
Computer-aided verification 
Theorem proving and model checking are powerful tools that can 

verify the logical correctness of today's ICs or find their hidden bugs 

HE BUG IN THE FLOATING-POINT DIVISION circuitry of 
Intel Corp 's Pentium chip brought notoriety to  the huge T cost that may be incurred when a logical bug is commit- 

ted to  silicon (For the Pentium, some have put it at US $500 
million) But behind every such bug that makes the news, an 
uncounted number of logical errors go undetected throughout 
the design, implementation, and marketing phases of many 
products Either these errors will finally be detected and cor- 
rected in hardware, software, and subsequent releases--or they 
will simply remain as bugs, known to a few, experienced users. 

The debugging of most hardware circuits and many highly 
complex software systems is done by an elaborate testing pro- 
cess involving extensive runs of computer models of the target 
implementations When a circuit or program is synthesized from 
a simulation model of this nature, any errors in the model may 
appear in the resulting implementation. Finding and correcting 
such errors before synthesis can reduce correction costs by an 
order of magnitude 

Reliance on running simulation models alone becomes a weak- 
ness in designing and developing large-scale, highly complex sys- 
tems An example is the control system for asynchronous envi- 
ronments, with its many coordinating components, such as 
communication protocols and telephone switches, as well as cir- 
cuits that execute many instructions in parallel In systems of this 
kind, the set of possible behaviors so 
greatly outstnps the set that can be 
simulated that even billions of tests, 
run continuously for a year or more, 
can never examine most combina- 
tions of behaviors Among those un- 
examined behaviors may lurk critical 
untested combinations or, worse 
yet, unknown system failure modes 

Thus, random testing, once con- 
sidered an important tool for uncov- 
ering faults in unanticipated behav- 
iors, is now viewed widely as 
inadequate O n  the other hand, tests 
designed for specific scenarios leave 
unexplored possible combinations 
of behavior that fall outside the an- 
ticipated patterns. 

Such difficulties have spurred re- 
search into methods that attempt to 
prove a system correct, in the same 
sense that a mathematical theorem is 
proved correct. The ideal algorithm 

would automatically analyze a sys- 
tem model and either conclude it 
was correct or reveal a bug within 
a reasonable number of steps. 
From a mathematical perspective, 
though, only very simple systems 
are suited to such decision procedures. Although such automated 
theorem provers had some successes, they were generally unable to 
pinpoint errors in incorrect designs and were difficult for a non- 
expert to operate effectively. 

One  common observation of hardware and software designs 
holds that in the life cycle of a development project, the design 
mostly is tncorrect and approaches correctness only (hopefully!) 
at the end of the design and testing process, when the "last" errors 
have been detected and eliminated. Thus, a formal method that 
sometimes can prove a design correct, but not easily locate flaws 
when the design is incorrect, is more useful at the very end of the 
design and test process Furthermore, exigencies of the market- 
place demand that design verification fit unobtrusively within the 
development process and, at any rate, not delay that process any 
more than the current practice of simulation testing. 

For these reasons researchers sought design verification meth- 
odologies that were more limited in scope than the theorem- 
provers. They also wanted techniques that could be highly auto- 

mated and could locate bugs in 
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The verification process begins with a program (or a descrip- 
tion of a circuit design) and a list of properties to be checked. 
The verification tool determines if the properties are true, or 
if not, provides a counterexample. 

faulty designs as readily as they 
could prove error-free designs cor- 
rect Attention at first focused on 
finite-state models, which can 
assume only a finite number of dis- 
tinct configurations during any 
arbitrarily long or even endless exe- 
cution Although limited in a math- 
ematical sense, finite-state models 
necessanly encompass every digital 
circuit and every software system 
implemented on a digital computer. 
Their computational feasibility for 
systems with a finite but staggenng 
ly large number of states, however, 
is a key concern 

Today, the first computer-aided 
verification tools are becoming 
commercially available They are 
based on methods that in many 
cases can reduce the complexity of 
verification (without sacrificing 
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guaranteed correctness) to such a 
degree that it becomes computa- 
tionally teasible. Among the most 
powertiil of these methods are sym- 
bolic model-checking and homo- 
morphic reduction, both of which 
represent a complex system in 
terms of a compact and computa- 
tionally inore tractable structure. 
Moreover, the two can be used 
together with a multiplicative re- 
duction cffect, since they work in- 
dependently of one another. Of 
special importance is the fact that 
they each can be implemented 
automatically, so the task of reduc- 
tion is programmed into the com- 
puter rather than presenting a bur- 
den to the design engineer. 

