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Abstract

A growing interest in tasks involving language understanding by the NLP com-
munity has led to the need for effective semantic parsing and inference. Modern NLP
systems use semantic representations that do not quite fulfill the nuanced needs for
language understanding: adequately modeling language semantics, enabling general
inferences, and being accurately recoverable. This document proposes a plan to
create a semantic parser of an initial form for a logic that balances these needs.

We present a plan for creating a high-precision semantic parser for an underspec-
ified logical form (ULF) from annotated texts and which fits into further process-
ing for ambiguity resolution. The semantic representation is grounded in Episodic
Logic (EL) and ULF fully resolves the type structure with respect to EL while leaving
further issues such as scope, word sense, and anaphora in a restricted, but unresolved,
state. We hypothesize that a divide-and-conquer approach to semantic parsing will
lead to higher quality semantic analyses by simplifying the problem, both from the
perspective of researchers careful to handle linguistic phenomena appropriately and
from the perspective of building an accurate semantic parser. In addition to cre-
ating this parser, this project aims to quantify the use of parsed ULFs for making
inferences directly. ULFs enable structural inferences, including Natural Logic-like
inferences, without further resolution, which are useful for downstream tasks such as
dialogue and question answering.
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Chapter 1

Introduction

After many years of preoccupation with more modest goals, the computational lin-
guistics and computational semantics communities are setting their sights on deeper
language understanding, intelligent dialogue, and reasoning by machines. This is
attended by a growing recognition of the need for semantic parsing as a fundamental
task in automating these profoundly human capabilities. In a sense, semantic pars-
ing is an elaboration of traditional syntactic parsing, providing at least a preliminary
representation of the meanings underlying the surface syntax, and as such a starting
point for deeper understanding and thus for generating relevant inferences or actions.

The goal of this project is to develop methods that enable accurate formalization
of the semantic content of arbitrary English sentences. We will focus on the goal
of generating type-coherent initial logical forms (so-called unscoped logical forms –
ULFs), and this project seeks to demonstrate that ULFs both provide a stepping stone
to full capture of sentential meanings and enable interesting classes of inferences that
subsume Natural Logic (NLog) inferences.

A particularly auspicious development in general representations of semantic con-
tent has been the design of the abstract meaning representation (AMR) (Banarescu
et al., 2013) followed by numerous research studies focused on generating AMR from
English and on using it in tasks dependent on representation of the semantic content
of text. The origins of AMR go back to the Penman text generation project of
the 1980s (Bateman, 1990), but new inspiration was drawn from more recent oppor-
tunities for machine learning of semantic parsers, and for potential applications in
machine translation. AMR is intended as a kind of intuitive normal form for the
relational content of English sentences, for example factoring both of the sentences
“The man described the mission as a disaster” and “As he described it, the mission
was a disaster” into four typed entities that are presumed to exist: a describing event
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d, a man m, a mission m2, and a disaster d, where the latter three are linked to the
describing event d by binary relations arg0, arg1, and arg2 respectively.

However, given the limited goals of AMR, some phenomena were deliberately
neglected, such as articles, tense, and the distinction between real and hypothetical
entities. For example, “The boy thinks he saw a ghost” is represented in terms of a
boy, a ghost, and a seeing event (all with the same existential status), where there
is an arg1 relation between the thinking event and the seeing event (which might be
current or in the past or future). Apart from neglecting various phenomena, AMR
treats many others in a very rough way, such as rendering modifications like big rat as
two independent predicates, big and rat. This is probably good enough for language
generation (NLG) and machine translation (MT): We can recover big rat from is big
and is a rat, and small elephant from is small and is an elephant, without worrying
that the NLG or MT system will declare that the rat is bigger than the elephant. In
other words, AMR was not intended for inference, and is not well-suited to it. But
to achieve deeper understanding we do need to worry about this, and inference is
a central activity and requirement for understanding. We do not want a dialogue
system or other NLU system to jump to unwarranted conclusions about the reality
of ghosts or about rats that are bigger than elephants.

In a sense, the omissions and oversimplifications in AMR were the price paid
to enable creation of AMR-annotated corpora of adequate size, and “fell-swoop”
training of English-to-AMR parsers on these corpora. This is certainly a sound strat-
egy for the purposes the designers had in mind, and work to date on parsing and
using AMR is bearing this out. However, deep semantic processing leading to gen-
uine understanding and inference is widely thought to require a divide-and-conquer
approach that distinguishes multiple, interrelated goals; this includes assignment of
semantic types to the logical-form constituents (predicates, names, determiners, pred-
icate modifiers, relativizers, etc.), which determine how they can coherently combine;
scoping of tense, quantifiers, and coordinators; resolution of anaphora; inference of
event structure; disambiguation of word senses; recovery of elided or presupposed
information; and conversion to some canonical form.

Our working hypothesis is that a practical starting point for a divide-and-conquer
approach is the computation of a preliminary, surface-like logical form (ULF) that
retains the full content of the original sentence, but resolves the semantic types and
operator-operand structure of the constituents. We see the following advantages in
this approach:
• In forming a training corpus for supervised machine learning, annotating sentences

with logical forms that are close to the surface form should be relatively fast,
reliable and loss-free, compared to annotations that require radical restructuring.
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Our preliminary work on sentence annotation is providing confirming evidence for
this hypothesis.

• Machine learning of the transduction from sentences to logical forms should be
possible with a modest training corpus, again because the transductions are fairly
close to an isomorphism from phrasal structure to ULF. As a quick preview, here
is the ULF for The boy wants to go” (an example used in the AMR literature):

((the.d boy.n) ((pres want.v) (to go.v))).
• ULF allows a principled analysis of the structural relationships and processes

that determine further transformations required for resolving scope ambiguities
(for quantifiers, tense operators, coordinators) and coreference relations, inferring
event structure, disambiguating word senses, and deriving a final canonical logical
form. Much of the past work on episodic logic has addressed these issues. As a
simple example of how ULFs can be successively disambiguated, the ULF men-
tioned above would become

(pres (the.d x (x boy.n) (x (want.v (to go.v)))))

after tense and determiner scoping, and this would be deindexed, Skolemized, and
canonicalized (apart from word sense disambiguation) to

(|E|.sk at-about.p |Now17|),

((the.d x (x boy.n) (x (want.v (to go.v)))) ** |E|.sk).

Here |E|.sk is a Skolemized episode variable, characterized by the sentence it is
linked to via the ‘**’ operator. (For the semantics of ‘**’ see (Schubert, 2000).)
The ‘to’ operator forms a kind of action – see further discussion below. If we have
a name for the boy via coreference, say Manolin, this would further become

(|E|.sk at-about.p |Now17|),

((|Manolin| (want.v (to go.v))) ** |E|.sk).

Apart from the reification in (to go.v), this is essentially a pair of first-order
sentences, with the English-like wrinkle that the subject precedes the predicate.

• ULF itself, before any further transformations, already allows significant infer-
encing. Many of the inferences are similar to those enabled by Natural Logic
(NLog), as implemented for example by MacCartney and Manning (MacCartney
and Manning, 2008) and further developed subsequently. However, the kinds of
inferences enabled by ULFs are broader in scope, and they can be generated spon-
taneously by forward inference. (In principle, this is possible for NLog inferences
also, but uncertainties in the type structure of source sentences lead to the need
for well-structured “target sentences” to be confirmed or disconfirmed.) Forward
inference from language is an important capability, one that can show a degree
of understanding independently of any particular application. Our techniques
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can also be applied to existing tasks, such as the FraCaS inference challenge cor-
pus (Cooper et al., 1996a) (premises and possible conclusions stated in English),
including certain classes that were omitted in NLog trials.

• If ULFs can be computed with sufficient accuracy (as I expect), they could serve as
a starting point for other semantically oriented NLP projects, such as extraction of
general and specific “factoids” from text, or text summarization. Essentially ULFs
would supply type-disambiguated, structured versions of the original sentences.

The remainder of this chapter outlines the structure of ULF, how ULF computa-
tion fits into a more comprehensive picture of semantic sentence analysis, and how
ULFs, and ultimately deeper representations derived from them, can be used to make
commonsense inferences. The following chapter will discuss related work before the
last chapter which outlines the 3-stage research plan:
• the creation of an annotated corpus;
• the use of machine learning to develop a reliable English-to-ULF parser, and
• evaluation of the resulting parser; the internal evaluation will be much like that of

AMR, and the external evaluation will include forward inference generation from
sentences (via their computed ULFs).

1.1 Unscoped Logical Form, Deeper Semantic Analysis,
and Inference

The idea of the ULF in our project was not developed in isolation, but rather
as part of a more comprehensive approach to deriving deep, semantically coher-
ent and inference-enabling representations of linguistic content, namely, Episodic
Logic (Hwang, 1992; Hwang and Schubert, 1993; Schubert and Hwang, 2000). In
this section I give a high-level description the form and meaning of ULFs followed
by the role of ULFs in deeper understanding and the kinds of inferences enabled by
ULFs and further resolved forms.

1.1.1 ULF type structure
The following six examples provide an idea of the language-like syntax of ULFs. The
first two are from the Tatoeba database, the next three are from The Little Prince
(which was used for the first AMR-annotated corpus), and the last is from the Web:

1. Could you dial for me?
(((pres could.aux-v) you.pro ((dial.v {ref1}.pro) (adv-a (for.p me.pro)))) ?)

2. If I were you I would be able to succeed.
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((if.c (I.pro (were-cf.v (= you.pro)))

(I.pro ((pres would.aux-s) (be.v (able.a (to succeed.v)))))) \.)

3. He neglected three little bushes
(he.pro ((past neglect.v) (three.d (little.a (plur bush.n)))))

4. Flowers are weak creatures
((k (plur flower.n)) ((pres be.v) (weak.a (plur creature.n))))

5. My drawing is not a picture of a hat
((my.d drawing.n) ((pres be.v) not.adv-s (a.d (picture-of.n (a.d hat.n)))))

6. Very few people still debate the fact that the earth is heating up
(((fquan (very.adv-a few.a)) (plur person.n))

(still.adv-s (debate.v

(the.d (n+preds fact.n

(= (that ((pres prog)

((the.d |Earth|.n) heat_up.v)))))))))

As can be seen, ULF structure quite closely reflects phrase structure; and the type
tags of atomic constituents, such as .pro, .v, .p, .a, .d, .n, etc., are intended to
echo the part-of-speech origins of these constituents, such as pronoun, verb, preposi-
tion, adjective, determiner, noun, etc., respectively. Originally, ULFs contained some
λ-abstracts, for example to form a conjunctive predicate from postmodified nouns,
but we have introduced syntactic sugar elements that relieve annotators from coding
such abstracts. An example is seen in (6): The n+preds macro takes a noun and
one or more predicates as complements, and these are expanded into a λ-abstracted
conjunctive predicate in postprocessing. As a result, ULFs are relatively amenable
to human creation and intuitive interpretation. Moreover, as mentioned in the In-
troduction, the proximity to surface structure enables NLog-like inference and more.

But then isn’t parsing into ULF just another variant of syntactic parsing? The
essential difference is that the type tags correspond to broad semantic categories (cer-
tain types of model-theoretic functions), and as such ensure that the type structure
of ULFs – their operator-operand combinations – are semantically coherent. Richard
Montague’s profoundly influential work can be viewed as demonstrating the crucial
importance of paying attention to the semantic types of words and phrases, and that
doing so leads to a view of language as very close to logic; as a result it lends itself
to inference, at least to the extent that we can resolve – or are prepared to tolerate
– various forms of ambiguity, context-dependence and indexicality.

