, ' | (] ‘ o ' n g .
Computer-aided verification
Theorem proving and model checking are powerful tools that can
verify the logical correctness of today’s ICs or find their hidden bugs

HE BUG IN THE FLOATING-POINT DIVISION circuitry of

Intel Corp.'s Pentium chip brought notoriety to the huge

cost that may be incurred when a logical-bug is commit-
ted to silicon. (For the Pentium, some have put it at US $500
million.) But behind every such bug that makes the news, an
uncounted number of logical errors go undetected throughout
the design, implementation, and marketing phases of many
products. Either these errors. will finally be detected and cor-
rected in hardware, software, and subsequent releases—or they
will simply remain as bugs, known to a few, experienced users.

The debugging of most hardware circuits and many highly
complex software systems is done by an elaborate testing pro-
cess involving extensive runs of computer models of the target
implementations. When a circuit or program is synthesized from
a simulation model of this nature, any errors in the model may

- appear in the resulting implementation. Finding and correcting
such errors before synthesis can reduce correction costs by an
order of magnitude.

Reliance on running 51mulatlon models alone becomes a weak-
ness in designing and developing large-scale, highly complex sys-
tems. An example is the control system for asynchronous envi-
ronments, with its many coordinating components, such as
communication protocols and telephone switches, ‘as well as cir-
cuits that execute many instructions in parallel. In systems of this
kind, the set of possible behaviors so
greatly outstrips the set that can be
simulated that even billions of tests,
run continuously for a year or more,
can never examine most combina-
tions of behaviors. Among those un-
examined behaviors may lurk critical
untested combinations or, worse
yet, unknown system failure modes.

Thus, random testing, once con-
sidered an important tool for uncov-
ering faults in unanticipated behav-
jors, is now viewed widely as
inadequate. On the other hand, tests
designed for specific scenarios leave
unexplored possible combinations
of behavior that fall outside the an-
ticipated patterns.

Such difficulties have spurred re-
search into methods that attempt to
prove a system correct, in the same
sense that a mathematical theorem is
proved correct. The ideal algorithm

[EEE SPECTRUM JUNE 1996

The verification process begins with a program (or a descrip-
tion of a circuit design) and a list of properties to be checked.
The verification tool determines if the properties are true, or
if not, provides a counterexample.

" EDMUND M. CLARKE
Carnegie Mellon University

would automatically analyze a sys-
tem model and either conclude it
was correct or reveal a bug within
a reasonable number of steps.
From a mathematical perspective,
though, only very simple systems
are suited to such decision procedures.” Although such automated
theorem provers had some successes, they were generally unable to
pinpoint errors in incorrect designs and were difficult for a non-
expert to operate effectively.

One common observation of hardware and software -designs
holds that in the life cycle of a development project, the design

&
ROBERT P. KURSHAN
Bell Laboratories

. mostly is incorrect and approaches correctness only (hopefully!)

at the end of the design and testing process, when the “last” errors
have been detected and eliminated. Thus, a formal method that
sometimes can prove a design correct, but not easily locate flaws
when the design is incorrect, is more useful at the very end of the
design and test process. Furthermore, exigencies of the market-
place demand that design verification fit unobtrusively within the
development ‘process and, at any rate, not delay that process any
more than the current practice of simulation testing.

For these reasons researchers sought design verification meth-
odologies that were more limited in scope than the theorem-
provers. They also wanted techniques that could be: highly auto-
mated and could: locate bugs in
faulty designs as readily as they
could prove error-free designs cor-
rect. Attention at first focused on
finite-state . models, which can
assume only a finite number of dis-
tinct configurations during any
arbitrarily long or even endless exe-
cution. Although limited in a'math-
ematical sense, finite-state models .
necessarily encompass every digital
circuit and every software system
implemented on a digital computer.
Their computational feasibility for
systems with a finite but staggering-
ly large number of states however,
is a key concern.

