
The Logic of Bugs

Gerard J. Holzmann
Bell Laboratories, MH-2C-522

600 Mountain Avenue
Murray Hill, NJ 07974, USA

+1-908-582-6335

gerard@research.bell-
labs.com

ABSTRACT

Real-life bugs are successful because of their unfailing
ability to adapt. In particular this applies to their ability to
adapt to strategies that are meant to eradicate them as a
species. Software bugs have some of these same traits. We
will discuss these traits, and consider what we can do
about them.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation D1.3 [Programming Techniques]: Concurrent
Programming.

General Terms
Algorithms, Reliability, Theory, Verification.

Keywords
Distributed systems software, logic model checking, SPIN.

1. INTRODUCTION
The ability of bugs to adapt to their environment is well
known. It typically takes only five to ten years for insects
to become immune to specific pesticides, and in about the
same amount of time viruses and bacteria can ‘learn’ how
to defeat the drugs that are developed to kill them. These
are, of course, not the traits of individual organisms, but
they are the traits of a species. Using natural selection to
pass information from one generation to the next, the spe-
cies, as it were, can develop an ability to side step its at-
tackers, and thrive.

There are some interesting parallels in this sense between
software bugs and real-life bugs. Software bugs seem to

have the same uncanny ability to defeat process improve-
ment efforts that are meant to eradicate them.

After some fifty years of practice, few people today would
say that we understand the problem of software quality
well enough that we could outline a development process
that could lead to zero-defect code. This is despite the fact
that in the last fifty years the methods we have developed
to prevent and intercept bugs have gotten significantly
better. We have higher-level languages that can prevent
many low-level mistakes; we have better compilers that
can catch many coding mistakes through some forms of
static analysis, and we have improved training for pro-
grammers. Still, those pesky bugs routinely manage to
outsmart even the most experienced programmers.

Some of the ways in which bugs have learned to adapt to
improved software development environments are:

x Bugs can adjust to the level of experience of the pro-
grammer. One common misconception is that experi-
enced programmers make fewer mistakes than novice
programmers. Experienced programmers and novice
programmers make roughly the same number of mis-
takes when writing the same amount of code. The
mistakes made by the experienced programmer, how-
ever, will be more subtle than those of the novice pro-
grammer. The more complex bugs that the experi-
enced programmer can seed into the code are often
harder to find than the simpler typos of less experi-
enced colleagues.

x Bugs can invade our test environment. It has been said
that the safest place for a fly to sit is on the fly-swatter
(presumably on the handle…). If our test setup is itself
buggy, we will not find the bugs we are looking for.
Similarly, if the original requirements for the software
are inaccurate, or the test objectives that are derived
from the requirements, the remaining test process
could be perfect, but it would still be ineffective.

x Bugs have developed a strategy to quietly replace any
one of them that is caught immediately with one or
more others. This is the well-known phenomenon of
developers being most likely to insert new bugs into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

their code while they are trying to fix it to remove old
bugs. Bugs thereby counteract one of the primary
means we have to eradicate them.

The effect that bugs have their easiest entry into code dur-
ing a version update process is easily confirmed by looking
at historical data for the distribution of the Spin model
checker [5]. Figure 1 shows the frequency of the number of
days that have passed between version updates of the Spin
sources over a period of more than ten years. Several
months can pass in between major updates of stable ver-
sions of the code (the largest interval to date being 180
days). If bugs creep in, despite best efforts to avoid this,
this typically results in a new version release that follows a
prior release within a few days. Since the same process
repeats for every new release, over a sufficiently long time
we would expect to see a relatively large number of version
releases with short intervals, and a more random distribu-
tion of longer intervals between releases. Figure 1 illus-
trates this effect nicely. The shortest interval is 0 days, for
one instance where two releases of Spin were issued on the
same day (Versions 2.3.7 and 2.3.8 from May 18, 1995).
Nearly half of all releases to date (65 of 141) followed the
immediately preceding release within one week.

