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1. INTROBDUCTION

Temporal logic model-checking procedures are useful tools for the verification
of finite-state systems [Clarke et al. 1986; Emerson and Lei 1986; Lichten-
stein and Pnueli 1985]. However, these procedures have traditionally suffered
from the state explosion problem. This problem arises in systems which are
composed of many parallel processes; in general, the size of the state space
grows exponentially with the number of processes. By introducing symbolic
representations for sets of states and transition relations and using a sym-
bolic model-checking procedures, systems with very large state spaces (101%°
or more states) can be verified [Burch et al. 1990; Coudert et al. 1990].
Further, the time and space requirements with these techniques may in
practice be polynomial in the number of componenis of the system. Unfortu-
nately, the symbolic procedures still have limits, and many realistic problems
are not tractable due to their size. Thus, we are motivated to search for
additional methods of handling the state explosion problem, methods which
work well in conjunction with the symbolic techniques.

An obvious method for trying to avoid the state explosion problem is to use
the natural decomposition of the system. The goal is to verify properties of
individual components, infer that these hold in the complete system, and use
them to deduce additional properties of the system. When verifying proper-
ties of the components, it may also be necessary to make assumptions about
the environment. This approach is exemplified by Pnueli’s [1984] assume-
guarantee paradigm. A formula in his logic is a triple { ¢ ) M{) where ¢ and
¢ are temporal formulas, and M is a program. The formula is true if
whenever M is part of a system satisfying ¢, the system must also satisfy .
A typical proof shows that {¢)M(¥) and {irue)M'{¢) hold and concludes
that {true) M|M'() is true.

In order to automate this approach, a model checker must have several
properties. It must be able to check that a property is true of all systems
which can be built using a given component. More generally, it must be able
to restrict to a given class of environments when doing this check. It must
also provide facilities for performing temporal reasoning. Most existing model
checkers were not designed to provide these facilities. Instead, they typically
assume that they are given complete systems.

An elegant way to obtain a system with the above properties is to provide a
preorder on the finite-state models that captures the notion of “more behav-
iors” and to use a logic whose semantics relate to the preorder. The preorder
should preserve satisfaction of formulas of the logic, i.e., if a formula is true
for a model, it should also be true for any model which is smaller in the
preorder. Additionally, composition should preserve the preorder, and a
system should be smaller in the preorder than its individual components.
Finally, satisfaction of a formula should correspond to being smaller than a
particular model (a tableau for the formula) in the preorder. In such a
framework, the above reasoning sequence might be expressed as: T is the
tableau of ¢, M|T & ¢, M’ < T, and hence M||M’ = . Note that assump-
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tions may be given either as formulas or directly as finite-state models,
whichever is more concise or convenient. More complex forms of reasoning
such as induction [Kurshan and McMillan 1989} are also possible within this
framework.

In choosing a computational model, a logic and a preorder to obtain a
system such as this we are guided by the following considerations. First, we
must be able to realistically model physical systems such as circuits. Second,
there should be efficient procedures for model checking and for checking the
preorder. Finally, it should be possible to implement these procedures effec-
tively using symbolic techniques.

In this article, we propose a preorder for use with a subset of the logic CTL¥*
[Emerson and Halpern 1986]. This subset is strictly more expressive than
LTL. Further, the induced subset of CTL, called VCTL, is expressive enough
for most verification tasks and has an efficient model-checking algorithm. We
also give a tableau construction for this CTL subset. The construction pro-
vides a means of temporal reasoning and makes it possible to use formulas as
assumptions. The main advantage of CTL over linear temporal logics (e.g.,
LTL) is in its low-complexity algorithms for model checking and equivalence
and preorder testing (polynomial for CTL, exponential for LTL).

Our preorder and the semantics of our logics both include a notion of
fairness. This is essential for modeling systems such as communication
protocols. We show how to use our results to verify systems composed of
Moore machines. Moore machines have an explicit notion of input and output
and are particularly suitable to model synchronous circuits. Finally, we
suggest efficient methods for checking the preorder in several interesting
cases. We have implemented a system based on these results; the system
supports efficient compositional verification and temporal reasoning for YCTL.

Our article is organized as follows. Section 2 surveys some related work. In
Section 3, we present the logic and its semantics (for Kripke structures). The
preorder and some of its properties are given in Section 4. The next section
defines the semantics of the logic for Moore machines. Given a Moore
machine and a formula, we show how to efficiently check whether for all
environments, the Moore machine in the environment satisfies the formula.
Section 6 presents the tableau construction and demonstrates how to use it
for temporal reasoning. Methods for checking the preorder are discussed in
Section 7. Section 8 gives a compositional verification of a simple CPU
controller. We conclude with a summary and some directions for future work.

2. RELATED WORK

Much of the work on reducing the complexity of automatic verification can be
grouped into two classes. The first class includes methods to build a reduced
global-state graph or to expand only the needed portion of the global-state
graph. :

Local-model-checking algorithms [Cleaveland 1990; Stirling and Walker
1989; Winskel 1989] based on logics like the p-calculus use a tableau-based
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procedure to deduce that a specific state (the initial state of the system)
satisfies a given logical formula. The state space can be generated as needed
in such an algorithm, and for some formulas, only a small portion of the space
may have to be examined. The main drawback of these algorithms is that
often the entire space is generated (for example, when checking that a
property holds globally). It is also not clear whether the algorithms can take
good advantage of symbolic representations.

Graf and Steffen [1990] describe a method for generating a reduced version
of the global-state space given a description of how the system is structured
and specifications of how the components interact. Clark et al. [1989a]
describe a similar attempt. Both methods will still produce large state graphs
if most of the states in the system are not equivalent, and much of the
verification must be redone if part of the system changes. Shtadler and
Grumberg [1989] show how to verify networks of processes whose structure is
described by grammars. In this approach, which involves finding the global
behavior of each component, networks of arbitrary complexity can be verified
by checking one representative system. For many systems, however, the
number of states may still be prohibitive, and it is not clear whether the
method can use symbolic representations.

The methods in the second class are compositional; properties of the
individual components are verified, and properties of the global system are
deduced from these. A representation of the global-state space is not built.

Josko [1989] gives an algorithm for checking whether a system satisfies a
CTL specification in all environments. His algorithm also allows assumptions
about the environment to be specified in a restricted linear-time logic. The
system is able to handle assume-guarantee reasoning. The method is fairly
ad hoc however, and more complex forms of reasoning such as induction
cannot be easily incorporated into the system.

Within the framework of CCS [Milner 1980], there have been a number of
suggestions for compositional reasoning. Larsen [1993] investigates the ex-
pressive power of formalisms for specifying the behavior of a process in a
system. He suggests equivalence, refinement, and satisfaction (of a formula)
as three interesting relations between an implementation and its specifica-
tion. However, he does not discuss the applicability of these ideas to verifica-
tion, nor does he suggest how how they can be implemented. Walker [1988]
demonstrates how to use a preorder plus knowledge of how a system should
operate to simplify the verification of bisimulation equivalence. Cleaveland
and Steffen [1990] use a similar idea. Winskel, in a draft copy of “Composi-
tional Checking of Validity on Finite State Processes,” proposes a method for
decomposing specifications into properties which the components of a system
must satisfy for the specification to hold. The approach is very appealing, but
unfortunately, dealing with parallel composition is difficult. It is not apparent
whether any of these methods will work well with symbolic representations.

Kurshan [1989] describes a verification methodology based on testing
containment of w-regular languages. Homomorphic reductions are used to
map implementations to specifications, and the specifications may be used as
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implementations at the next level of abstraction. Dill [1989] proposes an
elegant form of trace theory which can be used in a similar manner, but the
framework does not handle liveness properties as well. Both approaches
depend on specifications being deterministic for efficiency, and neither ap-
proach makes provisions for using logical formulas as specifications or as-
sumptions.

