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1. INTRODUCTION

Temporal logic model-checking procedures are useful tools for the verification
of finite-state systems [Clarke et al. 1986; Emerson and Lei 1986; Liechte-
nstein and Pnueli 1985]. However, these procedures have traditionally suffered
from the state explosion problem. This problem arises in systems which are

composed of many parallel processes; in general, the size of the state space

grows exponentially with the number of processes. By introducing symbolic
representations for sets of states and transition relations and using a sym-

bolic model-checking procedures, systems with very large state spaces (10100
or more states) can be verified [Burch et al. 1990; Coudert et al. 1990].
Further, the time and space requirements with these techniques may in
practice be polynomial in the number of components of the system. Unfortu-
nately, the symbolic procedures still have limits, and many realistic problems
are not tractable due to their size. Thus, we are motivated to search for
additional methods of handling the state explosion problem, methods which
work well in conjunction with the symbolic techniques.

An obvious method for trying to avoid the state explosion problem is to use
the natural decomposition of the system. The goal is to verify properties of
individual components, infer that these hold in the complete system, and use
them to deduce additional properties of the system. When verifying proper-
ties of the components, it may also be necessary to make assumptions about
the environment. This approach is exemplified by Pnueli’s [1984] assume-
guarantee paradigm. A formula in his logic is a triple ( q )Al( ~ ) where p and
~ are temporal formulas, and M is a program. The formula is true if
whenever M is part of a system satisfying q, the system must also satisfy v.
A typical proof shows that (q) M( ~ ) and ( true) M’( p ) hold and concludes
that ( true )MllM’( @) is true.

In order to automate this approach, a model checker must have several

properties. It must be able to check that a property is true of all systems

which can be built using a given component. More generally, it must be able

to restrict to a given class of environments when doing this check. It must

also provide facilities for performing temporal reasoning. Most existing model

checkers were not designed to provide these facilities. Instead, they typically

assume that they are given complete systems.

An elegant way to obtain a system with the above properties is to provide a

preorder on the finite-state models that captures the notion of “more behav-

iors” and to use a logic whose semantics relate to the preorder. The preorder

should preserve satisfaction of formulas of the logic, i.e., if a formula is true

for a model, it should also be true for any model which is smaller in the

preorder. Additionally, composition should preserve the preorder, and a

system should be smaller in the preorder than its individual components.

Finally, satisfaction of a formula should correspond to being smaller than a

particular model (a tableau for the formula) in the preorder. In such a

framework, the above reasoning sequence might be expressed as: T is the

tableau of q, MIIT I= ~, M’s T, and hence Ml\M’ s ~. Note that assump-

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No. 3, May 1994



Model Checking and Modular Verification . 845

tions may be given either as formulas or directly as finite-state models,

whichever is more concise or convenient. More complex forms of reasoning

such as induction [Kurshan and McMillan 1989] are also possible within this

framework.

In choosing a computational model, a logic and a preorder to obtain a

system such as this we are guided by the following considerations. First, we

must be able to realistically model physical systems such as circuits. Second,

there should be efficient procedures for model checking and for checking the

preorder. Finally, it should be possible to implement these procedures effec-

tively using symbolic techniques.

In this article, we propose a preorder for use with a subset of the logic CTL*

[Emerson and Halpern 1986]. This subset is strictly more expressive than

LTL. Further, the induced subset of CTL, called VCTL, is expressive enough

for most verification tasks and has an efficient model-checking algorithm. We

also give a tableau construction for this CTL subset. The construction pro-

vides a means of temporal reasoning and makes it possible to use formulas as

assumptions. The main advantage of CTL over linear temporal logics (e.g.,

LTL) is in its low-complexity algorithms for model checking and equivalence

and preorder testing (polynomial for CTL, exponential for LTL).

Our preorder and the semantics of our logics both include a notion of

fairness. This is essential for modeling systems such as communication

protocols. We show how to use our results to verify systems composed of

Moore machines. Moore machines have an explicit notion of input and output

and are particularly suitable to model synchronous circuits. Finally, we

suggest efficient methods for checking the preorder in several interesting

cases. We have implemented a system based on these results; the system

supports efficient compositional verification and temporal reasoning for VCTL.

Our article is organized as follows. Section 2 surveys some related work. In

Section 3, we present the logic and its semantics (for Kripke structures). The

preorder and some of its properties are given in Section 4. The next section

defines the semantics of the logic for Moore machines. Given a Moore

machine and a formula, we show how to efficiently check whether for all

environments, the Moore machine in the environment satisfies the formula.

Section 6 presents the tableau construction and demonstrates how to use it

for temporal reasoning. Methods for checking the preorder are discussed in

Section 7. Section 8 gives a compositional verification of a simple CPU

controller. We conclude with a summary and some directions for future work.

2. RELATED WORK

Much of the work on reducing the complexity of automatic verification can be

grouped into two classes. The first class includes methods to build a reduced

global-state graph or to expand only the needed portion of the global-state

graph.

Local-model–checking algorithms [Cleveland 1990; Stirling and Walker

1989; Winskel 1989] based on logics like the p-calculus use a tableau-based
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procedure to deduce that a specific state (the initial state of the system)

satisfies a given logical formula. The state space can be generated as needed

in such an algorithm, and for some formulas, only a small portion of the space

may have to be examined. The main drawback of these algorithms is that

often the entire space is generated (for example, when checking that a

property holds globally). It is also not clear whether the algorithms can take

good advantage of symbolic representations.

Graf and Steffen [1990] describe a method for generating a reduced version

of the global-state space given a description of how the system is structured

and specifications of how the components interact. Clark et al. [1989a]

describe a similar attempt. Both methods will still produce large state graphs

if most of the states in the system are not equivalent, and much of the

verification must be redone if part of the system changes, Shtadler and

Grumberg [ 1989] show how to verify networks of processes whose structure is

described by grammars. In this approach, which involves finding the global

behavior of each component, networks of arbitrary complexity can be verified

by checking one representative system. For many systems, however, the

number of states may still be prohibitive, and it is not clear whether the

method can use symbolic representations.

The methods in the second class are compositional; properties of the

individual components are verified, and properties of the global system are

deduced from these. A representation of the global-state space is not built.

Josko [1989] gives an algorithm for checking whether a system satisfies a

CTL specification in all environments. His algorithm also allows assumptions

about the environment to be specified in a restricted linear-time logic. The

system is able to handle assume-guarantee reasoning. The method is fairly

ad hoc however, and more complex forms of reasoning such as induction

cannot be easily incorporated into the system.

Within the framework of CCS [Milner 1980], there have been a number of

suggestions for compositional reasoning. Larsen [1993] investigates the ex-

pressive power of formalisms for specifying the behavior of a process in a

system. He suggests equivalence, refinement, and satisfaction (of a formula)

as three interesting relations between an implementation and its specifica-

tion. However, he does not discuss the applicability of these ideas to verifica-

tion, nor does he suggest how how they can be implemented. Walker [1988]

demonstrates how to use a preorder plus knowledge of how a system should

operate to simplify the verification of bisimulation equivalence. Cleveland
and Steffen [ 1990] use a similar idea. Winskel, in a draft copy of “Composi-

tional Checking of Validity on Finite State Processes,” proposes a method for

decomposing specifications into properties which the components of a system

must satisfy for the specification to hold. The approach is very appealing, but

unfortunately, dealing with parallel composition is difficult. It is not apparent

whether any of these methods will work well with symbolic representations.

Kurshan [1989] describes a verification methodology based on testing

containment of co-regular languages. Homomorphic reductions are used to

map implementations to specifications, and the specifications may be used as
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implementations at the next level of abstraction. Dill [1989] proposes an

elegant form of trace theory which can be used in a similar manner, but the

framework does not handle liveness properties as well. Both approaches

depend on specifications being deterministic for efficiency, and neither ap-
proach makes provisions for using logical formulas as specifications or as-

sumptions.

Shurek and Grumberg [1990] describe criteria for obtaining a modular

framework, and they illustrate the idea using CTL* with only universal path

quantifiers. This system is closest to the work presented here, but they give

no provisions for handling fairness efficiently, using formulas as assump-

tions, or supporting temporal reasoning. Models in their system are also

associated with a fixed decomposition into components; hence it is unclear

how to perform inductive reasoning in the framework.

3. TEMPORAL LOGIC

The logics presented in this section are branching-time temporal logics. In

order to be able to efficiently decide whether a formula is true in all systems

containing a given component, we eliminate the existential path quantifier

from the logics. Thus, a formula may include only the universal quantifier V

over paths, but unlike in linear-time temporal logic, nesting of path quanti-

fiers is allowed. To ensure that existential path quantifiers do not arise via

negation, we will assume that formulas are expressed in negation normal

form. In other words, negations are applied only to atomic propositions. As a

result, the logics contain both V and A as boolean operators. The temporal

operators are X (“nexttime”), U (“until”), and V (“releases”). V is the dual of

U, i.e., pVq is true whenever ~ pU ~ q is false; pVq is true of a path when q

is true starting at the first state on the path, and q remains true up to and

including the first point where p becomes true. Thus, p becoming true

“releases” the obligation that q remain true. There is no requirement that p

ever become true; a path where q was invariantly true would also satisfy

pVq. The more familiar Gp can be viewed as an abbreviation for false Vp.

