
Computer-aided verification
Theorem proving and model checking are powerful tools that can

verify the logical correctness of today's ICs or find their hidden bugs

HE BUG IN THE FLOATING-POINT DIVISION circuitry of
Intel Corp 's Pentium chip brought notoriety to the huge T cost that may be incurred when a logical bug is commit-

ted to silicon (For the Pentium, some have put it at US $500
million) But behind every such bug that makes the news, an
uncounted number of logical errors go undetected throughout
the design, implementation, and marketing phases of many
products Either these errors will finally be detected and cor-
rected in hardware, software, and subsequent releases--or they
will simply remain as bugs, known to a few, experienced users.

The debugging of most hardware circuits and many highly
complex software systems is done by an elaborate testing pro-
cess involving extensive runs of computer models of the target
implementations When a circuit or program is synthesized from
a simulation model of this nature, any errors in the model may
appear in the resulting implementation. Finding and correcting
such errors before synthesis can reduce correction costs by an
order of magnitude

Reliance on running simulation models alone becomes a weak-
ness in designing and developing large-scale, highly complex sys-
tems An example is the control system for asynchronous envi-
ronments, with its many coordinating components, such as
communication protocols and telephone switches, as well as cir-
cuits that execute many instructions in parallel In systems of this
kind, the set of possible behaviors so
greatly outstnps the set that can be
simulated that even billions of tests,
run continuously for a year or more,
can never examine most combina-
tions of behaviors Among those un-
examined behaviors may lurk critical
untested combinations or, worse
yet, unknown system failure modes

Thus, random testing, once con-
sidered an important tool for uncov-
ering faults in unanticipated behav-
iors, is now viewed widely as
inadequate O n the other hand, tests
designed for specific scenarios leave
unexplored possible combinations
of behavior that fall outside the an-
ticipated patterns.

Such difficulties have spurred re-
search into methods that attempt to
prove a system correct, in the same
sense that a mathematical theorem is
proved correct. The ideal algorithm

would automatically analyze a sys-
tem model and either conclude it
was correct or reveal a bug within
a reasonable number of steps.
From a mathematical perspective,
though, only very simple systems
are suited to such decision procedures. Although such automated
theorem provers had some successes, they were generally unable to
pinpoint errors in incorrect designs and were difficult for a non-
expert to operate effectively.

One common observation of hardware and software designs
holds that in the life cycle of a development project, the design
mostly is tncorrect and approaches correctness only (hopefully!)
at the end of the design and testing process, when the "last" errors
have been detected and eliminated. Thus, a formal method that
sometimes can prove a design correct, but not easily locate flaws
when the design is incorrect, is more useful at the very end of the
design and test process Furthermore, exigencies of the market-
place demand that design verification fit unobtrusively within the
development process and, at any rate, not delay that process any
more than the current practice of simulation testing.

For these reasons researchers sought design verification meth-
odologies that were more limited in scope than the theorem-
provers. They also wanted techniques that could be highly auto-

mated and could locate bugs in

EDMUND M. CLARKE
Carnegie Mellon University

&
ROBERT P. KURSHAN

Bell Laboratories

The verification process begins with a program (or a descrip-
tion of a circuit design) and a list of properties to be checked.
The verification tool determines if the properties are true, or
if not, provides a counterexample.

faulty designs as readily as they
could prove error-free designs cor-
rect Attention at first focused on
finite-state models, which can
assume only a finite number of dis-
tinct configurations during any
arbitrarily long or even endless exe-
cution Although limited in a math-
ematical sense, finite-state models
necessanly encompass every digital
circuit and every software system
implemented on a digital computer.
Their computational feasibility for
systems with a finite but staggenng
ly large number of states, however,
is a key concern

Today, the first computer-aided
verification tools are becoming
commercially available They are
based on methods that in many
cases can reduce the complexity of
verification (without sacrificing

IEEE SPECTRUM JUNE 1996 0018-9235/96/$5 0001996 IEEE 61

guaranteed correctness) to such a
degree that it becomes computa-
tionally teasible. Among the most
powertiil of these methods are sym-
bolic model-checking and homo-
morphic reduction, both of which
represent a complex system in
terms of a compact and computa-
tionally inore tractable structure.
Moreover, the two can be used
together with a multiplicative re-
duction cffect, since they work in-
dependently of one another. Of
special importance is the fact that
they each can be implemented
automatically, so the task of reduc-
tion is programmed into the com-
puter rather than presenting a bur-
den to the design engineer.

