in their early stages and
require extensive study for practical implementation.

Despite the acceleration of processes, efficient handling
of large datasets, and overall speedups in DoS detection
via QML, its applicability, and practicality as an IDS are
hindered by several issues: 1) A shortage of effective encoding



mechanisms for transferring network data into quantum states,
impacts attack detection efficiency and model robustness. 2)
Lower accuracy levels compared to classical ML methods,
high complexity in training computations, and substantial
resource requirements (e.g., memory), making it not cost-
effective. 3) Performance weaknesses due to inherent noise and
computational errors, leading to higher misclassification rates
and weaker evaluation metrics. 4) The primary role of QML in
efficient DoS detection and mitigation is when using quantum
data and datasets, which remain unexplored; without this, QML
has no significant advantage over traditional ML.

All in all, QML as a DoS countermeasure is in its early
stages, requiring substantial performance gaps to fill, and
is hugely impacted by the improvements in the quantum
computing domain to be applicable in real-world scenarios.

E. Cost-effective ML Enhancements for DoS IDSs

1) Transfer Learning (TL): Addressing the cost-
effectiveness of deployed AI, TL is introduced to tackle
challenges such as limited learning datasets, costly data
sampling, expensive labeling operations, and the need for
updating samples to cover new attack types [26]. TL is an
advanced architectural solution that reuses a previously trained
model, transferring the learned knowledge to new or updated
tasks instead of starting from scratch. This approach involves
a sequential or parallel use of multiple AI-based IDSs, offers
performance advantages, and enhances the detection of new
attack vectors by leveraging knowledge from different but
related environments [27]. Given the privacy sensitivity of
some network data, privacy-preserving mechanisms such as
encryption-based techniques (e.g., HE) or secure computation
methods (e.g., MPC) should be incorporated at the design level
of TL. However, despite these advantages, the application of
TL in DoS-specific IDSs remains under-explored.

2) Incremental Learning (IL): IL is another cost-effective
solution that incrementally learns new features, enhancing the
overall detection mechanism [28]. Given the rapid evolution of
cyber threats and new variants of DoS in next-gen networks,
continuous learning and IDS updates are essential. Updating
already trained IDS on static data to capture new attack
variants and features is challenging, making the dynamicity and
adaptability crucial for real-world use. Sequentially training a
model on multiple datasets can lead to "forgetting attacks,"
where the new model forgets previously learned knowledge,
necessitating retraining from scratch, which is impractical
and inefficient [27], [29]. IL addresses these issues by using
multiple AIs in a tree or hierarchical structure with pruning
or retraining to cover new attack types and enhance accuracy
for ZD attacks. However, IL requires more efficient design
solutions combined with privacy-enhancing techniques, to
realize its full potential in DoS IDSs.

F. Cutting-Edge AI Models for DoS Detection-Mitigation

1) Generative AI (GAI): Essentially, GAI models produce
random instances of specific data classes. In cybersecurity,
GAIs play a dual role: they can function as a stand-alone IDS,

classifying benign, malicious, and fake behavior, or serve as
an auxiliary tool to ML-based IDSs for dataset enhancement.
Given that datasets are mostly outdated and of low quality,
GAIs can generate labeled data, which is typically labor-
intensive, error-prone, and raises privacy concerns when done
by humans. Additionally, GAIs can create synthetic data to
balance datasets, improving the efficiency of detection systems
[30]. For instance, producing synthetic data only tailored
for various DoS attack variants, significantly improves DoS
detection. Additionally, GAIs could be trained to serve as an
alert-generating mechanism in IDSs, suitable for integration
into real-life applications [31]. However, the effectiveness of
GAIs in DoS detection depends on the quality of synthetic
data in identifying attacks, and in some cases, may not be
cost-effective. Despite these limitations, GAIs show promise
as auxiliary tools in counter-DoS mechanisms, particularly in
addressing performance issues such as reducing false positives.