Shurek and Grumberg [1990] describe criteria for obtaining a modular
framework, and they illustrate the idea using CTL* with only universal path
quantifiers. This system is closest to the work presented here, but they give
no provisions for handling fairness efficiently, using formulas as assump-
tions, or supporting temporal reasoning. Models in their system are also
associated with a fixed decomposition into components; hence it is unclear
how to perform inductive reasoning in the framework.

3. TEMPORAL LOGIC

The logics presented in this section are branching-time temporal logics. In
order to be able to efficiently decide whether a formula is true in all systems
containing a given component, we eliminate the existential path quantifier
from the logics. Thus, a formula may include only the universal quantifier V
over paths, but unlike in linear-time temporal logic, nesting of path quanti-
fiers is allowed. To ensure that existential path quantifiers do not arise via
negation, we will assume that formulas are expressed in negation normal
form. In other words, negations are applied only to atomic propositions. As a
result, the logics contain both V and A as boolean operators. The temporal
operators are X (“nexttime”), U (“until”), and V (“releases”). V is the dual of
U, i.e., pVq is true whenever - pU - ¢ is false; pVq is true of a path when ¢
is true starting at the first state on the path, and ¢ remains true up to and
including the first point where p becomes true. Thus, p becoming true
“releases” the obligation that ¢ remain true. There is no requirement that p
ever become true; a path where ¢ was invariantly true would also satisfy
pVq. The more familiar Gp can be viewed as an abbreviation for false Vp.
The logics are interpreted over a form of Kripke structure with fairness
constraints. Path quantifiers range over the fair paths in the structures.

Definition 1. (VCTL*) The logic VCTL* is the set of state formulas given
by the following inductive definition.

(1) The constants true and false are state formulas. For every atomic propo-
gition p, p and — p are state formulas.

(2) If ¢ and ¢ are state formulas, then ¢ A ¢ and ¢ V ¢ are state formulas.
(3) If ¢ is a path formula, then ¥(¢) is a state of formula.

(4) If ¢ is a state formula, then ¢ is a path formula.

(5) If ¢ and ¢ are path formulas, then so are ¢ A ¢, ¢ V .

(6) If ¢ and ¢ are path formulas, then so are
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(a) Xo,
(b) ¢Uy, and
(¢) @Vis.

We also use the following abbreviations: F¢ and G, where ¢ is a path
formula, denote (¢rue Ug) and (false Vi) respectively.

VCTL is a restricted subset of YVCTL* in which the V path quantifier may
only precede a restricted set of path formulas. More precisely, YVCTL is the
logic obtained by eliminating rules 3 through 6 above and adding the follow-
ing rule.

(8') If ¢ and ¢ are state formulas, then VX ¢, Y(¢Uy), and V(o Vi) are
state formulas.

In practice, we have found that many of the formulas which are used in
specifying and verifying systems are expressible in YCTL, and almost all are
expressible in VCTL*. An example formula which is not expressible in YCTL*
1s a weak form of absence of deadlock: YGIFp states that it should always be
possible to reach a state where p holds.

We will give the semantics of the logic using a form of Kripke structure
with fairness constraints.

Definition 2. (structure) A structure M = (S, S,, s, %, R, %) is a tuple of
the following form.
(1) S is a finite set of states.
(2) S, € S is set of initial states.
(3) &/ is a finite set of atomic propositions.

(4) # is a function that maps each state to the set of atomic propositions true
in that state.

(5) R ¢ 8 X S is a transition relation.
(6) & is a Streett acceptance condition, represented by pairs of sets of states.

Definition 3. A path in M is an infinite sequence of states m = s;5;8, ...
such that for all i €.7, R(s,, s, ).

Definition 4. Define inflzr) = {s|s = s, for infinitely many i}; = is a fair
path in M iff for every (P, @) €., if inflr) N P # & then inflm) N Q # .

The notation 7" will denote the suffix of 7 which begins at s,. We now
consider the semantics of the logic VCTL* with atomic propositions drawn
from the set .

Definition 5. (satisfaction of a formula) Satisfaction of a state formula ¢
by a state s (s = ¢) and of a path formula ¢ by a fair path 7 (7 = ) is
defined inductively as follows.

(1) s = true, and s ¥ false. s = p iff p eH(s). s = - p if p & A(s).
R sEpoAyiff sroandsE=d.s=eV Y iff sk= ¢ or s E .
(3) s & VY(@) iff for every fair path 7 starting at s, 7 = o.
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(4) 7= ¢, where ¢ is a state formula, iff the first state of w satisfies the
state formula.
G)yrmeEoAnyyiffrEpandr=y. mEeV g iffl mE @ or mE .
®) (@) m=Xop iff 7! E o.
(b) 7= oUy iff there exists n €.# such that #" = ¢ and for all i < n,
T E .
(¢) mw= oV ifffor all n €4, if w' i ¢ for all { < n, then 7" = .
M £ ¢ indicates that for every s, € S, s; = o.

Emerson and Halpern [1986] compared the expressive power of the three
logics LTL, CTL, and CTL¥*. They showed that LTL and CTL have incompara-
ble expressive power, while CTL* is strictly more expressive than either of
the others. Eliminating the existential path quantifier from CTL and CTL*
does not affect the relative expressive power of the logics. VCTL* trivially
encompasses LLTL and VCTL. The formula VFVGp is a formula of VCTL that
does not have an equivalent LTL formula. On the other hand, there is no
VCTL formula that is equivalent to the LTL formula VFGp. Thus, LTL and
VCTL are incomparable, and both are strictly less expensive than VCTLY.

4. SIMULATION RELATIONS AND COMPOSITION OF STRUCTURES

In this section, we define the preorder which we use and examine some of its
properties. We also show how these properties make assume-guarantee—style
reasoning possible.

Definition 6. (structure simulation) Let M and M' be two structures with
&2, and let ¢t and ¢ be states in S and S’, respectively. A relation
H c S X8 is a simulation relation from (M, #) to (M’,t') iff the following
conditions hold.

(1) H(z, t").
(2) For all s and s’, H(s, s') implies
(a) () N& =.2(s'); and
(b) for every fair path 7 = sys;... from s = s, in M there exists a fair

path 7' =sys]... from s =s; in M’ such that for every i €.,
H(s,, s).

When H satisfies property (2), we say H is a simulation relation. H is a
simulation from M to M’ iff for every s, € S, there is s; € S such that
H(s,, sp). To indicate that two paths correspond as in item (2b) above, we
write H(m, 7').

Definition 7. For s € Sand s' € 8',(M, s) < (M', s') iff there is a simula-
tion relation from (M, s) to (M’',s'). M < M’ iff there exists a simulation
relation from M to M'.

When M and M' are understood, we sometimes write s < s'. Intuitively,
one state can be simulated by ancther if their labels agree on the atomic
propositions of the second structure and if for every fair path from the first
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state there is a corresponding fair path from the second state. One structure
can be simulated by another if for every initial state of the first, there is a
corresponding initial state of the second. One may view the second structure
as a specification and the first as its implementation. Since a specification
may hide some of the implementation details, it may have a smaller set of
atomic propositions.

Definition 8. (composition of structures) Let M and M' be two structures.
The composition of M and M', denoted M||M', is the structure M" defined as
follows.

(1) §" = {s, s')NF(s) N =Z(s) N}

@) S = (S, X 8)) N S

@) = U

(4) #"((s, ") =FA(s) UF(s).

(5) R"((s, s"),(t,t')) iff R(s,t)and R'(s',t').

B)F"={(PX8SYNS,(Q@ xXS)nNSNP,Q) 7}
IS X PYINS", (S X)NSHP,Q) 7).

The choice of this definition of composition is motivated by its correspon-
dence with composition of Moore machines. Each transition of the composi-
tion is a joint transition of the components, and states of the composition are
pairs of component states that agree on their common atomic propositions.
We first note that this composition operator has the usual properties.

THEOREM 1. Composition of structures is commutative and associative (up
to isomorphism).

Proor. Straightforward but tedious. O

We now turn to the connections between the relation < and composition.
To begin, we note that a path in M| M’ is fair iff its restriction to each
component results in a fair path.