Figure 1 View of the Spin Release History

1.1 CAUSES
The main reason why all these problems exist is disap-
pointingly simple: programming is a human activity and
humans are prone to error. As Mark Paulk from Carnegie
Mellon University’s Software Engineering Institute dryly
noted ``A fundamental problem with software quality is
that programmers make mistakes’’ [8]. The usual industry
estimate is that a typical piece of code contains one to ten
residual software defects per one thousand lines of code
written (i.e., bugs that survive all testing). This means that
if a product has one million lines of code, the end-user
should expect roughly one thousand residual, or latent,
faults. Not all of those faults will show up in practice of
course, which may lead to a false sense of quality. A more

popular product, though, will attract more users, who in a
way act as volunteer testers. And, more testers will cause
more latent faults to reveal themselves. This leads to the
curious effect that the perceived quality of a product can
decrease as the number of users of the software increases
[7].

It is often suggested that software products are inherently
less reliable than other types of products that are equally
subject to human error. This supposition, however, does
not seem to be supported by the available evidence. If, for
instance, we consider programming to be a form of styl-
ized writing, we can try to compare this activity with other
forms of writing where correctness is important. An aver-
age weekday issue of The New York Times, for instance,
contains 13,800 sentences [1]. Inevitably, some mistakes
are made. In each issue the paper therefore also publishes
a list of corrections to the previous issue. In a typical issue
of the paper, there are about 10-15 of those corrections.
This averages out to about one mistake for every one thou-
sand sentences written. Not surprisingly, this is roughly
the same residual defect ratio as is achieved by careful
programmers. Journalists and programmers are subject to
the same human fallibility.

Given the fact that programmers do make mistakes, and
will likely continue to make mistakes no matter how hard
they try to avoid doing so, we are stuck with the job of
finding better ways to intercept those errors, hopefully in
ways that software bugs will find harder and harder to sur-
vive.

1.2 OVERVIEW
The premise of this paper is that it is unlikely that we will
ever come up with effective means that can prevent bugs
from entering the software design process altogether.
Given that, our best strategy is to devise means to detect
the presence bugs as effectively as possible, so that they
can then be removed. Bugs, though, can develop counter-
strategies that we must be aware of. We will argue that the
best means we have to defeat bugs is to use the computa-
tional power of computers against them. One of the tech-
niques that allows us to do so is logic model checking. We
will describe where bugs are most likely to find hiding
places when these techniques are used, and how we can
make it less likely that they will be successful in that at-
tempt.

2. TRADITIONAL METHODS
We collectively have about half a century of experience
with the job of producing and debugging software. One
can expect that in that period of time the dust can pretty
much settle on what the right way is of structuring soft-
ware in such a way that the introduction of errors can be
minimized, and in testing software in such a way that the

bugs that do slip into the code can be caught. What are the
methods that are used in the top industries to solve these
problems?

In the telecommunications industry a rather rigorous soft-
ware development process was adopted in the seventies
and eighties. The development starts with requirements
capture and documentation by system engineers. That
phase is followed by high-level and low-level design (i.e.,
programming), followed by various stages of testing, and
finally customer acceptance. The final phase of the process
is maintenance. In each phase errors can be introduced
into the process and in each phase errors can be inter-
cepted. The common wisdom is that the earlier a bug is
intercepted, the less expensive it will be to fix it.

In the requirements phase, inconsistencies can be caught
with basic requirements analysis techniques, in the high
level design phases errors are caught by prototyping, simu-
lation, and modeling, in the low level design phase peer
review sessions and targeted unit testing techniques can be
used. In the final testing phase this consists of integration
and customer acceptance testing.

All these techniques do in fact combine to intercept the
majority of all errors that are introduced. But these tech-
niques do not bring the residual error rate down to zero. In
all likelihood, not even the most diligent application of
these traditional techniques could even bring the residual
error rate down to zero. There are several reasons for this.

First consider sequentially executing deterministic soft-
ware. To be of any interest at all, these programs must
read their input date from some external source and use
these data to compute a result that can then be returned to
the user. In most cases it will be impossible to test the pro-
gram across the entire range of possible inputs. So a sam-
pling method has to be used. Again, in almost all cases of
interest, the sampling method will be based on a heuristic
and will be incomplete, leaving open the possibility of a
missed error. Bugs prefer to hide in places where testers
decide not to look, thus improving their chances of sur-
vival.