A5 early as 1976, Amir Pnueli, a re-
searcher at the Meizmann Institute,
Rehovot, Israel, and other computer sci-
entists began proposing deductive sys-
tems, notably temporal logics, that could
verity finite models. These logics support
a syntax in which it is simple to express
such notions as " I f a process requests a
bus, then eventually i t gets to access it."
This approach suffered several practical
drawbacks, however. Since temporal log-
ics are most useful tor describing require-
ments placed on simple causal relation-

ships designers really could not be ex-
pected to define an entire system model in
temporal logic (Even logicians sometimes
are unsure of the effective meaning of
complex temporal formulas) Moreover,
although the decision procedures were
guaranteed to give an answer, the compu-
tational complexity of the required checks
grew exponentially with the size of the
formulas For these reasons, interest in this
approach was largely academic

The tirst practical breakthrough came
independently in 1980 from Edmund
Clarke and his student Allen Emerson at

Harvard University and from loseph
Sifakis and his student Jean-Pierre Qucille
in Crenoble, France. Each team modeled
a system as a computer program that
could be checked automatically. The
check determined whether the program
satisfied particular specifications jproper-
ties) defined by the programmer and
expressed in temporal logic.

Dubbed model-checking by the Har-
vard pair, the approach had the great
advantage of producing counterexamples
through which programmers could locate
errors. Computationally, model-checking
appeared promising, especially since under
reasonable restrictions its complexity grows
linearly with model and formula size. This
promise was at best elusive, though, since
model size itself generally grows exponen-
tially with the number ot variables that
define the system, a phenomenon often
termed state-space explosion.

Since the problem ot state-spacc explo-
sion is intractable in the worst case, re-
search on model-checking ha5 focused on
heuristics or methods that circumvent the
complexity barrier in special cases. Some
heuristics have simply formalized tech-
niques already used in simulation: ab-
stracting inessential parts of the model
and exploiting the modeli hierarchical
structure and symmetries.

In 1987, one of us (Kurshan) unified
and formalized these techniques into a
single paradigm called homomorphic
reduction (It was named for a mathemat-
ical structure-reducing homomorphism-
"shape-" preserving function-on the
Boolean algebra of formulas in program
variables) The paradigm defines assocra-

tions among system events that need not
be distinguished for a particular verifica-
tion task. For example, to verify some
property, it may be unnecessary to distin-
guish the non-zero values of some vari-
able V. So the homomorphism may
replace V with a new variable, the values
of which are zero and non-zero.

T h e verification program, possibly
with initial aid from the user, makes a
guess about system values that need not
be distinguished. The verification algo-
rithm then checks that this guess (or one
of its own) is correct. I f so, the abstracted
version is used for model-checking; i f not,
this "localization reduction" algorithm

automatically adjusts the reduced model ness-preserving fashion was shown to be reduction-of thc str~icture ot the corre-
and verification IS tried again formally equivalent to finding a Boolean sponding program Such homomor-

Replacing the given verification prob- algebra homomorphism that preserves phisms includc mapping complex data
lem with a simpler one in such a correct- some-but not all, or there would be no structures and control scqiiences into sim-

Debugging a C0"UnicatiOBQS Chip were not confident of the behavior of specially designed cache
registers used in the FIFO to speed up the operation of the
chip. After checking many properties with SMV, Chen was
unable to find any errors in the FIFO. He concluded that the
error must be in some other part of the circuit.

Eventually, Chen determined that all the major components
of the circuit were correct, meaning that the error must be
caused by the way in which they were connected. He built a
concise model for the chip in the SMV language. The model did
not describe the hardware in the chip that was clearly unrelat-
ed to the cause of the error; and the width of the data path
was reduced as much as possible to cut the number of states.