2) Large Language Models (LLMs): Recent advancements
in LLMs, such as OpenAI’s GPT-3.5 and GPT-4, have
highlighted their efficiency in natural language processing
(NLP) and their ability to understand non-natural languages
(e.g., photos and videos) for various smart technologies [32].
Few studies have analyzed the use of LLMs with raw network
flow data to identify DoS attacks. These studies have shown that
LLMs can achieve high accuracy in DoS detection and provide
clarity in their decision-making. For example, OpenAI’s GPT
models have demonstrated over 90% accuracy in DDoS
detection with training on only few examples, showcasing their
superiority in certain scenarios [32]. Note that LLMs are as
effective as other AI-based DoS-specific IDSs with balanced
datasets and far superior in handling imbalanced classifications
or ZD attacks. However, their significant computational
overhead and inference latency limit their effectiveness in real-
time detection. Further advancements in designing LLMs for
delay-sensitive applications are necessary to overcome these
limitations.

III. WEAPONIZED INTELLIGENCE:
THE NEW AGE OF DOS CYBER THREATS

On the offensive side, AI can be weaponized in two ways:
"Adversarial AI," which involves exploiting AI mechanisms to
maliciously infiltrate the DoS defense system, and "Offensive
AI," which is employed to launch DoS attacks.

A. Adversarial ML for DoS and Counter-DoS Measures

Identifying vulnerabilities in IDS and exploiting loopholes
in AI systems, enables attackers to evade detection and
execute DoS attacks. Concretely, given the sensitivity of
AI performance to inputs during training and prediction
phases, Adversarial Machine Learning (AML) leverages small
perturbations, known as Adversarial Examples (AEs), to cause
misclassification, misprediction, or incorrect results [33]. By
utilizing algorithms such as Generative Adversarial Networks
(GANs) [34], Dos-tailored AML examines network traffic to
identify potential features that can bypass detection. In essence,
AML targets system robustness and the integrity of IDSs,



aiming to reduce accuracy and increase false alarm rates
through misclassifications. Consequently, common poisoning
and backdoor attacks fall under AML, where adversaries
contaminate training data and models to bypass certain DoS
attacks [35]. Even DL-based IDSs, despite their complexity and
accuracy, are vulnerable to backdoor attacks.

Typically, AML can significantly reduce the true positive
accuracy of DoS IDS, for example, from over 90% to below
50%, and in some cases, achieve a 100% success rate for
DoS misclassification with minimal perturbation or queries
[36]. Even when applied in a black-box manner (with no
or limited knowledge of the underlying ML), AML can still
maintain a high success rate for DoS attacks. However, most
AML schemes are proposed in white-box scenarios (with full
knowledge of the ML and its features), which is less realistic
for IDSs where attackers typically have limited capabilities
and knowledge. Note that AML creates AEs, addressing only
predefined attacks in the datasets and not zero-day DoS attacks.
However, most countermeasures against AML are limited by
high computational demands, reducing defense accuracy and
performance, and often only mitigating the severity of attacks
rather than fully preventing them. These countermeasures are
also not strictly applicable to DoS IDSs. Given the high success
rate of AML attacks and the lack of comprehensive mitigation
strategies, adversarial robustness and resiliency are crucial,
especially as AI-based IDS are integrated into next-generation
network systems. Even in the quantum era, the inherent noise
in current NISQ or quantum computers, along with data
transfer from classical to quantum states, makes QML highly
susceptible to disruptions and adversarial techniques (Quantum-
AML) [37]. This results in increased misclassifications and
reduced robustness. Therefore, there is an urgent need for DoS-
tailored IDS with resilience against AE and AML attacks.

B. DoS Attacks Powered by Offensive AI

Despite their significant threats, the scope of Offensive
AI (OAI) DoS attacks and potential countermeasures remain
largely unexplored. OAI has many applications, including
military, autonomous weapon systems (e.g., drones, guns,
robots), and cyber weapons [38]. In the context of DoS,
AI is utilized in AI-driven DoS/DDoS attacks, AI-powered
malware, and weaponized botnets [39]. Essentially, OAI serves
as a DoS cyber weapon in real-world applications with the
following characteristics: 1) OAI enables DoS attacks on a
larger scale and spreads the attack faster. 2) By monitoring
network traffic, OAI facilitates the discovery of vulnerabilities
for DoS exploitation. 3) OAI automates DoS attacks without
human intervention and can identify new attack vectors. 4)
OAI is adaptive, learning from adversaries’ previous mistakes
to evade detection and bypass defense mechanisms.