A5 early as 1976, Amir Pnueli, a re- 
searcher at the  Meizmann Institute, 
Rehovot, Israel, and other computer sci- 
entists began proposing deductive sys- 
tems, notably temporal logics, that could 
verity finite models. These logics support 
a syntax in which it is simple to express 
such notions as " I f  a process requests a 
bus, then eventually i t  gets to access it." 
This approach suffered several practical 
drawbacks, however. Since temporal log- 
ics are most useful tor describing require- 
ments placed on simple causal relation- 

ships designers really could not be ex- 
pected to define an entire system model in 
temporal logic (Even logicians sometimes 
are unsure of the effective meaning of 
complex temporal formulas ) Moreover, 
although the decision procedures were 
guaranteed to give an answer, the compu- 
tational complexity of the required checks 
grew exponentially with the size of the 
formulas For these reasons, interest in this 
approach was largely academic 

The tirst practical breakthrough came 
independently in 1980 from Edmund 
Clarke and his student Allen Emerson at 

Harvard University and from loseph 
Sifakis and his student Jean-Pierre Qucille 
in Crenoble, France. Each team modeled 
a system as a computer program that 
could be checked automatically. The 
check determined whether the program 
satisfied particular specifications jproper- 
ties) defined by the programmer and 
expressed in temporal logic. 

Dubbed model-checking by the Har- 
vard pair, the approach had the great 
advantage of producing counterexamples 
through which programmers could locate 
errors. Computationally, model-checking 
appeared promising, especially since under 
reasonable restrictions its complexity grows 
linearly with model and formula size. This 
promise was at best elusive, though, since 
model size itself generally grows exponen- 
tially with the number ot variables that 
define the system, a phenomenon often 
termed state-space explosion. 

Since the problem ot state-spacc explo- 
sion is intractable in the worst case, re- 
search on model-checking ha5 focused on 
heuristics or  methods that circumvent the 
complexity barrier in special cases. Some 
heuristics have simply formalized tech- 
niques already used in simulation: ab- 
stracting inessential parts of the model 
and exploiting the modeli hierarchical 
structure and symmetries. 



In 1987, one of us (Kurshan) unified 
and formalized these techniques into a 
single paradigm called homomorphic 
reduction (It was named for a mathemat- 
ical structure-reducing homomorphism- 
"shape-" preserving function-on the  
Boolean algebra of formulas in program 
variables ) The  paradigm defines assocra- 

tions among system events that need not 
be distinguished for a particular verifica- 
tion task. For example, to verify some 
property, it may be unnecessary to distin- 
guish the non-zero values of some vari- 
able V. So the homomorphism may 
replace V with a new variable, the values 
of which are zero and non-zero. 

T h e  verification program, possibly 
with initial aid from the user, makes a 
guess about system values that need not 
be distinguished. The  verification algo- 
rithm then checks that this guess (or one 
of its own) is correct. I f  so, the abstracted 
version is used for model-checking; i f  not, 
this "localization reduction" algorithm 



automatically adjusts the reduced model ness-preserving fashion was shown to be reduction-of thc str~icture ot the corre- 
and verification IS tried again formally equivalent to finding a Boolean sponding program Such homomor- 

Replacing the given verification prob- algebra homomorphism that preserves phisms includc mapping complex data 
lem with a simpler one in such a correct- some-but not all, or there would be no structures and control scqiiences into sim- 

Debugging a C0"UnicatiOBQS Chip were not confident of the behavior of specially designed cache 
registers used in the FIFO to speed up the operation of the 
chip. After checking many properties with SMV, Chen was 
unable to find any errors in the FIFO. He concluded that the 
error must be in some other part of the circuit. 

Eventually, Chen determined that all the major components 
of the circuit were correct, meaning that the error must be 
caused by the way in which they were connected. He built a 
concise model for the chip in the SMV language. The model did 
not describe the hardware in the chip that was clearly unrelat- 
ed to the cause of the error; and the width of the data path 
was reduced as much as possible to cut the number of states. 