These semantic types are not as high-order as Montague’s, nor as “rigid” as
Montague’s, but they suffice for maintaining type coherence. In particular, quantifi-
cation is first-order, i.e., it iterates over individual entities, not over predicates, etc.
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– though through reification of predicate meanings and sentence meanings, we can
“talk about” kinds of things, kinds of actions, propositions, etc., not just ordinary
objects.

As soon as we take semantic types seriously in ULFs like the above, we see that
certain type-shifting operators are needed to maintain type coherence. For example,
in sentence (1) the phrase for me is coded as (adv-a (for.p me.pro)), rather than
simply (for.p me.pro). That is because it is functioning here as a predicate modifier,
semantically operating on the verbal predicate (dial.v {ref1}.pro) (dial a certain
thing). Without the adv-a operator the prepositional phrase is just a 1-place predi-
cate. Its use as a predicate is apparent in contexts like “This puppy is for me”. Note
that semantically the 1-place predicate (for.p me.pro) is formed by applying the
2-place predicate for.p to the (individual-denoting) term me.pro. (Viewing n-place
predicates as successively applied to their arguments, each time reducing the adicity,
is in keeping with the traditions of Schönfinkel, Church, Curry, Montague, and oth-
ers – hence “curried” predicates.) If we apply (for.p me.pro) to another argument,
such as |Snoopy| (the name of a puppy), we obtain a truth value. So semantically,
adv-a is a type-shifting operator of type (predicate → (predicate → predicate))), where
the predicates are 1-place and thus of type (entity → truth value). Of course, the
name adv-a is intended to suggest “adverbial”, in recognition of the grammatical
distinction between predicative and adverbial uses of prepositional phrases.

In the preceding discussion we glossed over intensionality. For example, (2) is a
counterfactual conditional, and the consequent clause “I would be able to succeed” is
not evaluated in the actual world, but in a possible world where the (patently false)
antecedent is imagined to be true. ULF and deeper LFs derived from it are based
on a semantics where sentences are evaluated in possible situations (episodes), whose
maxima are possible worlds. Details about syntactic forms and semantic types in
episodic logic have been provided in many past publications (Hwang, 1992; Hwang
and Schubert, 1994; Schubert and Hwang, 2000).

There are some further type-shifting operators in the examples: ‘to’ (synonym:
ka) in (2) shifts a verbal predicate to a kind (type) of action or attribute, which is
an abstract individual; ‘k’ in (4) shifts a nominal predicate to a kind of thing (so the
subject here is the abstract kind, flowers, whose instances consist of sets of flowers;
and ‘that’ in (6) produces a reified proposition (again an abstract individual) from
a sentence meaning. Through these type shifts, we are able to maintain a simple,
classical view of predication, while allowing greater expressivity than the most widely
employed logical forms, for example enabling generalized quantification (as in (6)),
modification, reification, and other forms of intensionality.

The positioning of (adv-a (for.p me.pro)) within the verbal predicate it modi-
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fies, rather than in the expected prefix-operator position, already indicates a certain
looseness in the ULF syntax, as opposed to the rigidity of formal logic. This is unprob-
lematic because we restrict the way operators may combine with operands so that
type consistency is assured – and in fact in subsequent processing, any (adv-a ...)

constituents of a verbal predicate are moved so as to immediately precede that pred-
icate. There are a number of further kinds of looseness in ULFs, but we defer further
discussion to the current ULF annotation tutorial.

1.1.2 Role of ULF in comprehensive semantic interpretation
ULFs are underspecified – loosely structured and ambiguous – in several ways. But
their surface-like form, and the type structure they encode, make them well-suited
to reducing underspecification, both using well-established linguistic principles and
machine learning (ML) techniques that exploit the distributional properties of lan-
guage. The scope of the thesis is not expected to encompass much of this further
processing, but we want to reiterate some reasons for regarding ULFs as a suitable
basis.

Heuristic algorithms that resolve scope ambiguities and make event structure
explicit have been developed for and applied to ULF in the past. Though these
algorithms are not sufficiently reliable, they set a baseline for future work on disam-
biguation aided by ML techniques. The following points address the utility of ULFs
as preliminary structures enabling systematic reduction of underspecification.

Word sense disambiguation (WSD): One obvious form of underspecification
is word sense ambiguity. But while, for example, (weak.a (plur creature.n)) in
(4) does not specify which of the dozen WordNet senses of weak or three senses of
creature is intended here, the type structure is perfectly clear: A predicate modifier
is being applied to a nominal predicate. Certainly standard statistical WSD tech-
niques (Jurafsky and Martin, 2009) can be applied to ULFs, but this should not
in general be done for isolated sentences, since word senses tend to be used consis-
tently over longer passages. We should mention here that adjectives appearing in
predicative position (e.g., able in (2)) or in attributive position (e.g., little in (3))
are type-distinct, but ULF leaves this distinction to automatic processing, since the
semantic type of an adjective is unambiguous from the way it appears in ULF.

Predicate adicity: A slightly subtler issue is the adicity of predicates. We
do not assume unique adicity of word-derived predicates such as run.v, since such
predicates can have intransitive, simple transitive and other variants (e.g., run quickly
vs. run an experiment). But adicity of a predicate in ULF is always clear from the
syntactic context in which it has been placed – we know that it has all its arguments
in place, forming a truth-valued formula, when an argument (the “subject”) is placed
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on its left, as in English.
Scope ambiguity: While some of the underspecification in ULFs is determin-

istically resolvable, unscoped constituents can generally “float” to more than one
possible position. The three types of unscoped elements in ULF are determiner
phrases derived from noun phrases (such as very few people and the Earth in (6)),
the tense operators pres and past, and the coordinators and.cc, or.cc and some
variants of these. The positions they can “float” to in postprocessing are always
pre-sentential, and determiner phrases leave behind a variable that is then bound at
the sentential level. This view of scope ambiguity was first developed in (Schubert
and Pelletier, 1982) and subsequently elaborated in (Hurum and Schubert, 1986) and
reiterated in various publications by Hwang and Schubert. The accessible positions
are constrained by certain restrictions well-known in linguistics. For example, in
the sentence “Browder ... claims that every oligarch in Russia was forced to give
Putin 50 percent of his wealth”, there is no wide-scope reading of every, to the effect
“For every oligarch in Russia, Browder claims ... etc.”; the subordinate clause is a
“scope island” for strong quantifiers like every (as well as for tense). The important
point here is that ULF allows exploitation of such structural constraints, since it still
reflects the surface syntax. Now, firm linguistic constraints still leave open multiple
scoping possibilities, and many factors influence preferred choices, with surface form
(e.g., surface ordering) playing a prominent role (Manshadi et al., 2013). So again
the proximity of ULF to surface syntax should be helpful in applying ML techniques
to determining preferred scopings.

Anaphora: Another important aspect of disambiguation is coreference resolu-
tion. Again there are important linguistic constraints (“binding constraints”) in this
task. For example, in “John said that he was robbed”, he can refer to John; but this is
not possible in “He said that John was robbed”, because in the latter, he C-commands
John, i.e., in the phrase structure of the sentence, it is a sibling of an ancestor of
John. ULF preserves this structure, allowing use of such constraints. Preservation
of structure also allows application of ML techniques (Poesio et al., 2016), but again
this should be done over passages, not individual sentences, since coreference “chains”
can span many sentences. When coreference relations have been established as far
as possible and operators have been scoped, the resulting LFs are quite close in form
to first-order logic, except for incorporating the additional expressive devices (gener-
alized quantifiers, modification, attitudes, etc.) that we have already mentioned and
illustrated. In writings on episodic logic this is called this the indexical logical form,
or ILF.

Event/situation structure: The most important aspect of logical form that
remains implicit in ILF is event/situation structure. Much of the past work on EL
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has been concerned with the principles of de-indexing, i.e., making events and situ-
ations – episodes in EL terminology – explicit (Hwang, 1992; Hwang and Schubert,
1994; Schubert, 2000). The relationship to Davidsonian event semantics and Re-
ichenbachian tense-aspect theory is explained in these references. Our compositional
approach to tense-aspect processing leads to construction of a so-called tense tree,
and yields multiple, related reference events for sentences such as “By 8pm tonight,
all the employees will have been working for 15 hours straight”. The relevant point
here is that the compositional constuction and use of tense-trees is possible only if
the logical form being processed reflects the original clausal structure – as ULF and
ILF indeed do.

Canonicalization: Finally, canonicalization of ELF into “minimal” propositions,
with top-level Skolemization (and occasionally λ-conversions), is straightforward. A
simple example was seen in the Introduction, and some more complex examples are
shown in prior publications (Schubert and Hwang, 2000; Schubert, 2014; Schubert,
2015).

When episodes have been made explicit (and optionally, canonicalized), the re-
sult is episodic logical form (ELF); i.e., we have sentences of EL, as described in
our previously cited publications. These can be employed in our Epilog inference
engine for reasoning that combines linguistic semantic content with world knowl-
edge. A variety of complex Epilog inferences are reported in (Schubert, 2013), and
(Morbini and Schubert, 2011) contained examples of self-aware metareasoning. Fur-
ther in the past, Epilog reasoned about snippets from the Little Red Riding Hood
story: If the wolf tries to eat LRRH when there are woodcutters nearby, what is
likely to happen?”; answer chain: The wolf would attack and try to subdue LRRH;
this would be noisy; the woodcutters would notice, and see that a child is being at-
tacked; that is a wicked act, and they would rush to help her, and punish or kill
the wolf (Hwang, 1992; Schubert and Hwang, 2000). However, the scale of such
world-knowledge-dependent reasoning has been limited by the difficulty of acquiring
large amounts of inference-enabling knowledge. (The largest experiments, showing
the competitiveness of Epilog against state-of-the art theorem provers were limited
to formulas of first-order logic (Morbini and Schubert, 2009).) In the proposed work
we therefore focus on inferences that are important but not heavily dependent on
world knowledge.

Thus ULFs comprise a “primal” logical form whose resemblance to phrase struc-
ture and whose constraints on semantic types provide a basis for the multi-faceted
requirements of deriving less ambiguous, nonindexical, canonical LFs suitable for rea-
soning. However, as we have pointed out, ULFs are themselves inference-enabling,
and this will be important for the evaluation plan.
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1.1.3 Inference with ULFs
An important insight of NLog research is that language can be used directly for
inference, requiring only phrase structure analysis and upward/downward entailment
marking (polarity) of phrasal contexts. This means that NLog inferences are situated
inferences, i.e., their meaning is just as dependent on the utterance setting and
discourse state as the linguistic “input” that drives them.

This insight carries over to ULFs, and provides a separate justification for com-
puting ULFs, apart from their utility in the process of deriving deep, context-
independent, canonicalized meaning representations from language. Our evaluation
of the English-to-ULF parser that we are proposing to develop will be formulated in
terms of certain classes of situated inferences enabled by ULFs.

ULFs in principle provide a more reliable and more general basis for situated in-
ference than mere phrase structure, because of the coherent semantic type structure
they encode. Greater reliability also leads to the possibility of spontaneous forward
inferencing, as opposed to inference guided by propositions to be confirmed or discon-
firmed (as in most textual entailment and NLog studies to date). This is important,
because human language understanding seems to involve continuous forward infer-
encing. As a simple example, if according to your paper or newsfeed “Police reported
that the vehicle struck several cars”, you will conclude that the reported event al-
most certainly happened, and further, that the cars involved were all damaged. Now,
the first of these inferences requires only a small amount of knowledge about com-
munication, to the effect that reporting (in your preferred media) typically involves
reporting of facts; whereas the latter depends on very specific world knowledge. Our
demonstration of ULF utility in forward inference will focus on the former kinds of
inference (and related ones), since accumulation of sufficient world knowledge for
enabling the latter kinds of inference remains out of reach in the short run.