The situation is more interesting still for concurrent, and
non-deterministically executing software. Almost all mod-
ern software falls into this category. This is an ideal place
where bugs can currently hide safely, immune to most of
the currently used testing strategies.

This time not just the input data can influence the compu-
tations but also the relative ordering of events that may
occur in different parts of the system is important. The
unpredictable ways in which multiple users can interact
with the different parts of a physically distributed system
become a factor, and similarly the unpredictable way in
which schedulers run asynchronous threads of execution.

Two issues complicate our ability to test or debug such
systems: limited observability and limited controllability.

Limited observability means that the tester or the user can-
not observe important details of an execution (such as the
precise interleaving of multiple threads in an execution).

Limited controllability means that the tester cannot control
those details either. Even if a precise interleaving that
needs to be tested is known, it generally cannot be repro-
duced on a live system. The fundamental non-determinism
that is exhibited by distributed systems makes it virtually
impossible to test them thoroughly by traditional means.
We face these problems in the testing of practically all
systems of interest that are built today: operating systems,
telephone systems, plant control systems, traffic control
systems, web applications, etc.

3. AUTOMATA AND LOGIC
The traditional ways of testing software do not use the
power of computers very well. Somewhat better in this
sense are methods that try to automate specific parts of the
design process. In this class we find methods for automatic
test generation, regression testing, and code generation.
These methods can bypass the error-prone human, and
thus reduce the error insertion rate somewhat.

We can do still better though with methods that can di-
rectly take advantage of the steadily increasing power of
computers. Many of the new methods in the latter class are
based on the use of automata and logic in one form or an-
other. This includes static analysis and symbolic interpre-
tation methods, reachability analyzers and logic model
checking tools. These tools try to overcome the limitations
of traditional testing by constructing and analyzing closed
models, or symbolic representations, of real-world arti-
facts. In most cases, these methods depend on an ability to
either solve computationally hard problems, or to find rea-
sonable approximations to their solution. That trait has
sometimes been considered a weakness, but this weakness
is disappearing as computers are becoming more powerful.

The phenomenon that bugs can invade any technique and
make it less effective does of course still exist. We will
consider below how a new strain of bugs is attempting to
do so with the newer methods, and we will reflect on what
we might be able to do about that.

3.1 COMPUTATIONAL COMPLEXITY
When reachability analysis techniques were first intro-
duced for the verification of data communications proto-
cols in the late 1970s and early 1980s, the most often cited
problem was the problem of computational complexity. No
paper was published in this period without a serious dis-
cussion of the so-called state space explosion problem.

Although many verification algorithms have a complexity
that is only linear in the number of reachable system
states, the spoiler is that the number of reachable system
states can depend exponentially on the value of some criti-
cal problem parameters. Those parameters include the
number of asynchronously executing processes, the num-
ber and length of message buffers, the effective range of
data types, etc. Model checking tools would be quite use-
less in practice if the theoretical worst-case behavior would
occur frequently enough. Fortunately, it occurs only rarely.
The same holds for many other types of undeniably useful
tools that solve computationally hard problems, yet that we
have come to depend on for solving day-to-day problems.
This class includes, for instance, compilers, graph layout
tools, and network optimization tools. Luckily for us, in
none of these cases do users worry much about theoretical
worst-case behavior, simply because it does not occur often
enough in practice.

The steady increase of computational power of average
desktop machines combined with the steady improvement
in algorithmic techniques that static analyzers and logic
model checkers can use to reduce the complexity of typical
verification problems have brought about notable changes.
To counter an exponential effect one ideally needs to find
another exponential effect that works in the opposite direc-
tion. The algorithmic improvements that have been devel-
oped in the last two decades (e.g., partial order reduction
techniques, BDD based model checking techniques, and
abstraction techniques) can offer such effects, e.g., [5]. The
steady increase in the power of average computers adds an
additional exponential counter-effect, acting quite inde-
pendently of the first.