Chen's specifications were written in temporal logic that 
described the abnormal behavior. Running on a workstation, 
the SMV model-checker took less than half an hour to deter- 
mine that the error arose from a condition in which the same 
address appeared twice in the FIFO. This condition-the result 
of incorrect resetting of address recycling circuits-caused the 
data to be sent twice, the second time overwriting the first, 
leading to duplication or disappearance of the data, depend- 
ing upon the instant that the data was read. 

The abnormal execution trace found by the model-checker 
was more than 50 clock cycles long. This meant that, starting in 
the initial state, it took at least 50 clock cycles for the error to 
occur. Since the width of the data path in the actual chip was 
larger and the input data tended to be more random, the error 
occurred only after a considerable period of time, which 
explained why it was so hard to find. 

Masahiro Fujita is director of computer-aided design of very large- 
scale IG for Fujitsu laboratories of America, Santa Clara, Calif. His 
group is engaged in R&D of these design tools for logic. 

MASAHIRO FUJITA 
uring field tests, engineers a t  Fujitsu Ltd. in Japan 
observed that a complex communications chip slated D for commercial applications behaved abnormally sever- 

al seconds after power-up: some data was duplicated while 
other data disappeared entirely. The IC was designed for high- 
speed switching operations at 156 MHz and had 11 1 OOO or so 
gates (32 OOO for random logic and 79 OOO for RAM). Initially, 
extensive simulation had been used to validate the circuit. 

Because the abnormal behavior in the tests occurred only 
after several seconds of operation, hundreds of millions of sim- 
ulation cycles would be necessary to reproduce it. Consequently, 
simulation was impractical as a debugging technique. Even if it 
were possible to generate so many test cycles (by emulators, for 
example), it would almost certainly be impossible to analyze the 
enormous amount of information produced in enough detail to 
find the error. 

Since obtaining an error-free version of the IC had high pri- 
ority, the author, along with Ben Chen, a Fujitsu computer-aid- 
ed design engineer familiar with formal verification, and their 
colleagues turned to the Symbolic Model Verifier (SMV) mod- 
el-checker to debug the design. 

Information about the chip design was available only in 
gate-level circuit descriptions. Since the circuit had more than 
100 OOO gates, SMV could not be directly applied to the gate- 
level circuit description. Chen decided to exploit the modular 

He started with a first-in, first-out buffer (FIFO) that was 
believed to be the most likely source of the error. Designers 

structure of the circuit to reduce the state explosion problem. _._ 

I I 
output 



pler ones, which retain enough informa- 
tion for the verification task at hand 

This mapping subsumes data abstrac- 
tion and symmetry reduction Through 
data abstraction, a notion introduced by 
Pierre Wolper at the University of Liege, 
Belgum, data can be reduced to just a few 
distinct values Through symmetry reduc- 
tion, a model can be replaced by a "quo- 
tient" model that factors out symmetric dis- 
tinctions In many cases, homomorphic 
reduction gives designers a chance to ven- 
fy arbitrarily large models 

Around the same time, in the late %Os, 
several other groups independently discov- 
ered an alternative-and in fact comple- 
mentary-form of reduction Called sym- 
bolic model-checking, this approach 
analyzes sets of states, represented by 
Boolean formulas, as opposed to individual 
states For example, if x is a variable of the 
system, then the expression "x equals 0'' can 
be understood as the Boolean formula that 
defines the set of all vectors of values of all 
the system variables in which x equals 0- 
a very large set of vectors This potential for 
succinct expression of a large set of system 
values can be exploited computationally 
dunng model-checking 

The formulas are stored in a compressed 
form of binary decision tree called a binary 
decision dagram (BDD) To understand 
how those diagrams impact model-check- 
ing, it is necessary to see how model-check- 
ing itself works Suppose in using a program 
or a hardware description, a property 
required of the program is expressed as a 
temporal logc formula For example, the 
formula may express the property "If the 
program ever sets a vanable V to 1, then 
eventually it sets V back to O " The role of 
venficahon (or in this case model-checking) 
is to determine whether the formula is true 
for the gven program or, in logcal terms, 
whether the executions of the program form 
a model of the formula When the program 
uses only a finite amount of memory, it may 
be viewed as a finite state machine In this 
case, the logcal model is the set of all its 
inpudstatdoutput sequences 