Today, the first computer-aided
verification tools are becoming
commercially available. They are
based on methods that in many
cases can reduce the complexity of
verification (without sacrificing

0018-9235/96/$5.00©1996 IEEE 61

guaranteed correctness) to such a
degree that it becomes computa-
tionally feasible. Among the most
powerful of these methods are sym-
bolic model-checking and homo-
morphic reduction, both of which
represent a complex system in
terms of a compact and computa-
tionally more tractable structure.
Moreover, the two can be used
together with a multiplicative re-
duction cffect, since they work in-
dependently of one another. Of
special importance is the fact that
they each can be implemented
automatically, so the task of reduc-
tion is programmed into the com-
puter rather than presenting a bur-
den to the design engineer.

As early as 1976, Amir Pnueli, a re-
searcher at the Weizmann Institute,
Rehovot, Israel, and other computer sci-
entists began proposing deductive sys-
tems, notably temporal logics, that could
verify finite models. These logics support
a syntax in which it is simple to express
such notions as “If a process requests a
bus, then eventually it gets to access it."
This approach suffered several practical
drawbacks, however. Since temporal log-
ics are most useful for describing require-
ments placed on simple causal relation-

ships, designers really could not be ex-
pected to define an entire system model in
temporal logic. (Even logicians sometimes
are unsure of the effective meaning of
complex temporal formulas.) Moreover,
although the decision procedures were
guaranteed to give an answer, the compu-
tational complexity of the required checks
grew exponentially with the size of the
formulas. For these reasons, interest in this
approach was largely academic.

The first practical breakthrough came
independently in 1980 from Edmund
Clarke and his student Allen Emerson at

Harvard University and from Joseph
Sifakis and his student Jean-Pierre Queille
in Grenoble, France. Each team modeled
a system as a computer program that
could be checked automatically. The
check determined whether the program
satisfied particular specifications (proper-
ties) defined by the programmer and
expressed in temporal logic.

Dubbed model-checking by the Har-
vard pair, the approach had the great
advantage of producing counterexamples
through which programmers could locate
errors. Computationally, model-checking
appeared promising, especially since under
reasonable restrictions its complexity grows
linearly with model and formula size. This
promise was at best elusive, though, since
model size itself generally grows exponen-
tially with the number of variables that
define the system, a phenomenon often
termed state-space explosion.

Since the problem of state-space explo-
sion is intractable in the worst case, re-
search on model-checking has focused on
heuristics or methods that circumvent the
complexity barrier in special cases. Some
heuristics have simply formalized tech-
niques already used in simulation: ab-
stracting inessential parts of the model
and exploiting the maodels hierarchical
structure and symmetries.

Veriﬁcation at A'I'&'l'

‘n 1985 Beﬂ Laboratmes began work ona fzmte~state veri-
lfxcaﬂon tool called Cospan. Its function was to check the

behaviors (input/output sequences) of one program 10 see
if they were contained in the behaviors of another program o,

alternatively, if they were consistent with a.given property. This.

paradxgm supp@rts a top-down development methodology
based upon stepwise refinement.: the user starts with an ab-
stract design, debugs and verifies that descgn, andthen refmes
the abstract des:gn by addmg more detail. -

- The refined design comprises the second refinement ievel
Refinement Is repeated through a succession of levels, such that

alt prapemes trite of the previaus level of abstraction are inher- -
fted by the next level, At each subsequent level of refinement, .
“new properties are checked that are not relevant at higher levels :

of abstraction. The process continues until details of the ultimate
rmptementatmn are included. From ‘this lowest level des:gn.
‘hardware is synthesized or C-code is generated (or a combination

‘of these two), automatically implementing the low level design.
“Through stepwise refinement, bugs can be detected and

correcte& earlier in the design cycle than previously possible,

thereby accelerating: the design protess. But stepwise refine-
ment is not attomated: the user must design each refinement -

step (the ‘tool then chacks to make sure that it is consistent with

the previous design level). Altematwely, the tool can be
applied to a single level of the design, as in’ Formatcheck, atool

~developed by Bell Labs Design Automation that uses Cospan as

its verification engine. The tool embeds Cospan in a graphical -

user-interface that facilitates its use and links'it to the VHDL
and Verilog ianguages, 50 that users need not learn Cospans
native language.

o Cospan runs. horﬁdmorphm reducnon algonthms, both sym-

62

bolically (using binary d,ecis,ién diagrams) and explicitly, to cope
with -the enormous computational complexity -in" typical

- designs. Although FormalCheck’s core contains the algorithms

necessary for stepwise refinement, this tool does not currently
support them. Likewise, Cospan contains other more experi-
mental algorithms not. supported in FormalCheck, - including
timing verification and software bridges to thearem-provers,
as well as to two. other finite-state verification systems: the
Symbiofic Model Verifier (SMV) and SPIN.

