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Abstract—Federated learning (FL) enhances privacy by keep-

ing user data on local devices. However, emerging attacks have

demonstrated that the updates shared by users during training

can reveal significant information about their data. Differential

Privacy (DP) is considered the gold standard for safeguarding

user data. However, DP guarantees are highly conservative,

providing worst-case privacy guarantees. This can result in

overestimating privacy needs, which may compromise the

model’s accuracy. Additionally, interpretations of these privacy

guarantees have proven to be challenging in different contexts.

This is further exacerbated when other factors, such as the

number of training iterations, data distribution, and specific

application requirements, can add further complexity to this

problem. In this work, we proposed a framework that inte-

grates a human entity as a privacy practitioner to determine

an optimal trade-off between the model’s privacy and utility.

Our framework is the first to address the variable memory

requirement of existing DP methods in FL settings, where

resource-limited devices (e.g., cell phones) can participate. To

support such settings, we adopt a recent DP method with fixed

memory usage to ensure scalable private FL.

We evaluated our proposed framework by fine-tuning a

BERT-based LLM model using the GLUE dataset (a common

approach in literature), leveraging the new accountant, and

employing diverse data partitioning strategies to mimic real-

world conditions. As a result, we achieved stable memory

usage, with an average accuracy reduction of 1.33% for ϵ = 10

and 1.9% for ϵ = 6, when compared to the state-of-the-art

DP accountant which does not support fixed memory usage.

Index Terms—Differential Privacy, Federated Learning, Pri-

vacy Cost, Fine-Tuning, LLM

1. Introduction

Foundation models have achieved superior performance
across various domains, including finance, healthcare, and
cybersecurity. These models are trained on public data for
general tasks and later fine-tuned by different industries for

application-specific downstream tasks. The performance of
these models relies heavily on the quality and diversity of
their training data. This is especially important for sensitive
applications where the performance and robustness of the
model are crucial. However, for these applications, access
to distributed and diverse data is often restricted through
internal privacy policies or regulations such as HIPAA. This
limitation is widely acknowledged as a primary barrier to
training and fine-tuning models in the medical field [1].
Federated learning (FL) mitigates this issue by maintaining
the locality of the data and only requiring the participating
clients to share their local model (trained on their data) with
a central server.

While maintaining data locality can contribute to data
privacy, recent attacks (e.g., [2], [3]), demonstrated that
updates shared with the server can leak significant infor-
mation about the user dataset. These attacks can be cat-
egorized as follows, sorted by their privacy implications.
1) Membership Inference [4], [5]: The attacker’s goal is
to determine whether a specific data point was part of the
dataset used to train the model. 2) Model inversion [6]: A
more severe privacy attack, where the attacker adversary
attempts to recover information about the training data (i.e.,
approximate reconstruction). 3) Training Data Extraction
[7]: This is the most potent privacy attack where the attacker
attempts to recover the original training samples precisely.

Differential privacy (DP) has long been the gold standard
for mitigating these attacks [8]. This is achieved by injecting
a measured noise into model gradients to minimize the
influence of any single data point on the model parameters.
The magnitude of the noise is determined based on the
desired privacy guarantee, measured by the privacy cost
(ϵ, δ), which serves as a key parameter in DP algorithms.

In the FL setting, DP can be applied in different stages
and by different parties to protect against data privacy
attacks. Depending on the privacy goals, often dictated by
privacy policies or regulation requirements (e.g., HIPAA),
DP can be applied by the clients adding noise to their
gradient before sending it to the central server; this is often
referred to as local DP (LDP). Alternatively, in central DP



(CDP), the central server injects noise into the aggregated
global model at the end of each training iteration. In CDP,
the server has access to gradients sent by the users and is,
therefore, assumed to be trusted. However, in applications
that involve sensitive user data, relying on a trusted server
can pose significant privacy risks and potentially violate pri-
vacy policies and regulations [9]. LDP can provide privacy
at different stages of the model’s life cycle (from model
training to deployment) without assuming a trusted server.

DP methods provide a worst-case privacy guarantee,
which could result in utility loss due to the excessive added
noise. In practice, the worst-case DP guarantees may not
always be necessary for certain applications, potentially
sacrificing performance by overprotecting the model. For
instance, in some applications, user participation might be
public (e.g., social media), and only the user data should be
protected. In such cases, the privacy goal is to defend against
data reconstruction attacks to protect user data, which often
require significantly less noise compared to the noise needed
to defend against membership inference attacks [2].