The model is constructed by a search 
that begins with the initial state of the pro- 
gram From there, every possible succession 
of state transitions of the program is gener- 
ated, starting with all possible single transi- 
tions Many transitions are possible from a 
gwen state, since each immediately follow- 
ing state depends upon external inputs to 
the program Moreover, if the program 
incorporates parallel processing or asyn- 
chrony several "immediately following" 
events may be scheduled from a given state, 
and each of these must be explored 

Every immediately following state that 
is possible but which has not been previ- 
ously generated, is placed in a pool of 
states to be expanded in the same fashion 

The step is repeated until no new states 
are found, defining a breadth-first search 
of the model state space Eventually, the 
search must terminate since the state 
space is assumed to be finite, and when 
the pool of states becomes empty, the 
model is complete. 

Every possible execution of the pro- 
gram thus is represented in the model by 
a sequence of consecutive states Model- 
checking then consists of determining 
whether every such sequence satisfies the 
given property, and if not, of finding a 
counterexample sequence [see figure] 
This, sequence, too, is accomplished 
using techniques of search 

Consider the example of resetting the 
variable V to 0 in the model just de- 
scribed To check this, all the states where 
Vis 0 must first be marked Then, looking 
backward, all states that must reach a 
marked state in one step must also be 
marked This procedure is repeated until 
it reaches a "fixed point," from which no 
new states can be marked. Now all the 
states from which V must eventually set to 
0 are known If any state where V is 1 is 
not marked, then the formula is false 

The symbolic solution 
The catch is that even very small pro- 

grams can have a huge number of states. For 
example, a program that can store a mere 
250 bits of data has at least 2250 states- 
more states than there are particles in the 
universe1 When the expanded model be- 
comes too large to store in available memo- 
ry, the model-checking technique can no 
longer be applied directly This is where 
symbolic techniques enter the picture 

A symbolic model-checker represents 
the model indirectly, using a Boolean func- 
tion as above, to determine when a transi- 
tion is possible from one state to another 
A Boolean function takes on the values 0 
and 1 and thus may be used to encode the 
values of all the system variables in terms 
of the system inputs This function is put 
intcr a unique form (usually the binary 
decision diagram form) to make it easier to 
manipulate during analysis 

When carrying out a breadth-first 
search, the set of marked states is also rep- 
resented symbolically through a Boolean 
function The ability to perform the oper- 
ations of Boolean algebra on these expres- 
sions allows the search to be carried out 
entirely using the symbolic forms As a 
result, checking formulas depends not on 
the number of states of the model, but on 
the compactness of the symbolic forms 

Symbolic techniques are not the ulti- 
mate solution to  the state explosion prob- 
lem, since there is no guarantee that the 
symbolic representation will be any small- 
er than the explicitly constructed model 
Nonetheless, a representation can be cho- 

sen to exploit the structure inherent in the 
state space of the program As a result, we 
can verify a model many orders of magni- 
tude larger than any it is possible to con- 
struct explicitly Just how to do this has 
been the subject of much recent research 

Hurdling the complexity barrier 
Currently, the most powerful finite- 

state verification techniques integrate 
symbolic model-checking and homomor- 
phic reduction But computational com- 
plexity remains a barrier for some cases 
One  tactic would focus verification efforts 
upon any models that are susceptible to 
the known heuristics The challenge then 
becomes how to determine in advance 
which models have this property 

There have been some successes in this 
direction Modular programming tech- 
niques, which limit the amount of infor- 
mation allowed past module boundaries, 
have played an important role in advanc- 
ing symbolic model-checking and homo- 
morphic reduction Even apart from verifi- 
cation, modular techniques have already 
been identified as useful in managing large 
programs So there is reason to hope that 
the best current programming practice 
and verifiability of programs may con- 
verge to a common ground 

Another tactic to promote verifiability, 
perhaps of more immediate use in an 
industrial setting, lets the model and avail- 
able resources guide the vertfication effort 
This technique rests upon an increasingly 
common view that verification is more 
valuable in proving a model incorrect (and 
providing a counterexample to assist in 
debugging) than in proving it correct 