The logics are interpreted over a form of Kripke structure with fairness

constraints. Path quantifiers range over the fair paths in the structures.

Definition L (VCTL* ) The logic VCTL* is the set of state formulas given

by the following inductive definition.

(1) The constants true and false are state formulas. For every atomic propo-

sition p, p and 1 p are state formulas.

(2) If p and @ are state formulas, then p A * and p V @ are state formulas.

(3) If p is a path formula, then V(q) is a state of formula.

(4) If P is a state formula, then 9 is a path formula.

(5) If q and @ are path formulas, then so are p A ~, q v ~.

(6) If p and 4 are path formulas, then so are
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(a) XV,

(b) qU~, and

(c) pv*.

We also use the following abbreviations: Fq and Gq, where p is a path

formula, denote (true Up) and (false Vp) respectively.

VCTL is a restricted subset of VCTL* in which the V path quantifier may

only precede a restricted set of path formulas. More precisely, VCTL is the

logic obtained by eliminating rules 3 through 6 above and adding the follow-

ing rule.

(3’) If p and o are state formulas, then VX p, V( pU~), and V( qoV~) are
state formulas.

In practice, we have found that many of the formulas which are used in

specifying and verifying systems are expressible in VCTL, and almost all are

expressible in VCTL*. An example formula which is not expressible in VCTL*

is a weak form of absence of deadlock: VG3Fp states that it should always be

possible to reach a state where p holds.

We will give the semantics of the logic using a form of Kripke structure

with fairness constraints.

Definition 2. (structure) A structure M = (S, SO, H, 2, R, S) is a tuple of
the following form.

(1) S is a finite set of states.

(2) SO G S is set of initial states.

(3) .ti is a finite set of atomic propositions.

(4) & is a function that maps each state to the set of atomic propositions true

in that state.

(5) R c S X S is a transition relation.

(6) Y-is a Streett acceptance condition, represented by pairs of sets of states.

Definition 3. A path in M is an infinite sequence of states m-= SISIs ~ . . .
such that for all i e.&, R(sl, s,+ ~).

Definition 4. Define inflw ) = {s Is = s, for infinitely many i}; w is a fair
path in M iff for every (P, Q) 6 S, if inflz-) f’ P + @ then infIm) n Q # 0.

The notation m-n will denote the suffix of n- which begins at s.. We now

consider the semantics of the logic VCTL* with atomic propositions drawn
from the set ~.

Definition 5. (satisfaction of a formula) Satisfaction of a state formula p
by a state s (s I= q) and of a path formula ~ by a fair path w (n R $) is

defined inductively as follows.

(1) s t= true, and s K false. s t=p iff p GJ%(s). s I= ~ p iff p z–$(s).

(2)s>q~t iffs Rqand s>@. s>pvijiff s~porsi=y.

(3) s != V(q) iff for every fair path w starting at s, n % q.
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(4) n-= p, where p is a state formula, iff the first state of n satisfies the
state formula.

(5)~Fp A@iffrkqandnk+. n l=q Vqkiff~kqorrrt=*.

(6) (a) ml= X9 iff ml t= q.

(b) n R PUV iff there exists n e.fl such that n n I= v and for all i < n,
WL i= q.

(c) n’F qV@ ifffor all n ~~, if n’ w p for all i < n, then nn R V.

M = p indicates that for every so = SO, so > p.

Emerson and Halpern [ 1986] compared the expressive power of the three

Iogics LTL, CTL, and CTL*. They showed that LTL and CTL have incompara-

ble expressive power, while CTL* is strictly more expressive than either of

the others. Eliminating the existential path quantifier from CTL and CTL*

does not affect the relative expressive power of the logics. VCTL* trivially

encompasses LTL and VCTL. The formula VFVGp is a formula of VCTL that
does not have an equivalent LTL formula. On the other hand, there is no
VCTL formula that is equivalent to the LTL formula VFGp. Thus, LTL and

VCTL are incomparable, and both are strictly less expensive than VCTL*.

4. SIMULATION RELATIONS AND COMPOSITION OF STRUCTURES

In this section, we define the preorder which we use and examine some of its

properties. We also show how these properties make assume-guarantee–style

reasoning possible.

Definition 6. (structure simulation) Let M and M’ be two structures with

.Q2> d’, and let t and t’ be states in S and S, respectively. A relation

H q S X S’ is a simulation relation from (M, t) to (M’, t’) iff the following

conditions hold.

(1)H(t, t’).

(2) For all s and s’, H(s, s’) implies

(a) Y’(s) nti’ =$?’’(s’); and

(b) for every fair path n = SOSI... from s = so in M there exists a fair

path rr’ =s~s~... from s’ = s; in M’ such that for every i = W;

H(S, , s;).

When H satisfies property (2), we say H is a simulation relation. H is a

simulation from M to M’ iff for every so ● SO there is s~ G S~ such that

H(sO, s~). To indicate that two paths correspond as in item (2b) above, we

write H(m-, n’).

Definition 7. For s G S and s’ G S’, (M, s) < (M’, s’) iff there is a simula-

tion relation from (M, s) to (M’, s’). Ms MYiff there exists a simulation

relation from M to M’.

When M and M’ are understood, we sometimes write s ~ s’. Intuitively,

one state can be simulated by another if their labels agree on the atomic
propositions of the second structure and if for every fair path from the first
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state there is a corresponding fair path from the second state. One structure

can be simulated by another if for every initial state of the first, there is a

corresponding initial state of the second. One may view the second structure

as a specification and the first as its implementation. Since a specification

may hide some of the implementation details, it may have a smaller set of

atomic propositions.

Definition 8. (composition of structures) Let M and M’ be two structures.

The composition of M and M’, denoted M IIM’, is the structure M“ defined as

follows.

(1)S = {s, s’)IJ2?Is) new’=9(s’) rid}.
(2) S{ = (SO x S~) n S“.

(3) .@ =& Ud.

(4) -5?’’’((s, s’)) =-$?s) U-Y’(S’).

(5) R“((s, s’), (t, t’)) iff R(.s, t) and R’(s’, t’).

(6) Y“ = {((P x S’) n S“,(Q x S’) n S“)I(P,Q) G7}
u{((S x P’) n S“, (S x Q) n S“)I(P’, Q’) G9’}.

The choice of this definition of composition is motivated by its correspon-

dence with composition of Moore machines. Each transition of the composi-

tion is a joint transition of the components, and states of the composition are

pairs of component states that agree on their common atomic propositions.

We first note that this composition operator has the usual properties.

THEOREM 1. Composition of structures is commutative and associative (up

to isomorphisrn).

PROOF. Straightforward but tedious. ❑

We now turn to the connections between the relation ~ and composition.

To begin, we note that a path in M IIM’ is fair iff its restriction to each
component results in a fair path.

LEMMA 1. Let M“ = M IIM’. The following conditions are equivalent.

(1) # = (s., s~)(sl, s~)... is a fair path in M“.

(2) W=sosl . . . and w’ = s~s~ . . . are fair paths in M and M’ respectively,

and (s,, s;) is a state of M” for all i EN.

PROOF. Assume condition (1) above. By the definition of composition,

W=sosl. . . is a path in M. Let (P, Q) ● Y—,and suppose inffw) n P # @.

Now (P”, Q) = ((P x S’) n S“, (Q x S’) n S“) EJ2Z+’, and inflm”) n P“ + @.

By the definition of a fair path, inffm” ) n Q # 0. Hence in~m) n Q # @, and
so m is a fair path in M. Similarly, w’ = s~s; . . . is a fair path in M’.

Assume condition (2) above. From the definition of composition, m“ =

(s~, s~)(sl, s~)... is a path in M“. Suppose (P”, Q) E Y’ and inf(m-” ) n P“ #

0. Either (P’’, Q) = ((P x S’) n S“, (Q x S’) n S“) for some (P, Q) ●=, or

(P’’, Q) = ((S X P’) n S“, (S X Q’) n S) for some (P’, Q’) =7. In the first
case, we have inffw) n P # 0, and so inflw) n Q # @. This implies inflw”) n

Q # 0. The second case is similar. Hence m-” is a fair path in M“. ❑
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THEOREM 2.

(U <is a preorder

(2) For all M and M’, Mll M’~M.

(3) For all M, M’ and M“, if MS M’ then MIIM” T M’IIM”.

(4) For all M, M~MllM.

PROOF.

(1) The relation H = {(s, s)Is G S} is a simulation relation from M to M, so
< is reflexive. Thus it only remains to show that < is transitive. Assume

~ ~ M’ and M’ ~. M”. Let HO be a simulation ~lation from M to M’,

and let HI be a simulation relation from M’ to M“. Define Hz as the

relational product of HO and HI, i.e.,

Hz = {(S, S“)13S’[HO(S, S’)AHI(S’, S“)]}.