Chen's specifications were written in temporal logic that
described the abnormal behavior. Running on a workstation,
the SMV model-checker took less than half an hour to deter-
mine that the error arose from a condition in which the same
address appeared twice in the FIFO. This condition-the result
of incorrect resetting of address recycling circuits-caused the
data to be sent twice, the second time overwriting the first,
leading to duplication or disappearance of the data, depend-
ing upon the instant that the data was read.

The abnormal execution trace found by the model-checker
was more than 50 clock cycles long. This meant that, starting in
the initial state, it took at least 50 clock cycles for the error to
occur. Since the width of the data path in the actual chip was
larger and the input data tended to be more random, the error
occurred only after a considerable period of time, which
explained why it was so hard to find.

Masahiro Fujita is director of computer-aided design of very large-
scale IG for Fujitsu laboratories of America, Santa Clara, Calif. His
group is engaged in R&D of these design tools for logic.

MASAHIRO FUJITA
uring field tests, engineers a t Fujitsu Ltd. in Japan
observed that a complex communications chip slated D for commercial applications behaved abnormally sever-

al seconds after power-up: some data was duplicated while
other data disappeared entirely. The IC was designed for high-
speed switching operations at 156 MHz and had 11 1 OOO or so
gates (32 OOO for random logic and 79 OOO for RAM). Initially,
extensive simulation had been used to validate the circuit.

Because the abnormal behavior in the tests occurred only
after several seconds of operation, hundreds of millions of sim-
ulation cycles would be necessary to reproduce it. Consequently,
simulation was impractical as a debugging technique. Even if it
were possible to generate so many test cycles (by emulators, for
example), it would almost certainly be impossible to analyze the
enormous amount of information produced in enough detail to
find the error.

Since obtaining an error-free version of the IC had high pri-
ority, the author, along with Ben Chen, a Fujitsu computer-aid-
ed design engineer familiar with formal verification, and their
colleagues turned to the Symbolic Model Verifier (SMV) mod-
el-checker to debug the design.

Information about the chip design was available only in
gate-level circuit descriptions. Since the circuit had more than
100 OOO gates, SMV could not be directly applied to the gate-
level circuit description. Chen decided to exploit the modular

He started with a first-in, first-out buffer (FIFO) that was
believed to be the most likely source of the error. Designers

structure of the circuit to reduce the state explosion problem. _._

I I
output

pler ones, which retain enough informa-
tion for the verification task at hand

This mapping subsumes data abstrac-
tion and symmetry reduction Through
data abstraction, a notion introduced by
Pierre Wolper at the University of Liege,
Belgum, data can be reduced to just a few
distinct values Through symmetry reduc-
tion, a model can be replaced by a "quo-
tient" model that factors out symmetric dis-
tinctions In many cases, homomorphic
reduction gives designers a chance to ven-
fy arbitrarily large models

Around the same time, in the late %Os,
several other groups independently discov-
ered an alternative-and in fact comple-
mentary-form of reduction Called sym-
bolic model-checking, this approach
analyzes sets of states, represented by
Boolean formulas, as opposed to individual
states For example, if x is a variable of the
system, then the expression "x equals 0'' can
be understood as the Boolean formula that
defines the set of all vectors of values of all
the system variables in which x equals 0-
a very large set of vectors This potential for
succinct expression of a large set of system
values can be exploited computationally
dunng model-checking

The formulas are stored in a compressed
form of binary decision tree called a binary
decision dagram (BDD) To understand
how those diagrams impact model-check-
ing, it is necessary to see how model-check-
ing itself works Suppose in using a program
or a hardware description, a property
required of the program is expressed as a
temporal logc formula For example, the
formula may express the property "If the
program ever sets a vanable V to 1, then
eventually it sets V back to O " The role of
venficahon (or in this case model-checking)
is to determine whether the formula is true
for the gven program or, in logcal terms,
whether the executions of the program form
a model of the formula When the program
uses only a finite amount of memory, it may
be viewed as a finite state machine In this
case, the logcal model is the set of all its
inpudstatdoutput sequences

The model is constructed by a search
that begins with the initial state of the pro-
gram From there, every possible succession
of state transitions of the program is gener-
ated, starting with all possible single transi-
tions Many transitions are possible from a
gwen state, since each immediately follow-
ing state depends upon external inputs to
the program Moreover, if the program
incorporates parallel processing or asyn-
chrony several "immediately following"
events may be scheduled from a given state,
and each of these must be explored

Every immediately following state that
is possible but which has not been previ-
ously generated, is placed in a pool of
states to be expanded in the same fashion

The step is repeated until no new states
are found, defining a breadth-first search
of the model state space Eventually, the
search must terminate since the state
space is assumed to be finite, and when
the pool of states becomes empty, the
model is complete.