The SPIN software verification system, developed by Gerard
J. Holzmann at Bell Labs in 1989, is based upon an interleaving

- model of concurrency, in which, unlike with hardware, only
‘one component of the system state is allowed'to change at a
“time. This restriction; which is poputar for software models,

makes the verification run faster than synchronous models (the
kind used with Cospan or SMV), where any number of compo-

“ nents can change at a time. It runs faster because each state

update isa s;mpler operatlon bemg testrtcted to one compo—
nent only.

Moreover, the mterleavmg semantts supports a reductlon
algorithm, deve!oped by Doron Peled at Bell Labs, that exploits

symmetries in the order of execution {(partial order reduction),

whichis not feasible in tools like Cospan or SMV. SPIN alsoincor-
porates the “Supertrace” algorithm that facilitates a very mem-

“ory-efficient partial search of a state space.

‘Although Formaicheck is proprietary to Beﬂ‘Labs, the Cospan
and,SPlN tools are available at no charge: Cospan'may be licensed

by universities for noncommercial research and educational use

and SPIN is available by anonymous ftp (inquire of k@research.
bell-labs.com and gerard@research.bell-labs.com, respectively).
SMV is available through anonymous ftp from: Carnegie Mellon
University {inquire of Edmund.Clarke@cs.cmu.edu). “R.K.

IEEE SPECTRUM TUNL 1996

In 1987, one of us {(Kurshan) unified
and formalized these techniques into a
single paradigm called homomorphic
reduction. (It was named for a mathemat-
ical structure-reducing homomorphism—
“shape-" preserving function—on the
Boolean algebra of formulas in program
variables.) The paradigm defines associa-

tions among system events that need not
be distinguished for a particular verifica-
tion task. For example, to verify some
property, it may be unnecessary to distin-
guish the non-zero values of some vari-
able V. So the homomorphism may
replace V with a new variable, the values
of which are zero and non-zero.

The verification program, possibly
with initial aid from the user, makes a
guess about system values that need not
be distinguished. The verification algo-
rithm then checks that this guess (or one
of its own) is correct. If so, the abstracted
version is used for model-checking; if not,
this "localization reduction” algorithm

, e rertymfaﬂ Hseems unhke&y ﬂwatadeslgnerwoutdthtnk af,
; EY o : : ge,sequencenfavemsthatwauidtause. is property to fail.
: odel'checkmg is used at Moterola Inc. to design and © Inanother successful use of Verdict, the team sub;ected asmall:
,Mdebug some commercial products. The company's module, call it CE of a commercial microprocessor to model-
: internal model-checking tool, Verdict (produced by ?;checkmg after the demgn was. cmnplete The CF unit ccnscstedﬁf ~
Bernard Plessier and the authnr) is based upon the Symbolic logi i 1 { (men :

‘Model Verifier tool—thus using computation tree logic (CT L)—-— implement a prdtaccl The umt was thought by its d%esigners to 8
fand the Venlog hardware descnptton language o - ,have no errors because tt had been extenswe 'mu)ated. A

and, from tﬁe duration of signal (at high ér

“low voltage) it receives and from its own {"’” o - N/ .
§state decides what symbol (such as logic 0, | b Bus | i Shifter

gic 1, or start-of-message) is being sent. | | | Interrupt || interface | 3
‘Characters from the symbol module are i unit £ Cycle redundancy
received by the byte submodufe. whmh';f i i check (CRC)
farms them into one-byte messages.) A A\

uunng the desi‘gn of the BDLC, Matemla s :

; , , Symbol
model—checkmg the byte mnduie. the team: —— “\i
fcwpled itwitha manuaﬂy abstracted symbol’ : Lobi gital | i becod B]
~ Whereas i : ¢ ecoder r Counter

filter

:'ule has no bus interface, only states, For .
instance, when the abstract symbol moduleis
] bus is idle” state, then, on each dock o