If so = SO, then by the definition of simulation relation, there exists

s~ ~ S~ such that HO( SO,s~ ). Similarly, there exists s~ = S{ such that
Hl(s~, s{), and hence Hz(sO, s{).

Suppose Efz(s, s“) and let s’ be such that HO(s, s’) and Hl( s’, s“). By
the definition of simulation relation, Y(s) n W’ = J?’( s’ ) and Y’( s’) n J&’

= .,5?’’ (s”). Then since .@’ Q d’, we have 9(s) n .w’” = F“( s“ ). If n is a fair
path in M from s, then there exists a fair path T’ from s’ in M’ such

that HO(T, w’), Since HI is a simulation relation, there exists a fair path

m-” from s“ in M“ such that HI(T’, T“). But then Hz(v, m“ ), and hence

Hz is a simulation relation from M to M“. Thus M ~ M“.

(2) Define H by

H= {((s, s’), s)l(s, s’) ‘=s~ll~’}.

If (s., s~) is an initial state of MlIiW’, then so @ SO. The label of (s, s’) is
S(s) u3?(s’), and (s(s) uY’(s’)) nw =&(s). If (s., s~)(sl, s~).. . is a
fair path in M IIM’, then by the previous lemma, so, SI . . . is a fair path in

M. By the definition of H, we have H((s,, s;), s,) for every i. Hence H is a

simulation relation, and M IIM’s M.

(3) Let HO be a simulation relation from M to M’. Define H, by

HI = {((s, S“), (S’, S“))IHO(S, s’)}.

We show that HI is a simulation relation. Let (so, s{) be an initial state

of M IIM“. By the definition of composition, so = So and s{ G S{. Since

M ~ M’, there exists s~ = S~ such that HO( SO, s~). Now (sL, s{) is a state

of M’ IIM“ since

57?’(s~) nd’ = (&’(sO) new”) nd’

= (l%’(sO) nM’) n.ti’

= (Y’’(s{) ns) n~

=4?’’’(s{) nd.
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Further, (sL, s{) is an initial state of M’ IIM“ by the definitionof composi-

tion. By definition of 171, we have 111((so, s{), (sL, s{)).
Suppose Ill((s, s“), ( s’, s“)). First note that

(s(s) uS’’(S”)) m (@ UW”) = (&(s) n~’) u ($?(s) n.w”)

u(S’’(S”) n (W’ uti))

=S’(S’) u (s’’(s”) nti) WZ’’(s”)

=3’’(s’) U&’’’ (s”).

Let (s., S{)(SI, s;)... be a fair path in MIIM” from (s, s“) = (s., s{). Then

for every i = ~~~we have S(s, ) n w“ = Y“ (s; ) n xl By the previous lemma,

m=sosl . . . is a fair path in M starting at s, and rr” = s;s; . . . is a fair

path in M“ from s“. Since HO(S, s’), there is a path m’ = s~ sj . . . from

s’ = s~ in M’ such that for every i = ..~~ we have HO(s,, s;). By the

definition of simulation relation, 4?( S,) n d’ = 9’(s; ) for all i. Arguing as
above, we then have S?’( s:) n M =&’’’(s~) n a? for each i, and so each

(s{ ,s~) is a state in M’ IIM“. Now ~l(~s,, s;), (sI, s;)) @ the definition of

ill. Applying the previous lemma, we find that (s:, s~’)( sj, sl).. . is a fair

path starting in (s’, s“ ) and corresponding to the path (so, s{ )( SI, sl) . . . .

(4) First note that for every state s of M, (s, s ) is a state of M IIM. Define
El = {(s, (s, s))Is ● S}. If SOc SO, then by the definition of composition,
(sO, so) is an initial state of Mll M; (s, s) trivially has the same label as s.
Using the previous lemma and the definition of composition, we find that,

if Sosl . . . is a fair path in M, then (s., So)(sl, SI) . . . is a fair path in

Mll M. By the definition of H, we have H(s,, (s,, s,)) for all i. Hence H is a

simulation relation, and M < M IIM. ❑

THEOREM 3. Let s and s’ be states of M and M’, and let H be a simulation

relation such that H(s, s’). Let v and w’ be fair paths such that H(m-, w’).

Then

(1) for every VCTL* (state) formula q (with all atomic propositions in ti’), if

s’ + q, then s ➤ p; and

(2) for every VCTL” path formula p (with all atomic propositions in H’), if

r’ & q, then ~+ p.

PROOF. The proof proceeds by induction on the structure of the formula.

(1) If p = true or p = false, the result is trivial. If p = p, an atomic proposi-
tion, then s’ t= p if and only if p ● Y’( s’ ), By the definition of simulation
relation, =(s) nw?’ =5’’(s’), and so p ●&’(s) iff p =S’’(s’). Thus s * p.
The case where p = 1 p is similar.

(2) If q = PI A Pj, then s’ I= q iff s’ K PI and s’ s qz. The induction hypoth-

esis implies s + PI and s ~ qz; hence s ~ p. The case where q = PI V Pz

is similar.

(3) If p = V(ql), then s E q iff for every fair path n from s, T E PI. Let n be
any fair path from s. By the definition of simulation relation, there exists

a fair path w’ from s’ such that H(m-, T’). If s’ > p, then rr’ * PI for any
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T’ from s’. The induction hypothesis then implies n- != ql, and hence

si= (p.

(4) If q is a path formula consisting of only a state formula and T’ k q, then
the initial state s’ of m’ satisfies p. By the induction hypothesis, s ~ p,

and since s is the initial state of v, m I= p.

(5) The cases for the conjunction and disjunction of path formulas are similar
to case 2.

(6) (a) If p = Xpl, then m’ * q implies T’1 I= P1. Now since H(n, T’), we
also have H(n 1, n-’l). Then the induction hypothesis implies n-1 1= PI.

Thus n + p.

(b) If p = PIUPZ , then w’ I= q implies that there exists n such that

n-” ~ pz and for all i < n, T“ I= PI. Since H(w, m’), we have

H(nJ, m’J) for any j. Applying the induction hypothesis, m‘ I= qz and

fii k PI for all i < n. Hence T> q.

(c) The case where p = qlVqa is similar to the previous two cases. ❑

CO~OUAR~ 1. Suppose M ~ M’. Then for every VCTL* formula p (with

atomic propositions in ~’), M’ k p implies M t= p.

PROOF. Immediate. ❑

Using Theorem 2 and this corollary, we see that a standard CTL (CTL* )

model-checking algorithm [Clarke et al. 1986], when restricted to ‘dCTL

(VCTL* ), can be viewed as determining whether a formula is true of all

systems containing a given component. This is the key to compositional

verification. With the theorem and corollary, it is also straightforward to

justify the soundness of the assume-guarantee paradigm when assumptions

are given as structures. (The connection between structures and formulas will

be examined in Section 6.) Discharging an assumption involves checking for

the relation <. Suppose that we wish to check that M IIM’ I= q and that we

have verified~he following relationships:

In other words, M discharges assumption A; M’ under assumption A

discharges assumption A’; and M under assumption A’ satisfies the desired

formula. From Theorem 2, we have

MIIM’sMIIMIIM’

Then Corollary 1 implies that M IIM’ 1= p. The theorem and corollary also

show that any system containing M IIM’ will satisfy g. Note that P is not
necessarily true in either M or M’ and may involve atomic propositions from

both M and M’.
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5. MOORE MACHINES

We have seen that the structures defined earlier (Definition 2), can be used

for compositional reasoning about synchronous systems. However, such sys-

tems are typically given using a more common finite-state model such as

Moore machines [Hopcroft and Unman 1979]. Moore machines are models of

computation with an explicit notion of inputs and outputs. Since the inputs

originate from an external, uncontrolled environment, the machine can al-

ways receive any combination of input values. Moore machines are syn-

chronous; in a composition of Moore machines, each machine makes a single

step at every point. Thus, they are most suitable for modeling synchronous

circuits. In this section, we show a natural correspondence between Moore

machines with an empty set of inputs and the structures defined earlier. We

use this correspondence to define the semantics of VCTL* with respect to

Moore machines, and we show how to use compositional reasoning to verify a

system composed of Moore machines.

Definition 9. (Moore machine) A Moore machine M = (S, SO, I, O, -.%’,R)

is a tuple of the following form

(1) S is a finite set of states.

(2) SO C S is a set of initial states.

(3) 1 is a finite set of input propositions.

(4) O is a finite set of output propositions.

(5) & is a function that maps each state to the set of output propositions true
in that state.

(6) R c S x 21 X S is the transition relation.

We require that I n O = @ and that for every s = S and u c I, there exists

some t = S such that R(s, v, t). We also let .@ denote 1 U O.

Definition 10. (composition of Moore machines) Let M and M’ be Moore

machines with O n O’ = @. The composition of M and M’, denoted M IIM’, is

the Moore machine M“ defined as follows.

(1) s“ = s x s’.

(2) s: = so x s~.

(3) 1“ = (1 u r)\(o u o’).