After all, systems can fail in many ways, 
some entirely beyond the reach of venfica- 
tion All verification efforts proceed from 
assumptions about the environment of the 
model to be verified If these assumptions 
are incorrect, then a faulty system model 
may be "verified " Moreover, if the synthe- 
sis procedure is not itself venfied, then a 
correct design may yield a faulty imple- 
mentation Intel explained that the floating- 
point division bug occurred because de- 
signers used a faulty scnpt to implement the 
Pentium's division table While the table's 
design was probably correct, the script pro- 
duced a hardware version that omitted a 
few essential values If a verification proce- 
dure failed to examine this scnpt or its 
result, then even if the table and all associ- 
ated parts of the algonthm for floating- 
point division were correct, the result still 
would have been faulty silicon 

Assuming that verification will never 
embrace all the ways in which a system 
can fail, perhaps verification should be so 
applied to  a project as to extend the most 
benefit possible for the given resources of 
time and staff This is especially true in a 
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tion algorithm was a simple user-provided "seed": a specifica- 
tion of "e major components of the CDlC that probably 

ARTHUR B. GLAsER would be necessary for the analysis, and other components, 
he I S 0  standard MPEGZ main profile decoder chip is a mainly some of the memory in the internal FIFOs, that could 
microprocessortontrolled decoder for the program bit probably be excluded. The reduction algorithm iterates from T stream in a digital television receiver. A component this seed, attempting to perform its analysis in a logically con- 

within the chip is the compressed data interface controller servative (correctness-preserving) fashion on a much smaller 
(CDIC), which is programmable by the microprocessor to accept model than the given one. (The algorithm automatically adjusts 
either bit-serial or byte parallel MPEGZ compliant input data. t t  the model used for analysis as necessary, and ensures that any 
detects the start and end of frames, performs start code align- reported error is an error in the original unreduced model.) 
ment and synchronization between the incoming data rate After only about 90 seconds on a Sparc U( workstation from 
and the internal processor rate, and buffers data, which it utti- Sun Microsystems, Mountain View, Calif., the verification tool 
mately stores in external dynamic RAM. The control logic for detected the error in the CDlC algorithm. After the error was 
the CDK contains about 2500 gates; and contributing a lot to corrected, the Bell Labs team repeated the analysis and the ver- 
the computational complexity of verification is an on-chip reg- ification tool showed that the FIFO now never could overflow. 
ister file. It is described by about 2000 lines of VHDL code, and This proof, fully automatic but for the user-provided seed, 
contains 1500 latches, typical of the class of circuits that can be required the tool to search only 2.5 million states and analyze 
expected to be verified fully and automatically. about 9.8 million transition conditions in the reduced model (a 

At Bell Laboratories, engineers used the verification system significant reduction over the unreduced model, which has an 
Formalcheck to determine if the internal first-in, first-out estimated 1030 states). Once the tool found the bug, it pro- 
buffers (FIFOs) of the CDIC could overflow under the control duced an error track, which had to be interpreted. In this case, 
protocol. In fact, the analysis showed that there was a condi- the error track spanned 2000 clock cycles because the buffer 
tion under which the request to write data to the external had to be filled before the error could be detected. 
DRAM was inhibited, permitting the internal FIFO to overflow. 

Because of the complexity of the CDIC model, this analysis Arthur 8. Glaser is a distinguished member of the technical staff in 
would not have been feasible except for a built-in reduction the Bell Labs &sign Automation Center of Lucent Technologies 
algorithm that automaticalty produced a reduced model of the Inc., Murray Hill N.J. His current interest is the development and 
CDlC with this overflow error. The starting point for the reduc- application of model-checking tools for formal verification. 

Debuggsng VHDL code: 
the HDTV example 

commercial setting AI1 known reduction 
algorithms may he applied to a given 
model in an automated fashion until 
either a bug I S  found or thc model IS ver 
ified, or  the space or time allocated runs 
out Bell Laboratories uses this approach 
with its verification tool Formalcheck 

As confidence in and reliance upon 
finite-state verification grow designers 
will slowly learn to use the process in 
more focused and advantageous ways 

Sonietimes the fear is that merely learning 
how to integrate formal verification tech- 
niques into the design process may slow 
development unacceptably, or that the 
process itself may result in less efficient 
circuits. In fact, verification may detect 
errors earlier in the design cycle, thereby 
actually speeding up the overall project. In 
many modes of use, formal veritication has 
no effect upon the form and efficiency of 
the ultimate design. But even when formal 

verification leads to design compromises, 
somc performance degradation may be 
worth the price, especially in view ot ever 
taster circuitry, since a more reliable 
design is being brought faster to market. 