Since the nineteen-fifties the raw speed of computers has
increased by about ten orders of magnitude. The average
desktop PC that anyone can buy today is more powerful
than the average supercomputer that very few large corpo-
rations could afford to buy just two decades ago. Differ-
ences of this magnitude have a dramatic impact on what
can be done in software verification, and the continuing
trend can very significantly influence what we can do to-
morrow.

The often heard rebuttal to the observation about the con-
tinuing effect of Moore’s law as first articulated in [9] is
that the increase in complexity of software is outpacing the
increase in the power of the machines that we can use to
check that software. This notion, though, does not quite
hold up. At the first conference on software engineering
[10] (where the term software crisis originated) the size of
one of the larger systems being developed at the time,
IBM’s system OS/360, was given as five million lines of
assembly level code. The modern day equivalent would be
approximately one million lines of C code. Today, 34 years

later, a typical operating system contains less then one
hundred million lines of code. This means that the size of
large software applications has increased by less than two
orders of magnitude in thirty years, while the compute
power we can use to analyze that code has increased by six
orders of magnitude. There is little doubt that an average
compiler today can check ten million lines of code more
thoroughly and more quickly than its ancestor could check
a ten-thousand line program in 1970.

Computational complexity for model checkers such as
Spin is close to becoming a non-issue. It seems unlikely
that there is an effective adaptation strategy for bugs to
evade the ever-increasing power of our analyzers. But, bugs
can still evade our scrutiny by finding different places to hide, as
we shall discuss next.

4. MODEL CAPTURE
Logic model checkers work with closed, finite models of
real world artifacts. Traditionally, these models are con-
structed by hand, as prototypes of a design. The effort in-
volved can be justified by pointing to similar efforts that
are made in other engineering disciplines to obtain ana-
lytic results. The civil engineer may construct a small pro-
totype of a new design to study its structural integrity, and
the mathematician may construct a mathematical model
that captures a simplified view of the real world that lends
itself more easily to analysis. The software engineer will
often also build a small prototype of a software design, to
subject the prototype to simulation experiments and per-
haps a usability study. So, the notion that one can first
build and then analyze a design model in a special purpose
modeling language is sound, well known, and useful.

When model checking is applied for software verification,
there are two problems to be overcome. First, model build-
ing is a skill that must be learned. Model checkers may
appear attractive at first because they seem to deliver push-
button results, but the push-button results obtained by the
first-time user are not nearly as impressive as those that
can be achieved by more experienced users. Fortunately,
novice users do tend to become experienced users over
time, so this problem is only a temporary one.

A second, more basic, problem is that the method we
sketched above only helps us to find bugs in high-level
system designs, and we may be more ambitious than that.
We may, for instance, also want to use these methods to
find typical bugs in implementation level code: the pur-
view of classic software testing techniques. This problem
too may be overcome. We know that in some cases it is
possible to extract verification models from implementa-
tion level code mechanically. Techniques to do so were
developed for Java [3] and for C [6] and [2]. Not all tech-
nical details have been overcome in this area. Model ex-
traction for a substantial piece of code requires the con-

struction of a test-harness, which is still a fairly non-trivial
human effort. By using a combination of automated ab-
straction, model extraction, and logic model checking we
may be able to increase the scope of applications suffi-
ciently to make this approach to software verification more
routine.

4.1 REQUIREMENTS CAPTURE
We now come to the third and most underestimated prob-
lem in applications of automated tools to software verifica-
tion: the problem of accurately capturing the correctness
requirements that have to be verified. Many users take this
issue for granted: they would like their software applica-
tion to be proven correct, without having to worry about
what correctness actually means. Every verifier knows,
though, that there is no such thing as absolute correctness.
We may be able to prove that a software artifact has, or
does not have, a specific set of explicitly stated properties,
but whether all those properties taken together constitute
correctness is an issue that a verification tool cannot settle:
only a human user can try to do so (subject to error, of
course). An application, for instance, cannot be presumed
to be correct if a verification tool has merely proven that it
is completely specified and cannot deadlock.