(4) o“ = o u o’.

(5) 5“((s, s’)) =4?’(s) Us’(s’).

(6) R“((ss’),u,(t,t’)) iff R(s, (u uJZ’’(S’)) n I,t) and R’(s’, (u u&(s)) n 1’, t’).

We now turn to the question of how to define satisfaction of a specification

by a Moore machine M. The key consideration is that we wish to have a
compositional method of reasoning. Thus, M satisfying a specification should

mean that M plus any environment satisfies that specification. We will

achieve this by considering the behavior of complete systems involving M.
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Definition 11. A Moore machine M is called closed if I = ~.

Intuitively, the behavior of a closed machine cannot be altered. For such a

machine, there is a structure which naturally corresponds to it. We define

this structure precisely now. The definition here is actually slightly more

general in that it assigns a structure to nonclosed machines as well.

Definition 12. (structure for a Moore machine) The structure M’ corre-

sponding to a Moore machine M, denoted by K(M), is defined as follows.

(1) s’ = s x 21.

(2) Sb = so x 2’.

(3) JX?’=JK=IUO.

(4) 47’((s, u)) =&(s) u u.

(5) R’((s, ul), (t, Uz)) iff R(s, VI, t).

(6) @ = 0.

Definition 13. A Moore machine M’ is called a closing environment for M

if On O’=O, ICO’, and I’ GO.

If M’ is a closing environment for M, then M and M’ can be composed,

and the resulting Moore machine will be closed. We now define satisfaction of

a formula by a Moore machine.

Definition 14. (satisfaction in a Moore machine) If M is a Moore machine

and ~ is a VCTL* formula with atomic propositions over d, the M + p iff for

every closing environment M’ for M, K(M IIM’) R q.

We must now demonstrate how to efficiently check whether M 1= q,

LEMMA 2. If M and M’ are Moore machines with O n 0’ = 0, then

K(M//M’) is isomorphic to KICK.

PROOF. Define ~ mapping the states of K(MII M’) to the states of

KICK as follows.

41(((s, s’), u)) = ((s, (u u.%’(s’)) n~), (s’, (v u-5?(s)) n]’))

Suppose ((s, s’), r,I) and ((t,t’),u) both map to the same state of

K(M)II K(M’). Then from the definition of ~, we immediately have s = t and

S’ = t’. Also, (u uLZ’’(S’)) n 1 = (U uY’’(t’)) n 1, and (u uy(s)) n ~’ = (U u

.S?(t))n 1’. By the definition of Moore machine composition, u and u are

disjoint from O U O’. Hence u n 1 = u n 1, and v n 1’ = u n 1’. This implies
u n (1 u 1’) = u n (1 u 1’), i.e., u = u. Hence ~ is an injection.

To argue that @ is subjective, we consider the cardinalities of the two sets

of states. First, we have

ls~(J’fll@)l=Isl .Is’l .2’(~uI’)\(ouo’)’.

Now consider ,lS~(~)ll~(~’)l. This is the number of states in the cross product

S~(~ ) X SK( M ) which have compatible labelings. Fix a pair of states of s and

s’. There are 21~1states in K(M) with s as their first component and 21~’1 in
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K(M’) with s‘ as the first component. Thus there are potentially 21~ .2 Ir’l

states in K(M)II K( M’ ) corresponding to s and s’. However, each pair must

correspond on the atomic propositions in 1 n O’, 1’ n O, and 1 n 1’. Thus

there are exactly

2111.211’ I

ZIImo’l . ~ll’n Ol. 21 LnI’1

states in K(M)II K(M’ ) corresponding to s and s’. Thus we have

Isml’r)llw’) I = \sl”ls’1”21~1”21~’l
zlIn O’1. zlI’n Ol. zlIn I’l

_ lsl”ls’1”21~”~’l
ZIIno’l. zlI’nOl

\sl.\sf].21~’JI’l
—

211nofl <211n01. 211’rOl.211’n O’l

_ ls\”ls’1”21Ju~’1—
21(lu I’)n(Ou O’)1

=\sl .Ifyl . @I’)\(ouo’)1

= ls~(~ll~’) 1.
Hence ~ is a bijection.

If ((sO, s~), u) is an initial state of K(MIIM’), then SO= SO and s~ G S:.
Then ~((so, s~), u) is an initial state of KICK since SO E SO implies
that (s., (U u$?’(s~)) n 1) is an initial state of K(M), and s~ = S~ implies

that (s~, (v U~(sO)) n 1’) is an initial state of K(M’). Similarly, if ~((s, s’), u)

is an initial state of KICK, then ((s, s’), U) is an initial state of
K(MIIM’).

The sets of atomic propositions of the two structures are clearly identical.

The labeling of ((s, s’), U) is l%’(s) Ul%’(s’) U U. The labeling of ~((s, s’), U) is

sK@Y(s, (u u-Y’’(s’)) n 1)) USK(Jf’K(S’, (U u-2?(s)) n 1’))

=5?(s) u ((u u&’(s’)) nI) u$??(s’) u ((u us(s)) nr)

=Y(s) uY’(s’) u (U n (1u 1’))

=s(s) UY’(S’) u u

=y~(~ll~’)(((s, s’), u)).

~K~~ll~’~(((e, .s’), u),((i, ~’), u)) iff R~ll”’(<s, s’), u,(t, t’)) iff R(s. (u Ug’(s’))

n 1, t), and R’(s’, (u US(S)) n 1’, t’) iff R~(~)((s,(u u9’(s’)) n I), (t, (u u

S’(t’)) n l)); and R ~(~’)((s’, (u U$?(s)) n l’), (t’, (U u $?(t)) n 1’)) iff
R~(~)ll~~~’)(~(((s, s’), u)), @((t, t’), u)). The fairness sets of both structures are

empty. ❑

Definition 15. If M is a Moore machine, the maximal closing environment
for M, denoted E(M), is the Moore machine M’ defined as follows.

(1) s’ == 21.

(2) s~ = s’.
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(3) 1’ = !23.

(4) 0’ =1.

(5) J?’’(s’) = s’.

(6) I? ’(s’, 0, t’) is identically true.

The maximal environment (for M) represents an environment which can

do anything at each step. Intuitively, a possible behavior of M in an arbitrary

environment must also be a possible behavior of M in the maximal environ-
ment. The logics we use specify properties that should hold for every possible
behavior of a system. Hence, if M plus its maximal environment satisfies a

formula, then M in any environment should satisfy that formula. Note that

the above holds also for environments that cannot be described as finite-state

Moore machines.

~EMIMA 3. Suppose M’ is a closing environment for M, and suppose
M“ = E(M). Then K(M’) < K(M”).—

PROOF. Define

H = {(s’, S“)/.%’(S’) nd’ =S’’’(S’’)}.

Note that for every s’ = S’, there is some s“ = S“ such that H(s’, s“) (in

particular, the state %’(s’ ) n d’ in K(M’’)). Thus, if sj = S:, there is s{

which is related to it by H, and every state in K( M“ ) is an initial state.

If H(s’, s“), then by the definition of H, we have ~’(s’) n d’ =&’’(s”). If rr’

is a fair path in K( M’ ), then the fact that every state in K( M’ ) is related to

some state in K( M“ ) plus the fact that R“ is identically true implies that

there is a path # in K(M” ) such that H(m’, T“). Further, every path in

K(M”) is fair. Thus H is a simulation relation. ❑

LEMMA 4. Let M be a Moore machine. Then K(M) is isomorphic to

K(MIIE(M)).

PROOF. Let M’ = K(M) and M“ = K(MIIE(M)). Define @ mapping the

states of M“ to the states of M’ by +(((s, v), @)) = (s, v); ~ is obviously an

injection, and ~ is a subjection since each subset of 2 r is a state of E(M).

If ((s., v), 0) = S[, then so must be in SO. Hence (SO, v) E Si. Similarly, if

(s., v) = S~, then so E SO and so ((s., u), 0) = S~. #’ and d’ are trivially

equal. We also have

J?’(((s, v), O)) =s’~llE@’fy(s, v)) u @

=s(s) u&?E@wu)

=9(s) u v

=J?((s, v)).

Finally, we have R“(((s, Vi), 0), ((t, Vz), @)) iff l?~ll~(~)((s, Vi),@, (t, Vz)) iff

R(s, Vl, t)iff R’((s, Vi), (t, Vz)). W’ and @ are both empty. ❑
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THEOREM 4. If M is a Moore machine, then M > q iffK(M) + q.

PROOF. Suppose K(M) I= p. By Lemma 4, we find K(MIIWM)) E P, and
then by Lemma 2, K( M )11K( E( M )) * P. Let M’ be any closing environment
for M. By Lemma 3, K( M’ )s K(E(M)). Hence by Theorem 2, K( M )IIK(M’)
~ K(M) IIK(E(M)). Applying Corollary 1, we have K(III)IIK(M’) * P. BY

Lemma 2, KICK is isomorphic to K(MIIM’), and thus K(MIIM’) % p.