LEMMA 1. Let M" = M||M'. The following conditions are equivalent.

(1) 7" = (sy, suXsy, 81)...1s a fair path in M".
(2) m=s84s,... and @ = sys ... are fair paths in M and M’ respectively,
and (s,, s}) is a state of M" for all i €.

PROOF. Assume condition (1) above. By the definition of composition,
T = 8y38;... 18 a path in M. Let (P, Q) €%, and suppose inflr) N P # .
Now (P", Q) =P xS8)NS,(QxS)NS) e, and inflz") N P % 7.
By the definition of a fair path, inflz”) N @" # &. Hence inf{7) N @ + O, and
so o is a fair path in M. Similarly, =’ = s;s} ... is a fair path in M".

Assume condition (2) above. From the definition of composition, «" =
(89, 85)(sy, 81)... 1s a path in M". Suppose (P", Q") € 5" and inf(#") N P" #
. Either (P",Q") = (P X 8)NS" (R Xx8)NS") for some (P,Q) €7, or
(P, @)=((SXP)NS" (SxE)nS") for some (P,Q) .. In the first
case, we have inf(7) N P # J, and so inflzr) N @ # . This implies infl7”) N
Q" # J. The second case is similar. Hence #” is a fair path in M”. O
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THEOREM 2.

(1) < is a preorder

(2) Forall M and M', M||M' < M.

(8) Forall M, M' and M", if M < M’ then M|M" < M'||M".
(4) Forall M, M < M| M.

Proor.

(1) The relation H = {(s, s)|s € S} is a simulation relation from M to M, so
=< is reflexive. Thus it only remains to show that < is transitive. Assume
M <M and M' <M". Let H, be a simulation relation from M to M’,
and let H; be a simulation relation from M’ to M". Define H, as the
relational product of H, and H,, i.e,,

H, = {(s,s")3s'[ Hy(s,s' YA H{(s',s")]}.

If s, €S,, then by the definition of simulation relation, there exists
sy € Sy such that H(s,, sp). Similarly, there exists sy € S such that
H (s}, 53), and hence H,(s,, s}).

Suppose H,(s, s") and let s’ be such that Hy(s,s') and H(s,s"). By
the definition of simulation relation, .#(s) N =.¥'(s’) and Z'(s) N"
=.2"(s"). Then since &'/ D", we have H(s) N =7"(s"). If 7 is a fair
path in M from s, then there exists a fair path #' from s in M’ such
that Hy(mw, '), Since H, is a simulation relation, there exists a fair path
@’ from s" in M” such that H(«', #"). But then H,(m,w"), and hence
H, is a simulation relation from M to M". Thus M < M".

(2) Define H by
H = {((s,s'),s)(s,s) e SHIMY

If (s, ;) is an initial state of M||M’, then s, € S,. The label of (s, s') is
L(s) UL (s"), and (L(s) UL () N =A(s). If (s¢, suXNsq,8))... is a
fair path in M||M’, then by the previous lemma, s,, s; ... is a fair path in
M. By the definition of H, we have H((s,, s), s,) for every i. Hence H is a
simulation relation, and M||M’ < M.

(3) Let H, be a simulation relation from M to M'. Define H, by
H; = {((s,8"),(s",s"))|Hy(s, s)}.

We show that H; is a simulation relation. Let (s, sj;) be an initial state
of M||M". By the definition of composition, s, € S, and sj € 5. Since
M < M’, there exists s, € S}, such that H(s,, s;). Now (sj, sj) is a state
of M'||M" since

L(sy) N = (F(sp) N&') N”
= (L(sy) N") N
= (Z"(sp) Nw) N
=Z"(sp) N
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Further, (s}, si) is an initial state of M'[|M" by the definition of composi-
tion. By definition of H,, we have H ((s,, s{), (s}, s5)).
Suppose H,((s, s"),(s', s")). First note that

(P UL (NN V") = (F(s) N') U (L (s) Nw")
U(Z"(s")y N (&' uy"))
=) U(L(s") Nw) UL (s")
=F(s')Y UF"(s").

Let (s, sg)(sy, s7)... be a fair path in M||M" from (s, s") = (s, 53). Then
for every i €4, we have #(s,) N&" =#"(s)) N.&. By the previous lemma,
T =8,5;... 18 a fair path in M starting at s, and 7" = s{s7... is a fair
path in M"” from s". Since H(s, s'), there is a path 7' = ss}... from
s’ =s, in M’ such that for every i €.7, we have Hy(s,s;). By the
definition of simulation relation, #(s,) N& =.'(s)) for all i. Arguing as
above, we then have #'(s)) Nw" =%"(s)) N for each i, and so each
(s.,8!) is a state in M'|M". Now H((s,, s}),(s,, s})) by the definition of

H,. Applying the previous lemma, we find that (sj, sp)(s, s7) ... is a fair
path starting in (s', s”) and corresponding to the path (s, s{)(sy, s7)....

(4) First note that for every state s of M, (s, s) is a state of M|[M. Define
H ={(s,(s,3))ls € S}. If s, € S, then by the definition of composition,
(59, 8¢) is an initial state of M| M; (s, s) trivially has the same label as s.
Using the previous lemma and the definition of composition, we find that,
if sy8;... 1s a fair path in M, then (s;, so)(sy, s;)... is a fair path in
M |I|M. By the definition of H, we have H(s,,(s,, s,)) for all i. Hence H is a
simulation relation, and M < M||M. O

THEOREM 3. Let s and s' be states of M and M’, and let H be a simulation
relation such that H(s,s'). Let m and w' be fair paths such that H(w, 7).
Then

(1) for every YCTL* (state) formula ¢ (with all atomic propositions in '), if
s' = ¢, then s = ¢; and

(2) for every YCTL* path formula ¢ (with all atomic propositions in '), if
7' &= @, then mFE .

Proor. The proof proceeds by induction on the structure of the formula.

(1) If @ = true or ¢ = false, the result is trivial. If ¢ = p, an atomic proposi-
tion, then s’ &= ¢ if and only if p €.%7(s"). By the definition of simulation
relation, #(s) N =2'(s"), and so p €.7(s) iff p €£(s'). Thus s E o.
The case where ¢ = — p is similar.

(2) If @ = @, A @5, then §' = ¢ iff s = ¢, and s’ F ¢,. The induction hypoth-
esis implies s = ¢; and s = ¢,; hence s = ¢. The case where ¢ = ¢, V ¢,
is similar.

(3) If ¢ = V(¢y), then s = ¢ iff for every fair path o from s, m &= ¢,. Let 7 be
any fair path from s. By the definition of simulation relation, there exists
a fair path 7' from s’ such that H(s, 7). If ' = ¢, then 7' = ¢, for any
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7' from s'. The induction hypothesis then implies 7 = ¢,, and hence
s = o
(4) If ¢ is a path formula consisting of only a state formula and 7’ = ¢, then
the initial state s’ of ' satisfies ¢. By the induction hypothesis, s = o,
and since s is the initial state of 7, 7 = ¢.
(5) The cases for the conjunction and disjunction of path formulas are similar
to case 2.
(6) (a) If ¢ =Xo,, then 7' &= ¢ implies 7' = ¢,. Now since H(w,7'), we
also have H(#', 7'"). Then the induction hypothesis implies 7' = ¢,.
Thus 7 = ¢.
(b) If ¢ = ¢,Ugp,, then 7' = ¢ implies that there exists n such that
7" & ¢, and for all i <n, 7' E ¢;. Since H(w,w'), we have
H(w/, ar") for any j. Applying the induction hypothesis, 7" = ¢, and
7wl @, for all i < n. Hence 7 E ¢.
(c) The case where ¢ = ¢,Vo, is similar to the previous two cases. O

COROLLARY 1. Suppose M < M'. Then for every YCTL* formula o (with
atomic propositions in '), M' = ¢ implies M = ¢.