Here, briefly, are some kinds of inferences we can expect ULFs to support:
• NLog inferences based on generalizations/specializations. For example, “Every

NATO member sent troops to Afghanistan”, together with the knowledge that
France is a NATO member and that Afghanistan is a country entails that France
sent troops to Afghanistan and that France sent troops to a country. Such infer-
ences are within the scope of NLog-based and ULF-based methods, and can help
in finding inference paths to candidate entailments; but they will not be our focus
as they rarely seem worthwhile as spontaneous forward inferences from sentences
in discourse (we are particularly interested in dialogue settings).

• NLog inferences based on implicatives. For example, “She managed to quit smok-
ing” entails that “She quit smoking” (and the negation of the premise leads to the
opposite conclusion). We already demonstrated such inferences in our framework
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for various headlines (Stratos et al., 2011), such as the inference from Oprah is
shocked that Obama gets no respect (Fox News 2011) to Obama gets no respect.
Such inferences are surely important – and immediate – in language understand-
ing, and will be included in our evaluations.

• Inferences based on attitudinal and communicative verbs. Some such inferences,
for instance for knowing-that and finding-out-that, fall under the previous heading,
but others do not. For example, “John denounced Bill as a charlatan” entails that
John probably believes that Bill is a charlatan, that John asserted to his listeners
(or readers) that Bill is a charlatan, and that John wanted his listeners (or readers)
to believe that Bill is a charlatan. Such inferences would be hard to capture within
NLog, since they are partially probabilistic, require structural elaboration, and
depend on constituent types.

• Inferences based on counterfactuals. For example, “If I were rich, I would pay off
your debt” and ”I wish I were rich” both implicate that the speaker is not rich.
This depends on recognition of the counterfactual form, which is distinguished in
ULF.

• Inferences from questions and requests. For example, “When are you getting mar-
ried” enables the inference that the addressee will get married (in the foreseeable
future), and that the questioner wants to know the expected date of the event,
and expects that the addressee probably knows the answer, and will supply it.
Similarly an apparent request such as “Could you close the door?” implies that
the speaker wants the addressee to close the door, and expects he or she will do
so. There are subtleties in the distinction between questions and requests that
can be captured in ULF and made use of.
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Chapter 2

Background & Related Work

In the Introduction, we related our proposal to the development of AMR. Despite its
lack of concern for inference, this development was an inspiration to us in terms of
both the quest for broad coverage and methods of learning and evaluating semantic
parsers. But there has also been much activity in developing semantic parsers that
derive logical representations, raising the possibility of making inferences with those
representations (Popescu et al., 2004; Kate and Mooney, 2006; Kwiatkowski et al.,
2011; Liang et al., 2011; Poon, 2013; Tellex et al., 2011; Artzi and Zettlemoyer, 2013;
Howard et al., 2014; Artzi et al., 2015; Konstas et al., 2017). The techniques and
formalisms employed are interesting (e.g., learning of CCG grammars that generate λ-
calculus expressions), but the targeted tasks have generally been question-answering
in domains consisting of numerous monadic and dyadic ground facts (“triples”), or
instruction-following by robots. Acquisition of knowledge via language, or inferences
about beliefs, intentions, etc., have generally not been addressed in any broad way.

Noteworthy examples of formal logic-based approaches, not targeting specific
applications were done by Bos (2008) and Draiccio et al. (2013), whose hand-built
semantic parsers respectively generate FOL formulas and OWL-DL expressions. But
again these representations preclude generalized quantifiers, modification, reification,
attitudes, etc., and the route from NL strings to logic (CCG parsing → DRS → FOL,
in the case of Bos’ Boxer) often produces flawed representations. We are not aware
of any work on inference generation of the type we are targeting, based on these
projects.

The rest of this chapter describes and discusses notable work in domain-general
semantic parsing and annotation. Each one of these projects has had significant
influences on the choices made in the design of this research project. This more
detailed review sets the stage for concretely discussing choices made in our research
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plan and distinguishing the direction of our research plan from existing work.

2.1 TRIPS

Figure 2.1: Parse for “They tried to find
the ice bucket” using the vanilla dialogue
model of TRIPS.

The TRIPS parser generates seman-
tic parses in an underspecified seman-
tic representation with scoping con-
straints (Allen and Teng, 2017; Allen et
al., 2018). The nodes are grounded in an
ontology, which is a single inheritance
hierarchy built on a mixture of syntac-
tic and semantic distinctions. There are
levels of the ontology that roughly cor-
respond to VerbNet (Schuler, 2006) and
FrameNet (Baker et al., 1998) classes,
and also include additional distinctions
of temporal and entailment information.
It has three equivalent formats, which
roughly correspond to the three differ-
ent types of formats that AMR comes
in: logical, graphical, and PENMAN. Figure 2.1 shows an example of a TRIPS parse
in graphical format.

Despite the structural similarity to AMR, TRIPS includes richer information for
quantifiers and speech acts and makes finer distinctions of word senses for adjectives
and predicates. The TRIPS parser generates LFs using a bottom-up chart parser
with a hand-built grammar, a syntax-semantic lexicon, and a semantic ontology.
The parser’s preferences can be further tuned using the results from tokenizers, POS
taggers, NER taggers, and constituent parsers (Allen et al., 2018).

One of the greatest strengths of TRIPS is its ontology of English words which
gives a unified relationship between words using semantic roles, aspectual class, and
temporal/causal entailments. The ontology is critical in both parsing and inference.
During parsing the ontology is used for semantic preferences in argument selection
and word sense disambiguation. During inference the ontology can be used for gen-
eralizing and specializing words, making inferences about time and causality, and for
making structured semantic similarity judgments between predications.

The TRIPS parser has been deployed in multiple tasks with minimal modifica-
tions: extracting knowledge from biology papers (Allen et al., 2015), conversational
dialogue (Rhee et al., 2014), goal-oriented dialogue (Perera et al., 2017), and lexical
knowledge acquisition (Allen et al., 2011).
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2.1.1 TRIPS LF
Allen et al. (2008) describe a graphical logical form representation derived from the
representation used by the TRIPS dialogue system (Allen et al., 2007).1 Each node
in the LF has three components: specifier, type, and word which represent the node
function, conceptual class, and surface word, respectively. The specifiers are seman-
tic functions enumerated in the LF specification and the type is a conceptual class
from the ontology used in conjunction with the LF. The nodes are connected using
thematic-role-inspired relations (e.g. :AGENT, :AFFECTED, :FORMAL, etc.). For example,
consider the top-level node in Figure 2.1, (SPEECHACT SA_TELL). SPEECHACT is the spec-
ifier, SA_TELL is the type, and the word is empty because this top-level is generated
from the general sentence structure assuming deployment in a dialogue setting. It
participates in one relation :CONTENT with the node (F (:* TRY TRY)) as the parent of
the relation.

TRIPS LF descriptively captures modal constructions, generalized quantifiers,
lambda abstractions, and dialogue semantics making it able to express a large subset
of natural language phenomena. These features are very useful when using TRIPS
LFs since it allows a system to distinguish differences in these finer details.

Formally, TRIPS LF is an underspecified semantic representation which sub-
sumes well-formed Minimal Recursion Semantics (MRS) and Hole Semantics (Allen
et al., 2018). All of these are object-language agnostic, meta-level semantic repre-
sentations (Copestake et al., 2005; Bos, 1996). They are very useful for managing
underspecified, but constrained representations in computationally simple and effi-
cient manners. The problem with working only on model-agnostic semantics is that
without grounding these representations into an object language, model-theoretic
notions such as interpretation, truth, satisfaction, and entailment cannot be applied.
It follows then that one cannot make claims about soundness or completeness about
inference systems built directly on these representations.

One can ground these model-agnostic representations into an object language,
but must be careful in their choice of object language. In a project extracting lexical
knowledge from WordNet, Allen et al. (2013) mapped TRIPS LF to OWL-DL (OWL
Working Group, 2004) from which subsumption-based inference was performed be-
tween WordNet definitions. While expressivity limitations did not arise in the subset
of WordNet encountered in the project, OWL-DL struggles with common linguis-
tic phenomena such as non-intersective modification, reification, self-reference, and
uncertainty. I expect that generalizing the project to more of WordNet without
changing the choice of representation would run into these fundamental limitations

1The full documentation for the LF is available at http://trips.ihmc.us/parser/LF%

20Documentation.pdf.
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of OWL-DL. Of course, TRIPS doesn’t need to be grounded into OWL-DL specifi-
cally. Though it would probably be a trickier endeavor, mapping TRIPS into a more
expressive object language seems possible.

All this does not mean that inference systems that operate directly on model-
agnostic representations cannot be useful. In fact, I’ve already mentioned instances
where TRIPS LF has been used to great effect. We simply cannot make model-
theoretic claims about the inference until the object language is defined. I will not
point out these sorts of limitations in as much detail in the following works, but it
should be noted that these criticisms apply just as much to following work that have
insufficiently expressive or model-agnostic semantic representations.

2.2 The JHU Decompositional Semantics Initiative
Decomp2 follows an approach to building up a model of language semantics by mod-
eling every day language user annotations on focused phenomena. The idea is to
pose semantic distinctions as questions that are quick and easy to judge by every
day users. This allows the construction of a large corpora from which to learn models
of human language judgments. Then by building these models up for more and more
semantic distinctions one can construct a general model of language semantics.

Much of the work in Decomp is built on top of PredPatt (White et al., 2016), a
predicate-argument extractor built on top of universal dependencies. These are very
low-level predicates, just above the surface language. See the example below (taken
from the PredPatt github page3) which shows the predicate-argument structures that
PredPatt outputs.

PredPatt extracts predicates and arguments from text .

?a extracts ?b from ?c

?a: PredPatt

?b: predicates

?c: text

?a extracts ?b from ?c

?a: PredPatt

?b: arguments

?c: text

Notice that the predicates include prepositions in them so they are not decom-
posed in the way semantic representations usually are. The goal was to provide a

2https://www.decomp.net
3https://github.com/hltcoe/PredPatt
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high-precision interface between syntax and semantics for reliable usage in down-
stream semantic tasks or further resolution. Zhang et al. (2017) showed that Pred-
Patt has the best precision and recall among well-known OpenIE systems on a large
scale benchmark based on PropBank.

Rudinger et al. (2018) use these methods to predict event factuality with surpris-
ing precision. This task has some overlap with the sorts of inferences that we plan
to show with ULFs, though this work does not frame the evaluation as a forward-
inference task. Still, the event factuality dataset released alongside this publication
likely can be of use for our evaluations.

Though this initiative has many more interesting results associated with it, they
are not directly relevant to the discussion of this proposal so I will stop my discussion
here. The long term goals of this project aligns well with ours in generating high-
fidelity semantics for language which enables commonsense reasoning. To paraphrase
Ben Van Durme’s comment during the CogSci Dinner on April 16th, he is trying to
climb up the mountain of semantics one step at a time through modeling human judg-
ments whereas I am trying to climb down the mountain of semantics from episodic
logic to a tractable subset for feasible annotation and precise generation. I am very
sympathetic to the efforts of this initiative. At the moment, however, the semantic
descriptions from this project are completely decoupled from the model-theoretic
basis which drives much of this proposal.

2.3 Groningen/Parallel Meaning Bank
The Groningen Meaning Bank (GMB) (Basile et al., 2012) was developed at the
University of Groningen led by Johan Bos and annotates full documents with Dis-
course Representation Structures (Kamp, 1981). Their annotations combine lin-
guistic information from a variety of sources for different levels of semantic annota-
tion, such as the thematic roles from VerbNet (Schuler, 2006) and word sense from
WordNet (Miller, 1995). GMB uses an annotation approach that they call human-
aided machine annotation, where the annotation process first is automated then
corrected by humans. This work was recently extended into the Parallel Meaning
Bank (PMB) (Abzianidze et al., 2017) where they seek to extend this type of anno-
tation to multiple languages with semantic projection across sentence translations. I
will focus my discussion on the English portion of the PMB since it is an improved
version of GMB.

