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ABSTRACT 

Real-life bugs are successful because of their unfailing 
ability to adapt. In particular this applies to their ability to 
adapt to strategies that are meant to eradicate them as a 
species. Software bugs have some of these same traits. We 
will discuss these traits, and consider what we can do 
about them.    

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verifi-
cation D1.3  [Programming Techniques]: Concurrent 
Programming. 

General Terms 
Algorithms, Reliability, Theory, Verification. 

Keywords 
Distributed systems software, logic model checking, SPIN. 

1. INTRODUCTION 
The ability of bugs to adapt to their environment is well 
known. It typically takes only five to ten years for insects 
to become immune to specific pesticides, and in about the 
same amount of time viruses and bacteria can ‘learn’ how 
to defeat the drugs that are developed to kill them. These 
are, of course, not the traits of individual organisms, but 
they are the traits of a species. Using natural selection to 
pass information from one generation to the next, the spe-
cies, as it were, can develop an ability to side step its at-
tackers, and thrive. 

There are some interesting parallels in this sense between 
software bugs and real-life bugs. Software bugs seem to 

have the same uncanny ability to defeat process improve-
ment efforts that are meant to eradicate them. 

After some fifty years of practice, few people today would 
say that we understand the problem of software quality 
well enough that we could outline a development process 
that could lead to zero-defect code. This is despite the fact 
that in the last fifty years the methods we have developed 
to prevent and intercept bugs have gotten significantly 
better. We have higher-level languages that can prevent 
many low-level mistakes; we have better compilers that 
can catch many coding mistakes through some forms of 
static analysis, and we have improved training for pro-
grammers. Still, those pesky bugs routinely manage to 
outsmart even the most experienced programmers. 

Some of the ways in which bugs have learned to adapt to 
improved software development environments are: 

x Bugs can adjust to the level of experience of the pro-
grammer. One common misconception is that experi-
enced programmers make fewer mistakes than novice 
programmers. Experienced programmers and novice 
programmers make roughly the same number of mis-
takes when writing the same amount of code. The 
mistakes made by the experienced programmer, how-
ever, will be more subtle than those of the novice pro-
grammer. The more complex bugs that the experi-
enced programmer can seed into the code are often 
harder to find than the simpler typos of less experi-
enced colleagues. 

x Bugs can invade our test environment. It has been said 
that the safest place for a fly to sit is on the fly-swatter 
(presumably on the handle…). If our test setup is itself 
buggy, we will not find the bugs we are looking for. 
Similarly, if the original requirements for the software 
are inaccurate, or the test objectives that are derived 
from the requirements, the remaining test process 
could be perfect, but it would still be ineffective.  

x Bugs have developed a strategy to quietly replace any 
one of them that is caught immediately with one or 
more others. This is the well-known phenomenon of 
developers being most likely to insert new bugs into 
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their code while they are trying to fix it to remove old 
bugs. Bugs thereby counteract one of the primary 
means we have to eradicate them. 

The effect that bugs have their easiest entry into code dur-
ing a version update process is easily confirmed by looking 
at historical data for the distribution of the Spin model 
checker [5]. Figure 1 shows the frequency of the number of 
days that have passed between version updates of the Spin 
sources over a period of more than ten years. Several 
months can pass in between major updates of stable ver-
sions of the code (the largest interval to date being 180 
days). If bugs creep in, despite best efforts to avoid this, 
this typically results in a new version release that follows a 
prior release within a few days. Since the same process 
repeats for every new release, over a sufficiently long time 
we would expect to see a relatively large number of version 
releases with  short intervals, and a more random distribu-
tion of longer intervals between releases. Figure 1 illus-
trates this effect nicely. The shortest interval is 0 days, for 
one instance where two releases of Spin were issued on the 
same day (Versions 2.3.7 and 2.3.8 from May 18, 1995). 
Nearly half of all releases to date (65 of 141) followed the 
immediately preceding release within one week. 

