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Abstract. We examine IBM’s exploitation of formal verification using RuleBase—a formal verification tool
developed by the IBM Haifa Research Laboratory. The goal of the paper is methodological. We identify an
integrated methodology for the deployment of formal verification which involves three complementary modes:
architectural verification, block-level verification, and design exploration.
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1. Introduction .

It is becoming increasingly difficult to deliver quality hardware under the constraints of
resources and time to market. As micro-architectural complexity has grown and process
technologies improved, verification has become the productivity bottleneck in the design
cycle. The role of formal verification is to break the bottleneck, by providing a way for sys-
tems under design to be mathematically modeled and reasoned about. However, as noted by
Sangiovanni-Vincentelli [13] at the 33rd Design Automation Conference in 1996, powerful
tools are not enough. A paradigm shift is required, and a verification aware discipline in
the design process is the only way to ensure the correctness of hardware today. This is
recognized by engineers and their management at IBM, who are increasingly turning their
focus to methodological questions in design and verification. In this paper, we describe an
integrated methodology for the deployment of formal verification, used in the IBM design
environment. It includes three complementary modes: architectural verification, block-level
verification, and design exploration.

It is worth noting at the outset that IBM takes a pragmatic view of formal verification.
During more than six years of experience, formal verification at IBM has focused on finding
bugs, rather than proving a design correct. We consider formal verification to be a powerful
extension of the traditional process of bug finding by simulation, and as complementary to
simulation in the verification process.

This paper is organized as follows. Section 2 provides some basic background on symbolic
model checking with RuleBase (this section can be skipped by the reader without impact

*This work was done while the author was a member of the Formal Methods Group at IBM Haifa Research
Laboratory.
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on the readability of the rest of the paper, which is self-contained). Section 3 describes the
three tiered design methodology. Section 4 reviews a number of formal verification projects
in which RuleBase was deployed in a variety of ways according to the aforementioned
methodology. Section 5 summarizes and concludes.

2. The RuleBase formal verification tool

RuleBase [2] is a formal verification tool developed by the IBM Haifa Research Laboratory.
Itis based on SMV [9], the symbolic model checker developed by Ken McMillan at Carnegie
Mellon University. RuleBase was described in [2]; we will only briefly touch on some
important points here.

The verification process with RuleBase takes three inputs. The first input is the design,
which can be coded in either VHDL or Verilog. The second input is the environment, which
describes the legal input sequences of the design under verification. These are coded in the
langnage EDL, a dialect of the SMV input language. Finally, the properties to be verified are
input in the language Sugar [2], which is a user-friendly superset of CTL [5]. The execution
flow of RuleBase is shown below in figure 1.

Much of the RuleBase development effort has been put into various techniques which
address the state explosion problem. Powerful reduction techniques, both syntactic and
semantic, identify and remove logic which does not affect the properties being checked.
Safety properties are checked on-the-fly [4], with the ability to apply partial search [12] and
guided search [16] algorithms, as well as over-approximations. The tool orders partitions
[7] and BDD variables.

Debugging aids are also an important part of the RuleBase tool. A reduction analyzer
gives information regarding signals removed by reductions. Vacuous passes [3] as well as
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Figure 1. RuleBase execution flow.
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properties which are found to be tautologies or contradictions are flagged for the user, and
counter-examples and witnesses are presented as timing diagrams.

3. A three-tiered methodology

The use of RuleBase in IBM is based on a multi-level deployment, comprised of high-, mid-,
and low-level applications of the RuleBase tool. Each of these is described in detail below.

3.1. High-level verification

Complicated hardware control typically implements some concurrent algorithm, in whicha
set of communicating processes cooperate in order to achieve the desired functionality. If the
micro-architecture describes the algorithm in sufficient detail, it can be verified against the
desired functionality in a process known as high-level, or architectural verification. In this
mode, the set of properties to be verified is very simple, and directly expresses the desired
functionality of the algorithm. For instance, the desired functionality of the memory/cache
controller in a cache coherent multi-processor system is that it return correct data. Thus,
the central safety property (simplified here slightly) can be expressed as “If a data value D
is written to address A, then the next time address A is read from, the read will return data
value D’ In addition, one liveness property (“every transaction is eventually completed”)
is checked. Other safety properties (for instance, that cache coherence is maintained, that
buffers do not overflow, etc.) may be checked because they are easier to verify and find bugs
more quickly than the central safety property. However, because the central safety property
directly expresses the desired functionality, the question of whether or not enough properies
have been written is not relevant.