2.3.1 Annotation Pipeline
The annotation pipeline is separated into layers from tokenizing to sentence and dis-
course level semantics that build on top of each other. These layers are automatically
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generated, then corrected by annotators to obtain gold-annotations. As annotations
are accumulated, they are used to retrain the automatic systems.

2.3.2 Layers of Annotation
The annotation is split into the following five layers: (1) segmentation, (2) syntactic
analysis, (3) semantic tagging, (4) symbolization, and (5) semantic interpretation.
Steps (2-4) can be performed concurrently, but the output of step (1) feeds into
steps (2-4) and the outputs of steps (2-4) feed into step (5). Below I describe each
step in more detail.

1. Segmentation
A custom-built character-level IOB segmentation tagger (Evang et al., 2013)
segments the text to a representation closely-tied to PMB semantics. For ex-
ample, semantically transparent morphological structure is decomposed (e.g.
impossible → im + possible) and multiword expressions which are opaque or
part of a name are singly tokenized – Las Vegas and 2 pm are both single
tokens.4

2. Syntactic Analysis
EasyCCG (Lewis and Steedman, 2014) generates Combinatory Categorical
Grammar (Steedman, 2000) derivations for PMB’s syntactic analysis.5

3. Semantic Tagging
Deep residual networks (Bjerva et al., 2016) perform lexical semantic tagging on
an 80 tag tagset. This tagset includes POS tags, named entity classes, semantic
distinctions (e.g. negation, equative), and some discourse-level categorizations
(e.g. greeting, hesitation).

4. Symbolization
This step maps tokens to lemmatized and normalized non-logical, conceptual
categorizations that are referred to during semantic interpretation to improve
generalization. It performs general simplifications such as reducing European
to europe, but its most important function is canonicalizing special purpose
formats that occur in natural language such as dates and time (e.g. 2 pm
is symbolized to 14:00). PMB currently relies on a rule-based lemmatizer,
Morpha (Minnen et al., 2001) for this step.

4During an invited talk at the 11th Linguistic Annotation Workshop (2017) Johan admitted that
trying to decompose phrases such as “Secretary of State” proved too difficult in GMB annotation.

5EasyCCG’s independence from POS tags and lexicalized grammar turn out to be critical for
integrating with PMB’s custom tags and modular human corrections, respectively. These features
are also desirable from a cross-lingual annotation perspective.
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5. Semantic Interpretation
Finally, the text is interpreted into Discourse Representation Structures (DRSs)
from the CCG analysis with lexical meaning represented by the 3-tuple
<CCG category, semantic tag, symbol> (outputs of steps (2-4)). The Boxer
system (Bos, 2015), a hand-built semantic parser, compositionally constructs
the semantic interpretations.

Figure 2.2: Screenshot of the PMB Explorer with analysis of the sentence “The farm
grows potatoes.”
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2.3.3 PMB Explorer
A highly-featured annotation website was developed to assist in PMB’s structured
annotation approach. A screenshot of the PMB Explorer displaying an automatic
analysis is shown in Figure 2.2. Below are notable features of the PMB Explorer:

• A modular, layer-wise annotation view – each can be marked correct separately.
• Correction tracker, revision history, and reversion.
• An integrated bug-tracker for annotator organization and communication.

2.3.4 Annotated Texts
The texts selected for annotation in the PMB are mostly freely distributable and
total in 11.3 million tokens and 285,154 documents (Abzianidze et al., 2017). They
include the following sources:

• Totoeba6

• Newscommentary corpus (Tiedemann, 2012)
• Recognizing Textual Entailment (RTE) corpus (Giampiccolo et al., 2007)
• Sherlock Holmes stories7

• The Bible (Christodouloupoulos and Steedman, 2015)

Documents Sentences Tokens
2,049 2,057 11,664

Table 2.1: Statistics of annotated English
sentences in PMB v1.0.0, December 22,
2017 release.

Table 2.1 shows the statistics of the
gold annotations from the most recent
(and first) release.8 Note that there
are three other languages that are anno-
tated in this release as well. While no
inter-annotator agreement is reported,
the Explorer allows annotation revisit-
ing and correction between annotators
so the gold-annotations are likely highly uniform and accurate.

2.3.5 Discourse Representation Structures
Discourse Representation Structure (DRSs) is a representation developed by Hans
Kamp (Kamp, 1981; Kamp and Reyle, 1993) to handle anaphora, discourse struc-
ture, and presupposition. The key anaphoric issue that DRS overcame is “donkey

6https://tatoeba.org
7http://gutenberg.org, http://etc.usf.edu/lit2go
8http://pmb.let.rug.nl/data.php
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anaphora” (e.g. “Every child who owns a dog loves it.”). DRT overcomes the chal-
lenges of determining the quantifier interpretation and scope in such examples with
principles that determine the nature of anaphoric bindings.

DRSs can also generate inferences via a mapping to FOL. The ability to per-
form this mapping, however, means that the expressivity of DRT is equal to that of
FOL. FOL itself is not able to handle many important semantic phenomena such as
generalized quantifiers and non-modal intensionality. There don’t seem to be any
methods in PMB to handle this limitation based on my conversations with Johan. In
fact, he disclosed that PMB uses the NIL semtag to annotate generalized quantifiers
as semantically ambiguous.

2.4 LinGO Redwoods Treebank
The LinGO Redwoods Treebank is a syntacto-semantic treebank with annotations
of Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1994) with
corresponding Minimal Recursion Semantics (MRS) (Copestake et al., 2005). This
long-running project has developed a suite of resources which support the annotation
project. This includes LinGO English Resource Grammar (ERG) (Bub et al., 1997),
a hand-built HPSG-grammar, a fast grammar parser (Callmeier, 2001), and the [incr

tsdb()] grammar profiling and annotation environment (Oepen, 2001).9

2.4.1 Redwoods Treebank Overview
The Redwoods Treebank is annotated in ERG and has grown into a topically-varied
collection of corpora over the years. The most recent release, the Eighth Growth,
was released in 2013 and consists of

• the Verbmobil dialogue corpus,
• the LOGON Norwegian-English MT corpus (Oepen et al., 2004),
• the WeScience initiative English Wikipedia subset of 100 articles (Ytrstøl et

al., 2009),
• a subset of the Brown corpus semantically tagged in the SemCor project (Lan-

des et al., 1998),
• 23 of the 25 sections of the Penn Treebank Wall Street Journal corpus (Deep-

Bank) (Flickinger et al., 2012),
• and a smattering of smaller sets of text such as the FraCaS entailment

dataset (Cooper et al., 1996b) and hand-crafted linguistic unit test sentences.
9All the tools can be found at http://www.delph-in.net.
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This release totals in over 92,706 sentences and 87,821 parses, giving it 9̃5% coverage
(not all parses are verified correct). The project has incomplete coverage due to the
annotation method relying on a grammar to produce all the annotation choices.

2.4.2 Minimal Recursion Semantics (MRS)
MRS is a flat semantic representation which uses handles to encode scope effects
and ambiguity. Its semantics is composed via unification by design since it was
developed as a formalization of semantic composition in typed feature structure
grammars (Copestake et al., 2001). In an effort to be an effective computational
semantics, MRS is designed to satisfy the following criteria (Copestake et al., 2005):

• Expressive Adequacy – correctly express the full range of linguistic meanings
• Grammatical Compatibility – link cleanly to syntactic analysis;
• Computational Tractability – enable efficient processing of meaning; such as

equivalence checking, and represent meaning in a computationally simple man-
ner;

• Underspecifiability – allow the representation to leave ambiguous distinctions
unresolved, which can be resolved in a simple and flexible manner.

Copestake et al. emphasize the last two criteria having found that previous work
by computational linguists lack in those areas. Copestake et al. (1995) explains that
MRS is not a complete model semantic theory, rather a representation for describ-
ing semantic structures in relation to HPSG. Thus it’s unclear how we can make
judgments about the formal semantic expressivity of MRS in relation to ERG at all.
By design, then, MRSs are descriptively powerful while lacking a definite semantic
representation and inference mechanism rooted in model semantics.

2.4.3 Annotation Procedure
Similar to the Parallel Meaning Bank, the Redwoods Treebank relies on human-
guided machine annotations. The annotation procedure begins with generating the
500 highest-ranked analyses from a hand-built HPSG grammar (Flickinger et al.,
2012). The correct analysis, if any, is manually selected using a series of deci-
sions of whether to include a candidate lexical or relational analysis. For example,
_see_v_1<2:5> TENSE past which describes the analysis of the text span (2,5), “saw”,
as the first sense of the verb “see” (_see_v_1) with a past tense. The annotator then
makes a decision as to whether this analysis should be included or excluded from the
final form. See the screenshot in Figure 2.3 for the environment state when only two
candidate trees remain (there are no more trees below the frame) with over a dozen
discriminants that the annotator can choose from to identify the correct analysis.
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Figure 2.3: Screenshot of Redwoods treebanking environment. The left pane displays
constituent parse trees of the remaining analyses to be disambiguated. The right pane
displays the list of discriminants.

The [incr tsdb()] tool automatically prunes impossible analyses given the deci-
sion. The annotator decisions are saved so that upon updating the grammar, the
annotation decisions can be rerun to identify and re-annotate ambiguities that arise
from the changes in the grammar. This turns out to greatly reduce the re-annotation
burden. Flickinger et al. (2012) report that this method required re-annotating 5-
10% of the corpus in addition to the newly covered sentence when the grammar is
improved. The limitation of this approach is that it assumes that the annotator
was correct to begin with, so this cannot so easily be used to re-annotate the tree-
bank efficiently to correct large-scale annotation mistakes identified during an error
analysis.

Challenges of a Hand-built Grammar
The annotation method of Redwoods Treebank is highly efficient but relies on a hand-
built grammar. This grammar building turns out to take a long time as seen by the
changes in coverage reported over the years of this project. The coverage statistics for
the most recent release of the Redwoods Treebank is shown in Table 2.2. It is quite
impressive with an 87% verified coverage on several domains. Still, 13% is a consid-
erable portion of text to leave unanalyzed. In 2004 Baldwin et al. (2004) analyzed
ERG coverage on a sample of the British National Corpus (BNC) (Burnard, 2000).
This is four years after the first paper describing ERG (Copestake and Flickinger,
2000). The results of the analysis can be summarized as follows:
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Segment # of sentences Raw coverage Verified coverage
Verbmobil 12,393 96.46% 92.18%
WSJ (00-21) 43,541 93.87% 85.17%
WeScience 11,558 91.93% 80.75%
SemCor 3,000 93.81% 85.11%
Total 92,706 94.73% 87.28%

Table 2.2: ERG results for the most recent Redwoods release (the Eighth Growth).
Only a selection of segments (corpora) are included in this table, but the total results
includes all sentences in the growth.

• 32% of BNC sample have complete ERG lexical coverage
• Of those, 57% ERG could generate a parse for (18% of total sample)
• Of those, 83% contained a correct parse (15% of total sample)

When the results are broken down one by one the results don’t look so bad, but
when the errors are propagated ERG it is clear that ERG is performing dismally. This
experiment shows the amount of work that it takes to hand-build a reliable grammar.
A few years into development it could only generate a correct analysis for 15% of a
sampling from the BNC. When developed for over a decade, a hand-built grammar
can perform pretty well, but it is not a task that one should add to their project
lightly. In order to overcome the 13% coverage gap of ERG, Zhang and Krieger (2011)
developed a PCFG approximation of ERG which uses ERG rule names with feature
structures and syntactic context as PCFG categories and a heuristic unifier to force
unification. This PCFG parsed over 99% of sentences a 2% reduction in F1. This
has not been used in the annotation process so far.