 
Figure 1  View of the Spin Release History 

1.1 CAUSES 
The main reason why all these problems exist is disap-
pointingly simple: programming is a human activity and 
humans are prone to error. As Mark Paulk from Carnegie 
Mellon University’s Software Engineering Institute dryly 
noted ``A fundamental problem with software quality is 
that programmers make mistakes’’ [8]. The usual industry 
estimate is that a typical piece of code contains one to ten 
residual software defects per one thousand lines of code 
written (i.e., bugs that survive all testing). This means that 
if a product has one million lines of code, the end-user 
should expect roughly one thousand residual, or latent, 
faults. Not all of those faults will show up in practice of 
course, which may lead to a false sense of quality. A more 

popular product, though, will attract more users, who in a 
way act as volunteer testers. And, more testers will cause 
more latent faults to reveal themselves. This leads to the 
curious effect that the perceived quality of a product can 
decrease as the number of users of the software increases 
[7]. 

It is often suggested that software products are inherently 
less reliable than other types of products that are equally 
subject to human error. This supposition, however, does 
not seem to be supported by the available evidence. If, for 
instance, we consider programming to be a form of styl-
ized writing, we can try to compare this activity with other 
forms of writing where correctness is important. An aver-
age weekday issue of The New York Times, for instance, 
contains 13,800 sentences [1]. Inevitably, some mistakes 
are made. In each issue the paper therefore also publishes 
a list of corrections to the previous issue. In a typical issue 
of the paper, there are about 10-15 of those corrections. 
This averages out to about one mistake for every one thou-
sand sentences written. Not surprisingly, this is roughly 
the same residual defect ratio as is achieved by careful 
programmers. Journalists and programmers are subject to 
the same human fallibility. 

Given the fact that programmers do make mistakes, and 
will likely continue to make mistakes no matter how hard 
they try to avoid doing so, we are stuck with the job of 
finding better ways to intercept those errors, hopefully in 
ways that software bugs will find harder and harder to sur-
vive. 

1.2 OVERVIEW 
The premise of this paper is that it is unlikely that we will 
ever come up with effective means that can prevent bugs 
from entering the software design process altogether. 
Given that, our best strategy is to devise means to detect 
the presence bugs as effectively as possible, so that they 
can then be removed. Bugs, though, can develop counter-
strategies that we must be aware of. We will argue that the 
best means we have to defeat bugs is to use the computa-
tional power of computers against them. One of the tech-
niques that allows us to do so is logic model checking. We 
will describe where bugs are most likely to find hiding 
places when these techniques are used, and how we can 
make it less likely that they will be successful in that at-
tempt. 

2. TRADITIONAL METHODS 
We collectively have about half a century of experience 
with the job of producing and debugging software. One 
can expect that in that period of time the dust can pretty 
much settle on what the right way is of structuring soft-
ware in such a way that the introduction of errors can be 
minimized, and in testing software in such a way that the 



bugs that do slip into the code can be caught. What are the 
methods that are used in the top industries to solve these 
problems? 

In the telecommunications industry a rather rigorous soft-
ware development process was adopted in the seventies 
and eighties. The development starts with requirements 
capture and documentation by system engineers. That 
phase is followed by high-level and low-level design (i.e., 
programming), followed by various stages of testing, and 
finally customer acceptance. The final phase of the process 
is maintenance. In each phase errors can be introduced 
into the process and in each phase errors can be inter-
cepted. The common wisdom is that the earlier a bug is 
intercepted, the less expensive it will be to fix it. 

In the requirements phase, inconsistencies can be caught 
with basic requirements analysis techniques, in the high 
level design phases errors are caught by prototyping, simu-
lation, and modeling, in the low level design phase peer 
review sessions and targeted unit testing techniques can be 
used. In the final testing phase this consists of integration 
and customer acceptance testing. 