High-level verification is applied at the very early stage of high level design, when
the system architecture is still being developed. In this mode, application is by formal
verification specialists, who work together with the architects and designers in a process
which can be described as formal design [6]. In architectural verification, an abstract model
of the system is built and model checked. This process allows fast focus on algorithmic
problems and thus finds errors in early design approaches. At this level of application, the
goal is to completely verify the system architecture, with the intent that the design be free of
architectural bugs late in the design cycle, when fixing them is much more difficultand costly.

Formal verification specialists are needed in this mode because of the aggressive goals
of high-level verification. A formal verification specialist is experienced in modeling and
abstracting systems for formal verification, and is familiar also with the internals of the
model checking process. The specialist uses this knowledge to avoid and/or deal with size
problems inherent in a system-level verification effort.

3.2. Mid-level verification

Mid-level verification is the process of validating a functional unit or block against a com-
prehensive set of properties, derived directly from a detailed specification. For instance,
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a bus interface unit may be verified in this manner against a set of properties describing
the bus protocol. The goal is to attain a high degree of confidence in the correctness of the
design under verification.

To this end, trained formal verification engineers devise and follow a thorough verification
plan. Critical logic circuits of up to 5000 latches (pre-reduction) are verified in this way.
Because of the large pre-reduction sizes, it is not possible to completely verify designs
at this level. Rather, the verification plan addresses various reduced environments which
will result in a number of reduced models, each of which attempts to cover a portion of
the design. Thus, mid-level verification is not only mid-way between high- and low-level
verification in the size of the designs to which it is applied, it is also mid-way between the
complete, exhaustive expectations of high-level verification and the exploratory nature of
low-level verification.

Dedicated formal verification engineers are needed in this mode because of the specialized
knowledge required to deal with large pre-reduction sizes of the unit under verification.
A formal verification engineer is experienced in environment modeling strategies which
give good verification of large designs, and is an expert user of the formal verification tool.
The formal verification engineer uses this knowledge to develop a verification plan for a
large piece of logic, as well as to perform the verification.

3.3.  Low-level verification

Low-level verification, or design exploration, is the activity of exploring a partly-specified
piece of logic in order to obtain insight into the design behavior. In this mode, the appli-
cation is usually by logic designers to their own design, and is limited to small pieces of
no more than 100 latches (pre-reduction). This work is not driven by the expectation of
completely verifying the design, but rather of exploring the logic in order to obtain better
insight into the state space. Typical properties are therefore aimed at checking whether an
Finite State Machine (FSM) can move from state sl to state s2, or whether a specific bus
transaction can occur, rather than whether the FSM always makes the correct transition,
or whether a bus transaction always completes correctly. This type of application works
in the early design stages, when the design is still unstable, and much of it not yet coded.
It results in a cleaner design being released for higher verification stages, and frequently
results in a simpler design due to a better comprehension by the designer of the design
behavior.

Application in this mode is necessarily by the logic designer because low-level verification
is applied to small, usually undocumented pieces of logic. Since the goal is not a full
verification, but rather design exploration, the logic designer is not required to be an expert
user of the verification tool. Logic designers can begin using the tool in this mode after a
short (1-2) day introduction to RuleBase.

Together, these three modes of using formal verification provide a framework for the
analysis of the hardware throughout its life cycle, starting from concept development, and
continuing throughout design implementation and verification. In the next section, several
formal verification projects, at varying modes of application, are described.
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4, Review and analysis of some formal verification efforts

This section focuses on several product design efforts across IBM during the years 1996
1999. These include an AS/400 compression cache, a Netfinity SMP Server, a SP/2 System
Node Controller, a SP/2 Communication Switch, an AS/400 Storage Control Unit, and an
AGP 2X Core. We describe each project, and examine in detail one or more bugs found
by formal verification. The type of bugs described varies; some are complex deadlocks or
livelocks, while others are simpler bugs found in the earliest design stages. Together, this
variety of bugs represents the different roles which formal verification takes at different
points in the hardware design flow, according to the methodology described in Section 3.

4.1. High-level verification

AS/400 Compression Cache (1998). An 8-way AS/400 MP system containing a com-
pression cache was modeled and formally verified by a formal verification specialist in
Rochester, Minnesota. AS/400 is IBM’s mid-range server designed for business use.