Verifiers, and logic model checkers in particular, excel in
their ability to show that specific requirements are either
satisfied or may be violated. It is up to the user to come up
with a comprehensive list of requirements to be checked,
and to make sure that the requirements that are checked
make sense. That is a more difficult task than many real-
ize, as we will try to illustrate below.

4.1.1 TEMPORAL LOGIC
The standard method to express the correctness require-
ments for a model checking application is to use the for-
malism of temporal logic, as first proposed for this purpose
by Amir Pnueli in [11]. In Linear Temporal Logic (LTL
for short), as used in Spin [5], a small number of special
operators are introduced to allow one to reason about se-
quences of events that are claimed to be causally related.

LTL has the important benefit that it allows us to make
precise, and often concise, statements about complex sys-
tem properties. But, there is also a downside. To use LTL
well requires a level of sophistication that many users
never develop. The danger of improper use this time is not
an unwarranted increase in the complexity of a verification
run, it is that the user unknowingly obtains results that are
invalid. A small example can illustrate this effect.

Suppose that we want to verify the following simple prop-
erty of a telephone system:

‘‘When the subscriber picks up the phone, dial-tone is al-
ways generated.’’

The property is simple enough that it can be clearly stated
in just a few words, and there will be no confusion whatso-
ever about what the informal statement actually means.
This is different when we switch to temporal logic. Our
first attempt can be to convert the requirement as directly
as possible into an LTL formula, for instance as follows.

 F (offhook � dialtone)

In words, this formula says that it is always (the box opera-
tor F) the case that the occurrence of an offhook event
implies (the logical implication symbol ���WKDW�eventually
(the diamond operator) a dialtone event will occur. A
verification run with this property, where we try to find
any possible scenario that could violate this property,
would most likely come up empty, and the (human) veri-
fier could believe to have proven the property. But this
would be quite incorrect.

Note that the property does not rule out the case that on a
failure to hear a dial-tone a subscriber would return the
phone onhook and try a new, this time more successful
call. The dialtone would then be generated only if the off-
hook event is repeated, which is clearly not the intent.

We can try to counter this by slightly modifying the prop-
erty, but we quickly notice that it is easier to reason about
the type of error scenario that we want to prove to be in-
feasible, rather than the property itself. So let us switch to
an LTL formula that captures the error behavior we are
interested in. Taking into account our earlier mistake, the
new formula could look as follows.

 (offhook ���� dialtone U onhook)).

In words, this formula states that eventually the occurrence
of an offhook event could logically imply the absence of a
dialtone event that may persist until (the until operator U)
an onhook event occurs. Did we capture the right property
this time? Unfortunately, the answer is no.

We have made a very common mistake here in confusing
logical implication with causal implication. The arrow
operator is not a temporal operator. The definition of logi-
cal implication is simply:

 (p �T��{ (�p � q)

The requirement expressed here is that in the current sys-
tem state either p is false or q is true: there is no temporal
relation here. This means that the last LTL formula we
gave is already satisfied if at least once in an execution
offhook does not occur (i.e., if offhook is false). For the
same reason it is also satisfied if at least once in an execu-
tion an onhook event occurs (since the sub-formula (p U q)
is immediately satisfied if q is true). This makes it possible
to satisfy the formula quite independent of the dialtone
event, which is again clearly not what we intended. Having
realized the problem, it is again easy to correct it. We then

arrive at the following LTL formula, our third attempt to
capture this simple correctness property:

 (offhook � (� dialtone U onhook)).

This time we did capture the right behavior, but we also
captured more than we intended. Note that the formula is
already satisfied when offhook and onhook are simultane-
ously true. It would be acceptable to leave things this way,
since clearly in the application we are interested in this
cannot ever occur. But, for arguments sake we may also
want to repair this flaw. We can do so by introducing the
Next operator (represented by the symbol X).

 (offhook � X (� dialtone U onhook))

We have now separated the state where we expect to find
the offhook event from the subsequent states in which the
onhook may take place, so all seems well. We now note
that this last formula will erroneously be satisfied for an
execution where a dialtone event could coincide with the
onhook event. That is: an execution where a dialtone
would be generated at the exact instant that the subscriber
returns the phone onhook would incorrectly be flagged as
an error. We can repair this flaw too by extending the for-
mula as follows

 (offhook � X ((� dialtone � � onhook) \

U (� dialtone � onhook)).