Since M’ was arbitrary, M E p.

If M R p, then K(MIIE(M)) R p, and hence by Lemma 4, K(M) ~ P. ❑

Thus, to determine if a system M,ll M2 II... IIMn satisfies a formula P, we
instead check that K( Ml IIMz II... IIMn ) satisfies p. By Lemma 2, this is

equivalent to checking that K( Ml)l IK(MZ )11.. . IIK( Mn ) satisfies the formula.

As illustrated in the previous section, we can use the assume-guarantee

paradigm to try to verify this latter relation. Thus, during an actual verifica-

tion we will be working with structures even though the thing we want to

verify is a property of a composition of Moore machines.

6. THE TABLEAU CONSTRUCTION

In this section, we give a tableau construction for VCTL formulas (for a
similar construction for LTL, see Burch et al. [1990]; other tableau construc-
tions for CTL are given by Clarke and Emerson [1981] and Ben-Ari et al.
[1983], and LTL tableau constructions were given by Wolper [1983] and
Pnueli and Sherman [1981]). We show that the tableau of a formula is a

_. Thus, the structuremaximal model for the formula under the relation ~
generated in the construction can be used as an assumption by composing the
structure with the desired system before applying the model-checking algo-
rithm. Discharging the assumption is simply a matter of checking that the
environment satisfies the formula. We also indicate how the tableau can be
used to do temporal reasoning. For the remainder of this section, fix a VCTL
formula ~.

Definition 16. The set sub(p) of subformulas of the formula q is defined

by the following equations.

(1) If p = true or p = false or p = p, an atomic proposition, then sub( p) = { q}.

If p = ~ p, a negated atomic proposition, then sub(q) = {q, P}.

(2) If P = ql A p, or q = ql V LPz, then sub(q) = {q} U sub(pl) u sub(pz).

(3) (a) If q = VXpl, then sub(p) = {q} U sub( ql).

(b) If P = V( qlUTz), then sub(q) = {p} u sub( PI) u sub( PZ).

(c) If q = W plVpz ), then sub(p) = {p} u sub( pl) U sub(pz).

Definition 17. The set el( q) of elementary formulas of the formula p is

defined by the following equations.

(1) If p = true or p = false, then el( q) = 0. If q = p, an atomic proposition,
or p = =p, then cl(q) = {p}.

(2) If p= PI A Pz or q= PI V pz, then el(q) = el(ql) Uel(pz).
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(3) (a) If q = VXpl, then cl(q) = {VXql} U el(ql).

(b) If q = W qlUpz), then cl(p) = {VX false, VX’d( P1UP2)} U el( q,)

U el( Pz ).

(c) If q = ‘d(q1VP2), then cl(p) = Wx false, ~~(P1V9Z)} U cl(%)

U el( P2 ).

The special elementary subformula VX false denotes the nonexistence of a

fair path; s > VX false indicates that no fair path begins at s; el( p) contains
propositions and formulas with VX as their top-level operator. Subsets of
el( q) are states of the tableau defined below. Thus, states of the tableau
represent possible valuations for the atomic propositions, plus information
about what subformulas should be true in the next state. This latter informa-
tion is used to determine the legal transitions between states. As we will see
later, every elementary formula that is part of a state is in fact true at that
state. The map @ defined below uses the elementary subformulas to assign a
set of states to every subformula. Thus, it can be thought of as a type of
satisfaction relation, mapping subformulas to the sets of states where they
should be true.

Definition 18. (tableau of a formula) The tableau of q, denoted YI ~), is

the structure (S, SO, d, L?, R, .9) defined as follows.

(1) S = 2elt0)

(2) SO = 0(+), where @ is the map from el(~) U sub(~) u {true, false} to 2s

defined by the following equations.

(a) @(true) = S; Q?(false) = @. If p = cl(o), then @(q) = {sip ● s}. If

q = 7 PI, then m(q) = S\@(pl).

(b) If p= PI ~ (pZ, then @(p) = @(ql) f’ CP(pz). If q = ql v Pz, then

o(p) = @((pl) u axq~).

(c) (i) If q = WP1UP2), then @(q) = (@(p,) u (@(Pl) n @(mP))) U
@(VX false).

(ii) If p = V( P1VP2), then @(P) = (@(Pz) n (@(Ql)u QWX9))) u
@(b%false).

(3) R”= {PIP e cl(v)}.

(4)-%(s) = {pip ● s}.

(5) R(s, t) iff for each formula VXp in cl(v), VXq ● s implies t G O(p).

(6)Y= {(@(VX’d(P1UqJ2)), CIXP2))IVXV(P1UP2) = cl(v)}.

LEMMA 5. For all subformulas p of+, ifs = CMp), then s b p.

PROOF. The proof proceeds by induction on the structure of p.

(1) If q = true, then 0(p) = S, and every state satisfies true. If q = false,

then @(q) = 0, so the result is trivial. If p = p, an atomic proposition,

then cD(P) = {SIP G s}. But -!%s) = {qlq ● s}, and so P E&(s) and s EP.

If p = 7p, a negated atomic proposition, then W p) = S \ {s Ip ● s}.
Since $?(s) = {~lq G s}, we have that p @&(s), and so s R 7 p.
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(2) If q = PI A Pz, then 0(9) = @(pl) f’ @(pz), and hence s ● @(pl) and
s ● cD(pz ). By the induction hypothesis, s I= PI and s R qz, which implies
s ➤ VI A P2. The case where p = PI V V+ is similar.

(3) (a) If p = VXpl, then O(p) = {sIVX( PI) = s}, and so VX(ql) G s. Suppose

R(s, t). By the definition of R, we have t ● 0( ql), and then the
induction hypothesis implies t ➤ PI. Since t was chosen arbitrarily,
any fair path from s satisfies PI at its second state, and hence
s 1=Vx((pl).

(b) If q = V(q1Uq2), then cD(P) = (@(pz) n (@(ql) n @( VX~))) u

@(VX@lse). Let t be any state in 0( p). Then either

(i) t E @(VX false), in which case t has no successors and t * P
trivially, or

(ii) t ● W 92 ), in which case the induction hypothesis implies t * q2,
or

(iii) t G W PI) n @(VXP). In this case, the induction hypothesis im-

plies t F=ql.By the definition of R, we also know that if R(t,u),

then Z~G cD(q).

Let s = SO, and consider a fair path m = so Slsz . . from s. Note that

no state on this path can satisfy the first condition above. There are

two cases to consider.

(i) There is some j such that s~ > Pz. Let s, be the first such state

on the path. By the above, for every j < z, sj > ql. Hence the path

satisfies Y31UP2.

(ii) For every j, SJ 1# Pz. Then the above implies that for every j, SJ ●

O(VX p). By the induction hypothesis, we know that each Sj is not

in @(pz). Buttheninf(n) n @(VSp) # @and inf(w) n @(pz) = 0.

By the definition of X, this contradicts the fact the v is fair, and

so this case is impossible.

Thus S t= V( p1Uq2).

(c) If p = V(p1Vp2), then cD(P) = (@(q, ) n (@(pl) u cD(VXP))) u @(VX
fake). If t is any state in 0( p), then either

(i) t E Q(VX false), in which case t has no successors and t R q

trivially, or

(ii) t E 0( qz). In this case, we also have either t ● W ql) or for every
u such that R(t, u), u ● O(p).

Let s = SO,and let W= SOslsa . . . be a fair path from s. Note that no s,
can satisfy the first condition above. If s, is such that for all j < i, Sj

# PI, then the induction hypothesis implies that s~ G @( PI). Hence
sj ~ @( ~z ), and also S, ● @( ~z ); then the induction hypothesis implies

for all j < i, Sj ➤ qz. Thus the path satisfies qlVqz, and hence we

have s k V( plVqz). ❑

Now let ill = Y7 @), and fix a structure M’. The two lemmas below suggest

a simulation relation from any structure M’ that satisfies ~ to YI * ). This is
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not a standard requirement for a tableau and stems from the kind of

reasoning we wish to apply.

LEMMA 6. Define a relation H L S x S by

If H(s’, s), then for every subformula or elementary formula p of *, s’ % p

implies s E 0( q).

PROOF. The proof proceeds by induction on the structure of p, where the

base cases for the induction are the elementary subformulas of ~, plus true

and false.

(1) If p = true, then 0(p) = S, so the result is trivial. If p = false, then s’
cannot satisfy p. If p E el( v ), then by the definition of H, s’ * q implies

$0GS. Now @(q) = {Slq GS}, SO S G ~(q).

(2) If q = T p, a negated atomic proposition, then s’ != p implies p ~ s.
Since O(p) = S \ {sip ~ S}, s ● @(qJ).

(3) If P = PI A 92, then ~(p) = @(ql) n @(q2). We have s’ R p implies
s’ i= pl and s’ > qz. By the induction hypothesis, s = 0( pl) and s =

@(pz), and so s = @(pl) n d?(cp2). The case when p = pl V pz is similar.

(4) If p = V(YJ1UP2), then ~(p) = (@(pz) u (@(Wl) n @(VXP))) u CD(VX

false). Given s’ I= p, there are three cases.