~ Themost remarkab&e feature abdut mode!-éheckmg abil
: rty to gene;ate sequgnces of even’rs that demnnstrate axacﬂy how

CLARKE & KURSHAN - COMPUTER-AIDED VERIFICATION 63

automatically adjusts the reduced model ness-preserving fashion was shown to be

and verification is tried again. formally equivalent to finding a Boolean
Replacing the given verification prob- algebra homomorphism that preserves
lem with a simpler one in such a correct- some—but not all, or there would be no

reduction—of the structure of the corre-
sponding program. Such homomor-
phisms include mapping complex data
structures and control sequences into sim-

Debugging a commumcations chip were not confident of the behavior of specially designed cache
‘registers used in the FIFO to speed up the operation of the
MASAHIRO FUJITA L i :;_ S _ ‘chlp After checkmg many prcpemes with SMV, Chen was

Durmg field tests, engineers at
for commercial applicat)

al seconds after power-up: some vas du while @ f ,:ﬁ lit were carrect. meaning that the error must be

: ‘the way in which they were connected. He built a
: concisa model for the chup ‘n the SMV Ianguage The model did

; cause of the error and the width of the data path

y was | reduced as much as possible to cut the number of states.
' /Chen's spec;ﬂcatzons were ‘written in temporal logic that
- descnbed the abn rmal behavmr. Runnmg ona workstatvon

red twu:e n the HFO Th:s condltmn—ﬁthe result

colleagues turned to the Sym'
el-checker to debug the desi
Infcrmatim iaboutf the ¢

of address recycling circuits—caused the
, the secund time ovewvrltmg the first,

‘oup iskengaged) R&D' fthese aes:gn mels for Ioguc

Cell buffer

Output
highway

Parallel/serial

Write
control

RAF, WAF = readiwrite first-in, first-out buffer

Empty-reset
generator

64

(FEISPECTRUM TUNE 1996

pler ones, which retain enough informa-
tion for the verification task at hand.

This mapping subsumes data abstrac-
tion and symmetry reduction. Through
data abstraction, a notion introduced by
Pierre Wolper at the University of Liege,
Belgium, data can be reduced to just a few
distinct values. Through symmetry reduc-
tion, a model can be replaced by a “quo-
tient” model that factors out symmetric dis-
tinctions. In many cases,” homomorphic
reduction gives designers a chance to veri-
fy arbitrarily large models.

Around the same time, in the late '80s,

several other groups independently discov-
ered an alternative—and in fact comple-
mentary—form of reduction. Called sym-
bolic model-checking, this approach
analyzes sets- of states, represented by
Boolean formulas, as opposed to individual
states. For example, if x is a variable of the
system, then the expression "x equals 0" can
be understood as the Boolean formula that
defines the set of all vectors of values of all
the system variables in which x equals 0—
a very large set of vectors. This potential for
succinct expression of a large set of system
values can be exploited computationally
during model-checking. .
The formulas are stored in a' compressed
form of binary decision tree called a binary
decision diagram (BDD). To understand
how those diagrams impact model-check-
ing, it is necessary: to see how model-check-
ing itself works. Suppose in using a program
or a hardware description, -a property
required of the program is expressed as a
temporal logic formula. For example, the
formula may express the property: “If the
program ever sets a variable V to 1, then
eventually it séts V back to 0." The role of
verification (or in this case model-checking)
is to determine-whether the formula is true
for the given program or, in logical terms,
whether the executions of the program form
a model of the formula. When the program
uses only a finite amount of memory, it may
be viewed as a finite state machine. In this

case, the logical model is the set of all its

input/state/output sequences.

The model is constructed by a search
that begins with the initial state of the pro-
gram. From there, every possible succession
of state transitions of the program is gener-
ated, starting with all possible single transi-
tions. Many transitions are possible from a
given state, since each immediately follow-
ing state depends upon external inputs to
the program. Moreover, if the program
incorporates parallel processing or asyn-
chrony, several “immediately following”
events may be scheduled from a given state,
and each of these must be explored.