The Z-automaton [13] that is generated from this LTL
formula by standard converters (such as the one that is
built-in to the Spin model checker [5]) is illustrated in
Figure 2.

offhook

true

�dialtone� �onhook

�dialtone�
 onhook

true

Figure 2 Omega Automaton for the Dialtone Property

It should be noted that even though coming up with an
accurate formulation of this seemingly very simple error-
condition is hard, it is still harder to come up with an ac-
curate version of the positive system requirement that we
started with (i.e., the logical negation of the last LTL prop-
erty). The formal statement of that property requires the
use of the temporal V operator (the dual of the U operator),
which is defined as follows:

 (p V q) { � (� p U � q).

It can be quite difficult to develop a good intuition for
these types of formulae.

4.2 VISUAL FORMALISMS
The automaton structure shown in Figure 2 looks more
intuitive than its equivalent in LTL, but this too can be
misleading. It can be difficult as well to specify complex
requirements accurate when directly coding an Z-
automaton structure. In the first few distributed versions of
the Spin model checker this was the primary means for
specifying temporal properties. The addition of support for
LTL syntax in Spin version 2.7 was seen by many users as
a notable improvement. So if automata structures are not
an adequate formalism, and temporal logic is not quite
adequate, what alternatives remain?

One proposal has been to prepare a library of predefined
LTL formulae from which a user can choose, based on
short template descriptions of each basic type of property
[4]. This approach is often effective, but it cannot avoid
cases where incomplete intuition leads to the selection of
either an incorrect or an incomplete pattern. For the dial-
tone property, for instance, the first pattern that would
seem to match would be an Absence property, where we
look for the absence of dialtone in between an offhook and
an onhook event. The pattern for this in the database for-
malizes absence of P in between Q and R:

 F(Q � �R � R) ���P U R))

replacing the symbols P with dialtone, Q with offhook and
R with onhook then gives:

 F (offhook � � onhook � onhook) ��\

 (� dialtone U onhook)).

This formula looks intimidating enough that most users
would not question its validity. But it is still incorrect.
Note, for instance, that the formula is satisfied for any
state where offhook is false or where onhook is true, quite
independent of any occurrence of a dialtone event. Because
of the incorrect usage of the logical implication symbol,
the formula has still more problems. Note that it is also
satisfied for executions where onhook remains invariantly
false.

We have pursued an alternative approach, based on the
development of an intuitive graphical editor for the speci-
fication of basic temporal properties [12]. The types of
requirements that can be specified in this way are more
limited than the full use of LTL allows, but this appears
not to be a significant restriction. (There may actually be
some benefit in avoiding the full complexity of LTL.) The
correct version of the dialtone property, for instance, is
specified with the TimeLine editor as illustrated in Figure
3.

The timeline shows two events of interest, offhook and
onhook, on the timeline. The executions of interest are
identified by the initial event, which is marked with ‘e’ for
event. An arbitrary number of constraints to the execution
can be given below the timeline, over specific bounded
intervals of the execution. Here we have used a single con-
straint to state that we are only interested in executions
where no dialtone is generated after the initial offhook. An
error condition is detected if under these circumstances an
onhook event can occur: which is indicated by placing the
onhook event on the timeline as a failure event, marked
with the symbol ‘f’ and a cross.

Of course, also the intuition that is supported by timeline
specifications cannot prevent occasional mistakes. The
three events of interest in the dialtone property, for in-
stance, can be assigned in several different ways to con-
straints underneath the timeline, or to optional, required,
or failure events within the timeline. Unlike the various
forms of LTL formulae, though, each such variant of a
timeline is visually no more complex than any other. The
hope is that this visual simplicity allows the user to con-
centrate on the meaning of a property, rather than on the
subtleties of its formalization. To support that intuition,
the user can inspect the precise structure of the Z-
automaton that corresponds to the timeline as specified.
The timeline shown in Figure 3 precisely corresponds to
the Z-automaton from Figure 2.