(a) If no fair paths start at s’, then s’ I= VX false. The induction hypothe-
sis implies s ● @(VX false), and so s = @(p).

(b) If s’ I= pz, then by the induction hypothesis, s = @( pz), and so s c

o(p).

(c) Otherwise, s’ 1= PI and s’ > VXq. By the induction hypothesis, s =
@(Pl) and s ● @(VX9) (since VXq ● el(~)). Hence s ~ @( q).

In all cases, s ~ @(V(q1Up2)).

(5) If P = WP1Vq2), then O(p) = (0(9,) n (@(pl) u WVXP))) u O(VX
false). Since s’ > p, either

(a) no fair paths start at s’, in which case s’ + VX false and the induction
hypothesis implies s = cD(p), or

(b) s’ t= qz; and so by the induction hypothesis, s ● 0( pz). Also, either
s’ > PI or s’ ~ VX q. Applying the induction hypothesis again, either

s = @(pl) or s c @(VXq). In both cases, s ● Q(p).

Thus in all cases, s E Q(V( q1Vq2)). ❑

L~NIiWA 7. The relation H given above is a simulation relation.

PROOF. Note that for every state s’ of M’, there is a (single) state s of M

such that H(s’, s). Let A be the set of atomic propositions for M, and assume

H( s’, s). We have S4s) = {p [p = s}. From the definition of II, p ~ s implies
s’ i= p. Further, If s’ R p and p = A, then p = el(~), and hence p = s,

p =9(s). Thus we find 9’(s’) n A =&(s).
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Let s~ = s’, and suppose w’ = s~s~s~ . . . is a fair path from s’. Let VXpl,

VXp2, ..., VXq~ be all the formulas of the form VX p in el( v ) which s’

satisfies. Then we have sj ~ 91, sj * Qz, ..., s; = %. Let S1 be the state of M

related to s~ by H. By the previous lemma, SI ● @( PI), SI = cD(pz ), . . . . SI E

CMq. ‘). Now by the definition of H, the formulas of the form VX q in s must
beexactly VXpl, VXpz, ..., VX q.. Then from the definition of R, we see that
R(s, Sl). Since H(s~, Sl), we can continue the process. Defining so = s, we get
a sequence of states w = so SI SZ . . starting at s such that H(s; , s,) for all i.

To complete the proof, we must show that this sequence is fair.

Assume that w is not fair. Looking at Y; we see that there must be some

elementary subformula VXV( qaUqb) such that inff w) n @(VXV( qaUpb )) # 0
and inf(n) n 0( P6) = 0. Consider one of the states s,; s, = @(VXV( qaUqb))
iff VXV( paUfpb) G s,, and then the definition of H implies s: t= VXV( q~Uph).

Additionally, the previous lemma implies that if s, E @( q~ ), then s{ & p~.

Choose i so that s, = @(VXV( qQUq6)) and so that for all j > i, SJ @ 0( ph).
Then s~s~+l... is a fair path in M’ starting at S:, and every state on this
path satisfies ~ p~. But s: > VXV( q~Uqb ), a contradiction. Hence w is in fact
a fair path in M. ❑

PROOF. Suppose M’ ~Yl ~). By Lemma 5 and the definition of the tableau,
every initial state of iq v ) satisfies #, i.e., ~~ # ) R *. ‘I’hen since M’ <

YT$), M’ I= V.

If M’ ➤ @, then by definition, every s~ ● S~ satisfies @.By the definition of
E7, every such s~ is paired with a (unique) SO. Lemma 6 implies that
SO● @(+), and by the definition of the tableau, so ● SO. By Lemma 7, H is a

simulation relation, so M’ < Yq ~ ). ❑—

The tableau construction can also be used to reason about formulas. We are

typically interested in whether every model of a formula p is also a model of
some other formula +. Let p E=+ denote this semantic relation.

Proposition 1. p > ijiff Y7 p) >$.

PROOF. If p + ~, then every model of p, in particular YT p), is also a model

of ~. Assume Y7 q) R ~, and let M = q. By the previous theorem, M 5Y7 q).

Since ~Tq) b ~, Y7p)~.Yq~). Hence M<Yly!J), i.e., M + ~. ❑

We will sometimes extend the set of elementary formulas of a formula by

adding additional atomic propositions. For example, if we wished to check

whether true implied p, we would extend the set of atomic propositions for
true to include p (another way to view this is to imagine rewriting true as

true A (p V 1 p). The formula + has a nontrivial model iff it is not the case

that 4 ~ VX false; $ is true in every model iff true * ~.

7. CHECKING FOR SIMULATION

In this section, we discuss the problem of determining whether there exists a

simulation relation between two structures M and M’. Our goal is to

efficiently determine if M ~ M’. First note that if HI and Ha are simulation
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relations, then HI u Hz is a simulation relation. Also, @ is trivially a

simulation relation. These facts imply that there is a maximal simulation

relation under set inclusion. This maximal simulation relation is in fact ~ ,

and this is what we will actually compute.

We also note the following facts.

(1) If s is a state of M and no fair paths start at s, then s is simulated by
exactly those states s’ in ill’ for which L?(s) n M’ = 3’( s’).

(.2) If s’ is a state of M’ and no fair paths start at s’, then s’ simulates
exactly those states s in M which are the start of no fair path and for

which 47(s) nd’ =9’(s’).

States which are the start of no fair path can be detected in polynomial time

[Emerson and Lei 1986] and eliminated in a preprocessing step. Hence,

without loss of generality, we can assume that every state in M and M’ is

the start of some fair path. We now describe polynomial-time algorithms for

checking the preorder in several important special cases. The question of how

to check the preorder in the general case is left open.

The first case is similar to Milner simulation [Milner 1971] as computed

within the Concurrency Workbench [Cleveland et al. 1989]. Suppose that M’

has a trivial acceptance condition, i.e., 9’ = 0.

Definition 19. Define a sequence of relations H, as follows,

(1) HO = {(s, s’)15’(s) nd’ =JZ’(S’)}.

(2) H,+ , = H, n {(s, s’)lVt[R(S, t) + 3t’(R’(s’, t’) A H,(t, t’))]).

Define HO to be the first H, such that H, = H,, ~ (such an i exists since

H ~+ 1 c H~ for all .j and each Hj is finite).

THEOREM 6. For every s = S and s’ = S’, ss s’ iff H.(s, s’).

PROOF. We first note that HO is the greatest fixed point of the equation

H = H n {(s, s’)LHs) nd =%’(s)’ AVt[R(s, t) + 3t’(R’(s’, t’)AH(t, t’))1}.

Suppose s and s’ are states such that HO(S, s’). We have L?’(s) n w?’ =5?(s’)
immediately. Let so = s and s~ = s’, and assume w = so SI . . . is a fair path

starting from s. From the above equation, there exists a state sj such that

R’( sj, sj) and Hu( Sl, s~). Continuing in this fashion, we find a path s~s~ . . .

starting from s’ such that Ha(s,, s;) for all i. Since W = @, this path is fair.

Hence Hti is a simulation relation from s to s’, i.e., s ~ s’.
To show that s ~ s’ implies H.(s, s’), we show that any simulation relation

H is a fixed point of the above equation. Since HO is the greatest fixed point,

we will have H s Ha. Hence if there is some simulation relation H such that

H(s, s’), then HO(S, s’). It is enough to show that H is a subset of the set

{(s, s’)LHs) nti’ =9(s)’ Avt[R(s, t) + 3t’(~’(s’, tf)AH(t, tf))l}.

If H(s, s’), then we have &?(s) n M’ = 5?(s’). If R(s, t), then by our earlier
assumption, there exists a fair path from t.Hence, letting so = s and SI = t,

there is some fair path so SI . . . from s through t.Since H(s, s’), there exists
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a fair path s~s~ . . . from s’ = s! such that H( S,, s;) for all i. Now if we take

t’ = s~, we see that (s, s’) is in the above set. ❑

We note that Ho = H, for some i which is at most IS I . 1S’1. Each 11~+ ~ can

also be computed in polynomial time from Hj; hence Ho can be computed in

polynomial time.

Another important case is when ill’ is deterministic, i.e., if R’( s’, t’) and

R’(s’, u’), then &’(t’) +5’(u’). For this case, we show below that s < S’ iff the
language of s is contained in the language of s’, where the language for a

state s is the set of sequences of labelings which occur along the fair paths

starting at s. More formally, see Definition 20.

Definition 20. Let M be a structure, s be a state in M, and s c M’.

Lan~( s), the language of s in ill restricted to ~, is the set of all sequences

1.11 . . . over 2’3, such that there is a fair path n = SOsl . . . in M with SO = s

for which 1, =&(s, ) n S, for every i >0.

Clearly, if s ~ s’ then LanW,(s ) c Lan ~(s’ ). Below we show that if M’ is

deterministic then the converse is also true.

Definition 21. Define a relation H G S X S’ as follows.