All these techniques do in fact combine to intercept the 
majority of all errors that are introduced. But these tech-
niques do not bring the residual error rate down to zero. In 
all likelihood, not even the most diligent application of 
these traditional techniques could even bring the residual 
error rate down to zero.  There are several reasons for this. 

First consider sequentially executing deterministic soft-
ware. To be of any interest at all, these programs must 
read their input date from some external source and use 
these data to compute a result that can then be returned to 
the user. In most cases it will be impossible to test the pro-
gram across the entire range of possible inputs.  So a sam-
pling method has to be used. Again, in almost all cases of 
interest, the sampling method will be based on a heuristic 
and will be incomplete, leaving open the possibility of a 
missed error. Bugs prefer to hide in places where testers 
decide not to look, thus improving their chances of sur-
vival. 

The situation is more interesting still for concurrent, and 
non-deterministically executing software. Almost all mod-
ern software falls into this category. This is an ideal place 
where bugs can currently hide safely, immune to most of 
the currently used testing strategies. 

This time not just the input data can influence the compu-
tations but also the relative ordering of events that may 
occur in different parts of the system is important. The 
unpredictable ways in which multiple users can interact 
with the different parts of a physically distributed system 
become a factor, and similarly the unpredictable way in 
which schedulers run asynchronous threads of execution. 

Two issues complicate our ability to test or debug such 
systems: limited observability and limited controllability. 

Limited observability means that the tester or the user can-
not observe important details of an execution (such as the 
precise interleaving of multiple threads in an execution).  

Limited controllability means that the tester cannot control 
those details either. Even if a precise interleaving that 
needs to be tested is known, it generally cannot be repro-
duced on a live system. The fundamental non-determinism 
that is exhibited by distributed systems makes it virtually 
impossible to test them thoroughly by traditional means.  
We face these problems in the testing of practically all 
systems of interest that are built today: operating systems, 
telephone systems, plant control systems, traffic control 
systems, web applications, etc. 

3. AUTOMATA AND LOGIC 
The traditional ways of testing software do not use the 
power of computers very well. Somewhat better in this 
sense are methods that try to automate specific parts of the 
design process. In this class we find methods for automatic 
test generation, regression testing, and code generation. 
These methods can bypass the error-prone human, and 
thus reduce the error insertion rate somewhat. 

We can do still better though with methods that can di-
rectly take advantage of the steadily increasing power of 
computers. Many of the new methods in the latter class are 
based on the use of automata and logic in one form or an-
other. This includes static analysis and symbolic interpre-
tation methods, reachability analyzers and logic model 
checking tools. These tools try to overcome the limitations 
of traditional testing by constructing and analyzing closed 
models, or symbolic representations, of real-world arti-
facts. In most cases, these methods depend on an ability to 
either solve computationally hard problems, or to find rea-
sonable approximations to their solution. That trait has 
sometimes been considered a weakness, but this weakness 
is disappearing as computers are becoming more powerful. 

The phenomenon that bugs can invade any technique and 
make it less effective does of course still exist. We will 
consider below how a new strain of bugs is attempting to 
do so with the newer methods, and we will reflect on what 
we might be able to do about that. 

3.1 COMPUTATIONAL COMPLEXITY 
When reachability analysis techniques were first intro-
duced for the verification of data communications proto-
cols in the late 1970s and early 1980s, the most often cited 
problem was the problem of computational complexity. No 
paper was published in this period without a serious dis-
cussion of the so-called state space explosion problem. 



Although many verification algorithms have a complexity 
that is only linear in the number of reachable system 
states, the spoiler is that the number of reachable system 
states can depend exponentially on the value of some criti-
cal problem parameters. Those parameters include the 
number of asynchronously executing processes, the num-
ber and length of message buffers, the effective range of 
data types, etc. Model checking tools would be quite use-
less in practice if the theoretical worst-case behavior would 
occur frequently enough. Fortunately, it occurs only rarely. 
The same holds for many other types of undeniably useful 
tools that solve computationally hard problems, yet that we 
have come to depend on for solving day-to-day problems. 
This class includes, for instance, compilers, graph layout 
tools, and network optimization tools. Luckily for us, in 
none of these cases do users worry much about theoretical 
worst-case behavior, simply because it does not occur often 
enough in practice. 