Every immediately following state that
is possible but which has not been previ-
ously generated, is placed in a pool of
states to be expanded in the same fashion.

The step is repeated until no new states
are found, defining a breadth-first search
of the model state space. Eventually, the
search must terminate since the state
space is assumed to be finite, and when
the pool of states becomes empty, the
model is complete.)

Every possible execution of the pro-
gram thus is represented in the model by
a sequence of consecutive states. Model-

checking then consists of determining:
-whether every such sequence satisfies the

given property, and if not, of finding a
counterexample sequence [see figure].
This, sequence, too, is accomplished
using techniques. of search.

Consider the example of resetting the
variable V to 0 in the model just de-
scribed. To check this, all the states where

V is 0 must first be marked. Then, looking -

backward, all states that must reach a
marked state in one step must also be
marked. This procedure is repeated until
it reaches a “fixed point,” from which no
new states can be marked. Now all the
states from which V must eventually set to
0 are known. If any state where V is 1 is

. not marked, then the formula is false.

The symbolic solution -

The catch is that even very small pro-

grams can have a huge number of states. For
cxamplc, a program that can store a mere
250 bits of data has at least 22°0 states—
more states than there are particles in the
universe! When the expanded model be-
comes too large to store in available memo-
ry, the model-checking technique can no
longer be applied directly. This is whete
symbolic techniques enter the picture.

A symbolic model-checker represents
the model indirectly, using a Boolean func-
tion as above, to determine when a transi-
tion is possible from one state to another.
A Boolean function takes on the values 0

- and 1 and thus may be used to encode the

values of all the system variables in terms
of the system inputs. This function is put
into' a' unique form (usually the binary
decision diagram form) to make it easier to
manipulate during analysis.

When- carrying out a breadth-first
search, the set of marked states is also rep-
resented symbolically through a Boolean
function. The ability to perform the oper-
ations of Boolean algebra on these expres-
sions allows the search to be carried out

‘entirely using the symbolic forms. As a

result, checking formulas depends not on
the number of states of the model, but on
the compactness of the symbolic forms.
Symbolic techniques are not the ulti-
mate solution to the state explosion prob-
lem, since there is no guarantee that the
symbolic representation will be any small-

er than the explicitly constructed model.

Nonetheless, a representation can be cho-

CLARKE & KURSHAN — COMPUTER-AIDED VERIFICATION

sen to exploit the structure inherent in the
state space of the program. As a result, we
can verify a model many orders of magni-
tude larger than any it is possible to con-
struct explicitly. Just how to do this has
been the subject of much recent research.

Hurdling the complexity barrier
Currently, the most powerful finite-

‘state verification techniques integrate

symbolic model-checking and homomor-
phic reduction. But computational com-
plexity remains a barrier for some cases.
One tactic would focus verification efforts
upon any models that are susceptible to

“the known heuristics. The challenge then

becomes how to determine in advance
which models have this property.

There have been some successes in this
direction. Modular programming tech- -
niques, which limit the amount of infor-
mation allowed past module boundaries,
have played an important role in advanc-
ing symbolic model-checking and homo-
morphic reduction. Even apart from verifi-
cation, modular techniques have already
been identified as useful in managing large
programs. So there is reason to hope that
the best current programming practice
and verifiability of programs may' con-
verge to a common ground.

Another tactic to promote verifiability,
perhaps of more immediate use in an
industrial setting, lets the model and avail-
able resources guide the verification effort.
This technique rests upon an increasingly
common view that verification is more
valuable in proving a model incorrect (and
providing: a counterexample to assist in
debugging) than in proving it correct.