OAI is typically employed to generate synthetic network
data (adversarial traffic), simulating DoS attacks and increasing
the fault rate and false alarms of IDS, thereby compromising
system robustness. Ironically, while AI-based IDSs monitor
network traffic to detect abnormal behaviors, the same
algorithms can be repurposed to identify vulnerabilities and

conduct DoS attacks. Moreover, OAI becomes particularly
dangerous when combined with other tools. For instance,
OAI can enhance botnets, making them more adaptive to
their environments and resilient to countermeasures, thus
enabling adaptive DoS attacks. The convergence of OAI,
IoT, and botnets can lead to the "Botnet of Things,"
revolutionizing DDoS attacks with potentially devastating
consequences [40]. Additionally, OAI’s ability to mimic human
behavior can undermine proactive security measures (e.g.,
CAPTCHA [41]), rendering them ineffective. Given their
characteristics and potential, DoS attacks with weaponized AI
are significantly more sophisticated, efficient, and devastating
compared to conventional attacks. Traditional security measures
are insufficient to detect and defend against these attacks.
Therefore, there is a growing need for comprehensive defense
methods that incorporate AI along with advanced cryptographic
techniques to provide robust protection.

IV. ENHANCING DOS DEFENSE THROUGH
COLLABORATIVE AND DISTRIBUTED FRAMEWORKS

This section evaluates collaborative IDSs and distributed
approaches including federated learning (FL) and blockchains.

A. DoS Detection-Mitigation with Federated Learning

In essence, FL is an architectural, collaborative, and scalable
solution for ML that emphasizes security and data privacy.
In FL, entities do not need to share their raw data to build
a model, making it suitable for privacy-sensitive technologies
(e.g., healthcare systems, finance), as well as applications with
distributed networks (e.g., edge-computing, smart cities) [42].
Recent studies have focused on FL-based DoS defense for
its advanced security, privacy preservation, and architectural
benefits. By incorporating high data heterogeneity with diverse
samples, FL achieves higher model accuracy and improved DoS
detection, outperforming traditional DL models [43].

Besides high privacy guarantees, this approach also reduces
data transfer, minimizing security breaches during the global
model-building process. It distributes the computational burden
across numerous edge entities and alleviates the communication
overhead of large-scale models to address the efficiency issues
of AI-based IDSs and is suitable for scenarios with constraint
bandwidth [44]. FL-based IDSs are cost-effective, as they do
not require specific infrastructure, hardware, or maintenance,
unlike centralized MLs. They achieve fault tolerance and
robustness since the framework continues to function even if
a device fails or undergoes maintenance, which is particularly
useful for DoS detection in large-scale networks. Moreover,
they are trained in real-time networks and continuously learn
from edge devices, enhancing dynamicity and adaptability.
Also, different IDSs or companies, even from various countries,
can participate as nodes in this framework to train a global DoS
detection model without sharing sensitive data [44].

1) FL-based IDSs Shortcomings: Since FL is not fully
distributed, its disadvantages stem from the centralized
aggregation process, which is vulnerable to single points of
failure, requires a trustworthy entity, and compromises full data



confidentiality unless secure aggregation is implemented [43].
This can be achieved through various methods: 1) Federated
Averaging: The most common method, though potentially
biased towards entities with more updates and characterized
by slow convergence. 2) Differential Privacy: Noise can be
added locally/globally during each round, but this method
often involves a trade-off between DoS detection accuracy
and data privacy. 3) Secure Aggregation Techniques: Utilizing
PPIDSs in distributed settings, typically based on PQ-secure
MPC and encryption methods. Given that local training reveals
sensitive information about individual clients, these techniques
are highly recommended for privacy-sensitive DoS defense but
are computationally intensive or add significant communication
costs. 4) Federated Transfer Learning (FTL): A new concept
combining FL and TL, offering collaborative advantages across
various IDSs. FTL provides more accurate DoS detection while
preserving privacy but is limited to networks with similar data
distributions, reducing its utility.

Most FL-based IDSs rely on supervised algorithms needing
labeled samples, but the scarcity of suitable datasets limits
their effectiveness. Imbalanced data results in lower detection
performance, reduced reliability, and inability to detect ZD
attacks. In embedded environments, where device limitations
are poorly represented and some users cannot contribute
labeled samples, the applicability of FL for DoS defense is
further restricted. Thus, developing practical FL-based IDSs
for resource-constrained environments remains a challenge.
Moreover, inefficient aggregation mechanisms contribute to
delays in responding to DoS, thereby limiting their effectiveness
in real-time response. As with centralized models, maintaining
transparency and verifiability is crucial. Blockchain-based
mechanisms can be utilized to incentivize client contributions
and ensure operational transparency among nodes.