Every possible execution of the pro-
gram thus is represented in the model by
a sequence of consecutive states Model-
checking then consists of determining
whether every such sequence satisfies the
given property, and if not, of finding a
counterexample sequence [see figure]
This, sequence, too, is accomplished
using techniques of search

Consider the example of resetting the
variable V to 0 in the model just de-
scribed To check this, all the states where
Vis 0 must first be marked Then, looking
backward, all states that must reach a
marked state in one step must also be
marked This procedure is repeated until
it reaches a "fixed point," from which no
new states can be marked. Now all the
states from which V must eventually set to
0 are known If any state where V is 1 is
not marked, then the formula is false

The symbolic solution
The catch is that even very small pro-

grams can have a huge number of states. For
example, a program that can store a mere
250 bits of data has at least 2250 states-
more states than there are particles in the
universe1 When the expanded model be-
comes too large to store in available memo-
ry, the model-checking technique can no
longer be applied directly This is where
symbolic techniques enter the picture

A symbolic model-checker represents
the model indirectly, using a Boolean func-
tion as above, to determine when a transi-
tion is possible from one state to another
A Boolean function takes on the values 0
and 1 and thus may be used to encode the
values of all the system variables in terms
of the system inputs This function is put
intcr a unique form (usually the binary
decision diagram form) to make it easier to
manipulate during analysis

When carrying out a breadth-first
search, the set of marked states is also rep-
resented symbolically through a Boolean
function The ability to perform the oper-
ations of Boolean algebra on these expres-
sions allows the search to be carried out
entirely using the symbolic forms As a
result, checking formulas depends not on
the number of states of the model, but on
the compactness of the symbolic forms

Symbolic techniques are not the ulti-
mate solution to the state explosion prob-
lem, since there is no guarantee that the
symbolic representation will be any small-
er than the explicitly constructed model
Nonetheless, a representation can be cho-

sen to exploit the structure inherent in the
state space of the program As a result, we
can verify a model many orders of magni-
tude larger than any it is possible to con-
struct explicitly Just how to do this has
been the subject of much recent research

Hurdling the complexity barrier
Currently, the most powerful finite-

state verification techniques integrate
symbolic model-checking and homomor-
phic reduction But computational com-
plexity remains a barrier for some cases
One tactic would focus verification efforts
upon any models that are susceptible to
the known heuristics The challenge then
becomes how to determine in advance
which models have this property

There have been some successes in this
direction Modular programming tech-
niques, which limit the amount of infor-
mation allowed past module boundaries,
have played an important role in advanc-
ing symbolic model-checking and homo-
morphic reduction Even apart from verifi-
cation, modular techniques have already
been identified as useful in managing large
programs So there is reason to hope that
the best current programming practice
and verifiability of programs may con-
verge to a common ground

Another tactic to promote verifiability,
perhaps of more immediate use in an
industrial setting, lets the model and avail-
able resources guide the vertfication effort
This technique rests upon an increasingly
common view that verification is more
valuable in proving a model incorrect (and
providing a counterexample to assist in
debugging) than in proving it correct

After all, systems can fail in many ways,
some entirely beyond the reach of venfica-
tion All verification efforts proceed from
assumptions about the environment of the
model to be verified If these assumptions
are incorrect, then a faulty system model
may be "verified " Moreover, if the synthe-
sis procedure is not itself venfied, then a
correct design may yield a faulty imple-
mentation Intel explained that the floating-
point division bug occurred because de-
signers used a faulty scnpt to implement the
Pentium's division table While the table's
design was probably correct, the script pro-
duced a hardware version that omitted a
few essential values If a verification proce-
dure failed to examine this scnpt or its
result, then even if the table and all associ-
ated parts of the algonthm for floating-
point division were correct, the result still
would have been faulty silicon