After all, systems can fail in many ways,
some entirely beyond the reach of verifica-
tion. All verification efforts proceed from
assumptions about the environment of the
model to be verified. If these assumptions
are incorrect, then a faulty system model
may be “verified.” Moreovet, if the synthe-
sis procedure is not itself verified, then a
correct design may yield a faulty. imple-
mentation, Intel explained that the floating-
point division bug occurred because de-
signers used a faulty script to implement the
Pentium’s division table. While the table's
design was probably correct, the script pro-
duced a hardware version that omitted a
few essential values. If a verification proce-
dure failed to examine this script or its
result, then even if the table and all associ-
ated parts of the algorithm for floating-
point division were correct, the result still
would have been faulty silicon:

Assuming that verification will never
embrace all the ways in which a system
can fail, perhaps verification should be so
applied to a project as to extend the most
benefit possible for the given resources of
time and staff. This is especially true in a

D

commercial setting. All known reduction
algorithms may be applied to a given
model in an automated fashion until
either a bug is found, or the model is ver-
ified, or the space or time allocated runs
out. Bell Laboratories uses this approach
with its verification tool FormalCheck.
As confidence in and reliance upon
finite-state verification grow, designers
will slowly learn to use the process in
more focused and advantageous ways.

66

Sometimes the fear is that merely learning
how to integrate formal verification tech-
niques into the design process may slow
development unacceptably, or that the
process itself may result in less efficient
circuits. In fact, verification may detect
errors earlier in the design cycle, thereby
actually speeding up the overall project. In
many modes of use, formal verification has
no effect upon the form and efficiency of
the ultimate design. But even when formal

verification leads to design compromises,
some performance degradation may be
worth the price, especially in view of ever
taster circuitry, since a more reliable
design is being brought faster to market.
Still, some data-intensive algorithms
such as arithmetic and logic units may
remain beyond the scope of purely auto-
matic finite-state methods. Although
automated theorem-provers may not face
the same limitations, their enormous user-

IEEE SPECTRUM TUNFE 1990

Verifying cache
coherence protocols

KEN MCMILLAN -

g@Ehe shared-memory multiprocessor architecture is be-
l coming prevalent in high-end servers designed to han-
dle many users or large parallel computations. In such a
machine; several parallel processors share a common store. To
avoid communications bottlenecks, each processor has its own
local cache memory that stores recently accessed data from the
shared memory. One of the machine’s most complex partsis its
cache coherence protocol;, a system of messages implemented
in hardware, by which the processors ensure that their local
caches are consistent. Simulation of such systems is particularly
unreliable because of their highly asynchronous nature: the
exact time at which a given processor will access a given mem-
ory location and the exact time delay of messages are unpre-
dictable. As a resuit, many “race conditions” must be consid-

ered in the design and test of the protocol.

For example, suppose processors A'and B are both trying to
modify the contents of memory location V. Typically, both
would send a message to the “home"” location of V, asking for
an “exclusive” copy of V. If the message from A arrives first, the
“home” will- dispatch- an-exclusive copy of V to processor A.
When the request from B arrives, it might simply be forwarded
to A. The exclusive copy of V and the request from B are now in
a “race” toward processor A, and the designer. must consider
what would happen if their order of arrival was reversed, so
that A receives a request for V. before V actually arrives.

Such “races” ‘can be extremely. complex in-a real system,
sometimes involving 10 or 20 messages. So it is difficult for the
protocol designer to anticipate and correctly handle them. Even
in the best-designed simulations, the more complex races occur
rarely, so a simulation:methodology cannot guarantee that all
have heen tested. But since the protocols are finite-state, they

are natural candidates for computer-aided verification.

The first company to use computer-aided verification on a
cache coherence protocol was Encore Computer Corp., Fort
Lauderdale, Fla. In collaboration with researchers at Carnegie
Mellon University, Encore used this too! for its Gigamax sys-
tem—a shared-memeory machine with a hierarchically struc-
tured cache protocol. To create an abstract model of the pro-
tocol, the Symbolic Model Verifier (SMV) system was used.
Although many details of communication in the machine were
left out, the protocol itself {the system of rules for sending mes-
sages) was modeled in its entirety.

After an appropriate set of specifications in computation
tree logic was formulated, the use of binary decision diagrams
in SMV as an indirect representation of the state space allowed
these properties to be checked in a few minutes, despite the
large number of states the model could reach. One particular-
ly important error found by model-checking was a deadlocked
state resulting from an unanticipated race condition. in all, 13
messages participated in the shortest scenario producing this
deadlock, making it extremely unlikely -that the condition
would occur in a simulation run. The short turnaround time of
the model-checking process allowed the fix for this error to be
quickly checked for its impact on correctness.