Another critical aspect of privacy-preserving FL is the
selection of the DP method and the training parameters. In
highly distributed FL applications (e.g., [10]), the choice
of DP method and parameters can significantly impact user
participation. Certain DP methods tend to overestimate the
necessary noise or impose a high computational overhead,
making them impractical for low-end devices, particularly
those from underrepresented groups. For example, as re-
cently highlighted in [11], most of the widely adopted DP
methods, such as Renyi Differential Privacy (RDP) [12],
rely on Poisson subsampling which results in producing
variable size minibatches. This directly affects the machine’s
memory usage (Figure 1). While this might be manageable
in traditional centralized settings, where the model training
happens on powerful servers, in distributed FL applications
with low-end devices, this can lead to an out-of-memory
(OOM) error, potentially preventing certain devices from
participating in the training process. This can directly affect
the representation of different user groups in the training
process, impacting the data diversity and potentially the
model fairness [13], [14]. Lastly, the selection of FL param-
eters and the AI models to be trained in the federated setting
can significantly impact the performance and utility of the
trained model and user participation rates. For example,
while a larger batch size may reduce the noise required for
differential privacy, it can also introduce additional perfor-
mance overhead for users. These challenges highlight a key
research gap.

To address this, in this work, we present a framework
for Federated Learning Implementation with Privacy (FLIP)
that integrates a privacy practitioner into the training process
to guide privacy-aware decision-making. The practitioner’s
role is to help guide the selection of these parameters based
on application requirements, AI model, privacy objectives,
system specifications, resource constraints, and user partic-
ipation dynamics. This approach ensures a more informed,
context-sensitive decision-making process, optimizing both
privacy protection and overall system performance and lead-

ing to the training of robust AI models. Figure 2 provides
a high-level overview of FLIP.

1.1. Our Contributions

The contributions of our work as as follows. To our
knowledge, our work is the first to empirically highlight
the importance and effect of this selection process in the
private FL training of AI models. Our contributions are as
follows.

• Adoption of a Privacy Practitioner: Our work is the
first to empirically highlight the significance and impact
of selecting DP and FL parameters in privacy-preserving
federated learning (FL) for AI models. We introduce a novel
framework where a privacy practitioner assists in tuning
these parameters based on factors such as privacy require-
ments, performance trade-offs, computational constraints,
and system specifications.

•Adopting a Fixed Mini-Batch DP Method: FLIP is
the first privacy-preserving FL framework to: 1) highlight
the side effects of variable mini-batch sizes in existing DP
methods (e.g., RDP) on FL model training, 2) adopt a fixed
mini-batch approach (i.e., FSRDP) to ensure stable memory
usage throughout training, and 3) empirically compare the
impact of this choice on model accuracy.

• Comprehensive Study on DP, FL Parameters, and Data
Distribution: To our knowledge, FLIP is the first frame-
work to study the impacts of various DP and FL parameters
and the data distributions among the users in FL settings
on model performance. We conduct our experiments by
fine-tuning Large Language Models (LLMs) on four well-
known natural language processing tasks from the GLUE
dataset [15]. Fine-tuning LLMs in the context of studying
the impact of DP on model performance is a well-established
approach [16], [17]. For example, simulating our framework
in fine-tuneing BERT (with 109M parameters) [18] with
two different target privacy costs, ϵ = 6 and ϵ = 10,
while adopting FSRDP as our DP method, incurs up to
a 5% accuracy loss compared to the non-private model.
However, this gap can be reduced to as low as 2% when
optimized parameters and data distribution are enforced by
the practitioner. Our framework is open-source for public
verification and testing using the following link:

https://github.com/KasraAhmadi/FL-Privacy-LLM

2. Preliminaries

In this section, we examine three key areas of the liter-
ature: (1) FL, a distributed machine learning approach that
trains models across multiple devices; (2) Differentially pri-
vate deep learning, a comprehensive framework that ensures
rigorous privacy during the learning process; and (3) The
benefits of using differentially private stochastic gradient
descent with fixed-size minibatches compared to Poisson-
subsampled RDP.