Assuming that verification will never
embrace all the ways in which a system
can fail, perhaps verification should be so
applied to a project as to extend the most
benefit possible for the given resources of
time and staff This is especially true in a

CLARKE & KURSHAN - COMPUTER-AIDED VERIFICATION 6 5

tion algorithm was a simple user-provided "seed": a specifica-
tion of "e major components of the CDlC that probably

ARTHUR B. GLAsER would be necessary for the analysis, and other components,
he I S 0 standard MPEGZ main profile decoder chip is a mainly some of the memory in the internal FIFOs, that could
microprocessortontrolled decoder for the program bit probably be excluded. The reduction algorithm iterates from T stream in a digital television receiver. A component this seed, attempting to perform its analysis in a logically con-

within the chip is the compressed data interface controller servative (correctness-preserving) fashion on a much smaller
(CDIC), which is programmable by the microprocessor to accept model than the given one. (The algorithm automatically adjusts
either bit-serial or byte parallel MPEGZ compliant input data. t t the model used for analysis as necessary, and ensures that any
detects the start and end of frames, performs start code align- reported error is an error in the original unreduced model.)
ment and synchronization between the incoming data rate After only about 90 seconds on a Sparc U(workstation from
and the internal processor rate, and buffers data, which it utti- Sun Microsystems, Mountain View, Calif., the verification tool
mately stores in external dynamic RAM. The control logic for detected the error in the CDlC algorithm. After the error was
the CDK contains about 2500 gates; and contributing a lot to corrected, the Bell Labs team repeated the analysis and the ver-
the computational complexity of verification is an on-chip reg- ification tool showed that the FIFO now never could overflow.
ister file. It is described by about 2000 lines of VHDL code, and This proof, fully automatic but for the user-provided seed,
contains 1500 latches, typical of the class of circuits that can be required the tool to search only 2.5 million states and analyze
expected to be verified fully and automatically. about 9.8 million transition conditions in the reduced model (a

At Bell Laboratories, engineers used the verification system significant reduction over the unreduced model, which has an
Formalcheck to determine if the internal first-in, first-out estimated 1030 states). Once the tool found the bug, it pro-
buffers (FIFOs) of the CDIC could overflow under the control duced an error track, which had to be interpreted. In this case,
protocol. In fact, the analysis showed that there was a condi- the error track spanned 2000 clock cycles because the buffer
tion under which the request to write data to the external had to be filled before the error could be detected.
DRAM was inhibited, permitting the internal FIFO to overflow.

Because of the complexity of the CDIC model, this analysis Arthur 8. Glaser is a distinguished member of the technical staff in
would not have been feasible except for a built-in reduction the Bell Labs &sign Automation Center of Lucent Technologies
algorithm that automaticalty produced a reduced model of the Inc., Murray Hill N.J. His current interest is the development and
CDlC with this overflow error. The starting point for the reduc- application of model-checking tools for formal verification.

Debuggsng VHDL code:
the HDTV example

commercial setting AI1 known reduction
algorithms may he applied to a given
model in an automated fashion until
either a bug I S found or thc model IS ver
ified, or the space or time allocated runs
out Bell Laboratories uses this approach
with its verification tool Formalcheck

As confidence in and reliance upon
finite-state verification grow designers
will slowly learn to use the process in
more focused and advantageous ways

Sonietimes the fear is that merely learning
how to integrate formal verification tech-
niques into the design process may slow
development unacceptably, or that the
process itself may result in less efficient
circuits. In fact, verification may detect
errors earlier in the design cycle, thereby
actually speeding up the overall project. In
many modes of use, formal veritication has
no effect upon the form and efficiency of
the ultimate design. But even when formal

verification leads to design compromises,
somc performance degradation may be
worth the price, especially in view ot ever
taster circuitry, since a more reliable
design is being brought faster to market.