2) Adversarial-FL: FL-based IDSs are not only vulnerable
to AML attacks like central ML systems but are even more
susceptible due to their distributed nature and the collaborative
training process involving potentially malicious clients or
aggregators. This vulnerability exposes them to attacks such
as model inversion, backdoor, and poisoning attacks, where
malicious entities can inject harmful data and tasks into
the training set during each round [45]. These actions can
compromise the integrity of the FL model, leading to failure
in detecting DoS attacks. Therefore, ensuring the integrity of
FL models requires rigorous client selection and verification
processes, necessitating further research and attention.

3) Gossip Learning (GL): GL operates as a fully
decentralized approach, facilitating local training and data
storage with direct node-to-node model aggregation, thus
eliminating the need for an honest-but-curious aggregator.
It provides a cost-effective and robust scalability solution
compared to FL, particularly suitable for scenarios where
finding a trusted aggregator is challenging [46]. Despite
its advantages, existing GL-based IDSs are generally not
tailored specifically for DoS attacks and introduce delays
in aggregation, which diminishes its effectiveness in real-

time DoS detection compared to FL. Hence, FL continues
to outperform GL in DoS detection across various evaluation
metrics, including accuracy and false alarms. A promising
future direction could involve synergizing FL and GL to create
a holistic solution for DoS defense with real-time utilization.

4) Quantum-FL (QFL): The concept of QFL aims to
improve operational efficiency through quadratic to exponential
enhancements and parallelization in decentralized structures.
While QFL shows promise as a synergy between FL and
quantum computing, there are currently no purely Quantum-
empowered FL-based IDS systems specifically tailored for DoS
attacks [47]. The practical implementation of true QFL is
hindered by the current state of quantum computers and their
hardware, which are not yet widely available at edge nodes.
However, hybrid quantum-classical FL approaches have been
explored for DoS detection, leveraging the strengths of both
worlds that are feasible with current equipment. It is noteworthy
that existing QFL-based IDS systems are primarily supervised,
which may not align well with real-world datasets lacking
proper labeling. Thus, exploring QFL with unsupervised
algorithms holds potential for further development.

Another approach, contrasting with QFL, is blind quantum
computation. This method allows computations to be delegated
to an untrusted quantum server without revealing sensitive
information such as input, output, or computation details
[43]. Looking ahead to the PQ threat, an optimal strategy
involves leveraging low-scale quantum computers and NISQ
systems alongside conventional FL techniques. Specifically,
by employing classical algorithms at the network edge and
utilizing a quantum-capable aggregator, we can enhance real-
time DoS mitigation, facilitating a seamless transition to the
PQ era with broad applicability across various real-world
environments, especially those with limited constraints.

B. Blockchain-enabled Strategies against DoS Threat

In the context of the DoS threat, blockchain is susceptible
to blockchain-based DoS (BDoS) attacks, yet it also serves as
an architectural, collaborative, and scalable solution for DoS
mitigation [6]. Specifically, despite the political and economic
incentives behind attacking cryptocurrencies and targeting their
PoW constructs, blockchains can still be employed in DoS
countermeasures for large-scale applications while addressing
centralization issues. They are particularly valuable in scenarios
where multiple IDSs need to communicate without mutual
trust and are reluctant to disclose sensitive data yet seek to
strengthen their security measures. Blockchain represents one
of the few counter-DoS approaches suitable for applications
with distributed networks where conventional centralized DoS
defense mechanisms are not viable [6]. Moreover, in some
centralized DoS countermeasures, the defense mechanism
itself becomes a new target for DoS attacks, highlighting
blockchain’s effectiveness as a solution.

The core novelty in blockchain-based DoS mitigation lies
in its collaborative approach to attack-information sharing,
trustworthy record-keeping for DoS blacklist, and increasing
the cost of DoS attacks through consensus mechanisms



(e.g., PoW, Proof of Stake). Blockchains not only provide
accountability by penalizing malicious nodes but also serve as
a verification mechanism for post-DoS analysis due to their
immutable public ledger validated by a network of nodes.
This is primarily achieved via smart contracts, which are
agreed-upon codes executed by blockchain nodes to signal DoS
detection and mitigation across the network [48]. However,
blockchain-based methods are typically not standalone DoS
defenses. They are usually integrated with AI-based DoS
detection techniques, providing a transparent attack-sharing
mechanism and keeping model updates in the training phase.