Proor. Immediate. O

Using Theorem 2 and this corollary, we see that a standard CTL (CTL*)
model-checking algorithm [Clarke et al. 1986], when restricted to VCTL
(VCTL*), can be viewed as determining whether a formula is true of all
systems containing a given component. This is the key to compositional
verification. With the theorem and corollary, it is also straightforward to
justify the soundness of the assume-guarantee paradigm when assumptions
are given as structures. (The connection between structures and formulas will
be examined in Section 6.) Discharging an assumption involves checking for
the relation < . Suppose that we wish to check that M||M’ £ ¢ and that we
have verified the following relationships:

M<A
AlM' < A
M|A = o.

In other words, M discharges assumption A; M’ under assumption A
discharges assumption A’; and M under assumption A’ satisfies the desired
formula. From Theorem 2, we have

M|M' < M|M|M’
<M|A|M
<M|A.

Then Corollary 1 implies that MM’ = ¢. The theorem and corollary also
show that any system containing M||M’ will satisfy ¢. Note that ¢ is not
necessarily true in either M or M’ and may involve atomic propositions from
both M and M’.
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5. MOORE MACHINES

We have seen that the structures defined earlier (Definition 2), can be used
for compositional reasoning about synchronous systems. However, such sys-
tems are typically given using a more common finite-state model such as
Moore machines [Hopcroft and Ullman 1979}. Moore machines are models of
computation with an explicit notion of inputs and outputs. Since the inputs
originate from an external, uncontrolled environment, the machine can al-
ways receive any combination of input values. Moore machines are syn-
chronous; in a composition of Moore machines, each machine makes a single
step at every point. Thus, they are most suitable for modeling synchronous
circuits. In this section, we show a natural correspondence between Moore
machines with an empty set of inputs and the structures defined earlier. We
use this correspondence to define the semantics of VCTL* with respect to
Moore machines, and we show how to use compositional reasoning to verify a
system composed of Moore machines.

Definition 9. (Moore machine) A Moore machine M = (S, S,,1,0,.%, R)
is a tuple of the following form

(1) S is a finite set of states.

(2) S, € S is a set of initial states.

(3) I is a finite set of input propositions.
(4) O is a finite set of output propositions.

(5) # is a function that maps each state to the set of output propositions true
in that state.

(6) R c S x 27 x § is the transition relation.

We require that I N O = J and that for every s € S and v C I, there exists
some t € S such that R(s, v, ¢). We also let .« denote T U O.

Definition 10. (composition of Moore machines) Let M and M’ be Moore
machines with O N O’ = . The composition of M and M’, denoted MIIM’, is
the Moore machine M” defined as follows.

(1) §"=8x8.

@) 85 =S, % S).

@ Ir=uINWwuo).

4) O"=0Uu 0.

B) (s, 8') =#(s) UZ(s).

(6) R"({ss"),v,(t,t')iff R(s,(v UL (N NI, t)and R'(s,(v UZ(s)) NI, 1)

We now turn to the question of how to define satisfaction of a specification
by a Moore machine M. The key consideration is that we wish to have a
compositional method of reasoning. Thus, M satisfying a specification should
mean that M plus any environment satisfies that specification. We will
achieve this by considering the behavior of complete systems involving M.
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Definition 11. A Moore machine M is called closed if I = (J.

Intuitively, the behavior of a closed machine cannot be altered. For such a
machine, there is a structure which naturally corresponds to it. We define
this structure precisely now. The definition here is actually slightly more
general in that it assigns a structure to nonclosed machines as well.

Definition 12. (structure for a Moore machine) The structure M’ corre-
sponding to a Moore machine M, denoted by K(M), is defined as follows.

1) 8 =8 x2%

@) Sy =S, x 27,

B =w=TUDO.

4) Z'((s,v) =F(s) U v.

(5) R'((s,v,),(t,v,))iff R(s,v,,¢).
(6) 5 = .

Definition 13. A Moore machine M’ is called a closing environment for M
fONO =0, IcO,and I' CO.

If M’ is a closing environment for M, then M and M’ can be composed,
and the resulting Moore machine will be closed. We now define satisfaction of
a formula by a Moore machine.

Definition 14. (satisfaction in a Moore machine) If M is a Moore machine
and ¢ is a YCTL* formula with atomic propositions over &, the M = ¢ iff for
every closing environment M’ for M, K(M||M') = ¢.

We must now demonstrate how to efficiently check whether M = o.

LeMMmA 2. If M and M' are Moore machines with O N O =, then
K(M||M") is isomorphic to K(M)||K(M').

Proor. Define ¢ mapping the states of K(M||M’) to the states of
K(M)|K(M’) as follows.

d(((s,8),v)) = (5, (v UL () NI, (s, (v UL(s)) NI))

Suppose ((s, s'),v) and ((¢,¢'),u) both map to the same state of
K(M)IIK(M'). Then from the definition of ¢, we immediately have s = ¢ and
g =t Also, UL (NN =(VLWNNI, and WUASNNIT =(u U
A(t)) N I'. By the definition of Moore machine composition, v and u are
digjoint from O U O'. Hence v NI =u NI, and v N I' = ©w N I'. This implies
vnNJulY=un{ul),ie, v =u. Hence ¢ is an injection.

To argue that ¢ is surjective, we consider the cardinalities of the two sets
of states. First, we have

ISK(MHM')I =[S|18'|- 2|(IUI’)\(OUO/)|-
Now consider |SEMIEM)| This is the number of states in the cross product

SEM) 5 SEM') which have compatible labelings. Fix a pair of states of s and
s'. There are 2!/ states in K(M) with s as their first component and 2" in
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K(M") with s’ as the first component. Thus there are potentially 2!/ 2!l
states in K(M)||K(M') corresponding to s and s’. However, each pair must
correspond on the atomic propositions in IN O, I' N O, and I NnI'. Thus
there are exactly

2|I| . 21I’|
2|IﬁO’| . 2\[’(\0! . 2|IﬁI'|

states in K(M)||K(M') corresponding to s and s". Thus we have

[SK<M)||K(M’)|= ‘S“|S/|.2|Il,2lpl
2llmo’l . 2|1’mol. 21101/|

3 |S|'|S’|’2UUI’|

T 9lIn0"T 9lI'n 0]

B IS‘.‘SrI.zllul’l

- 9lIn0'l glinol oll'n01 olI'n 0’
3 |S|‘tS'|'2|IU],‘

2|(IUI’)(\(OUO’)|

=1S|-S]- 2|(IuI’)\(OuO’)|
—|gEMMy |
Hence ¢ is a bijection.

If ((sy, sp),v) is an initial state of K(MIIM'), then s, € S, and s, € Sj.
Then ¢((sg, sp), v) is an initial state of K(M)||K(M') since s, € S, implies
that (sy, (v UF (sy) N I) is an initial state of K(M), and s; € S; implies
that (s, (v UZ(sy)) N I') is an initial state of K(M'). Similarly, if ¢((s, s'),v)

is an initial state of K(M)IK(M'), then ((s,s'),v) is an initial state of
K(M|M").

The sets of atomic propositions of the two structures are clearly identical.
The labeling of ((s, 8'),v) is F(s) UZ"(s') U v. The labeling of ¢((s, s),v) is
FEM((s,(0 UL () N 1) ULEM((s (v UF(s) N T'))
=Z(s)VU v UGN NDHUL(s)UvuF(s) nl)
=) UL (HuvnTul))
=Z(s)UF(s)Uwv
= FEMMD(((s,5),0)).
REMIMY((s, 8", 0), ((2, £), 1)) iff RMIM' (s, &) v, (#, 1)) iff R(e. (v UL ()
NI t), and R'(s (v UL(s) NI, t") iff REMN(s,(v UL (s NI),(t,(uuU
Z) NI, and REM(s (v UZ(s) NI, (', (w UL n ) iff

REGDIEMO( (s, 8, 0)), d((£, t'), w)). The fairness sets of both structures are
empty. O

Definition 15. If M is a Moore machine, the maximal closing environment
for M, denoted E(M), is the Moore machine M’ defined as follows.
1) 8 =2.
@) §,=9".
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B3 I'=3a.
4 o0=1I
5) () =5

(6) R'(s',,1) is identically true.