https://github.com/KasraAhmadi/FL-Privacy-LLM


2.1. Federated Learning

Federated Learning (FL) enables the distributed training
of a central model, with contributions from a set of clients
who each train a local copy of the model using their own
data [19]. FL considers a central server who aggregates the
updates shared by the clients. A generic FL system consists
of a central server and k clients. Each client Ci holds a local
dataset Di, where i ∈ {1, 2, . . . , k}. The server’s objective
is to train a model using data distributed across the k clients.
When a client actively participates in local training, it aims
to optimize a vector w for an AI model by minimizing a
specified loss function. The server then aggregates the model
weights received from the k clients as follows:

w =

k
∑

i=1

piwi

Here, wi represents the parameter vector trained by the i-th
client, and w is the aggregated parameter vector at the server.

k denotes the total number of clients, while pi =
|Di|
|D| ≥ 0

satisfies
∑

k

i=1
pi = 1, with |D| =

∑

k

i=1
|Di| being the total

number of data samples across all clients. This optimization
problem can be expressed as:

w∗ = argminw

k
∑

i=1

piFi(w)

where Fi(w) represents the local loss function for the i-th
client.

In the FL process, the k clients work together to train
a machine-learning model with the assistance of a server.
After several rounds of local training and updates exchanged
between the server and the clients, the solution to the
optimization problem is expected to converge to the globally
optimal learning model.

2.2. Differential Privacy

Differential privacy [8], [20] is a rigorous privacy frame-
work that effectively mitigates the privacy risks associated
with deep learning [21]. The primary distinction between
DP-based deep learning and standard deep learning lies in
whether the gradient is released with privacy guarantees.
Definition 1: A randomized algorithm M is (ϵ, δ)-
differentially private if, for any two neighboring datasets
S and S′ (i.e., S′ can be obtained by adding or removing a
single data point from S), and for any event E, the following
condition holds :

P [M(S) ∈ E] ≤ eϵP [M(S′) ∈ E] + δ.

We consider the (ϵ, δ)-DP definition, where smaller values
of ϵ and δ indicate a stronger privacy guarantee.

Differentially Private Stochastic Gradient Descent (DP-
SGD) [21] ensures differential privacy by introducing noise
during the training process of machine learning models. DP-
SGD modifies the standard mini-batch SGD algorithm by
adding two additional steps:

Figure 1. Comparison of FSRDP and RDP accountant memory usage with
a batch size of 120 and a dataset size of 50,000 per training epoch [11].

• Gradient Clipping: For each per-example gradient
g(xi), where xi is a data point in the selected mini-
batch, clip the l2-norm to a predefined threshold C:

g(xi)←
g(xi)

max(1, ∥g(xi)∥2/C)
.

• Noise Addition: Add Gaussian noise to the aggre-
gated gradient of the mini-batch, where L is the
mini-batch size and σ is the noise scale.:

g ←
1

L

(

∑

i

g(xi) +N (0, σ2C2)

)

,

2.3. RDP and FSRDP

DP-SGD enables the use of a technique known as the
moments accountant to sequentially monitor privacy leak-
age. This approach is encompassed by Rényi Differential
Privacy (RDP) [12], a relaxed version of standard Differ-
ential Privacy [22]. RDP is widely applied in private deep
learning and is incorporated into modern DP libraries like
Opacus [23]. The underlying computation in RDP relies
on subsampling techniques that use a privacy amplification
lemma to enhance the privacy guarantees provided by the
added noise.

While there have been previous attempts to compute
privacy costs with a fixed mini-batch size, such as the
works of Balle et al. [24] for (ϵ, δ)-DP and Wang et al.
[25] for RDP, these approaches had significant shortcomings.
The earlier (ϵ, δ)-DP methods did not compose easily over
multiple training steps, often leading to privacy leakage,
making them impractical for iterative processes like SGD.
Similarly, Wang’s RDP accountant was not as tight, resulting
in suboptimal privacy bounds. In contrast, FSRDP [11] is the
first privacy accountant capable of computing privacy costs
with fixed-size mini-batches while achieving much tighter
bounds. In fact, FSRDP is very close to the theoretical lower
bound in many practical cases, offering significantly im-
proved privacy guarantees over previous RDP-based meth-
ods.

This offers a significant advantage of consistent memory
usage compared to the variable-sized mini-batches in Pois-
son subsampling. While the results in [11] were purely theo-
retical, in this paper, by highlighting the importance of fixed



memory usage in FL settings, we adopt their accountant,
and after conducting extensive experiments, we show that
for certain applications and data distributions, the accuracy
loss, compared to RDP is insignificant. Figure 1 depicts
the memory consumption of FSRDP and RDP accountants.
In contrast to RDP, FSRDP maintains a constant memory
footprint throughout the training process.