Discussion
The Redwoods Treebank project has many engineering successes that are reflective
of the length of time that it has been under development and the great number
of people collaborating on it. The successes of the project in flexibility of analysis,
particularly in syntax, also reflects the motivations described by early papers to
overcome the limitations of annotations that focus on one type of information (e.g.
phrase structure trees, semantic dependency graphs) with a fixed set of labels while
losing information that could be gained concurrently in an integrated manner.

However, the lack of an inference mechanism makes it suboptimal for generat-
ing inferences. They recommend using FOL theorem provers to generate inferences
which would limit their semantic expressivity to FOL. MRS use in applications so far
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have relied on task-specific, ad hoc methods: tree transformations for question gener-
ation (Yao and Zhang, 2010), semantic mapping rules for semantic-transfer machine
translation (Copestake et al., 1995), or subsumption-based reasoning for recognizing
textual entailment (Lien and Kouylekov, 2015)10

2.5 Abstract Meaning Representation

Logical format
∃w, g, b :
instance(w, want-01) ∧
instance(g, girl) ∧
instance(b, believe-01) ∧
arg0(w, g) ∧ arg1(w, b) ∧ arg0(b, g)

AMR format
(w / want-01

:arg0 (g / girl)

:arg1 (b / believe-01

:arg0 g))

Graph format

ARG0
instance

instance

instance

girl

believe-01want-01 g

w

b

Figure 2.4: AMR representations for “The
girl wanted to believe herself”.

Abstract Meaning Representation
(AMR) is a semantic representation
that has made a big splash in the NLP
community, leading to a large volume of
papers published that present methods
of parsing AMR from sentence text.
AMR was developed as a semantic
representation of language that ab-
stracts away from morpho-syntactic
idiosyncrasies (Banarescu et al., 2013).
The idea was to introduce a simple, but
unified – bringing together argument
structure identification, preposition
attachment, etc. – semantic representa-
tion of sentences, similar to constituent
trees for syntax. They cover a wide
range of linguistic phenomena in their
representations, which is admirable. I
expect that the expressive limitations
of AMR representations will make it
difficult to be used in a wide variety of
applications and that the decoupling of
the representation from surface text will
make AMR recovery from the surface
text difficult.

2.5.1 AMR Representation
AMRs are rooted, directed, acyclic graphs where the leaves act as node labels and
relations and properties are defined between the nodes. AMR has a descriptively

10Lien and Kouylekov use a representation that is a combination of OWL-DL (OWL Working
Group, 2004) and Horn-like rules but does not overcome the limitations of either representation.
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equivalent neo-Davidsonian (Davidson, 1969) logical format which introduces a im-
plicitly existentially quantified variable for every entity, event, property, and state,
and a text format based on PENMAN inputs (Mathhiessen and Bateman, 1991) for
convenient text-based interfacing. Figure 2.4 shows an example in all three formats.

AMR relations are include core PropBank (Kingsbury and Palmer, 2002; Palmer
et al., 2005) arguments, select semantic relations from the thematic roles literature,
and relation for special domains such as quantities, dates, and lists.

AMR generalizes across parts of speech and etymologically related words, which
leads to the following four examples all being annotated with the concept “fear-01”.

• My fear of snakes
• I am fearful of snakes
• I fear snakes
• I’m afraid of snakes

Banarescu et al. (2013) and the AMR Specifications (Banarescu et al., 2015)
discuss all the phenomena that AMR handles in detail.

2.5.2 Semantics of AMR
Johan Bos provides a model-theoretic analysis of AMR in a squib published in Com-
putational Linguistics (Bos, 2016). He showed that standard AMR representations
are a subset of FOL with up to one universal quantifier11 and presented a potential
extension to AMR that would capture multiple universal quantifiers.

Providing AMRs with a model-theoretic interpretation is a step forward, but it
remains a subset of FOL, which in itself is not expressive enough to appropriately
express many important natural language phenomena, such as intensionality and
reification of quantified sentences (Schubert, 2015). Bender et al. (2015) point out
concrete limitations of AMR expressivity with the following groups of sentences that
generate the same AMR representations despite non-trivial differences in meaning:

1. (a) Every person failed to eat.
(b) No one ate.

2. (a) The boy is responsible for the work.
(b) The boy is responsible for doing the work.
(c) The boy has the responsibility for the work.

11The AMR specifications note that universal quantifiers are not represented by AMR. Bos over-
comes this issue by using a series of polarity operators to capture the semantics of a universal
quantifier.
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In the first pair of sentences, sentence 1a requires some sort of attempt, intention,
or expectation to eat, whereas sentence 1b does not require such a context. In the
second pair of sentences, sentence 2a, ‘work’ may refer to the resulting object that
already exists (such as a work of art) whereas sentences 2b and 2c cannot have such
an interpretation.

2.5.3 AMR corpus
The AMR project has annotated a total of 47,274 sentences, of which 21,065 are
available publicly or to Linguistic Data Consortium (LDC) members12. The rest of
the sentences are only available to Deep Exploration and Filtering of Test (DEFT)
DARPA program participants. The annotations break down into the following do-
mains:

• The Little Prince corpus : 1,562 sentences.
• Bio AMR corpus : 6,452 sentences. This corpus consists of three cancer-related

PubMed articles in full, the result sections of 46 PubMed paper, and 1000
sentences from each of the BEL BioCreative training corpus and the Chicago
Corpus.

• LDC corpus : 39,260 sentences (13,051 general release). The source data of the
DEFT-only corpus is not available, but the general release consists mostly of
samplings from machine translation corpora with 200 sentences from weblogs
and the WSJ corpus.

The three corpora do not all use the same version of AMR so they are not all
useable at once with typical statistical training procedures.

2.5.4 AMR Editor
Hermjakob (2013) built a special editor for annotating AMR representations. The
editor provides multiple input methods to fit an annotator’s preferences

1. Text Commands – These are Unix-style text commands for editing the AMR
graph. It includes a last command feature which is widely used in Unix shells.

2. Templates – The editor provides template versions of the text commands.
Selecting a template opens a window with arguments slots to be filled out.

3. Point and Click – The annotator may point and click part of the annotation-
in-progress to highlight a segment that they wish to delete or modify.

12Numbers computed from AMR download website: http://amr.isi.edu/download.html
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Figure 2.5: Screenshot of the AMR Editor editing the sentence “The girl wants to
believe herself.”

4. Post Editing – The AMR editor can automatically generate approximate
AMR annotations from OntoNotes (Hovy et al., 2006) annotations.

The AMR editor also comes with annotator support in terms of links to the
AMR Editor manual and FAQs, the AMR guidelines, the lists of roles in AMR, lists
of named-entity types, and underlining some words with suggestions for concepts or
properties. Figure 2.5 displays a screenshot of the editor in use.

2.5.5 Limitations
Beyond the semantic limitations already discussed in Section 2.5.2, AMR also have
limitations intrinsic in its design that limit its usefulness even in tasks that AMR set
out to assist. For example, the lack of grammatical number, tense, aspect, quotation
marks, etc. would make precise natural language generation challenging, which Ba-
narescu et al. (2013) list as one of the tasks they expect an AMR corpus would help.
Schneider et al. (2015) argue that AMR does not capture tense because it does not
generalize to other languages at a sentence-level. However, this seems like a strange
design decision considering AMR is not supposed to be an interlingua and is closely
tied to English vocabulary anyway.
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Chapter 3

Research Project Description

3.1 Research Plan Overview
The major parts of our plan are the creation of an annotation environment, the
collection of a significant body of ULF annotations, the training of a semantic parser
on the annotated corpus, and the demonstration of the parser usage in a variety of
inference tasks that the parser will enable.

1. Annotation Environment and Corpus Building
The first stage of the research plan is to build an annotated corpus of ULF
formulas from text. This involves developing an annotation method and inter-
face for ULFs that enable fast and accurate annotations with minimal training.
This stage is currently underway with two pilot annotation experiments com-
pleted, a 42-page annotation guideline, and a communal annotation interface
for easy annotating and correction.

2. Learning a Statistical Parser
The second stage of the research plan is to learn a statistical ULF semantic
parser over the dataset for further use. I will present what we currently consider
to be the most promising approach to this given the nature of the problem and
the expected corpus size. We are optimistic about training an effective parser
due to ULF’s similarity to syntax and surface language.

3. Evaluating the Parser & Beyond
The final stage of the research plan is to evaluate the parser internally via
comparisons with a held-out portion of the corpus and as a resource for gen-
erating structured inferences such as those described in Section 1.1.3. At this
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stage we will also measure the degree to which this parser improves knowledge
acquisition tasks that were previously explored with brittle semantic parsers.

3.2 Completed and On-going Work
3.2.1 Lexical Axiom Extraction in Episodic Logic
Though this work does not directly fall into the topical framework of the research
project proposed here, it was a core motivating factor in undertaking this project
so a brief summary is included. Please see the published paper (Kim and Schubert,
2016) for full details on this work. We developed a rule-based approach to extract
axioms in EL from WordNet verb entries by supplementing the gloss interpretation
with WordNet verb frames and inferred structure from examples. We also developed
a generalization to the smatch metric used in the AMR project, called EL-smatch to
evaluate semantic matching EL formulas. Axioms generated by our approach proved
competitive with the state-of-the-art in a verb entailment dataset and the axioms
had an EL-smatch F1-score of 0.83.1.

This axiomatization approach consists of three major steps:

1. Argument structure inference

2. Semantic parsing of the gloss

3. Axiom construction

Figure 3.1 shows the entire process for the example, slam2.v. The argument
inference step refines the WordNet sentence frames using the provided examples.
Specific pronouns associated with argument position are inserted as dummy argu-
ments into the corresponding argument positions in the gloss, and the modified gloss
is semantically parsed into EL. Axiom construction replaces the dummy arguments
with variables and constructs a scoped axiom relating the entry word and the seman-
tic parse of the gloss using the characterization operator ‘**’. In the simple example
slam2.v, most of the subroutines used in each step have no effect. All transforma-
tions outside the scope of the BLLIP parser are performed with hand-written rules,
which were fine-tuned using a development set of 550 verb synset entries.

Figure 3.2 illustrates an example of a simple EL forward inference chain using an
axiom from WordNet for the sentence “John stumbles, but does not fall”. Using the
axiom for stumble2.v, and a hand written axiom schema asserting that statements

1For reference on what a good smatch score is, the current state-of-the-art AMR parsing in
newswire is an F1-score of 0.71 (Zhou et al., 2016). Note that the two tasks are far too different to
make a direct comparison of the system performances.
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WordNet entry
slam2.v
Tagged gloss:

(VB strike1) (RB violently1)

Frames:
[Somebody slam2.v Something]

[Somebody slam2.v Somebody]

Examples: (“slam the ball”)

1. Argument Structure Inference
Refined Frames:

[Somebody slam2.v Something]

2. Semantic Parsing
Parse: (Me.pro (violently1.adv

(strike1.v It.pro)))

3. Axiom Construction
Axiom: (∀x1 (∀y1 (∀e [[x1 slam2.v y1] ** e]

[[[x1 (violently1.adv (strike1.v y1))] ** e]

and [x1 person1.n] [y1 thing12.n]])))

Figure 3.1: Example gloss axiomatization process for WordNet entry slam2.v. The
numbering corresponds to the subsections where these stages are discussed in detail.

conjoined with the connective “but” asserts the conjunction of the two statements
as well. The semantics of abstract words, such as “but” need to be encoded by hand
since dictionaries simply define abstract words in cycles. This second axiom is an
axiom schema since it uses substitutional quantification over well-formed formulas,
∀wff . Substitutional quantification is part of what allows EL to represent informa-
tion about its own syntax and is used for meta-syntactic reasoning. Substitutional
quantification and meta-reasoning in EL is explained in detail by Morbini & Schu-
bert (2008). The inference process concludes that “John misses a step and nearly
falls”. This is an example of an inference that representations using an intersective
approach to predicate modification cannot make since “John nearly falls” and “John
does not fall” would contradict each other.