5. CONCLUSIONS
Human work is subject to error. Humanly produced soft-
ware, therefore, unavoidably contains mistakes. Many of
these mistakes can effectively be intercepted with the help
of traditionally used tools, ranging from compilers to static
analyzers and runtime checkers. We know of only one ef-
fective method that can be used to intercept concurrency
related errors though: logic model checking. We claim that
any checking methodology that can directly exploit the
steady improvements in computational power will ulti-
mately gain a decisive advantage over methods that do not
have this capability.

But also in applications of logic model checking errors can
creep in. For instance, when the formal models are manu-
ally constructed, bugs can enter the models and hide re-
quirement violations from view. We can mitigate the effect
of this by using techniques for automated model extrac-
tion, e.g., as in [3], [6], and [2]. There are still some man-
ual steps here, for instance in the definition of the test-
harness or of the type of abstraction that is used, but the
opportunity for undetected error is further reduced.

With a software verification process based on model ex-
traction and logic model checking techniques, the one final
place where bugs can comfortably hide is in the property
definitions. The formulation of the requirements for a soft-
ware artifact is a fundamentally human task, and as such
unavoidably subject to human error. The commonly used
formalism of Linear Temporal Logic can challenge the
(human) verifier’s intuition, which can seriously jeop-
ardize the validity of verification efforts. As a counter-
measure, we have discussed the use of a simple visual for-
malism that can support our intuition more effectively. The
lesson learned from these tools is that it can sometimes be
wise to trade generality for confidence.

6. ACKNOWLEDGEMENTS
Margaret Smith developed the Timeline Editor discussed
in this paper, jointly with Kousha Etessami and the author.

7. REFERENCES
[1] L. Amster, D.L. McClain (Eds.), Kill Duck Before Serving,

Red Faces at The New York Times, Publ. St. Martin’s Grif-
fin, New York, 2002, 172 pgs.

[2] T. Ball, and S.K. Rajamani, Boolean programs: a
model an process for software analysis. MSR Techni-
cal Report 2000-14, February 2000, 29 pgs.

[3] J. Corbett, M. Dwyer, et. al, Bandera: Extracting fi-
nite-state models from Java source code., Proc. ICSE
2000, Limerick, Ireland.

[4] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in
property specifications for finite-state verification. In
Proc. 21st Int. Conf. on Software Eng., ICSE99, Los
Angeles, May 1999. See also:
http://www.cis.ksu.edu/santos/spec-patterns/ltl.html

[5] G.J. Holzmann, The model checker Spin. IEEE Trans.
On Software Engineering. May 1997, Vol. 23, No. 5,
pp. 279-295.

[6] G.J. Holzmann, and M.H. Smith, Software model
checking: extracting verification models from source
code. Formal Methods for Protocol Engineering and
Distributed Systems, Oct. 1999, Kluwer Academic
Publ., pp. 481-497.

[7] G.J. Holzmann, Economics of Software Verification,
Proc. ACM Workshop on Program Analysis for Soft-

Figure 3 Timeline Specification of the Dialtone Prop-
erty

ware Tools and Engineering, Snowbird, PASTE2001,
Utah, USA, June 2001.

[8] Information Week, Issue on Software Quality, Jan. 21, 2002.

[9] G.E. Moore, Cramming more components onto inte-
grated circuits. Electronics, April 19, 1965, pp. 114-
117.

[10] P. Naur, and B. Randell (Eds.) Report on Working
Conference on Software Engineering, 1968, Garmish,
Germany. Publ. 1969, NATO, Brussels.

[11] A. Pnueli, The temporal logic of programs. Proc. 18th
IEEE Symposium on Foundations of Computer Sci-
ence, 1977, Providence, R.I., pp. 46-57.

[12] M.H. Smith, G.J. Holzmann, and K. Etessami, Events
and constraints, a graphical editor for capturing logic
properties of programs. Proc. 5th Int. Symp. on Re-
quirements Engineering, Toronto, Canada, August
2001, pp. 14-22.

[13] W. Thomas, Automata on infinite words. Handbook
on Theoretical Computer Science, Volume B, Elsevier
Science, 1990, pp. 135-165.