H = {(s, s’)l Lan,W, (s) c Lan~.,(s’)}

THEOREM 7. If M’ is deterministic then H is a simulation relation.

PROOF. Suppose s and s’ are states such t,hat H(s, s’). Then, Lan ,Y,(S) G

LanJy./( s’ ) which immediately implies that L?(s) n& = J?( s’ ). Let so = s and

s; = s’, and assume n- = SOSI . . . is a fair path starting from s, Then, there is

a fair path n-’ = s~s~ . . . from s’ such that for every i >0, S(s,) n J& =5’”( s{).

Assume EI(T, w‘ ) does not hold, and let k ● .fl be the smallest such that
H(s~, s~) but not H(s~+l, s~+l ). Lan.m.(s~ ) G Lan,,.,(s~ ), therefore

Moreover,

Sj+l is a state for which R(s~, s~+l) and L?’(s~+l) nd =~(sj+l) hold. Since
M’ is deterministic, Sk. ~ is the only successor of Sk that has this property.

Thus, Lan ~~(Sk. ~) G Lanti,(s~. ~), and hence H( Sk. ~, s;, ~), contradicting the

assumption. Consequently, there is H(n, m’), and H is a simulation relation.
❑

By the theorem above, if M’ is deterministic, in order to check that s ~ s’

it is sufficient to check language inclusion between the languages of s and s’.

This relation can be checked in polynomial time using the techniques of

Clarke et al. [ 1990].
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Finally, if M’ is the result of a tableau construction, say ill’ = fl~), then

as shown in the previous section, checking whether M < M’ reduces to the

problem of checking whether M I= +.

8. AN EXAMPLE

We have implemented a BDD-based model checker based on the theory

developed in the previous sections. The model checker is written in a combi-

nation of T (Yale’s dialect of Scheme) and C. It includes facilities for model

checking, temporal reasoning (via the tableau construction), and checking for

simulation. To illustrate the system, we use the controller of a simple CPU as

an example. The controller iq written in a state machine description language

called CSML [Clarke et al. 1989b] which is compiled into Moore machines.

We give only a brief description of the CPU here; Clarke et al. give details.

The CPU is a simple stack-based machine, i.e., part of the CPUS memory

contains a stack from which instruction operands are popped and onto which

results are pushed. There are two parts to the CPU controller. The first part

is called the access unit and is responsible for all the CPU’s memory refer-

ences. The second part, called the execution unit, interprets the instructions

and controls the arithmetic unit, shifter, etc. These two parts operate in

parallel. The access unit and execution unit communicate via a small number

of signals. Three of the signals, push, pop, and fetch, are inputs of the access

unit and indicate that the execution unit wants to push or pop something

from the stack or to get the next instruction. For each of these signals there is

a corresponding ready output from the access unit. The execution unit must

wait for the appropriate ready signal before proceeding. One additional

signal, branch, is asserted by the execution unit when it wants to jump to a

new program location. The access unit also has signals that it asserts to issue

a memory read or write, and an input that tells it when the memory has

finished servicing a request.

In order to increase performance, the access unit attempts to keep the

value on the top of the stack in a special register called the TS (“top-of-stack”)

register. The goal is to keep the execution unit from having to wait for the

memory. For example, when the TS register contains valid data, a pop

operation can proceed immediately. Additionally, when a value is pushed on

the stack, it is moved into this register and copied to memory at some later

point. The access unit also loads instructions into a queue when possible so

that fetches do not require waiting for the memory. This queue is flushed

whenever the CPU branches.

Clarke, et al. [ 1989b] gave a number of correctness conditions for the

controller. We demonstrate here how these formulas can be verified in a

compositional fashion. From the form of the conditions, we divide them into

three classes. The first class consists of simple safety properties of the access

unit. For example, one of these formulas is

VG(SPtoMemAddr ~ TSLoad V TSStore),

which states that if the access unit outputs the top-of-stack pointer as a

memory address, then it is either loading the TS register from memory or
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storing it to memory. The model checker verified that each of these properties

held for the access unit alone. Hence, they hold in any system containing the

access unit.

The conditions in the second class are slightly more complex. These proper-

ties are safety properties which specify what sequences of operations are

allowed. For example, one condition is

VG{ pushed - VXV(TSStored V popped VT ( pushed V TSLoad))).

Here pushed is an abbreviation for push A pushrdy, and popped abbreviates

pop ~ poprdy. The formula asserts that if a push operation is completed,

then another push cannot be completed, and the access unit cannot attempt

to load the TS register from memory until either a pop occurs or until the TS

register is stored to memory. In other words, once the TS register contains a

value which needs to be pushed on the stack, the CPU cannot do anything

that would destroy this value until the value is either used or successfully

stored in memory. Since all of the properties in this class essentially specify

when the access unit may assert its ready signals, it is tempting to check

whether they hold for the access unit alone also. This is not possible,

however, because the properties also depend on how the memory acknowledg-

ment signal behaves. To verify these properties, we made a simple model of

the memory (see Figure 1). For conciseness, the figure shows a Moore

machine; the actual model used is obtained by adding the fairness constraint

shown in the figure to the structure corresponding to this Moore machine. All

of the properties in this class except for one turn out to be true in the system

composed of the access unit and this model of the memory. The exception is

an analog to the previous formula that deals with what occurs after a pop.

The counterexample produced by the model checker for this formula showed

that the formula was false because a push and a pop could be requested

simultaneously. When we examined the access unit, we saw that it had been

designed assuming that these operations would not be requested at the same

time. The formula turns out to be true with the additional assumption

VG( ~ push v ~ pop). The model checker verified this by building the tableau
for this assumption, composing it with the access unit and memory model,

and checking the formula.

The final class of criteria consists of a single liveness property: VGVF( fetch

A fetchrciy). This formula states that the CPU (in the context of a memory

such as that modeled by Figure 1) always fetches another instruction. We

demonstrate two different ways of verifying this property.
One way is to observe that for this formula to be true, it must obviously be

the case that the memory responds to requests eventually and that the

execution unit does not execute infinite sequences of pushes, pops, and

branches. Our memory model already has a fairness constraint ensuring the

first of these, but there is nothing to guarantee the second. We can take care

of this by using a simple model of the execution unit (see Figure 2). Again, the

actual model is the structure derived from the Moore machine, plus the
indicated fairness constraint. The output idle in this figure is an abbreviation

for ~ ( push V pop v fetch v branch). The model checker verified that the
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3 is defined by

GF(memrd V memun- ~ memaclc)

Fig. 1. Memory abstraction.

Tpoprdy 1 fet chrd y

Fig. 2. Execution unit abstraction.

access unit plus the models of the execution unit and the memory satisfied

the above formula. It also verified that there was a simulation relation

between the (structure for the) actual execution unit and the model. Thus, we

can conclude that this formula holds in the final system provided there is a

simulation relation from the actual memory to our model. We also checked

that the execution unit model satisfied the assumption VG( ~ push V = pop)

used above. Since there is a simulation relation from the execution unit to the

model, we know that the execution unit must satisfy this assumption also.
This final step allows us to conclude that the composition of the access and

execution units satisfied the entire specification provided the memory is

simulated by the model we used.
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We can also verify the final property using a series of VCTL assumptions.

The idea will be to check the property for the execution unit. In order for the

formula to be true, the access unit must eventually respond to push and pop

requests and must fill the instruction queue when appropriate. We can only

guarantee that the access unit meets these conditions if we know that the

execution unit does not try to do two operations at once and that it will not

remove a request before the corresponding operation can complete. We begin

with these properties.

VG(~(fetch ~push) A ~(fetch A pop) A . . . A ~(pop A branch)) (1)

VG( push ~ V( pushedVpush)) (2)

VG( pop - V{ poppedVpop )) (3)

The first of these specifies that every pair of operations the execution unit

can perform are mutually exclusive. The other two formulas state that if the

execution unit makes a push or pop request, then it does not deassert the

request until the operation completes. The model checker verified that these

properties hold in the execution unit alone and (using the tableau construc-

tion) that the first property implies the assumption VG( ~ push V 1 pop)

used above. Now using formulas (1) and (2) as assumptions, we checked that

the system composed of the access unit and the memory model satisfied the

formula

VG( push - V( push Upushed )). (4)

This specification states that every push operation will be completed. Simi-

larly, using formulas (1) and (3) as assumptions, we verified

VG( pop * V(popUpopped)). (5)

The system composed of the access unit and the memory model also satisfies

the formula VGVF( fetchrdy v branch) (at any point, either the access unit

will eventually fill the instruction queue or a branch will occur). Finally,

using this formula and formulas (4) and (5) as assumptions, the model

checker verified that the execution unit satisfies VGVF( fetch A fetch rdy).

(Again, to complete the verification we would have to demonstrate a simula-

tion relation between the actual memory and our model of it.)