3. Proposed Framework

The goal of our framework, FLIP, is to optimize model
performance given the required privacy requirements. In
our proposed framework, the privacy practitioner (human
expertise) is crucial in improving security and privacy
through collaboration with clients and the privacy engine.
The suggested data flow architecture, as depicted in Figure
2, includes four entities: Requirement, Privacy Practitioner,
Clients, and Privacy Engine.

3.1. Clients

A client is a device, user, or entity involved in the
decentralized training process, where it locally stores and
processes its own private data. Clients contribute to training
a shared machine learning model using their private data
and periodically transmit model updates to the privacy en-
gine. Since in FLIP we aim to achieve full-stack privacy
(during training and after deployment), DP is implemented
on the client side. Therefore, after receiving the FL and DP
parameters from the practitioner, aside from model training,
the client has to compute and inject the noise to its update.

3.2. Requirements

In Federated Learning (FL), clients collaboratively train
a centralized model, which may either be deployed for their
own use or commercialized by the entity that organizes the
federation. This entity facilitates client participation, often in
exchange for a service or financial compensation. Therefore,
the selection of requirements is determined either by a
coalition of clients or by the organizing entity overseeing
the federation. These requirements can be categorized into
privacy and learning process requirements.

3.2.1. Privacy Requirements.

• Target privacy requirement: This key parameter
is central to calculating the privacy cost (ϵ) and
helps the practitioner determine the optimal trade-
off between individual privacy and model accuracy.
The selection of ϵ varies by application, requiring a
trade-off, as lower values of ϵ enhance privacy but
often come at the cost of reduced model accuracy.
The interpretation of ϵ depends on many factors, in-
cluding the number of training iterations (both local
and global), data type, AI model, and other system
specific parameters. However, this interpretation has

Requirements

Privacy 

Practitioner

Privacy 

Engine

Clients Base

Model

Central

Server

DP-SGD

DP-SGD

DP-SGD

Figure 2. The data flow architecture for the proposed framework

proven to be very challenging [26], as ϵ does not di-
rectly translate to an intuitive measure of privacy risk
across different settings . Instead, they can specify
a privacy goal, such as mitigating the membership
inference attack (MIA) or reconstruction attack, and
a privacy practitioner can determine the suitable ϵ
value accordingly. Alternatively, if the DP is solely
being implemented to meet certain requirements,
enforced by regulations, the privacy cost could be
computed by the privacy practitioner based on these
requirements.
MIA and reconstruction privacy goals are applied
differently across various real-world scenarios. For
example, in financial applications, MIA is generally
not a primary concern. This is because certain infor-
mation, such as the knowledge of which bank a per-
son has a credit card with, is often considered public
and not sensitive. However, more private details like
one’s Social Security Number (SSN) and account
balance are crucial to protect. In such cases, the
goal is not necessarily to prevent MIA but to guard
against reconstruction attacks, where an adversary
might attempt to reconstruct sensitive information
about an individual from available data.

3.2.2. Learning Process Requirements.

• Number of Clients: The number of clients in the FL
requires careful consideration. A larger client base
increases diversity and robustness but necessitates
efficient communication and aggregation strategies
to address scalability issues. On the other hand,
fewer clients make management simpler but may
reduce the model’s representativeness and resilience.

• Data Distribution: In some applications, no infor-
mation about user data can be shared with the pri-
vacy practitioner. However, when feasible, insights
into data distribution can significantly aid the prac-
titioner in setting an effective privacy target and



ultimately computing an appropriate ϵ. As demon-
strated in our experiments, when data is uniformly
distributed across all users, the model generally
achieves higher accuracy and can tolerate a lower
ϵ while maintaining utility. Conversely, maintaining
high accuracy under strict privacy constraints be-
comes more challenging in heterogeneous settings
where data distributions vary significantly across
clients. Certain data partitions may hold greater
significance in the training process in such cases,
requiring the privacy engine to incorporate adaptive
strategies that account for these constraints, balanc-
ing privacy preservation with model performance.
In addition to aiding in the selection of the appropri-
ate ϵ, knowledge of data distribution can also enable
a tailored client selection during each training round.
By carefully choosing clients with better uniform
data distributions, the practitioner can improve over-
all data diversity across participants, model perfor-
mance, and privacy. This tailored client selection
approach can also help address other challenges
posed by heterogeneous data distributions, ensuring
a more balanced and effective training process in
federated learning while maintaining privacy targets.