Still, some data-intensive algorithms 
such as arithmetic and logic units may 
remain beyond the scope of purely auto- 
matic tinite-state methods Although 
automated theorem-provers may not face 
the same limitations, their enormous user- 

66 



essages are unpre- 
ns" must be consid- 

overhead probably would make them 
impractical o n  a Pentium-sized project. 

But a ray o f  hope i s  emerging on the 
research front recent hybrid methods of 
veritication integrate finite-state model- 
checking w i th  automated theorem-prov- 
ing. Using the two approaches in concert, 
engineers currently are working o n  tech- 
niques that they hope wi l l  one day be used 
t o  develop an entire complex microproces- 
sor in considerably less time and more reli- 
ably than currently possible. A t  the same 
time, new toms of binary decision dia- 
grams have evolved that can make the 
symbolic manipulation o f  arithmetic 
expressions computationally feasible. 

Applications of finite-state computer- 
aided veritication are many and varied. 
ATkT, Bell Laboratories, Cadence, IBM, 
Intel, and Motorola all have burgeoning 
internal verification programs. [For some 
specific examples, see p. 62, p. 63, p. 64, p. 
66, and p. 671. A t  Bell Labs, the first com- 
mercial product developed using verifica- 
t ion was some software for a specialized 
network data protocol, verified by Gerard 
J .  Holzmann in 1984. Currently, at least 
four commercial tools for finite-state verifi- 
cation of hardware have been released or  
announced: FormalCheck from Bell Lab- 

are natural candid 
The first company to use computer-aided verification on a 

cache coherence protocol was Encore Computer Corp., Fort 
Lauderdale, Fta. In collaboration with researchers at Carnegie 
Mellon University, Encore used this tool for its Gigamax sys- 
tem-a shared-memory machine with a hierarchically struc- 

designs where they are much more costly to find and correct. 

rifler. He is 
a research scientist Berkele)! 
Calif, and works on for formal 
verification and computer system design f o r  verifiability 

oratories (of Lucent Technologies) and 
Viewlogic's Checkof f ,  under license from 
Abstract Hardware L t d  , are general-pur- 
pose model-checkers Chrysalis' Design 
VERlFYer and Compass Technology's 
VFormal are equivalence checkers, which 
verify that a perturbed model is  logically 
equivalent t o  an original model that is  
believed t o  be error- tree 

To probe further 
Edmund M. Clarke, Allan Emerson, and Prasad 

Sistla, described their first working model- 
checker in: "Automatic Verification of Fin- 
ite-State Concurrent Systems Using Tem- 
poral Logic Specifications" (TOPLAS, Vol. 8, 
no. 2, pp. 244-263). It contains basic defini- 
tions and a simple example. Robert P. 
Kurshan's Computer-Aided Verification o f  
Coordinating Processes (Princeton University 
Press, 1994) explains the semantic model 
and the reduction methodology of Cospan. 

Gerard J. Holzmann's Design and Validation o f  
Computer Protocols (Prentice Hall, 1991) 
describes the software verification system, 
SPIN. Kenneth L. McMillan's Symbolic Model 
Checking (Kluwer, 1993) contains a good 
description of the Symbolic Model Verifier 
model-checking system. The standard refer- 
ence on symbolic model-checking is the 

1994 paper by Jerry Burch, Edmund M. 
Clarke, David Long, Kenneth L. McMillan, 
and David L. Dill titled "Symbolic Model 
Checking for Sequential Circuit Verification'' 
(I€€€ Transactions on Computer Aided De- 
sign, Vol. 13, no. 4, pp. 401-24). 

For a description of current technical activity in 
formal verification, see the Web site of the 
DIMACS Special Year on Logic and Algorithms: 
http://dimacs.rutgers.edu/SpecialYears/l995 
-1 996/index.html. 
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