Still, some data-intensive algorithms
such as arithmetic and logic units may
remain beyond the scope of purely auto-
matic tinite-state methods Although
automated theorem-provers may not face
the same limitations, their enormous user-

66

essages are unpre-
ns" must be consid-

overhead probably would make them
impractical o n a Pentium-sized project.

But a ray o f hope i s emerging on the
research front recent hybrid methods of
veritication integrate finite-state model-
checking w i th automated theorem-prov-
ing. Using the two approaches in concert,
engineers currently are working o n tech-
niques that they hope wi l l one day be used
t o develop an entire complex microproces-
sor in considerably less time and more reli-
ably than currently possible. A t the same
time, new toms of binary decision dia-
grams have evolved that can make the
symbolic manipulation o f arithmetic
expressions computationally feasible.

Applications of finite-state computer-
aided veritication are many and varied.
ATkT, Bell Laboratories, Cadence, IBM,
Intel, and Motorola all have burgeoning
internal verification programs. [For some
specific examples, see p. 62, p. 63, p. 64, p.
66, and p. 671. A t Bell Labs, the first com-
mercial product developed using verifica-
t ion was some software for a specialized
network data protocol, verified by Gerard
J . Holzmann in 1984. Currently, at least
four commercial tools for finite-state verifi-
cation of hardware have been released or
announced: FormalCheck from Bell Lab-

are natural candid
The first company to use computer-aided verification on a

cache coherence protocol was Encore Computer Corp., Fort
Lauderdale, Fta. In collaboration with researchers at Carnegie
Mellon University, Encore used this tool for its Gigamax sys-
tem-a shared-memory machine with a hierarchically struc-

designs where they are much more costly to find and correct.

rifler. He is
a research scientist Berkele)!
Calif, and works on for formal
verification and computer system design f o r verifiability

oratories (of Lucent Technologies) and
Viewlogic's Checkof f , under license from
Abstract Hardware L t d , are general-pur-
pose model-checkers Chrysalis' Design
VERlFYer and Compass Technology's
VFormal are equivalence checkers, which
verify that a perturbed model is logically
equivalent t o an original model that is
believed t o be error- tree

To probe further
Edmund M. Clarke, Allan Emerson, and Prasad

Sistla, described their first working model-
checker in: "Automatic Verification of Fin-
ite-State Concurrent Systems Using Tem-
poral Logic Specifications" (TOPLAS, Vol. 8,
no. 2, pp. 244-263). It contains basic defini-
tions and a simple example. Robert P.
Kurshan's Computer-Aided Verification o f
Coordinating Processes (Princeton University
Press, 1994) explains the semantic model
and the reduction methodology of Cospan.

Gerard J. Holzmann's Design and Validation o f
Computer Protocols (Prentice Hall, 1991)
describes the software verification system,
SPIN. Kenneth L. McMillan's Symbolic Model
Checking (Kluwer, 1993) contains a good
description of the Symbolic Model Verifier
model-checking system. The standard refer-
ence on symbolic model-checking is the

1994 paper by Jerry Burch, Edmund M.
Clarke, David Long, Kenneth L. McMillan,
and David L. Dill titled "Symbolic Model
Checking for Sequential Circuit Verification''
(I€€€ Transactions on Computer Aided De-
sign, Vol. 13, no. 4, pp. 401-24).

For a description of current technical activity in
formal verification, see the Web site of the
DIMACS Special Year on Logic and Algorithms:
http://dimacs.rutgers.edu/SpecialYears/l995
-1 996/index.html.

About the authors
Edmund M. Clarke is professor of computer sci-

ence at Carnegie Mellon University in Pitts-
burgh. In 1995 he became the first recipient
of the FORE Systems Professorship, an
endowed chair in the School of Computer
Science. He is editor-inihief of Formal
Methods in Syxtems Design and is on the
steering committees of two international
conferences.

Robert P. Kurshan is a distinguished member of
the technical staff at Bell Laboratories, Mur-
ray Hill, N.J. He and his colleagues designed
and built the Cospan verification system,
which is used in the commercial verification
tool, FormalCheck.

Spectrum editor: Linda Geppert

http://dimacs.rutgers.edu/SpecialYears/l995