The maximal environment (for M) represents an environment which can
do anything at each step. Intuitively, a possible behavior of M in an arbitrary
environment must also be a possible behavior of M in the maximal environ-
ment. The logics we use specify properties that should hold for every possible
behavior of a system. Hence, if M plus its maximal environment satisfies a
formula, then M in any environment should satisfy that formula. Note that
the above holds also for environments that cannot be described as finite-state
Moore machines.

LEMMA 3. Suppose M' is a closing environment for M, and suppose
M" = E(M). Then K(M’) < K(M").

PrOOF. Define
H={(s,s"NZ(s) N =2"(s")}.

Note that for every s’ € §’, there is some s” € §” such that H(s',s") (in
particular, the state #'(s') N&” in K(M")). Thus, if s; € S, there is sj
which is related to it by H, and every state in K(M") is an initial state.

If H(s',s"), then by the definition of H, we have Z'(s') N&” =%"(s"). If o'
is a fair path in K(M'), then the fact that every state in K(M’) is related to
some state in K(M") plus the fact that R” is identically true implies that
there is a path 7" in K(M") such that H(#’', #"). Further, every path in
K(M") is fair. Thus H is a simulation relation. [

LEMMA 4. Let M be a Moore machine. Then K(M) is isomorphic to
K(M|E(M)).

Proor. Let M' = K(M) and M" = K(M||E(M)). Define ¢ mapping the
states of M" to the states of M’ by ¢((s,v), D)) = (s,v); ¢ is obviously an
injection, and ¢ is a surjection since each subset of 27 is a state of E(M).

If ((sy,v), D) € S;, then s, must be in S,. Hence (s,, v) € Sj. Similarly, if
(s9,v) € Sj, then s, €S, and so ((sy,v), D) € §§. & and &' are trivially
equal. We also have

" (((5,0),2)) =LMIEW((s5,0)) U D
=A(s) VLEMN(v)
=P(s) Uv
=2((s,v)).
Finally, we have R"(((s,v,), @), (t,vy), D) iff RMIEM((s,v,),,(¢,v,)) iff
R(s,v,, t) iff R'((s,v,),(¢,0,0). F" and & are both empty. D
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THEOREM 4. If M is a Moore machine, then M = ¢ iff K(M) = ¢.

ProOF. Suppose K(M) E ¢. By Lemma 4, we find K(M[|[E(M)) & ¢, and
then by Lemma 2, K(M)|K(E(M)) = ¢. Let M’ be any closing environment
for M. By Lemma 3, K(M’') < K(E(M)). Hence by Theorem 2, K(M)||K(M")
< K(M)||K(E(M)). Applying Corollary 1, we have K(M)I|K(M') = ¢. By
Lemma 2, K(M)||K(M') is isomorphic to K(M| M’), and thus K(M||M') = ¢.
Since M’ was arbitrary, M = ¢.

If M & ¢, then K(M||E(M)) = ¢, and hence by Lemma 4, K(M) = ¢. O

Thus, to determine if a system M,[|M,ll...||M, satisfies a formula ¢, we
instead check that K(M,||M,l|l...IM,) satisfies ¢. By Lemma 2, this is
equivalent to checking that K(MDIK(My)Il... ||[K(M,) satisfies the formula.
As illustrated in the previous section, we can use the assume-guarantee
paradigm to try to verify this latter relation. Thus, during an actual verifica-
tion we will be working with structures even though the thing we want to
verify is a property of a composition of Moore machines.

6. THE TABLEAU CONSTRUCTION

In this section, we give a tableau construction for YCTL formulas (for a
similar construction for LTL, see Burch et al. [1990]; other tableau construc-
tions for CTL are given by Clarke and Emerson [1981] and Ben-Ari et al.
[1983}], and LTL tableau constructions were given by Wolper [1983] and
Pnueli and Sherman [1981]). We show that the tableau of a formula is a
maximal model for the formula under the relation =< . Thus, the structure
generated in the construction can be used as an assumption by composing the
structure with the desired system before applying the model-checking algo-
rithm. Discharging the assumption is simply a matter of checking that the
environment satisfies the formula. We also indicate how the tableau can be
used to do temporal reasoning. For the remainder of this section, fix a VCTL
formula .

Definition 16. The set sub(¢) of subformulas of the formula ¢ is defined
by the following equations.

(1) If ¢ = true or ¢ = false or ® = p, an atomic proposition, then sub(¢) = {¢}.
If ¢ = = p, a negated atomic proposition, then sub(¢) = {¢, p}.
(2) If ¢ = @1 A @y OF @ = @, V oy, then sub(¢) = {¢} U sub(¢,) U sub(e,).
(3) (a) If ¢ = VX ¢, then subl¢) = {¢} U sublg,).
(b) If ¢ = V(¢ Up,), then sub(y) = {¢} U sub(y,) U sub(y,).
(o) If ¢ = Y(¢,Ve,), then sub(¢) = {¢} U sub(¢,) U sub(p,).

Definition 17. The set el(¢) of elementary formulas of the formula ¢ is
defined by the following equations.

(1) If ¢ = true or ¢ = false, then el(¢) = J. If ¢ = p, an atomic proposition,
or ¢ = — p, then el(¢) = { p}.
(2) If ¢ = @1 A @y Or @ = @1 V @y, then el() = el(¢,) U el(g,).
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(3) (a) If ¢ = VX ¢y, then el(¢) = {VX¢,} U el(p,).
(b) If ¢ = V(¢,Ugp,), then el(p) = (VX false, VXV(¢,Up,)} U el(¢,)
U el(opy).
(¢) If ¢ = V(¢,Vip,), then el(p) = {VX false, VXV(p,Vp,)} U el(e;)
U el(g,).

The special elementary subformula VX false denotes the nonexistence of a
fair path; s = VX false indicates that no fair path begins at s; el(¢) contains
propositions and formulas with VX as their top-level operator. Subsets of
el(¢) are states of the tableau defined below. Thus, states of the tableau
represent possible valuations for the atomic propositions, plus information
about what subformulas should be true in the next state. This latter informa-
tion is used to determine the legal transitions between states. As we will see
later, every elementary formula that is part of a state is in fact true at that
state. The map ® defined below uses the elementary subformulas to assign a
set of states to every subformula. Thus, it can be thought of as a type of
satisfaction relation, mapping subformulas to the sets of states where they
should be true.

Definition 18. (tableau of a formula) The tableau of i, denoted J(y), is
the structure (S, S,, &, .%, R, %) defined as follows.

(1) S = 2°),
(2) S, = ®(¢), where ® is the map from el(¢) U sub(y) U {true, false} to 2°
defined by the following equations.
(a) ®(true) = S; D(false) = J. If ¢ < el(y), then P(¢) = {s|lp €s}. If
¢ = = ¢p, then () = S\ P(g¢,).
(b) If ¢ = ¢, A ¢, then P(p) = P(p;) N P(@y). If ¢ = ¢, V ¢, then
() = P(p;) U P(g@,).
(© @ If ¢=V(p,Up,), then ®(¢) = (D(p,) U (P(p)) N P(VX ) U
D(VX false).
() If ¢ = V(g Vp,), then ®(¢) = (P(g,) N (Plp;) U (VX)) U
®(VX false).
(8) & ={plp € el(y)}.
(4) #(s) ={plp € s}.
(5) R(s, t) iff for each formula VX ¢ in el(y), VX ¢ € s implies ¢ € $P(op).
(6) & = {(D(VXV(p,Ug,)), (0, INXV(p,Ug,) € el(y)}.

LEMMA 5. For all subformulas ¢ of ¢, if s € ®(¢), then s & ¢.
ProoF. The proof proceeds by induction on the structure of ¢.