• Client’s Computation Constraints: Computation
constraints on the client side are another key concern
in federated learning, as clients often consist of
resource-limited devices such as smartphones, IoT
devices, or edge devices. These limitations signif-
icantly impact the efficiency and feasibility of the
learning process. In this context, we identify the
benefit of the FSRDP accountant [11]. Although not
explicitly designed for resource-constrained devices,
it is particularly valuable in our framework because
it uses constant memory when calculating the noise
for a given ϵ, making it well-suited for these applica-
tions. Furthermore, the batch size, a parameter that
directly influences both the training duration and the
DP-SGD algorithm, is closely tied to the available
memory on each client. It is the responsibility of
the privacy practitioner to determine the batch size
based on the memory capacity of individual clients
(that can be provided in the requirements).

3.3. Privacy Practitioner

• Security Parameters Calculation: By utilizing its
local privacy engine, the practitioner must determine
the appropriate ϵ value based on the target security
constraints, which are influenced by the need to mit-
igate potential risks such as membership inference
attacks (MIA) or reconstruction attacks, as well as to
meet the privacy requirements set for the application.
After selecting the suitable ϵ value, the practitioner
also chooses the appropriate differential privacy ac-
countant. For memory-constrained applications, in
our framework, FSRDP is selected, as it ensures
constant memory usage but may result in slightly

lower model accuracy. For cases where higher model
accuracy is desired, RDP is chosen, which may
involve non-constant memory usage. Once the ϵ and
δ (where δ = 1

|Di|
, representing the inverse of the

dataset size) are determined, these parameters are
provided clients. The client then utilizes their privacy
engine, which calculates the necessary noise to be
added to the client’s gradient.

• Set Batch size: The batch size affects the efficiency
and effectiveness of DP-SGD by determining how
many samples are used in each model update. The
ideal batch size strikes a balance between model
security, training speed, memory usage, and over-
all performance. The privacy practitioner sets this
parameter according to the available memory on the
client side and the desired model performance.

3.4. Privacy Engine

• Noise Calculation: The privacy engine calculates
the necessary noise using the specified accountant,
ϵ, batch size, and δ values. This noise is then injected
into the client’s gradient via the DP-SGD algorithm.

• Requirement Adherence Tracking: In certain sce-
narios, the framework may fail to achieve the re-
quired accuracy due to factors such as the client’s
data partition, target security level, and target mini-
mum accuracy. This limitation is primarily caused by
the small size of partitioned data, where adding high
noise to a gradient computed on a limited dataset can
result in reduced accuracy. In such cases, the privacy
engine generates a warning to indicate that the de-
sired accuracy cannot be met. To address this, clients
can either expand their data partitions or increase
memory resources to adopt a different accountant,
such as RDP instead of FSRDP, to reduce the noise
added during the DP-SGD algorithm.

4. Experiments

4.1. Experiment Setup

Our work was conducted using a single NVIDIA RTX
6000 Ada Generation GPU, equipped with 18,176 CUDA
cores and 48GB of dedicated memory. We selected the
pre-trained BERT base model (cased), which contains 109
million parameters, to ensure that LLM loading and fine-
tuning could be accommodated within the internal memory.
The model is available at Hugging Face hub1.
We utilized the Flower framework2 to simulate a federated
learning environment for fine-tuning LLMs, while the Trans-
formers library was used for tasks such as training, tok-
enization, and evaluation. The GLUE dataset3, accessed via
Hugging Face, was used for data loading. In particular, we

1. https://huggingface.co/google-bert/bert-base-cased

2. https://flowerai.net/

3. https://huggingface.co/datasets/nyu-mll/glue



utilized four specific datasets from the GLUE benchmark,
which are described below.

• QNLI: The Question-Answering Natural Language
Inference (QNLI) dataset, sourced from Wikipedia,
comprises 110,400 question-paragraph pairs. Each
paragraph contains only one sentence that answers
the associated question. The task for the language
model is to identify whether a given sentence con-
tains the correct answer to the question.

• QQP [27]: The Quora Question Pairs (QQP) dataset
contains more than 400,000 pairs of questions, each
labeled to show whether the questions are seman-
tically equivalent, meaning they are paraphrases of
each other. The task for the language model is to
determine if one question is a paraphrase of the
other.