9. CONCLUSION

We have identified a subset, VCTL*, of CTL* which is appropriate for

compositional reasoning. For this subset, satisfaction is preserved under

composition; hence a standard model-checking algorithm can be used to

answer the question: Is a formula true for all systems containing a specified

component? We have also proposed a preorder < which is appropriate for

VCTL*. The preorder captures the relation between a component and a
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system containing that component. It provides the basis for using an

assume-guarantee style of reasoning with the logic. Assumptions which are

given as structures are discharged by checking the preorder. We have given a

tableau construction for the VCTL subset of VCTL*. Satisfaction of a VCTL

formula corresponds to being below the tableau of the formula in the

preorder. The construction makes it possible to use VCTL formulas as as-

sumptions and to do temporal reasoning. ‘dCTL also has an efficient model-

checking algorithm. We have implemented a symbolic verification system

based on these results and have used it to verify some nontrivial systems in a

compositional fashion.

There are several directions for future work. Intuitively, the VCTL* subset

of CTL* should be maximal in the sense that any formula for which satisfac-

tion is preserved under composition should be equivalent to a formula of

VCTL*, but we have not proved this. Another idea is to look at different logics

with the same flavor, such as VCTL* extended with automata operators or

the ~-calculus with only [.] modalities. It would also be interesting to try to

extend the tableau construction of Section 6 to all of VCTL*. In order to

accomplish this however, it will almost certainly be necessary to use a more

complex type of structure than that given in Definition 2. Another question is

whether it is possible to apply our ideas to branching-time logics with

existential path quantifiers. For example, is there a reasonable algorithm

which will determine whether a CTL formula is true in all systems contain-

ing a given component? It is fairly easy to come up with algorithms which are

sound, but completeness seems more difficult to achieve. We also wish to

examine the problem of efficiently checking the preorder for arbitrary struc-

tures. Finally, it is essential to try to apply the compositional-reasoning

methods we have considered to more complex systems in order to evaluate

the techniques.

REFERENCES

BEN-ARI, M., MANNA, Z., AND PNUELI, A. 1983. The temporal logic of branching time. Acts

Informatica 20, 207-226.

BURCH, J. R., CLARKE, E. M., MCMILLAN, K. L., DILL, D. L., AND HWANG, J. 1990. Symbolic

model checking 10 20 ~tate~ and beyond. In Proceedings of the 5th Annual SYmPosium an Logic

m Computer Science. IEEE Computer Society Press, Los Alamitos, Calif.

CLARKR, E. M., AND EMERSON, E. A. 1981. Synthesis of synchronization skeletons for branch-
ing time temporal logic. In Logic of Programs: Workshop (Yorktown Heights, NYj May).
Lecture Notes in Computer Science, vol. 131. Spnnger-Verlag, New York.

CLARKE, E. M., DRAGHICESCU, I. A., AND KURSHAN, R. P. 1990. A unified approach for showing

language containment and equivalence between various types of co-automata. In Proceedings

of the 15th Colloquium on Trees m Algebra and Programming. Lecture Notes in Computer
Science, vol. 407. Springer-Verlag, New York.

CLARKE, E. M., EMERSON, E. A., AND SISTLA, A. P. 1986. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8,

2, 244-263.

CLARKE, E. M., LONG,D. E., AND MC?MILLAN, K. L. 1989a. Compositional model checking. In

Proceedings of the 4th Annual Symposmm on Logic in Computer Science. IEEE Computer
Society Pressj Los Alamitos, Calif.

ACM Transactions on Programming Languages and Systems, Vol 16, No 3, May 1994



870 . 0, Grumberg and D, E Long

CLARKE, E. M., LONG, D. E., AND MCMILLAI-f, K. L 1989b, A language for compositional

specification and verification of finite state hardware controllers. In Proceedings of the 9th

International Symposium on Computer Hardu,are De SCrLptLOn Languages and their Applica-

tions. North-Holland, Amsterdam,

CLEAVFLAND, R. 1990. Tableau-based model checking in the propositional mu-calculus. Acts

Informatica 27, 8, 725-747,

CLEAVELAND, R., AND STEFFEN, B. 1990. When is “partial” adequate. A logic-based proof

technique using partial specifications. In Proceedings of the 5th Annual Symposuun on Logic

in Computer Sctence, IEEE Computer Society Press, Los Alamitos, Calif.

CLEAVELAND, R., PARROW,J., AND STEFFEN, B. 1989. The concurrency workbench. In Proceed-

ings of the 1989 Znternat[onal Workshop on Automatic VerifzcatLon Methods for Firute State

Systems (Grenoble France). Lecture Notes in Computer Science, vol 407. Springer-Verlag, New

York.

COUDERT, O., BERTHET, C., AND MADRE, J. C 1990. Verifying temporal properties of sequential

machines without building their state diagrams. In Proceedings of the 1990 Workshop on

Computer-Aided Verification. ACM, New York,
DILL, D. L. 1989, Trace Theory for Automatic Hierarchical Ver@cation of Speed-Independent

Czrcuits. ACM Distinguished Dissertations. MIT Press, Cambridge, Mass.

EMERSON, E. A., AND HALPERN, J, Y. 1986. “Sometimes” and “Not Never” revisited: On

branching time versus linear time. J. ACM 331, 151-178.

EMERSON, E. A., AND LEI, C.-L. 1986, Efflclent model checking in fragments of the proposi-

tional mu-calculus. In Proceedings of the 1st An nual Sympostum on LogLc m Computer Science

IEEE Computer Society Press, Los Alamitos, Calif.

GSAF, S., AND STEFFEN, B. 1990. Compositional minimization of fimte state processes. In
Proceedings of the 1990 Workshop on Computer-Aided Ver@catLon. ACM, New York.

HOPCROFT,J, E., AND ULLW, J. D. 1979 Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, Mass.
JOSKO, B. 1989, Veriffing the correctness of AADL-modules using model checking. In Proceed-

ings of the REX Workshop on Stepulise Refl nement of Dwtributed Systems, Models, For-

malisms, Correctness. Lecture Notes in Computer Science, vol. 430, Sprmger-Verlag, New

York.

KURSHAN, R. P. 1989. Analysis of discrete event coordination. In Proceedings of the REX

Workshop on Step wise Refinement of Distributed Systems, Models, Forma lwms, Correctness.

Lecture Notes m Computer Science, vol 430, Springer-Verlag, New York.

KURSHAN,R. P, ANDMCMILLAN, K. L. 1989 A structural reduction theorem for processes. In

Proceedings of the 8th Annual ACM Symposium on Prmclples of Distributed Computing. ACM
Press, New York.

LARSEN, K. G. 1993. The expressive power of lmphcit specifications In Proceedings of the 18th

International Colloquwm on Automata, Languages, and Programmmg. Eur. Assoc. for

Theoretical Computer Science. To be published,

LIECHTENSTEIN, O., AND PNUELI, A. 1985. Checking that finite state concurrent programs satisfy

their linear specification. In %oeeedmgs of the 12th Annual ACM Symposmm on Principles of

Programming Languages. ACM, New York.

MILN~R, R. 1980. A Calculus of Commurucatmg Systems. Lecture Notes in Computer Science,

vol. 92. Springer-Verlag, New York.

MILNER, R, 1971. An algebraic definition of simulation between programs, In Proceedings of

the Znd Internanonal Joint Conference on Artificial Intelligence (Sept.),
PNUELI, A. 1984. In transition for global to modular temporal reasoning about programs, In

Logics and Models of Concurrent Systems. NATO ASI Series. Series F, Computer and System
Sciences, vol. 13. Springer-Verlag, New York.

PNUELI, A., AND SHERW, R. 1981 Semantic tableau for temporal logic. Tech. Rep. CS8 1-21,
The Weizmann Institute, Israel.

SHTADLER, Z., AND GRUMBERG, O. 1989. Network grammars, communication behaviors and
automatic verification. In Proceedings of the 1989 International Workshop on Automatic

Verzficatlon Methods for Firute State Systems (Grenoble, France). Lecture Notes in Computer

Science, vol. 407. Springer-Verlag, New York

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 3, May 1994



Model Checking and Modular Verification . 871

SHUREK, G., AND GRUMBERG, O. 1990. ‘l?he modular framework of computer-aided verification:

Motivation, solutions and evaluation criteria. In Proceedings of the 1990 Workshop on Com-

puter-Aided Vercficatton. ACM, New York.
STIRLING,C., AND WALKER, D. J. 1989. Local model checking in the modal mu-calculus. In

Proceedings of the 1989 International Joint Conference on Theory and Practice of Software

Development. Lecture Notes in Computer Science, vol. 351–352. Springer-Verlag, New York.
WALKER, D. 1988. Bisimulations and divergence. In Proceedings of the 3rd Annual Sympo-

sium on Logtc in Computer Science. IEEE Computer Society Press, Los Alamitos, Calif.
WINSKEL, G. 1989. Model checking in the modal v-calculus. In Proceedings of the 16th

International Colloquium on Automata, Languages, and Programmmg,

Theoretical Computer Science.
WOLPER, P. 1983. Temporal logic can be more expressive. Inf. Contr. 56,

72-99.

Received April 1992; revised February 1993; accepted April 1993

Eur. Assoc. for

1/2 (Jan. /Feb.),

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.