The steady increase of computational power of average 
desktop machines combined with the steady improvement 
in algorithmic techniques that static analyzers and logic 
model checkers can use to reduce the complexity of typical 
verification problems have brought about notable changes. 
To counter an exponential effect one ideally needs to find 
another exponential effect that works in the opposite direc-
tion. The algorithmic improvements that have been devel-
oped in the last two decades (e.g., partial order reduction 
techniques, BDD based model checking techniques, and 
abstraction techniques) can offer such effects, e.g., [5]. The 
steady increase in the power of average computers adds an 
additional exponential counter-effect, acting quite inde-
pendently of the first. 

Since the nineteen-fifties the raw speed of computers has 
increased by about ten orders of magnitude. The average 
desktop PC that anyone can buy today is more powerful 
than the average supercomputer that very few large corpo-
rations could afford to buy just two decades ago. Differ-
ences of this magnitude have a dramatic impact on what 
can be done in software verification, and the continuing 
trend can very significantly influence what we can do to-
morrow. 

The often heard rebuttal to the observation about the con-
tinuing effect of Moore’s law as first articulated in [9] is 
that the increase in complexity of software is outpacing the 
increase in the power of the machines that we can use to 
check that software. This notion, though, does not quite 
hold up. At the first conference on software engineering 
[10] (where the term software crisis originated) the size of 
one of the larger systems being developed at the time, 
IBM’s system OS/360, was given as five million lines of 
assembly level code. The modern day equivalent would be 
approximately one million lines of C code. Today, 34 years 

later, a typical operating system contains less then one 
hundred million lines of code. This means that the size of 
large software applications has increased by less than two 
orders of magnitude in thirty years, while the compute 
power we can use to analyze that code has increased by six 
orders of magnitude. There is little doubt that an average 
compiler today can check ten million lines of code more 
thoroughly and more quickly than its ancestor could check 
a ten-thousand line program in 1970. 

Computational complexity for model checkers such as 
Spin is close to becoming a non-issue. It seems unlikely 
that there is an effective adaptation strategy for bugs to 
evade the ever-increasing power of our analyzers. But, bugs 
can still evade our scrutiny by finding different places to hide, as 
we shall discuss next. 

4. MODEL CAPTURE 
Logic model checkers work with closed, finite models of 
real world artifacts. Traditionally, these models are con-
structed by hand, as prototypes of a design. The effort in-
volved can be justified by pointing to similar efforts that 
are made in other engineering disciplines to obtain ana-
lytic results. The civil engineer may construct a small pro-
totype of a new design to study its structural integrity, and 
the mathematician may construct a mathematical model 
that captures a simplified view of the real world that lends 
itself more easily to analysis. The software engineer will 
often also build a small prototype of a software design, to 
subject the prototype to simulation experiments and per-
haps a usability study. So, the notion that one can first 
build and then analyze a design model in a special purpose 
modeling language is sound, well known, and useful. 

When model checking is applied for software verification, 
there are two problems to be overcome. First, model build-
ing is a skill that must be learned. Model checkers may 
appear attractive at first because they seem to deliver push-
button results, but the push-button results obtained by the 
first-time user are not nearly as impressive as those that 
can be achieved by more experienced users.  Fortunately, 
novice users do tend to become experienced users over 
time, so this problem is only a temporary one. 