• SST2 [28]: The Stanford Sentiment Treebank
(SST2) dataset consists of 68,800 sentences from
movie reviews, each annotated with its sentiment.
The task for the language model is to classify the
sentiment of a given sentence as either positive or
negative.

We defined the training and testing splits for each dataset
as follows: QNLI with 105,000 samples for training and
5,460 for testing; QQP with 364,000 samples for training
and 391,000 for testing; and SST-2 with 67,000 samples for
training and 1,820 for testing.

We simulate a federated learning environment with 4
distinct clients, each assigned its own training and testing
dataset. The setup includes 5 training rounds, a learning rate
of 2e − 5, and a batch size of 550. We adopt the FedAvg
algorithm of McMahan et al. [19]

To replicate real-world data generation across decen-
tralized devices, we distribute the training and testing data
among clients using 4 distinct partitioning strategies: Iid,
Linear, Square, and Exponential.
In the Iid policy, the partitioner creates partitions by ran-
domly and uniformly sampling data from the dataset.
In the Linear policy, partitions are created such that the
size of each partition is linearly proportional to its ID. The
amount of data assigned to each client increases linearly
with the partition ID. For example, if the IDs range from 1
to k, the client with ID 1 receives 1 unit of data, client 2
receives 2 units, and so on, until client k, which receives k
units.
In the Squared policy, the data assigned to each client is
proportional to the square of the partition ID. For instance,
if the IDs range from 1 to k, the client with ID 1 receives
1 unit of data, client 2 receives 4 units, and so on, up to
client k, which receives k2 units.
In the Exponential policy, the data allocation is based on
the exponential value of the partition ID. For example, if
the IDs range from 1 to M, the client with ID 1 receives
e1 units of data, client 2 receives e2 units, and so on, up to
client k, which receives ek units.

We assessed and pre-computed the necessary noise for
the specified security parameters and data partition size to

TABLE 1. MAX ACCURACY ACROSS DATASETS AND PARTITION

POLICIES USING NON-PRIVATE , RDP, AND FSRDP ACCOUNTANT FOR

ϵ = 6 AND ϵ = 10

Dataset
Partition

Policy
Non-Private

ϵ = 10 ϵ = 6

RDP FSRDP RDP FSRDP

Iid 88% 87% 86% 87% 86%

QQP
Linear 88% 88% 86% 86% 85%
Square 89% 88% 85% 85% 84%

Exponential 89% 87% 85% 88% 84%

Iid 87% 87% 86% 86% 85%

QNLI
Linear 88% 88% 87% 87% 83%
Square 88% 88% 86% 86% 84%

Exponential 88% 85% 84% 88% 83%

Iid 91% 90% 89% 90% 89%

SST2
Linear 90% 90% 89% 89% 87%
Square 92% 90% 89% 89% 88%

Exponential 91% 91% 90% 90% 89%

TABLE 2. DATA PARTITION SIZE BASED ON IID, LINEAR, SQUARE,
AND EXPONENTIAL PARTITION POLICIES

Dataset
Partition

Policy
Partition

1
Partition

2
Partition

3
Partition

4

Iid 90962 90962 90962 90962

QQP
Linear 36384 72769 109153 145540
Square 12128 48512 109153 194053

Exponential 11664 31707 86188 234287

Iid 26186 26186 26186 26185

QNLI
Linear 10474 20948 31422 41899
Square 3491 13965 31422 55865

Exponential 3357 9127 24811 67448

Iid 16838 16837 16837 16837

SST2
Linear 6734 13469 20204 26942
Square 2244 8979 20204 35922

Exponential 2159 5869 15953 43368

be added during the learning process, utilizing two widely-
used state-of-the-art differential privacy accountants: Renyi
Differential Privacy (RDP) [12], [21] and FSRDP Accoun-
tant [11]. We developed a function in the Flower framework
that incorporates noise at the client side during training.
The noise is added after each round, scaled by the standard
deviation divided by the batch size (550 in our experiments).
For security parameters, we set ϵ = 10, 6 and δ = 1e − 6
for larger datasets (e.g., QNLI, and QQP, each containing
several hundred thousand samples) and δ = 1e − 5 for
the smaller dataset (e.g., SST-2, with tens of thousands of
samples). Clipping norm is set to 3 for all experiments. T

4.2. Experiments Results

Figures 3, 4, and 5 depict the accuracy results for
three noise addition methods—Non-Private, FSRDP,
and RDP—across various datasets and partitioning policies
in 5 rounds of the federated learning process. We examined
the noise levels needed for each accountant to achieve a
target ϵ and evaluated how different partitioning policies
influence the maximum accuracy attained.