In the error analysis we found that most of the semantic parsing errors arose
from a failure in the sentence parser or preprocessing directly preceding the sentence
parser. That is, 17 out of the 52 axioms had errors arising from the sentence parser.
These errors arose from either linguistic patterns that we did not encounter in our
development set or in complex sentences that we didn’t expect to succeed in (e.g.
take a walk for one’s health or to aid digestion, as after a meal).
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Axioms
A1. stumble2.v : miss a step and fall or nearly fall

(∀x,e: [[x stumble2.v] ** e]

[[(∃ z: [z step2.n] [x miss4.v z]) ∧
[[x fall23.v] ∨ [x (nearly.adv fall23.v)]]] ** e])

A2. If two statements are conjoined by “but”, then both statements are true (i.e.
conjunction)
(∀wff x,y (∀ e: [[x but.cc y] ** e] [[x ∧ y] * e]))

Inference
Sentence: “John stumbles, but does not fall”
I1. [[John.name stumble2.v] but.cc ¬[John.name fall23.v]] Parsed sentence
I2. [[John.name stumble2.v] ∧ ¬[John.name fall23.v]] I1 & A2
I3. [John.name stumble2.v],¬[John.name fall23.v] I2
I4. [(∃ z: [z step2.n] [John.name miss4.v z]) ∧

[[John.name fall23.v] ∨ [John.name (nearly.adv fall23.v)]]] I3 & A1
I5. [(∃ z: [z step2.n] [John.name miss4.v z]) ∧

[John.name (nearly.adv fall23.v)]] I3 & I4
Contradiction using OWL-DL
I6. [John.name (nearly.adv fall23.v)] I5
I7. ∀of.(John.name) ⊓ ∀of-1.(nearly.adv) ⊓ fall23.v I6 (Represent in OWL-DL)
I8. ∀of.(John.name) ⊓ fall23.v I7
I9. [John.name fall23.v] I8 (Represent in EL)
I10. □ I3 & I9 (Contradiction)

Figure 3.2: If John stumbles, but doesn’t fall, we can infer from the axioms extracted
from WordNet verbs that he misses a step and nearly falls. This inference would lead
to a contradiction with representations that use an intersective approach to predicate
modification, such as OWL-DL.

We ultimately want to extend this gloss interpretation project to nouns and
adjectives, but given the error rate in EL parses with the hand-built semantic parsing
system we can’t expect to generate widely usable axioms. This becomes even more
problematic given the relative complexity of noun glosses compared to verb glosses.
For example, consider the WordNet entry to tree1.n, the first noun sense:

tree1.n: (a tall perennial woody plant having a main trunk and branches forming
a distinct elevated crown; includes both gymnosperms and angiosperms)

Many noun glosses have this sort of highly structured description including sub-
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parts, common features, or uses (in cases of artifacts). Notice that getting the right
operator argument structure in light of the nesting occurring in this sentence is a
challenge. These are exactly the features that our project aims to focus on and pro-
duce with high-precision. An accurate EL transducer is also critical for deploying the
axiom in a wide range of tasks. The axioms can only be used to their full potential
when EL interpretations exist for the relevant text.

3.2.2 Pilot Annotations
We have performed two pilot annotations, one in Fall 2016 and one in Fall 2017.
These were used to measure ULF annotation difficulty and training time and to get
feedback on the annotation interface.

Pilot Annotation 1, Fall 2016
We performed our first exploratory annotation effort early in the project after de-
veloping an initial version of the annotation guidelines and a simple annotation tool
inspired by the AMR Editor (Hermjakob, 2013). We had three annotators of varying
degrees of expertise in EL: one expert, one intermediate, and one beginner. The sen-
tences we annotated were randomly sampled from the Brown corpus, filtered to limit
the sentence length to 17 words (the average sentence length in the corpus). Each
annotator annotated between 27 and 72 sentences from the same set of sentences to
measure correlation.

Annotator Minutes/Sentence
Beginner 12.67
Beginner (- first 10) 6.83
Intermediate 7.70
Expert 6.87

Table 3.1: Average timing of experimental ULF
annotations.

We found that annotators can
learn to annotate quickly after prac-
ticing on a fairly small set of sen-
tences and that the sentences could
be annotated fast enough for build-
ing a corpus to be feasible. Fig-
ure 3.3 shows a plot of timing re-
sults by annotator and the number
of annotation completed with a 5-
cell moving window average to con-
trol for variable individual sentence difficulty. We can see that the intermediate
and expert annotators have pretty consistent annotation speeds as a function anno-
tations completed, as we would expect from their familiarity with the formulation.
The beginner on the other hand, whose only annotation experience was with artifi-
cial and short sentences from the annotation tutorial, developed an annotation speed
comparable to the intermediate and expert with 10 examples.

Table 3.1 shows that a practiced annotator averages less than 8 minutes per
sentence. This is promising since it is less than the 10 minutes/sentence annotation
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Figure 3.3: Timing results from ULF experimental annotations.

speed reported on the AMR project website2, which has been successful in annotating
over 40,000 sentences.

We also found that the ULF representations are capable of expressing the variety
of linguistic phenomena that occur in the Brown corpus. There were only a couple
of cases where the expert and intermediate annotators were unable to generate a
confident interpretation in terms of normal sentence semantics. The annotators were
mainly stumped in cases of ill-formed sentences such as fragments.

The expert and intermediate annotators had 53 annotations that were common
between them, from which we computed a simple interannotator agreement with the
following formula (based on the triple representation used in EL-smatch):

(2Tb)/(T1 + T2)

where
Tb : number of triples in both annotations
T1 : number of triples in annotation 1

2http://amr.isi.edu/editor.html. Visited 4/24/2017.
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T2 : number of triples in annotation 2
The 53 annotation pairs had an interannotator agreement of 0.48. This is insuf-

ficient, but expected from exploratory annotations. A review of the discrepancies
showed that they were caused by the following issues (in order of severity):

1. The annotators could not consistently annotate phenomena that require move-
ment of large phrases, such as prepositional modifiers which usually post-
modify in English, but form prefix-operators in ULF.

2. Ill-formatted text, such as fragments, were not discussed in the preliminary
guidelines.

3. Language phenomena that were not carefully discussed in the guidelines, so
the standard representation was unclear to the annotator.

Additionally, we found that the AMR style annotator was not helpful because the
similarity between ULF and surface form means that it’s easier to directly annotate
on the surface word than building up a graph.

Based on these results, we changed the annotator style to that closer to GMB (Bos
et al., 2017). The annotation collection was changed to be collaborative so that
all annotators have a shared view and experts can review and correct annotations.
This setup reduces annotation error and streamlines the annotator training process.
Additionally, each sentence annotation was broken up into multiple stages. Here is
an example of the stages for the sentence “Mary loves to solve puzzles”:

1. Group syntactic constituents (NPs, ADJPs, VPs, etc) using round brackets:
(Mary (loves (to (solve puzzles))));

2. Run a POS tagger over the original sentence:
(nnp Mary) (vbz loves) (to to) (vb solve) (nns puzzles);

3. Make any necessary corrections to tags, and then use them as dot-extensions
in the bracketed sentence (the tag to dot-extension will be automated):
(Mary.nnp (loves.vbz (to.to (solve.vb puzzles.nns)))); No corrections needed

4. Convert POS extensions to logical-types, and separate tense and plural as
operators:
(|Mary| ((pres love.v) (to (solve.v (plur puzzle.n)))));
(|_| ↔ name (proper noun); .v ↔ verbal predicate; .n ↔ nominal predicate;
to without an extension is a special reifying operator);

36



5. Add any necessary implicit operators (typically, type-shifting operators):
(|Mary| ((pres love.v) (to (solve.v (k (plur puzzle.n))))));
(k converts a predicate that is true of ordinary singular or plural entities into
a kind – i.e. an abstract individual whose instances are ordinary entities; it
is applied whenever we have a common noun phrase lacking a determiner (a
so-called “bare noun phrase”).)

The multi-stage annotation enables us to incorporate multi-stage gold-
standardizing as done in the Parallel Meaning Bank, so we could take a more in-
cremental approach to annotation if deemed necessary. In addition, we introduced
syntactic sugar, macros, to ULF to minimize phrase movement and implicit opera-
tor insertion. These macros are described in more detail after the pilot annotation
descriptions.

Pilot Annotation 2, Fall 2017
This pilot annotation used a team of eight annotators and annotated the Tatoeba
dataset. 270 sentences were annotated, 80 of which were timed. The average anno-
tation speed was 8 minutes per sentence with 4 minutes per sentence among the two
experts and 11 minutes per sentence among the three trainees that participated in
the timed annotations. We did not time the reviewing time of annotations done by
non-experts. They took less time than outright annotations if any correction was
needed at all.

After this annotation pilot we decided to reduce the annotation interface to just
syntactic parsing and final conversion to logical form. Annotators are still taught
using the five-step process outlined above, but during annotation time this is no
longer required. We found the overhead for separating out each step was not worth
the simplification.

3.2.3 Macro Development
In order to simplify annotations and reduce possibility of annotator error, we de-
veloped relaxations/modifications to the ULF syntax that makes the representation
closer to surface text but can be used to deterministically recover the original ULF
format. In order to accomplish this, we have so far introduced three different types
of modifications to ULF:

1. relaxation of well-formedness constraints

2. lexical marking of scope

3. introduction of syntactic macros
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Most of these changes to the ULF representation correspond to particular linguis-
tic phenomena, rather than a general shift in representation. Although this leads
to a large collection of operators for the annotator to learn to use, their relation
to well-known linguistic phenomena make them simple to learn and remember by
annotators with linguistic backgrounds. I introduce particular phenomena here to
show how the general mechanisms work, but do not enumerate all the developed
simplifications.

The first and simplest relaxation of the well-formedness constraints is a type of
operator dropping. This occurs when predicates act as predicate modifiers, such as
in compounding. For example, consider the phrase “burning hot melting pot”. The
desired ULF interpretation is

((attr ((adv-a burning.a) hot.a)) ((nn melting.n) pot.n)).
Since burning.a and melting.n are predicates, not predicate modifiers, they must

be type-shifted to map them to the correct semantic type. adv-a maps a monadic
predicate to a monadic verb/adjective-modifier, whereas nn maps a noun predicate to
a noun predicate modifier. Similarly, attr is an adjective predicate to noun-predicate
modifier. The need for a predicate-to-predicate modifier function and the one that is
required for the correct mapping can be determined with a simple syntactic analysis.
This is because there are no valid predications with the pairs of types listed. Thus we
can simply add the type-shifter that corresponds to the pairs of types encountered.
Below is a list of the predicate-modifier constructors and the types involved.

• nn - noun to noun modifier
• nnp - noun phrases to noun predicate modifier
• attr - adjective to noun predicate modifier
• adv-a - any predicate to monadic verb/adjective modifier

Lexical marking of scope has been applied to adverbs, which may be sentence or
verb-level modifiers, but either type can appear at various positions in the sentence.
Rather than requiring the annotator to actually place the adverb at the scope that
it acts, we simply require them to append a tag that indicates at which scope it acts.
Consider the following sentences:

(a) “Mary confidently spoke up”
(b) “Mary undoubtedly spoke up”

In sentence (a), “confidently” is a predicate modifying adverb, whereas in sen-
tence (b) “undoubtedly” is a sentence modifying adverb. Rather than requiring the
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ULF annotations (b) and (c) which require movement of the adverb, we use -v and
-s tags to distinguish between the verb and sentence-level adverbs as shown in an-
notations (d) and (e). If there’s an inconsistency, we can lift the adverb to the
appropriate location.