However, blockchain-based solutions have limitations in
real-time DoS protection due to extended transmission
and confirmation periods. Their interoperability is also
lacking, as they are often bound to specific applications
(e.g., IoT, edge computing, SDNs), requiring modifications
and architectural support. This limits their practicality and
flexibility as comprehensive solutions [49]. Most blockchain
countermeasures still require human intervention, while the
vulnerability of the underlying smart contracts to DoS attacks
and the employment of PQ secure blockchains in DoS
mitigation systems, although promising, remain unexplored.
The ideal synergy in distributed settings combines FL with
blockchains, leveraging the strengths of both to enhance
detection accuracy, offer advanced privacy, and provide identity
management through anonymization or pseudonymity [48].

V. PROACTIVE DEFENSE AGAINST DOS: LEVERAGING
PUZZLES, TOKENS, AND CREDENTIALS

A. Honeypots for DoS Defense

A honeypot is a proactive DoS defense mechanism,
functioning as a software-based vulnerable machine designed
to attract attacks (e.g., malware, malicious accesses) in
computing systems [50]. It creates a fake environment to
lure DoS attackers, capturing and reporting them to the
network administrator. Integrated into the service machine, the
honeypot is an independent component that makes it difficult
for even advanced attackers to avoid the trap. They can be
deployed in both centralized and distributed settings, providing
an advantage in new ZD exploits and DoS attack detection.
Honeypots are among the few defense mechanisms that
provide accountability in DoS defense. Recent advances have
introduced AI-powered honeypots [51], combining honeypots
with AI-based IDSs to detect botnets and enhance ZD
DoS attack detection. However, these schemes still face
high false positive rates, bypassed attacks, high overhead,
and vulnerability to backdoor attacks, necessitating thorough
evaluation before full deployment. Additionally, quantum
computation techniques can be used to design quantum
honeypots to detect intrusions during unauthorized operations
[52]. However, this is a nascent field, and commercial
implementation is still far from practical.

B. Puzzles as a Foundational Defense Mechanism

Client Puzzle Protocols (CPPs) are mathematical prevention
techniques that aim to involve users’ resources, thereby

increasing the cost of conducting DoS attacks. Depending on
the puzzle type (e.g., computational, delaying, AI), the client
must allocate resources (e.g., computational power, memory,
bandwidth) to solve them and authorize the legitimacy of
their request, making DoS attacks infeasible. These counter-
DoS puzzles must provide certain properties, such as cost
asymmetry (difficult for the client but efficient for the server),
unforgeability, non-parallelization, and fairness [53].

PoW-based techniques are a common and promising DoS
prevention measure, but they are typically interactive and
depend on the client’s computational power (e.g., CPU). This
approach lacks fairness for resource-constrained devices and is
vulnerable to parallelization techniques and powerful entities
like quantum computers. Another puzzle is the verifiable delay
function (VDF) [54], a pseudorandom function (PRF) that
produces a unique output and a verifiable proof after a specified
number of steps. Given the difficulty of finding a trusted
third party in real-world applications, and considering the
parallelization weaknesses of other methods, time-lock puzzles
(TLPs) [55], also known as "encryption into the future," offer
a solution. TLPs are based on encryption schemes where
decryption is only possible after a certain amount of time
with inherent sequential steps. They do not require trust in
any third party, are resistant to parallelization, and have public
verifiability. However, despite their high computational depth,
better processors or quantum computers can still affect the
validation process, impacting DoS prevention effectiveness.
Also, they have several issues and can be bypassed or
weakened, while imposing high costs on the servicing server.
Expensive tasks (e.g., puzzle generation and distribution) can be
outsourced to a trusted entity, though this is often impractical.
Also, attackers can precompute puzzles to launch DoS attacks
later or replay the same valid solution for access [56].

The computational power and parallelization capabilities of
quantum computers pose a significant threat to CPPs [57].
Although most schemes are based on symmetric cryptography
primitives, particularly hash functions, Grover’s algorithm can
reduce their security by half. This issue can be addressed
with difficulty adjustments, but this leads to unfairness and
impracticality in real-world networks. Consequently, several
PQ-secure PoW mechanisms have been proposed, based on
the hardness of solving lattice-based problems, isogenies, and
multivariate quadratic equations. However, these PoWs are
significantly more computationally expensive [58]. PQ-secure
PoW and timed cryptography are in their early stages, and many
proposed solutions are either broken or too computationally
intensive for integration into next-gen networks.