(1) If ¢ = true, then ®(¢) = 8, and every state satisfies true. If ¢ = false,
then ®(¢) = J, so the result is trivial. If ¢ = p, an atomic proposition,
then ®(¢) = {slp & s}. But As) = {glg € s}, and so p €4(s) and s = p.
If ¢ = = p, a negated atomic proposition, then ®(¢) =S\ {slp € s}.
Since .#(s) = {glq € s}, we have that p €.%(s), and so s F - p.
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(2) If ¢ = @, A @g, then ®(p) = ®(p,) N P(¢,), and hence s € P(¢;) and
s € ®(¢,). By the induction hypothesis, s = ¢; and s = ¢,, which implies
s F @©; A ©y. The case where ¢ = ¢, V @, is similar.

(3) (a)

(b)

(c)

If ¢ = VX¢,, then ®(¢) = {s|VX(p;) € s}, and so VX(p,) € s. Suppose
R(s,t). By the definition of R, we have ¢t € ®(y,;), and then the
induction hypothesis implies ¢ = ;. Since ¢t was chosen arbitrarily,
any fair path from s satisfies ¢, at its second state, and hence
s = VX(g).

If ¢ = V(p,Ug,), then P(p) = (O(p,) N (Plp) N P(VX ) U

®(VXfalse). Let t be any state in ®(¢). Then either

(i) t € ©(VX false), in which case ¢ has no successors and ¢ = ¢
trivially, or

(ii) ¢t € ®(o,), in which case the induction hypothesis implies ¢ = ¢,
or

(iii) ¢ € () N D(VX ). In this case, the induction hypothesis im-
plies ¢ = ¢;. By the definition of R, we also know that if R(¢, u),
then u € ®(p).

Let s = s;, and consider a fair path = = s3s;s,... from s. Note that

no state on this path can satisfy the first condition above. There are

two cases to consider.

(1) There is some j such that s, E ¢,. Let s, be the first such state
on the path. By the above, for every j <i, s, = ¢,. Hence the path
satisfies ¢,Ug,.

(ii) For every j, s, ¥ ¢,. Then the above implies that for every j, s, €
®(VX ). By the induction hypothesis, we know that each s , 1s not
in ®(¢,). But then inflw) N &(VS¢) + & and inflr) N D(e,) = &.
By the definition of %, this contradicts the fact the 7 is fair, and
so this case is impossible.

Thus s = V(¢,Ugp,).

If ¢ =V(pVp,), then O(p) = (D(p,) N (D) U D(YXp))) U D(VX

false). If t is any state in ®(¢), then either

(i) t € (VX false), in which case ¢ has no successors and ¢ = @
trivially, or

(ii) ¢ € O(py). In this case, we also have either t € ®(¢,) or for every
u such that R(z, u), u € ®(o).

Let s = s4, and let m = s48;8, ...be a fair path from s. Note that no s,
can satisfy the first condition above. If s, is such that for all j <4, s,
¥ ¢y, then the induction hypothesis implies that s, € ®(¢,). Hence
s, € ®(g,), and also s, € P(¢,); then the induction hypothesis implies
for all j <i,s, = @;. Thus the path satisfies ¢,Vy,, and hence we
have s = V(¢ Vgp,). O

Now let M = J(¢), and fix a structure M’. The two lemmas below suggest
a simulation relation from any structure M’ that satisfies ¢ to (). This is
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not a standard requirement for a tableau and stems from the kind of
reasoning we wish to apply.

LEMMA 6. Define a relation H € S’ X S by
H={(s,3)ls = {olp € el(y), s’ E ¢}}.

If H(s', s), then for every subformula or elementary formula ¢ of ¥, s’ E ¢
implies s € O(p).

Proor. The proof proceeds by induction on the structure of ¢, where the
base cases for the induction are the elementary subformulas of i, plus true
and false.

(1) If ¢ = true, then ®(¢p) = S, so the result is trivial. If ¢ = false, then o
cannot satisfy ¢. If ¢ € el(i), then by the definition of H, s’ = ¢ implies
¢ € s. Now P(¢) = {s|¢ € s}, so s € ().

(2) If ¢ = = p, a negated atomic proposition, then s &= ¢ implies p ¢ s.
Since ®(¢) = S\ {s|p € 8}, s € ®(g).

B) If o= ¢; A ¢, then P(¢) = D(p,) N D(p,). We have s = ¢ implies
s'E ¢; and s’ F ¢,. By the induction hypothesis, s € ®(¢;) and s €
®(p,), and so s € D(g;) N D(¢,). The case when ¢ = ¢, V ¢, is similar.

4) If ¢ =V(pUgp,), then ®(¢p) = (P(gy) U (P(¢p;) N P(VX @) U &(VX
false). Given s’ = ¢, there are three cases.

(a) If no fair paths start at s', then s’ = VX false. The induction hypothe-
sis implies s € ®(VX false), and so s € ®(p).

(b) If s’ = ¢,, then by the induction hypothesis, s € ®(¢,), and so s €
D).

(c) Otherwise, s' = ¢, and s’ = VX¢. By the induction hypothesis, s €
®(¢,) and s € P(VX ) (since VX ¢ € el(i)). Hence s € ®(¢).

In all cases, s € ®(V(p,Ug,)).
(G) If ¢ = Y(¢Vp,), then @(¢p) = (P(g,) N (Ple;) U P(VXp))) U D(VX
false). Since s’ = ¢, either
(a) no fair paths start at s’, in which case s’ £ VX false and the induction
hypothesis implies s € ®(¢), or

(b) ' F ¢,; and so by the induction hypothesis, s € ®(¢,). Also, either
s'E ¢, or s’ = VX . Applying the induction hypothesis again, either
s € ®(¢py) or s € D(¥X ¢). In both cases, s € P(¢).

Thus in all cases, s € ®(V(¢,Vey)). O

LeMMA 7. The relation H given above is a simulation relation.

Proor. Note that for every state s’ of M’, there is a (single) state s of M
such that H(s', s). Let A be the set of atomic propositions for M, and assume
H(s', 5). We have s) = {plp = s}. From the definition of H, p = s implies
s' = p. Further, If s =p and p €A, then p € el(y¥), and hence p € s,
p €%(s). Thus we find Z(s') N A =Z(s).
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Let s; = ¢, and suppose 7' = §;s155 ... is a fair path from s'. Let VX ¢,,
VX p,,..., ¥X¢, be all the formulas of the form VX¢ in el(y) which s’
satisfies. Then we have s} = ¢, 8] E ¢,,..., s] F ¢,. Let s, be the state of M

related to s| by H. By the previous lemma, s; € ®(¢,), s; € P(p,),...,s; €
®(g,). Now by the definition of H, the formulas of the form VX¢ in s must
be exactly VX ¢, VX ¢,,..., VX ¢,. Then from the definition of R, we see that
R(s, s,). Since H(s}, s;), we can continue the process. Defining s, = s, we get
a sequence of states 7 = 545,55, ... starting at s such that H(s), s,) for all i.
To complete the proof, we must show that this sequence is fair.

Assume that 7 is not fair. Looking at #, we see that there must be some
elementary subformula VXV(¢,Ug,) such that infl7) N ®(VXV(p,Ug,)) + &
and inflm) N ®(¢,) = J. Consider one of the states s,; s, € P(VXV(p,Uyp,))
iff VXV(¢,Ug,) € s,, and then the definition of H implies s, = VXV(¢,Ug,).
Additionally, the previous lemma implies that if s, & ®(¢,), then s ¥ ¢,.
Choose i so that s, € ®(VXV(¢,Ug,)) and so that for all j > i, s, & ®(g,).
Then s)s;,,... is a fair path in M’ starting at s/, and every state on this
path satisfies — ¢,. But s, E VXV(¢,Ug,), a contradiction. Hence 7 is in fact
a fair path in M. O

THEOREM 5. M' = iff M' < I(y).

PrROOF. Suppose M’ < 9(¢). By Lemma 5 and the definition of the tableau,
every initial state of () satisfies ¢, ie., () = . Then since M’ <
TW), M' = .