(b) (|Mary| (confidently.adv <past speak_up.v>))

(c) (undoubtedly.adv (|Mary| <past speak_up.v>))

(d) (|Mary| (confidently.adv-v <past speak_up.v>))

(e) (|Mary| (undoubtedly.adv-s <past speak_up.v>))

Syntactic macros are new operators we introduce that map to a particular syn-
tactic transformation or expansion, similar to a macro is in the C programming
language. These are introduced for phenomena with more complex phrase shift-
ing patterns, such as relative clauses, or common phenomena in English that lead
to complex, but derivational semantic representations, such as relative clauses and
genitives.

Consider the relative clause example “The car that you bought”. The fully explicit
ULF formula for this is the following.

(the.d (:l x ((x car.n) and (you.pro (past buy.v) x))))

To make this annotation closer to the surface form we introduce two operators:
n+preds and sub, and a specially interpreted atom that.rel. n+preds maps to a lambda
that jointly asserts the predicates listed in its arguments. sub inserts its first argument
in place of every occurrence of *h in its second argument. Then that.rel is regarded as
a special variable *r which is lambda-abstracted at the level of its lowest-embedding
sentential form. Using these we can annotate “The car that you bought” as

(the.d (n+preds car.n (sub that.rel (you.pro (past buy.v) *h))))

via definition of n+preds this is equivalent to
(:l x ((x car.n) (x (sub that.rel (you.pro (past buy.v) *h)))))

via definition of sub this is equivalent to
(:l x ((x car.n) (x (you.pro (past buy.v) that.rel)))))

via that.rel interpretation this becomes
(:l x ((x car.n) and (x (:l *r (you.pro (past buy.v) *r)))))

via lambda-conversion this becomes the fully explicit ULF.
(:l x ((x car.n) and (you.pro (past buy.v) x)))

The full benefit of this alternate representation does not become apparent in such
a simple example. These macros appropriately handle more complicated pied piping
and multiple post-nominal modifiers in a simple manner with almost no reordering
of the surface word order.
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3.2.4 Annotation Release 1
We are currently preparing for an annotation push this summer to kick off the collec-
tion of the first major annotation release. We have a handful of annotators available
for about 20 hours a week to participate in this annotation project. We’re expecting
to collect about 3,000 ULFs over the summer since the last pilot annotation averaged
8 minutes per annotation. For comparison, the initial AMR corpus was built by 12
LDC annotators, working during a quarter of a year, managing to produce around
10,000 AMRs with each sentence taking 10 minutes to code on average (Hermjakob,
2013). These annotations will primarily be from the Tatoeba dataset, but will ex-
pand into more complex datasets as we verify that the ULF guidelines cover the
necessary phenomena.

3.2.5 Pilot Inference Demo
We created a small set of inference rules applicable to ULFs, for a subset of the
suggested inference types, namely requests and counterfactuals. This was done by
Len Schubert for a development set of 10 Tatoeba sentences showing these phenom-
ena. I then independently annotated two random sets of Tatoeba sentences without
seeing the exact rules that Len wrote. Of course we agreed on the sorts of inferences
that we’d be testing (e.g. what question the request is asking, if any; what are the
counterfactual sentences embedded in a counterfactual construction, if any). The
first set, containing 65 sentence-derived ULFs, and obtained unselectively (i.e. uni-
formly randomly across Tatoeba), generated 5 correct inferences from 3 ULFs, and
no incorrect ones. The second set, selected on the basis of containing a keyword such
as could or wish, contained 71 ULFs. These produced 45 good inferences from 39
formulas, 8 context dependently correct inferences from 4 formulas, and 13 incorrect
inferences from 10 formulas. Considering the small size of the development set, these
are promising results. Moreover the errors turned out to be systematically due to a
form of counterfactual not seen in the development set “If I were to ...” and use of
sentence-initial can in non-requests. The inference rules could easily be amended to
avoid these errors. These preliminary results of course had the advantage of using
“expert” ULFs, rather than automatically generated ones. Also they do not yet tell
us much about recall – except that the great majority sentences containing one of
the keywords did indeed generate a warranted inference.

3.2.6 Attitudinal, Counterfactual, Request, and Question Inference
Demonstration

We are currently developing a method to gather a more wide-ranging dataset of struc-
tural inferences on complement-taking verbs, counterfactual constructions, requests,
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Sample # sent. # inf. Corr. Contxta Incorr. Precisionb Recoverc Precisiond

General 65 5 5 0 0 1.00 0 1.00
Domain 71 66 45 8 13 0.68/0.80 8 0.80/0.92
Total 136 71 50 8 13 0.70/0.81 8 0.82/0.93

Table 3.2: Results for the preliminary inference experiment on counterfactuals and
requests. The general sample is a set of randomly sampled sentences, and the domain
sample is a set of keyword-sampled sentences that we expect to have the sorts of
phenomena we’re generating inferences from. All sentences are sampled from the
Tatoeba dataset.

aCorrectness is contextually dependent (e.g. “Can you throw a fastball?” → “I want you to
throw a fastball.”).

b[assuming context is wrong]/[assuming context is right] for context dependent inferences.
cRecoverable with no loss of correct inferences.
dPrecision after loss-less recoveries.

and questions.
This work aims to concretely demonstrate how ULFs can be used for four of the

five inference types described in Section 1.1.3. As the heading for this subsection
suggests the inferences we’re looking for are from attitudinal verb, counterfactual,
request, and question constructions. These inferences are important for language
understanding tasks, particularly dialogue comprehension, and include entailments,
presuppositions, and pragmatic forces. We treat any defeasible inference with a
sentence-level operator of appropriate likelihood (e.g. probably.adv-s, possible.adv-s)
so that within the probabilistic inference framework, these can be canceled by more
concrete evidence of their negations.

Due to the structural nature of these inferences, we can generate a reasonable
dataset for evaluating forward inferences. This, in general, it very difficult to do
because questions often have multiple equally correct answers. For structural infer-
ences, we can make a minimum edit constraint between the source and consequent.
Consider an example from Section 1.1.3: “She managed to quit smoking” entails “She
quit smoking”. The particular details are being filled into structure of the entailed
sentence directly from the source sentence the same way that “She managed to com-
plete the run even with the ankle injury she sustained” entails “She completed the
run even with the ankle injury she sustained”. Though paraphrases or less descriptive
entailments can be described, a canonical entailed sentence can be defined.

Dataset Construction. We chose a variety of text sources for constructing this
dataset to reduce genre-effects and provide good coverage of all the phenomena we
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are investigating. Below I describe the datasets included for this collection. Some
of these datasets include annotations that we ignore other than to identify sentence
and token -boundaries.

• Tatoeba 3

The Tatoeba dataset consists of crowd-sourced translations from a community-
based educational platform. People can request the translation of a sentence
from one language to another on the website and other members will provide
the translation. Due to this pedagogical structure, the sentences are fluent,
simple, and highly-varied. The English portion downloaded on May 18, 2017
contains 687,274 sentences.

• Discourse Graphbank (Wolf, 2005)
The Discourse Graphbank is a discourse annotation corpus created from 135
newswire and WSJ texts. We use the discourse annotations to perform sentence
delimiting. This dataset is on the order of several thousand sentences.

• Project Gutenberg 4

Project Gutenberg is an online repository of texts with expired copyright. We
downloaded the top 100 most popular books from the 30 days prior to February
26, 2018. We then ignored books that have a non-standard writing style: po-
ems, plays, archaic texts, instructional books, textbooks, and dictionaries. We
developed a custom tokenizer and sentence delimiter by hand on this dataset
largely based on regex patterns. This dataset totals to 578,650 sentences.

• Switchboard (Calhoun et al., 2010)
Switchboard is a telephone dialogue corpus on a wide range of topics. There
have been many layers of annotations made on this dataset. We perform tok-
enization, disfluency elimination, and sentence delimiting using a combination
of these annotations. Our normalized version of the dataset consists of 109,753
sentence-like utterances.

• UIUC Question Classification (Li and Roth, 2002)
The UIUC Question Classification dataset consists of questions from the TREC
question answering competition. This dataset covers a wide range of question
structures on a wide variety of topics, but focuses on factoid questions. This
dataset consists of 15,452 questions.

3https://tatoeba.org/eng/
4https://www.gutenberg.org
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We chose to hand-build tokenizers and sentence-delimiters for each dataset for
a couple of reasons. First, we didn’t want to introduce biases from models trained
on particular genres. Since this dataset spans multiple genres, we wanted to avoid
building a biased dataset due to a improperly tuned tokenizers/delimiters. Second,
most of the datasets have pretty regular patterns that can be identified and written
in when built by hand. This also meant that we could take advantage of available
annotations concurrently with the rules. The transparency of the rules also have the
benefit that we can interpretably fix errors in their performance.

Since the phenomena we want to focus on are relatively infrequent, we wrote
sampling patterns to only keep sentences that superficially look like they could con-
tain one of these phenomena. These patterns are written in linguistically-augmented
regex patterns to avoid parsing model bias. The sampling method was designed to be
human interpretable while minimizing false positives and keeping false negatives to
essentially zero. Since we will be getting human annotators to mark actual inferences,
some false positives are not problematic. We simply needed a filtering mechanism
so that we can reduce the number of annotations needed to get a sufficient number
of positive examples. Requests, for example, occur once in roughly every 100 to
1000 sentences, depending on the genre. We opted to use a syntactically augmented
regex patterns. For example, here are two augmented regex patterns for if/then
counterfactual construction and an inverted version:

"<begin?>(if|If)<mid>(was|were|had|<past>|<ppart>)<mid?>(<futr>) .+"

"<begin?>(<futr>)<mid>if<mid>(was|were|had|<past>|<ppart>) .+"

<begin?> indicates that it is either the beginning of the string or space separated
from previous text (this qualification exists because this sentence itself may be em-
bedded. <mid> words that are padded with spaces on the sides (i.e. separate tokens
from what’s defined next to it) and <mid?> is a variant that simply allows a space as
well. <past> and <ppart> are alternative lists of past tense and past participle verb
forms. <futr> is an alternatives list of different conjugations of “will”.

Inference Annotation. Our preliminary plan for inference annotation on this
dataset is to ask the annotator to select the structural inference pattern that hold for
the given sentence and write down the corresponding inferred sentence. For example,
say there is the sentence “If I were rich, I would own a boat”. The annotator would
select an inference template along the lines of (if <x> were <pred>, <x> would <q>) →
(<x> is not <pred>) and write down the inference “I am not rich”. This way we can get
a fluent inference, but push the annotator to think about the inferences structurally.
We will also include the option for annotators to add rules thats aren’t displayed
because some of the more pragmatic inferences are difficult to predict ahead of time
but easy to notice. We are still in the prototyping stage for the inference annotation

43



Dataset impl ctrftl request question interest ignored
Disc. Grphbnk 1,987 110 2 47 2,030 1,122
Proj. Gutenberg 264,109 31,939 2,900 60,422 303,306 275,344
Switchboard 37,453 5,266 472 5,198 49,086 60,667
UIUC QC 3,711 95 385 15,205 15,251 201
Tatoeba - - - - - -

Table 3.3: Sample statistics for each dataset given the sampling method described
in this section. Statistics for Tatoeba has not been generated because a cursory
look over the samples indicated a good distribution of results. These statistics were
generated as part of the dataset selection phase.

so the details are in flux.
For inferences from attitudinal verbs and counterfactual constructions, a large

portion of the inferences have to do with varying degrees of factuality of the embedded
sentences. For this we should be able to use annotations from the recently released
event factuality dataset (Rudinger et al., 2018).