A second, more basic, problem is that the method we 
sketched above only helps us to find bugs in high-level 
system designs, and we may be more ambitious than that. 
We may, for instance, also want to use these methods to 
find typical bugs in implementation level code: the pur-
view of classic software testing techniques. This problem 
too may be overcome. We know that in some cases it is 
possible to extract verification models from implementa-
tion level code mechanically. Techniques to do so were 
developed for Java [3] and for C [6] and [2]. Not all tech-
nical details have been overcome in this area. Model ex-
traction for a substantial piece of code requires the con-



struction of a test-harness, which is still a fairly non-trivial 
human effort. By using a combination of automated ab-
straction, model extraction, and logic model checking we 
may be able to increase the scope of applications suffi-
ciently to make this approach to software verification more 
routine. 

4.1 REQUIREMENTS CAPTURE 
We now come to the third and most underestimated prob-
lem in applications of automated tools to software verifica-
tion: the problem of accurately capturing the correctness 
requirements that have to be verified. Many users take this 
issue for granted: they would like their software applica-
tion to be proven correct, without having to worry about 
what correctness actually means. Every verifier knows, 
though, that there is no such thing as absolute correctness. 
We may be able to prove that a software artifact has, or 
does not have, a specific set of explicitly stated properties, 
but whether all those properties taken together constitute 
correctness is an issue that a verification tool cannot settle: 
only a human user can try to do so (subject to error, of 
course). An application, for instance, cannot be presumed 
to be correct if a verification tool has merely proven that it 
is completely specified and cannot deadlock. 

Verifiers, and logic model checkers in particular, excel in 
their ability to show that specific requirements are either 
satisfied or may be violated. It is up to the user to come up 
with a comprehensive list of requirements to be checked, 
and to make sure that the requirements that are checked 
make sense. That is a more difficult task than many real-
ize, as we will try to illustrate below. 

4.1.1 TEMPORAL LOGIC 
The standard method to express the correctness require-
ments for a model checking application is to use the for-
malism of temporal logic, as first proposed for this purpose 
by Amir Pnueli in [11]. In Linear Temporal Logic (LTL 
for short), as used in Spin [5], a small number of special 
operators are introduced to allow one to reason about se-
quences of events that are claimed to be causally related. 

LTL has the important benefit that it allows us to make 
precise, and often concise, statements about complex sys-
tem properties. But, there is also a downside. To use LTL 
well requires a level of sophistication that many users 
never develop. The danger of improper use this time is not 
an unwarranted increase in the complexity of a verification 
run, it is that the user unknowingly obtains results that are 
invalid. A small example can illustrate this effect. 

Suppose that we want to verify the following simple prop-
erty of a telephone system: 

‘‘When the subscriber picks up the phone, dial-tone is al-
ways generated.’’ 

The property is simple enough that it can be clearly stated 
in just a few words, and there will be no confusion whatso-
ever about what the informal statement actually means. 
This is different when we switch to temporal logic. Our 
first attempt can be to convert the requirement as directly 
as possible into an LTL formula, for instance as follows. 

 F (offhook �  dialtone) 

In words, this formula says that it is always (the box opera-
tor F ) the case that the occurrence of an offhook event 
implies (the logical implication symbol ���WKDW�eventually 
(the diamond operator  ) a dialtone event will occur. A 
verification run with this property, where we try to find 
any possible scenario that could violate this property, 
would most likely come up empty, and the (human) veri-
fier could believe to have proven the property. But this 
would be quite incorrect. 

Note that the property does not rule out the case that on a 
failure to hear a dial-tone a subscriber would return the 
phone onhook and try a new, this time more successful 
call. The dialtone would then be generated only if the off-
hook event is repeated, which is clearly not the intent.  

We can try to counter this by slightly modifying the prop-
erty, but we quickly notice that it is easier to reason about 
the type of error scenario that we want to prove to be in-
feasible, rather than the property itself. So let us switch to 
an LTL formula that captures the error behavior we are 
interested in. Taking into account our earlier mistake, the 
new formula could look as follows. 