C. The Cybersecurity Trio: Contradictory Needs of Privacy,
Anonymity, and Authentication

1) Rate-Limiting Tokens and Authentication Systems:
Authentication systems are commonly used in challenge-
response protocols with rate-limiting structures at their core to
resist DoS attacks via access control. However, these schemes
are often application-specific and provide DoS resistance only
at a single network-layer (e.g., AI-based CAPTCHA for



application layer) [59]. Authentication systems are typically
employed alongside other counter-DoS mechanisms because
the authentication mechanism itself can become a target for
DoS attacks. These systems are either based on hardware
tokens (e.g., client-side TEEs), or computational rate-assuring
proofs [41]. Thus, they either require specific hardware or
lack PQ promises due to their underlying cryptographic
problems, such as integer factorization and discrete logarithm
problems. However, there is little to no research on PQ-secure
authentication protocols for DoS resistance.

2) Anonymization Techniques: Anonymity, which ensures
identity protection via unlinkability and untraceability, often
conflicts with the required authentication in counter-DoS
techniques. Anonymization techniques address these needs in
three ways: 1) Anonymous Tokens: These limit the number of
tokens, tags, or cryptographic keys a user can acquire. If a
user exceeds the predefined threshold, they are deanonymized,
deterring DoS attacks while ensuring accountability [60]. 2)
ZKPs: Users can assert their limited request rate without
sharing sensitive information or attributes. 3) Group Signatures:
A group member can sign on behalf of the group, with the
group admin able to trace the signer’s identity, thus providing
accountability and anonymous DoS resistance [41], [61].
However, this approach lacks scalability for large-scale and
distributed networks. Nevertheless, PQ-secure group signatures
and ZKPs have not yet been utilized for DoS mitigation.

3) Privacy Pass for DoS-Resistance: Due to the issues
with temporary puzzles, the computational burden of PoW,
and poor user experience, especially for anonymous access,
the concept of Privacy Pass (PP) has been introduced [60].
PP is a cryptographic password that serves as a privacy-
preserving access control mechanism with a rate-limiting
structure. It aims to synergize authentication, anonymity, and
privacy. Besides ensuring the unforgeability and unlinkability
of tokens, PP can provide access control without repeated
identification processes [62]. PP constructions typically use
variants of digital signatures, such as group, blind, attribute-
based, and threshold signatures [61], to prove the legitimacy
of user interactions without human intervention. Specifically,
clients send a commitment of their attributes (e.g., nonce,
timestamp, number of access times) to the issuer. The issuer
generates a signature on the commitment and sends it back. To
redeem the token, the user employs a ZKP on the signature for
the given attributes [62]. In the context of DoS attacks, if an
attacker is blocked or unable to obtain tokens, it will realize it
has been detected and can change its identification or pseudo-
ID. PP can enhance DoS mitigation by encoding a validity
bit into its construction, issuing invalid credentials to clients
with a bad reputation, rendering them ineffective [63]. However,
PP constructions are limited in scalability, allowing only one
credential to be obtained at a time, which is insufficient
for large-scale networks. Post-quantum PP schemes based on
standardized lattice-based signatures, isogenies, code-based,
and multivariate cryptographic problems [64] are functional
but incur high computational costs and require significant

bandwidth. Thus, PQ-secure PPs are still impractical for DoS
defense in next-gen networks and require further development.
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VII. CONCLUSION

With the rise in cyber threats to real-world applications and
network services, DoS attacks have become more sophisticated
and easier to execute, making comprehensive countermeasures
increasingly challenging. This study addresses these gaps by
examining counter-DoS mechanisms in the AI era, focusing
on PQ security while integrating essential cybersecurity
properties such as privacy, anonymity, authentication, and
transparency. We highlighted deficiencies in the current
literature, evaluated advanced AI models, analyzed weaponized
AI, and explored collaborative distributed architectures.
Additionally, we assessed proactive approaches such as
honeypots and puzzles that could be integrated into next-gen
network systems for DoS prevention and mitigation. Our vision
aims to bridge the literature gap in the AI and PQ era, offering
valuable insights for future research in DoS countermeasures.
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