Inference Evaluation. The evaluation will be done using F1 over the exact
inferences that were annotated. For this initial demonstration the inference rules for
ULF will be written by hand using a development set of examples from the dataset
just as in the pilot inference evaluation. Once we’ve trained a precise ULF parser, we
could deploy it in automatic knowledge acquisition algorithms to learn these sorts of
rules.

3.3 Next Steps
3.3.1 Learning the Semantic Parser.
To learn the ULF parser, we plan to explore a tree-to-tree machine translation

method and a string-to-tree parsing method; both are promising, given the similar-
ity of ULF parsing to machine translation and to syntactic parsing. In both ULF
parsing and machine translation, the input and output represent the same meaning
with different vocabularies and syntax, but with overall similar structure. Our use
of macros in ULFs for avoiding, e.g., explicit λ-abstraction and long-distance restruc-
turing (in wh-questions, relative clauses, etc.) helps to strengthen the similarity of
the target ULFs to the source sentences. We selected these approaches over the
recently successful neural network approaches for our initial work because the anno-
tation dataset will be relatively small, while neural network approaches rely on large
datasets to perform best. By releasing the dataset to the public, we will encourage
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(a) Constituency tree
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(b) Tree-form of ULF
(((ke (|John| sleep_in.v))

((pres be.v) unusual.a))

FormulaT

VPredT

AdjPred

unusual.a
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VPred

be.v

TENSE
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Skind

Formula

VPred

sleep_in.v

Term
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ke

(c) Possible Rules
S-FormulaT → SBAR-Skind VP-VPredT,

SBAR-Skind VP-VPredT

SBAR-Skind → IN-SkindOp S-Formula,

IN-SkindOp S-Formula

IN-SkindOP → For, ke

S-Formula → NNP-Term VP-VPred

NNP-Term → John, |John|

TO-VPred → to VP-VPred, VP-VPred

VP-VPred → sleep in, sleep_in.v

VP-VPredT → AUX-VPredT ADJP-JJ,

AUX-VPredT ADJP-JJ

AUX-VPredT → is, (pres be.v)

JJ-AdjPred → unusual, unusual.a

Figure 3.4: Rules for the example sentence For John to sleep in is unusual. (a) and (b) are
the constituency tree and tree representation of the ULF that correspond to the sentence,
respectively. The non-terminals in (b) are logical type categories (those with ‘T’ appended
are tensed variants). (c) lists a possible set of STSG rules that synchronously generates
the two trees. Dashes are used to join the two tree non-terminal names. Notice that the
learned rules collapse subtrees that only exist in only one (e.g. the “sleep in” constituency
subtree and “pres be.v” logical subtree).
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other researchers to develop progressively better ULF parsing methods.
The tree-to-tree translation method models the two representations as a Syn-

chronous Tree Substitution Grammar (STSG) (Eisner, 2003; Gildea, 2003). This
formalism consists of a grammar that generates two trees in parallel, with rules that
expand a nonterminal into a pairs of corresponding tree fragments, one on each side
of the transduction. See Figure 3.5 for the definition of a binary STSG. Examples of
STSG rules that pair Penn Treebank style parse trees with ULF formulas are shown
in Figure 3.4.

X ⇒ a, b

X ⇒ a1X
[1]a2X

[2]a3, b1X
[2]b2X

[1]b3

Figure 3.5: Binary STSG rules.
The lowercase a and b stand for
terminal symbols in the two lan-
guages, respectively and X stand
for non-terminals. The second
rule describes the nonterminal
case where the superscripts link
the nonterminals on either side of
the derivation. The nonterminals
can be in either order for the non-
terminal generation.

Learning STSG rules consists of two steps:
(1) aligning the nodes between the syntactic and
semantic trees and (2) learning larger, multi-
node rules between the two trees. Node align-
ment will be learned through Variational Bayes
to apply EM with heuristics based on string
matching and available lexical types per token.
These heuristics will considerably and reliably re-
duce the search space so that this will be success-
ful on a small dataset. Larger rules are learned
by extracting all pairs of tree fragments that are
consistently aligned, that is, that have all nodes
in the fragment on one side of the rule aligned
to nodes in the fragment on the other sides,
and vice versa. This can be sped up with rule-
decomposition sampling with a Bayesian prior on

the rule size (Post and Gildea, 2009; Chung et al., 2014).
But perhaps we will be able use string-to-tree parsing methods instead of STSG.

The production rules in Figure 3.4 show that reordering between English syntax
and ULF productions are rare. With minor extensions to the ULF composition
types to allow for argument reordering (e.g., using Formula → Term, VPred and
Formula'→ VPred, Term to express the same semantics but with reversed produc-
tions) we could sufficiently capture the reordering between surface English and ULF
formulas directly in a probabilistic context free grammar (PCFG). String-to-tree
algorithms for PCFGs have significantly lower computational complexity than tree-
to-tree algorithms for STSGs in general at the cost of not being able to do more
complex reorderings.5

5The best parse can be decoded from binarized PCFGs in O((NT )3) using Viterbi whereas
STSGs can’t be binarized so decoding is O((NT )(M+1)) where N is the length of the sentence and
T is the number of non-terminals in the grammar and M the maximum number of non-terminals
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Fine-tuning the Parsing Models to Inference Tasks.
One of the worries in building a task-agnostic semantic parser is that the parser will
be suboptimal for any particular task since the optimized training function differs
from the task evaluation/reward function. We can overcome this by dynamically
tuning the model to specific tasks through reinforcement learning. Any model that
can be sampled from its distribution of outputs and is log-differentiable with respect
to the model parameters can be optimized to maximize the expected reward using
the Reinforce algorithm (Williams, 1992):

max
θ

∑
xi∈X

EP (yi|θ,xi)[R(yi)] ∆θi = α(R(y)− β)(
∂

∂θi
ln(P (y|θ, x)))

where X is the set of inputs, θ are the model parameters, y is the output, and
α and β are hyperparameters for the convergence rate. The efficacy of optimizing
statistical models with Reinforce for semantic parsing has been demonstrated by
recent publications (Liang et al., 2017; Guu et al., 2017).6 Researchers have also
developed methods for making Reinforce-based training more robust, such as ex-
perience replay (Mnih et al., 2015) and randomized beam search (Guu et al., 2017),
that we will incorporate. Notice that log-linear models are log-differentiable so we
can use this fine tuning approach with any log-linear neural network or grammar
model.

3.3.2 Evaluation of the Semantic Parser
Choosing a metric for internal evaluation. In phrase-structure parse eval-
uations, a node of the test tree is scored as correct if it bears the same category
label as the node of the reference tree that dominates the same word span. Since
our primal LFs can be viewed as tree structures that correspond rather closely to
a phrase structure tree, one may think that a similar evaluation metric could be
employed here. However, we have no explicit category labels, and we will not in
general have fixed sequences of atoms in the yield of a test and reference trees. The
lack of category labels could be overcome by using the semantic categories of an LF
grammar that describes semantically well-formed LFs. However, we are left with
the potential mismatches at the leaf level, and therefore take our cue instead from
the Smatch metric (Cai and Knight, 2013). Smatch in effect gives partial credit for
each correct constituent (the predicate and each argument) of a predication, where

produced by an STSG rule.
6These publications learn semantic parsing models from distant supervision alone, which is

feasible because they use restricted semantic representations to reduce the search space. We can
think of the supervised training on ULF annotations as a smart initialization of parameters towards
formulas that “look right”.
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the predications and constituents have been aligned via correspondences between the
names of the unique variables associated with them.

We can follow a similar strategy by associating a unique variable with each
nonatomic subexpression of a test LF and reference LF. Suppose that we are given a
mapping between these variables as well as lambda-bound variables (and quantifier-
bound variables, if any – though these generally appear only as a result of scope
disambiguation). Under this mapping, we can score 1 unit for each immediate, cor-
rectly positioned constituent of each pair of corresponding subexpressions – where
nonatomic constituents are identified by their associated variables. The main differ-
ence from matching AMR formulas is that we have a greater variety of expression
types, e.g., quantifier phrases, modified predicates, and lambda-abstracts, but these
can still be scored in the same way via their constituency.

The actual F1-score for a match depends on finding the variable correspondence
that optimizes that score. Cai & Knight note that for AMR structures this is an NP-
complete problem, but they were able to develop fast heuristic hill-climbing methods
for the optimization problem that were quite accurate in relation to an exact (but
relatively slow) integer linear programming approach. We expect to develop analo-
gous algorithms that are equally fast and accurate. As a heuristic device, we will use
semantic category parses based on an LF grammar for initial approximate structure
alignment. (We already have an EL grammar and parser, but these are designed for
fully scoped LFs, and thus will require adaptation.)

Internal evaluation experiments. We will use standard validation methods,
holding out a portion (perhaps 10%) of the annotated corpora in training our se-
mantic parser and evaluating on the held-out portion. We will perform these exper-
iments with increasingly large annotated corpora in successive years, both because
the growth of the corpora in the course of the project will make this possible, and
because it is important determine how F1-scores improve as a function of training
corpus size.

External evaluation. As explained in Section 3.2.6, we are propose evaluat-
ing on a novel forward inference task, one that focuses on phenomena that require
minimal world knowledge, but fine-grained representations: implicative verbs, atti-
tudinal and communicative verbs, counterfactuals, and questions and requests. As
the examples discussed in 1.1.3 indicate, the inferences under consideration are in-
stantly obvious and essential to understanding. The precision of such inferences
is rather easy to evaluate via human judgments, but we will also perform evalua-
tion of recall. This is in general hard for spontaneous inferences, because people
are capable of reporting a wide variety of explanations, causal consequences, and
stream-of-consciousness associations for any given sentence. This is presumably why
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virtually all established inference challenges for general language are classificatory
or multiple-choice. However, the inferences under consideration here are relatively
easy to circumscribe, because of they are associated with very limited classes of key
words and utterance forms. Thus the relevant types of inferences can be conveyed
to experimental participants through explanation and examples. In fact, the reader
who has perused the final four bullet points at the end of Section 1.1.3 probably has a
pretty good idea already what inferences are at issue in these cases, and some further
examples and explanations would consolidate that understanding. More objectively,
the we found that students in AI classes have no difficulty catching on to the con-
cept of implicatives in the context of a lecture on NLog – they are able to report
implicative inferences quite readily for new examples. The same goes for inferences
from communicative and attitudinal verbs, and the other categories enumerated in
Section 1.1.3. The inference task can be channeled even more narrowly by requir-
ing subjects to report just those inferences that they derive from the presence of
particular words or utterance forms, specified as part of the task.

3.4 Conclusion
In this document I propose a research plan for developing a high-precision semantic
parser for ULFs from a moderately sized annotated corpus. The approach of this
research project is based on the hypothesis that a divide-and-conquer approach to
semantic parsing will lead to more precise and useful semantic analyses than a one-
shot approach. I discussed relevant semantic parsing and annotation projects and
highlighted that this project fills a void in terms of tying the semantic representation
to an expressive object language so that the descriptions and inferences can be sup-
ported by model theoretic analyses. Furthermore, I discussed completed and current
work on effectively building up a corpus which involved borrowing techniques from
the related works and developing novel logical form relaxations for simpler annota-
tions without the loss of semantic precision. The project also includes measuring the
structural inference capabilities of ULFs – to present all the uses of a ULF parser
in NLP tasks. I wrap up the proposal with a clear plan on how we will train a
high-precision semantic parser on a moderately-sized dataset by taking advantage of
all the features of the data.
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