  ( offhook ���� dialtone U onhook )). 

In words, this formula states that eventually the occurrence 
of an offhook event could logically imply the absence of a 
dialtone event that may persist until (the until operator U) 
an onhook event occurs. Did we capture the right property 
this time? Unfortunately, the answer is no. 

We have made a very common mistake here in confusing 
logical implication with causal implication. The arrow 
operator is not a temporal operator. The definition of logi-
cal implication is simply: 

 (p �T��{ (�p � q) 

The requirement expressed here is that in the current sys-
tem state either p is false or q is true: there is no temporal 
relation here. This means that the last LTL formula we 
gave is already satisfied if at least once in an execution 
offhook does not occur (i.e., if offhook is false). For the 
same reason it is also satisfied if at least once in an execu-
tion an onhook event occurs (since the sub-formula (p U q) 
is immediately satisfied if q is true). This makes it possible 
to satisfy the formula quite independent of the dialtone 
event, which is again clearly not what we intended. Having 
realized the problem, it is again easy to correct it. We then 



arrive at the following LTL formula, our third attempt to 
capture this simple correctness property: 

  ( offhook �  ( � dialtone U onhook )). 

This time we did capture the right behavior, but we also 
captured more than we intended. Note that the formula is 
already satisfied when offhook and onhook are simultane-
ously true. It would be acceptable to leave things this way, 
since clearly in the application we are interested in this 
cannot ever occur. But, for arguments sake we may also 
want to repair this flaw. We can do so by introducing the 
Next operator (represented by the symbol X). 

  ( offhook � X ( � dialtone U onhook )) 

We have now separated the state where we expect to find 
the offhook event from the subsequent states in which the 
onhook may take place, so all seems well. We now note 
that this last formula will erroneously be satisfied for an 
execution where a dialtone event could coincide with the 
onhook event. That is: an execution where a dialtone 
would be generated at the exact instant that the subscriber 
returns the phone onhook would incorrectly be flagged as 
an error. We can repair this flaw too by extending the for-
mula as follows 

  ( offhook � X ( (� dialtone � � onhook) \ 

U (� dialtone � onhook )). 

The Z-automaton [13] that is generated from this LTL 
formula by standard converters (such as the one that is 
built-in to the Spin model checker [5]) is illustrated in 
Figure 2. 
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Figure 2  Omega Automaton for the Dialtone Property 

It should be noted that even though coming up with an 
accurate formulation of this seemingly very simple error-
condition is hard, it is still harder to come up with an ac-
curate version of the positive system requirement that we 
started with (i.e., the logical negation of the last LTL prop-
erty). The formal statement of that property requires the 
use of the temporal V operator (the dual of the U operator), 
which is defined as follows: 

 (p V q) { � (� p U � q). 

It can be quite difficult to develop a good intuition for 
these types of formulae. 

4.2 VISUAL FORMALISMS 
The automaton structure shown in Figure 2 looks more 
intuitive than its equivalent in LTL, but this too can be 
misleading. It can be difficult as well to specify complex 
requirements accurate when directly coding an Z-
automaton structure. In the first few distributed versions of 
the Spin model checker this was the primary means for 
specifying temporal properties. The addition of support for 
LTL syntax in Spin version 2.7 was seen by many users as 
a notable improvement. So if automata structures are not 
an adequate formalism, and temporal logic is not quite 
adequate, what alternatives remain? 

One proposal has been to prepare a library of predefined 
LTL formulae from which a user can choose, based on 
short template descriptions of each basic type of property 
[4]. This approach is often effective, but it cannot avoid 
cases where incomplete intuition leads to the selection of 
either an incorrect or an incomplete pattern. For the dial-
tone property, for instance, the first pattern that would 
seem to match would be an Absence property, where we 
look for the absence of dialtone in between an offhook and 
an onhook event. The pattern for this in the database for-
malizes absence of P in between Q and R: 

 F(Q �  �R � R) ���P U R)) 

replacing the symbols P with dialtone, Q with offhook and 
R with onhook then gives: 

 F (offhook � � onhook �  onhook) ��\ 

  (� dialtone U onhook)). 