More recently, model-checking combined with abstraction
found an error in the cache coherence protocol for the pro-
posed Futurebus+ standard. These achievements demonstrate
the value of using exhaustive verification of abstract modeils to
prevent high-level errors from propagating -into detailed
designs where they are much more costly to find and correct:

Kenneth McMillan is the creator of the Symbolic Model Verifier. He is
a research scientist at Cadence Berkeley Laboratories, -Berkeley,
Calif, and works on efficient computational methods for formal
verification and computer system design for verifiability.

overhead probably would make them
impractical on a Pentium-sized project.
But a ray of hope is emerging on the
research front: recent hybrid methods of
verification integrate finite-state model-
checking with automated theorem-prov-
ing. Using the two approaches in concert,
engineers currently are working on tech-
niques that they hope will one day be used
to develop an entire complex microproces-
sor in considerably less time and more reli-
ably than currently possible. At the same
time, new forms of binary decision dia-
grams have evolved that can make the
symbolic manipulation of arithmetic
expressions computationally feasible.
Applications of finite-state computer-
aided verification are many and varied.
AT&T, Bell Laboratories, Cadence, [BM,
Intel, and Motorola all have burgeoning
internal verification programs. [For some
specific examples, see p. 62, p. 63, p. 64, p.
66, and p. 67]. At Bell Labs, the first com-
mercial product developed using verifica-
tion was some software for a specialized
network data protocol, verified by Gerard
J. Holzmann in 1984, Currently, at least
four commercial tools for finite-state verifi-
cation of hardware have been released or
announced: FormalCheck from Bell Lab-

oratories (of Lucent Technologies) and
Viewlogic's CheckOff, under license from
Abstract Hardware Ltd., are general-pur-
pose model-checkers. Chrysalis' Design
VERIFYer and Compass Technology's
VFormal are equivalence checkers, which
verify that a perturbed model is logically
equivalent to an original model that is
believed to be error-free. ®

To probe further
Edmund M. Clarke, Allan Emerson, and Prasad
Sistla, described their first working model-
checker in: “Automatic Verification of Fin-
ite-State Concurrent Systems Using Tem-
poral Logic Specifications” (TOPLAS, Vol. 8,
no. 2, pp. 244-263). It contains basic defini-
tions and a simple example. Robert P.
Kurshan's Computer-Aided Verification of
Coordinating Processes (Princeton University
Press, 1994) explains the semantic model
and the reduction methodology of Cospan.
Gerard J. Holzmann's Design and Validation of
Computer Protocols (Prentice Hall, 1991)
describes the software verification system,
SPIN. Kenneth L. McMillan’s Symbolic Mode!
Checking (Kluwer, 1993) contains a good
description of the Symbolic Model Verifier
model-checking system. The standard refer-
ence on symbolic model-checking is the

CLARKE & KURSHAN — COMPUTER-AIDED VERIFICATION

1994 paper by Jerry Burch, Edmund M.
Clarke, David Long, Kenneth L. McMillan,
and David L. Dill titled “Symbolic Model
Checking for Sequential Circuit Verification”
(IEEE Transactions on Computer Aided De-
sign, Vol. 13, no. 4, pp. 401-24).

For a description of current technical activity in
formal verification, see the Web site of the
DIMACS Special Year on Logic and Algorithms:
http://dimacs.rutgers.edu/SpecialYears/1995
_1996/index.html.

About the authors

Edmund M. Clarke is professor of computer sci-
ence at Carnegie Mellon University in Pitts-
burgh. In 1995 he became the first recipient
of the FORE Systems Professorship, an
endowed chair in the School of Computer
Science. He is editor-in-chief of Formal
Methods in Systems Design and is on the
steering committees of two international
conferences.

Robert P. Kurshan is a distinguished member of
the technical staff at Bell Laboratories, Mur-
ray Hill, N.J. He and his colleagues designed
and built the Cospan verification system,
which is used in the commercial verification
tool, FormalCheck.

Spectrum editor: Linda Geppert

67

http://dimacs.rutgers.edu/SpecialYears/l995