If M’ & i, then by definition, every s; € S; satisfies . By the definition of
H, every such s, is paired with a (unique) s,. Lemma 6 implies that
sp € ®(¢), and by the definition of the tableau, s, € S,. By Lemma 7, H is a
simulation relation, so M’ <J(¢). O

The tableau construction can also be used to reason about formulas. We are
typically interested in whether every model of a formula ¢ is also a model of
some other formula . Let ¢ = ¢ denote this semantic relation.

Proposition 1. ¢ =  iff () = .

Proor. If ¢ = ¢, then every model of ¢, in particular 9( ), is also a model
of ¢. Assume S ¢) = ¢, and let M = ¢. By the previous theorem, M < 91 o).
Since S ¢) = i, @) < IN). Hence M < F(4), ie., M = . 0O

We will sometimes extend the set of elementary formulas of a formula by
adding additional atomic propositions. For example, if we wished to check
whether true implied p, we would extend the set of atomic propogitions for
true to include p (another way to view this is to imagine rewriting true as
true A (p vV = p). The formula ¢ has a nontrivial model iff it is not the case
that = VX false; i is true in every model iff true = i.

7. CHECKING FOR SIMULATION

In this section, we discuss the problem of determining whether there exists a
simulation relation between two structures M and M'. Our goal is to
efficiently determine if M < M'. First note that if H, and H, are simulation
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relations, then H, U H, is a simulation relation. Also, J is trivially a
simulation relation. These facts imply that there is a maximal simulation
relation under set inclusion. This maximal simulation relation is in fact <,
and this is what we will actually compute.

We also note the following facts.

(1) If s is a state of M and no fair paths start at s, then s is simulated by
exactly those states s’ in M’ for which #(s) N =.£"(s").

(2) If s’ is a state of M’ and no fair paths start at s, then s’ simulates
exactly those states s in M which are the start of no fair path and for
which #(s) N’ =Z(s').

States which are the start of no fair path can be detected in polynomial time
[Emerson and Lei 1986] and eliminated in a preprocessing step. Hence,
without loss of generality, we can assume that every state in M and M’ is
the start of some fair path. We now describe polynomial-time algorithms for
checking the preorder in several important special cases. The question of how
to check the preorder in the general case is left open.

The first case is similar to Milner simulation [Milner 1971] as computed
within the Concurrency Workbench [Cleaveland et al. 1989]. Suppose that M’
has a trivial acceptance condition, i.e., ¥ = &.

Definition 19. Define a sequence of relations H, as follows.

(1) Hy = {(s, sHAs) Nt =Z(s)}.
(2) H,,, = H, N {(s,sHIVt[R(s,t) —» ' (R'(s',t') A H(t, t')).

Define H, to be the first H, such that H, = H,,; (such an i exists since

H, , c H, for all j and each H, is finite).

THEOREM 6. Foreverys € Sands €8, s <s' iff H(s,s).
Proor. We first note that H_ is the greatest fixed point of the equation
H=Hn{(s,s)Z(s) N =F(s) AVt[R(s,t) » At'(R' (s, ')A H(¢t,t')]}.

Suppose s and s’ are states such that H (s, s'). We have #(s) N =7'(s)
immediately. Let s, = s and s, = ¢’, and assume 7 = s,8;... ig a fair path
starting from s. From the above equation, there exists a state s} such that
R'(sy, 1) and H, (s, s}). Continuing in this fashion, we find a path ss] ...
starting from s’ such that H (s,, s}) for all i. Since %' = &, this path is fair.
Hence H, is a simulation relation from s to s, i.e., s < g’

To show that s < s’ implies H (s, s'), we show that any simulation relation
H is a fixed point of the above equation. Since H, is the greatest fixed point,
we will have H C H_. Hence if there is some simulation relation H such that

H(s, s'), then H (s, s'). It is enough to show that H is a subset of the set
{(s,s)Z(s) N’ =2 (s) AVt[R(s,t) — A (R (s, t YN H(,t' )]}

If H(s,s'), then we have #(s) N =(s"). If R(s,t), then by our earlier
assumption, there exists a fair path from ¢. Hence, letting s, = s and s; = ¢,
there is some fair path sys,... from s through ¢. Since H(s, s'), there exists
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a fair path s;s}... from s’ = s; such that H(s,, s!) for all i. Now if we take
t' = s}, we see that (s, ') is in the above set. O

We note that H,, = H, for some i which is at most [S|-|S'|. Each H,, can
also be computed in polynomial time from H s hence H, can be computed in
polynomial time.

Another important case is when M’ is deterministic, i.e., if R'(s',¢') and
R'(s',u'), then ¥'(¢') #.%'(«'). For this case, we show below that s < s’ iff the
language of s is contained in the language of s, where the language for a
state s is the set of sequences of labelings which occur along the fair paths
starting at s. More formally, see Definition 20.

Definition 20. Let M be a structure, s be a state in M, and & C.v.
Lan ;(s), the language of s in M restricted to %, is the set of all sequences
lyly... over 2%, such that there is a fair path 7 = sys,... in M with s, = s
for which [, =.#(s,) NZ, for every i > 0.

Clearly, if s <&’ then Lan,(s) € Lan (s'). Below we show that if M’ is
deterministic then the converse is also true.

Definition 21. Define a relation H € S X S’ as follows.
H = {(s,s)|Lan,(s) C Lan ,(s')}

THEOREM 7. If M' is deterministic then H is a simulation relation.

PrOOF. Suppose s and s" are states such that H(s, s'). Then, Lan .(s) C
Lan (s') which immediately implies that #(s) N&’ =%"(s'). Let s, = s and
so = s', and assume 7 = 5,5, ... is a fair path starting from s. Then, there is
a fair path 7' = sj;s ... from s’ such that for every i > 0, ¥(s,) N =2"(s)).
Assume H(sr,7') does not hold, and let # €.# be the smallest such that
H(sy, s),) but not H(s, 4, s,.,). Lan (s,) € Lan ,(s)), therefore

U Lan,()<c | Lan, ().
Risp. ) R(sh.t"

Moreover,

Lan (s, ) C U Lan . (t").
Risk, YA Fsp 4 e =27 (¢)

Sk+1 18 a state for which R(s}, s, ;) and ¥(s,, ;) N =% (s}, ) hold. Since
M’ is deterministic, s, is the only successor of s, that has this property.
Thus, Lan (s, ,) € Lan (s}, ), and hence H(s,, ,, s, ), contradicting the
assumption. Consequently, there is H(w, #'), and H is a simulation relation.

O

By the theorem above, if M’ is deterministic, in order to check that s < s’
it is sufficient to check language inclusion between the languages of s and s'.

This relation can be checked in polynomial time using the techniques of
Clarke et al. [1990].
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Finally, if M’ is the result of a tableau construction, say M’ = 9(¢), then
as shown in the previous section, checking whether M < M’ reduces to the
problem of checking whether M = .

8. AN EXAMPLE

We have implemented a BDD-based model checker based on the theory
developed in the previous sections. The model checker is written in a combi-
nation of T (Yale’s dialect of Scheme) and C. It includes facilities for model
checking, temporal reasoning (via the tableau construction), and checking for
simulation. To illustrate the system, we use the controller of a simple CPU as
an example. The controller is written in a state machine description language
called CSML [Clarke et al. 1989b] which is compiled into Moore machines.
We give only a brief description of the CPU here; Clarke et al. give details.
The CPU is a simple stack-based machine, i.e., part of the CPU’s memory
contains a stack from which instruction operands are popped and onto which
results are pushed. There are two parts to the CPU controller. The first part
is called the access unit and is responsible for all the CPU’s memory refer-
ences. The second part, called the execution unit, interprets the instructions
and controls the arithmetic unit, shifter, etc. These two parts operate in
parallel. The access unit and execution unit communicate via a small number
of signals. Three of the signals, push, pop, and fetch, are inputs of the access
unit and indicate that the execution unit wants to push or pop something
from the stack or to get the next instruction. For each of these signals there is
a corresponding ready output from the access unit. The execution unit must
wait for the appropriate ready signal before proceeding. One additional
signal, branch, is asserted by the execution unit when it wants to jump to a
new program location. The access unit also has signals that it asserts to issue
a memory read or write, and an input that tells it when the memory has
finished servicing a request.