This formula looks intimidating enough that most users 
would not question its validity. But it is still incorrect. 
Note, for instance, that the formula is satisfied for any 
state where offhook is false or where onhook is true, quite 
independent of any occurrence of a dialtone event. Because 
of the incorrect usage of the logical implication symbol, 
the formula has still more problems. Note that it is also 
satisfied for executions where onhook remains invariantly 
false. 

We have pursued an alternative approach, based on the 
development of an intuitive graphical editor for the speci-
fication of basic temporal properties [12]. The types of 
requirements that can be specified in this way are more 
limited than the full use of LTL allows, but this appears 
not to be a significant restriction. (There may actually be 
some benefit in avoiding the full complexity of LTL.) The 
correct version of the dialtone property, for instance, is 
specified with the TimeLine editor as illustrated in Figure 
3. 



The timeline shows two events of interest, offhook and 
onhook, on the timeline. The executions of interest are 
identified by the initial event, which is marked with ‘e’ for 
event. An arbitrary number of constraints to the execution 
can be given below the timeline, over specific bounded 
intervals of the execution. Here we have used a single con-
straint to state that we are only interested in executions 
where no dialtone is generated after the initial offhook. An 
error condition is detected if under these circumstances an 
onhook event can occur: which is indicated by placing the 
onhook event on the timeline as a failure event, marked 
with the symbol ‘f’ and a cross. 

Of course, also the intuition that is supported by timeline 
specifications cannot prevent occasional mistakes. The 
three events of interest in the dialtone property, for in-
stance, can be assigned in several different ways to con-
straints underneath the timeline, or to optional, required, 
or failure events within the timeline. Unlike the various 
forms of LTL formulae, though, each such variant of a 
timeline is visually no more complex than any other. The 
hope is that this visual simplicity allows the user to con-
centrate on the meaning of a property, rather than on the 
subtleties of its formalization. To support that intuition, 
the user can inspect the precise structure of the Z-
automaton that corresponds to the timeline as specified. 
The timeline shown in Figure 3 precisely corresponds to 
the Z-automaton from Figure 2. 

 

5. CONCLUSIONS 
Human work is subject to error. Humanly produced soft-
ware, therefore, unavoidably contains mistakes. Many of 
these mistakes can effectively be intercepted with the help 
of traditionally used tools, ranging from compilers to static 
analyzers and runtime checkers. We know of only one ef-
fective method that can be used to intercept concurrency 
related errors though: logic model checking. We claim that 
any checking methodology that can directly exploit the 
steady improvements in computational power will ulti-
mately gain a decisive advantage over methods that do not 
have this capability. 

But also in applications of logic model checking errors can 
creep in. For instance, when the formal models are manu-
ally constructed, bugs can enter the models and hide re-
quirement violations from view. We can mitigate the effect 
of this by using techniques for automated model extrac-
tion, e.g., as in [3], [6], and [2]. There are still some man-
ual steps here, for instance in the definition of the test-
harness or of the type of abstraction that is used, but the 
opportunity for undetected error is further reduced. 

With a software verification process based on model ex-
traction and logic model checking techniques, the one final 
place where bugs can comfortably hide is in the property 
definitions. The formulation of the requirements for a soft-
ware artifact is a fundamentally human task, and as such 
unavoidably subject to human error. The commonly used 
formalism of Linear Temporal Logic can challenge the 
(human) verifier’s intuition, which can seriously jeop-
ardize the validity of verification efforts. As a counter-
measure, we have discussed the use of a simple visual for-
malism that can support our intuition more effectively. The 
lesson learned from these tools is that it can sometimes be 
wise to trade generality for confidence. 
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