4.2.1. Various Partition Policies Impact on Max Ac-
curacy. Table I presents the maximum accuracy achieved
across various datasets, partition policies, ϵ values, and
accountant methods. For small datasets like SST2, different
partitioning policies have minimal impact on accuracy for



TABLE 3. REQUIRED NOISE PER DATA PARTITION TO ACHIEVE ϵ = 6 AND ϵ = 10 FOR ACCOUNTANTS RDP AND FSRDP

Dataset
Partition

Policy

ϵ = 10 ϵ = 6
Partition 1 Partition 2 Partition 3 Partition 4 Partition 1 Partition 2 Partition 3 Partition 4

RDP FSRDP RDP FSRDP RDP FSRDP RDP FSRDP RDP FSRDP RDP FSRDP RDP FSRDP RDP FSRDP

Iid 0.84 1.66 0.84 1.66 0.84 1.66 0.84 1.66 0.91 1.79 0.91 1.79 0.91 1.79 0.91 1.79
QQP Linear 0.96 1.88 0.86 1.71 0.82 1.63 0.8 1.59 1.12 2.09 0.95 1.85 0.89 1.75 0.86 1.69

Square 1.28 2.39 0.91 1.8 0.82 1.63 0.77 1.55 1.65 2.84 1.03 1.98 0.89 1.75 0.83 1.63
Exponential 1.29 2.42 0.98 1.92 0.84 1.67 0.76 1.52 1.68 2.88 1.16 2.16 0.92 1.81 0.81 1.6

Iid 1.02 1.99 1.02 1.99 1.02 1.99 1.02 1.99 1.24 2.26 1.24 2.26 1.24 2.26 1.24 2.26

QNLI
Linear 1.34 2.49 1.08 2.09 0.98 1.92 0.93 1.84 1.76 2.99 1.34 2.4 1.17 2.17 1.07 2.03
Square 2.13 3.77 1.22 2.3 0.98 1.92 0.89 1.76 2.93 4.8 1.56 2.71 1.17 2.17 1 1.93

Exponential 2.17 3.85 1.41 2.6 1.04 2.01 0.87 1.72 2.99 4.9 1.86 3.15 1.26 2.3 0.96 1.87

Iid 1.15 2.19 1.15 2.19 1.15 2.19 1.15 2.19 1.45 2.56 1.45 2.56 1.45 2.56 1.45 2.56

SST2
Linear 1.58 2.88 1.23 2.32 1.09 2.1 1.02 1.98 2.13 3.54 1.58 2.75 1.36 2.43 1.23 2.25
Square 2.7 4.79 1.42 2.61 1.09 2.1 0.96 1.88 3.75 6.27 1.88 3.17 1.36 2.43 1.12 2.1

Exponential 2.77 4.9 1.68 3.03 1.17 2.22 0.93 1.83 3.84 6.45 2.27 3.74 1.48 2.6 1.06 2.02

both RDP and FSRDP. For large datasets without noise,
partitioning policies similarly show little effect on accuracy.
When dealing with large datasets, high security (ϵ = 6), and
the FSRDP accountant, the Iid policy delivers the best per-
formance. In contrast, for the same security level and large
datasets using the RDP accountant, the Exponential policy
performs best. For large datasets requiring lower accuracy (ϵ
= 10) with both FSRDP and RDP accountants, partitioning
policies have a negligible impact on performance. Table II
describes data partition size based on various partition poli-
cies. Finally, Table III outlines the necessary noise standard
deviation for ϵ = 10 and ϵ = 6, which must be added during
the training phase of each client at the end of each training
round.

4.2.2. Accountant Type Impact on Noise for Target ϵ. In
reference to Table III, achieving a higher privacy level (lower
ϵ) necessitates the addition of more noise. Furthermore, the
FSRDP accountant requires greater noise levels compared
to the RDP accountant to attain the same epsilon value
under the add-remove adjacency relation. We note, however,
that under replace-one adjacency, another commonly used
adjacency notion, RDP and FSRDP require nearly identical
noise levels to achieve the same ϵ value; see the discussion
in Section 4 of [11], including the comparison in Figure 4.
More specifically, the noise levels for RDP in Table III would
need to be approximately doubled in order to provide the
same ϵ guarantee under both adjacency relations, while the
noises currently listed for FSRDP in Table III guarantee the
stated ϵ for both adjacency relations. Thus, when requiring
the privacy guarantees to extend to replace-one adjacency,
the benefits of fixed-size subsampling are even more appar-
ent. As the proper choice of adjacency relation is debatable,
one might reasonably require guarantees that cover both, in
which case the benefits of FSRDP are even more apparent.