In order to increase performance, the access unit attempts to keep the
value on the top of the stack in a special register called the TS (“top-of-stack”)
register. The goal is to keep the execution unit from having to wait for the
memory. For example, when the TS register contains valid data, a pop
operation can proceed immediately. Additionally, when a value is pushed on
the stack, it is moved into this register and copied to memory at some later
point. The access unit also loads instructions into a queue when possible so
that fetches do not require waiting for the memory. This queue is flushed
whenever the CPU branches.

Clarke, et al. [1989b] gave a number of correctness conditions for the
controller. We demonstrate here how these formulas can be verified in a
compositional fashion. From the form of the conditions, we divide them into
three classes. The first class consists of simple safety properties of the access
unit. For example, one of these formulas is

VG(SPtoMemAddr — TSLoad V TSStore),

which states that if the access unit outputs the top-of-stack pointer as a
memory address, then it is either loading the TS register from memory or
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storing it to memory. The model checker verified that each of these properties
held for the access unit alone. Hence, they hold in any system containing the
access unit.

The conditions in the second class are slightly more complex. These proper-
ties are safety properties which specify what sequences of operations are
allowed. For example, one condition is

YG( pushed — VXV (T'SStored V popped V —( pushed V TSLoad))).

Here pushed is an abbreviation for push A pushrdy, and popped abbreviates
pop A poprdy. The formula asserts that if a push operation is completed,
then another push cannot be completed, and the access unit cannot attempt
to load the TS register from memory until either a pop occurs or until the TS
register is stored to memory. In other words, once the TS register contains a
value which needs to be pushed on the stack, the CPU cannot do anything
that would destroy this value until the value is either used or successfully
stored in memory. Since all of the properties in this class essentially specify
when the access unit may assert its ready signals, it is tempting to check
whether they hold for the access unit alone also. This is not possible,
however, because the properties also depend on how the memory acknowledg-
ment signal behaves. To verify these properties, we made a simple model of
the memory (see Figure 1). For conciseness, the figure shows a Moore
machine; the actual model used is obtained by adding the fairness constraint
shown in the figure to the structure corresponding to this Moore machine. All
of the properties in this class except for one turn out to be true in the system
composed of the access unit and this model of the memory. The exception is
an analog to the previous formula that deals with what occurs after a pop.
The counterexample produced by the model checker for this formula showed
that the formula was false because a push and a pop could be requested
simultaneously. When we examined the access unit, we saw that it had been
designed assuming that these operations would not be requested at the same
time. The formula turns out to be true with the additional assumption
YG(— push V — pop). The model checker verified this by building the tableau
for this assumption, composing it with the access unit and memory model,
and checking the formula.

The final class of criteria consists of a single liveness property: VGVF( fetch
A fetchrdy). This formula states that the CPU (in the context of a memory
such as that modeled by Figure 1) always fetches another instruction. We
demonstrate two different ways of verifying this property.

One way is to observe that for this formula to be true, it must obviously be
the case that the memory responds to requests eventually and that the
execution unit does not execute infinite sequences of pushes, pops, and
branches. Our memory model already has a fairness constraint ensuring the
first of these, but there is nothing to guarantee the second. We can take care
of this by using a simple model of the execution unit (see Figure 2). Again, the
actual model is the structure derived from the Moore machine, plus the
indicated fairness constraint. The output idle in this figure is an abbreviation
for —(push V pop V fetch Vv branch). The model checker verified that the
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memrd V memuwr

F is defined by

GF(memrd V memwr — memack)

Fig. 1. Memory abstraction.

—pushrdy

F is defined by
GF idle — GF fetch

ﬁpoprdy 'ﬂfCtChT'dy

Fig. 2. Execution unit abstraction.

access unit plus the models of the execution unit and the memory satisfied
the above formula. It also verified that there was a simulation relation
between the (structure for the) actual execution unit and the model. Thus, we
can conclude that this formula holds in the final system provided there is a
simulation relation from the actual memory to our model. We also checked
that the execution unit model satisfied the assumption YG(— push V — pop)
used above. Since there is a simulation relation from the execution unit to the
model, we know that the execution unit must satisfy this assumption also.
This final step allows us to conclude that the ecomposition of the access and
execution units satisfied the entire specification provided the memory is
simulated by the model we used.
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We can also verify the final property using a series of YVCTL assumptions.
The idea will be to check the property for the execution unit. In order for the
formula to be true, the access unit must eventually respond to push and pop
requests and must fill the instruction queue when appropriate. We can only
guarantee that the access unit meets these conditions if we know that the
execution unit does not try to do two operations at once and that it will not
remove a request before the corresponding operation can complete. We begin
with these properties.

VYG(—(fetch A push) A —{fetch A pop) A - A —(pop A branch)) (1)
YG( push — VY( pushedVpush)) (2)
YG{( pop — VY( popped Vpop)) (3)

The first of these specifies that every pair of operations the execution unit
can perform are mutually exclusive. The other two formulas state that if the
execution unit makes a push or pop request, then it does not deassert the
request until the operation completes. The model checker verified that these
properties hold in the execution unit alone and (using the tableau construc-
tion) that the first property implies the assumption VYG(— push V — pop)
used above. Now using formulas (1) and (2) as assumptions, we checked that
the system composed of the access unit and the memory model satisfied the
formula

VYG( push — V( pushUpushed)). (4)

This specification states that every push operation will be completed. Simi-
larly, using formulas (1) and (3) as assumptions, we verified

VG(pop - V(popUpopped)). (5)

The system composed of the access unit and the memory model also satisfies
the formula VGVF( fetchrdy Vv branch) (at any point, either the access unit
will eventually fill the instruction queue or a branch will occur). Finally,
using this formula and formulas (4) and (5) as assumptions, the model
checker verified that the execution unit satisfies VGVF(fetch A fetchrdy).
{(Again, to complete the verification we would have to demonstrate a simula-
tion relation between the actual memory and our model of it.)

9. CONCLUSION

We have identified a subset, VCTL*, of CTL¥ which is appropriate for
compositional reasoning. For this subset, satisfaction is preserved under
composition; hence a standard model-checking algorithm can be used to
answer the question: Is a formula true for all systems containing a specified
component? We have also proposed a preorder < which is appropriate for
VCTL*. The preorder captures the relation between a component and a
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system containing that component. It provides the basis for using an
assume-guarantee style of reasoning with the logic. Assumptions which are
given as structures are discharged by checking the preorder. We have given a
tableau construction for the YVCTL subset of YCTL*. Satisfaction of a VCTL
formula corresponds to being below the tableau of the formula in the
preorder. The construction makes it possible to use YCTL formulas as as-
sumptions and to do temporal reasoning. VCTL also has an efficient model-
checking algorithm. We have implemented a symbolic verification system
based on these results and have used it to verify some nontrivial systems in a
compositional fashion.

There are several directions for future work. Intuitively, the VCTL* subset
of CTL¥ should be maximal in the sense that any formula for which satisfac-
tion is preserved under composition should be equivalent to a formula of
VCTL¥, but we have not proved this. Another idea is to look at different logics
with the same flavor, such as VCTL* extended with automata operators or
the p-calculus with only [-] modalities. It would also be interesting to try to
extend the tableau construction of Section 6 to all of VCTL*. In order to
accomplish this however, it will almost certainly be necessary to use a more
complex type of structure than that given in Definition 2. Another question is
whether it is possible to apply our ideas to branching-time logics with
existential path quantifiers. For example, is there a reasonable algorithm
which will determine whether a CTL formula is true in all systems contain-
ing a given component? It is fairly easy to come up with algorithms which are
sound, but completeness seems more difficult to achieve. We also wish to
examine the problem of efficiently checking the preorder for arbitrary struc-
tures. Finally, it is essential to try to apply the compositional-reasoning
methods we have considered to more complex systems in order to evaluate
the techniques.
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