4.3. Discussion

Our research is the first in FL-DP to highlight the critical
role of federated learning and differential privacy parame-
ters, as well as their combined effect on model privacy and
utility. FLIP integrates a human practitioner who suggests
privacy and FL parameters to help strike an optimal balance
between privacy and utility in these environments. We focus

Figure 3. QQP Accuracy Across 5 Rounds with ϵ = 10

Figure 4. QNLI Accuracy Across 5 Rounds with ϵ = 10

on the widely adopted task of fine-tuning large language
models (LLMs) and illustrate how key parameters such as
privacy cost, data distribution, and client selection strategies
affect model performance. FLIP is also the first privacy-
preserving framework to address the memory constraints
of mobile devices in an FL setting by employing a pri-
vacy accountant with fixed memory requirements, achieved
through a fixed minibatch size. Finally, we offer a detailed
comparison between fixed-size minibatch accounting and



Figure 5. SST2 Accuracy Across 5 Rounds with ϵ = 10

the state-of-the-art RDP approach, highlighting the trade-
offs in privacy and utility. The FSRDP accountant provides
advantages such as achieving an acceptable maximum accu-
racy and uniform memory usage. However, our experiments
indicate that while the model performs well in the initial
rounds using FSRDP accountant, its accuracy may decline
in the later stages. This drop is caused by the cumula-
tive effect of noise introduced by the FSRDP accountant
and imbalances in client contributions. To overcome these
challenges, we propose strategies like dynamically adjusting
noise levels during training to better balance privacy and
accuracy, as well as ensuring balanced client sampling to
improve stability in the later rounds.
In the proposed framework, the privacy practitioner may
be either a human expert or an AI agent, each with distinct
security implications. A human practitioner offers adaptabil-
ity but is susceptible to errors, biases, and inconsistencies
when setting privacy parameters. Conversely, an AI agent
ensures consistency but may be prone to algorithmic bias,
adversarial exploitation, or limited flexibility. To mitigate
bias and ensure reliability, we propose a hybrid approach
where privacy parameters are selected based on standardized
security guidelines, with AI-assisted recommendations and
human oversight when needed.

5. Conclusion

Our study highlights the critical role of parameter se-
lection and the interpretation of privacy costs in different
application settings. By examining the interplay between
federated learning and differential privacy, we demonstrate
how thoughtful parameter tuning can significantly impact
both model utility and privacy guarantees. A promising
direction for future work is to expand this study with more
comprehensive experiments, considering diverse data types
such as images and text to further generalize our findings.
Additionally, further evaluation of FSRDP with the replace-
one adjacency relation could provide deeper insights into
its effect on privacy guarantees and model utility, offering

valuable guidance for privacy-preserving federated learning
deployments.
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rényi differential privacy and analytical moments accountant,” in The

22nd international conference on artificial intelligence and statistics,
pp. 1226–1235, PMLR, 2019.

[26] A. Triastcyn and B. Faltings, “Bayesian differential privacy for ma-
chine learning,” in Proceedings of the 37th International Conference

on Machine Learning, vol. 119 of Proceedings of Machine Learning

Research, pp. 9583–9592, PMLR, 2020.

[27] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill,
O. Levy, and S. R. Bowman, “Superglue: A multi-task benchmark
and analysis platform for natural language understanding,” Advances

in Neural Information Processing Systems, vol. 32, pp. 3261–3275,
2019.

[28] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng,
and C. Potts, “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proceedings of the 2013 conference on

empirical methods in natural language processing, pp. 1631–1642,
2013.

https://opacus.ai/docs/introduction

	Introduction
	Our Contributions

	Preliminaries
	Federated Learning
	Differential Privacy
	RDP and FSRDP

	Proposed Framework
	Clients
	Requirements
	Privacy Requirements
	Learning Process Requirements

	Privacy Practitioner
	Privacy Engine

	Experiments
	Experiment Setup
	Experiments Results
	Various Partition Policies Impact on Max Accuracy
	Accountant Type Impact on Noise for Target  

	Discussion

	Conclusion
	References