Rules were coded to check coherence between the compression cache and other caches
in the system, and to verify that correct data was delivered to the processors. Four confirmed
architectural flaws in the specification of the compression cache were found, having to do
with the interaction of compression requests and other requests on the bus. For instance,
the bus protocol defines a time lag between receiving a request and responding to it. The
original architecture implied that a bus response should be calculated as early as possible
after receiving a request. Architectural verification showed that, in rare cases, too early a
calculation could result in loss of coherence, and confirmed that the solution was to delay
the calculation until the response was actually needed.

The most important contribution of architectural verification to this project was confir-
mation that the particular use of the bus by the compression cache, which was a new and
untried concept, was indeed workable. No additional architectural errors in the compress-
ion cache were found by simulation.

Netfinity SMP Server (1999). A Netfinity SMP server was modeled and verified by a team
of formal verification specialists from Rochester, Minnesota, and Haifa, Israel, working
closely with the Netfinity chipset system architects. IBM’s Netfinity line consists of Intel
processor based industry standard servers for business class applications.

Rules were run to check coherence of processor caches, and that correct data was delivered
to the processors. Results are shown in figure 2 below. Bug count is for bugs found during
formal verification of the chipset high level design only. Simulation (implementation) bugs
are not shown.

Fifty chipset specification bugs were found during high level design. A few were simple
misses to tables. Many were corner cases involving unusual interactions of two or more
transactions. Three were deadlocks, and three of the bugs were violations of data consistency,
despite the fact that cache coherence was maintained.

The chipset architects commented that the problems found by architectural verification
speeded the design team’s understanding of the Intel coherence architecture, and helped
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Figure 2. Coherence unit specification bugs.

to find problems in early chipset design approaches. It drove rigor, completeness and
correctness of the chipset high level design, and resulted in VHDL which was derived di-
rectly and rapidly from a complete, algorithm-oriented specification. Millions of simulation
cycles were run on this design, and tens of implementation bugs were found. However, no
coherence-related architectural bugs were found by simulation. A more in-depth discussion
of the design process used in this project can be found in [6].

4.2.  Mid-level verification

SP/2 System Node Controller (11/96-6/97). The SP/2 system node controller was for-
mally verified by a team of verification specialists in Austin, Texas and in Haifa, Israel,
using the mid-level verification mode. The SP/2 parallel computing architecture is part of
the Department of Energy’s Accelerated Strategic Computing Initiative (ASCI), which is
building the world’s fastest supercomputer [15]. The node controller (NC) is an interface
between four processors and the SP/2 system. The NC is comprised of four ports, each of
which is partitioned into five blocks. Three more blocks interact with the ports. The system
is shown in figure 3. Formal verification was done on all the NC blocks.

An elusive deadlock was found by this work. It involved an address multiplexer used
to route high and low priority transactions coming from the ports: Processors P1 and P2
constantly have low priority requests pending. After P2 is served, but before P1 is served,
another processor, P3, issues a high priority request. This high priority request is immedi-
ately served, and by the time it is completed, the arbitration cycle returns to P2, This results
in the starvation of processor P1.

This bug was not found during several months of simulation over millions of simulation
cycles. One month after formal verification began, this bug was discovered. In addition,
47 other bugs were found by the formal verification effort described here. The NC formal
verification experience has been described in more detail in [1].

SP/2 Communication Switch (11/96—6/98). The SP/2 communication switch is also part
of the SP/2 parallel computing architecture 4.2. It was formally verified by a team of formal
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verification engineers in Poughkeepsie, New York, and Haifa, Israel. The communication
switch is comprised of three ASICs, of which the bus adapter (BA) was formally verified.
The BA is shown in figure 4 below. It is the interface between the computer’s native memory
interface (PowerPC bus) and the rest of the adapter. The BA consists of two parts: the East
Part (EP), which contains the adapter logic, and the West Part (WP), which is the PowerPC
bus interface. Both were formally verified.

A subtle violation of the PowerPC bus protocol was found by this work. The PowerPC
bus can serve the WP, or delay service by responding with a rerun response.! After a
WP transaction receives a rerun response, it can be reissued only after receiving a rerun
request on the PowerPC bus. The following scenario was found: a WP address transaction
was delayed with the rerun response. After receiving two rerun requests, the WP correctly
reissued the transaction. However, this transaction was also delayed with a rerun response.
This time, the WP did not wait for a rerun request before reissuing the transaction, thus
violating the PowerPC bus protocol.

Formal verification accounted for 58 bugs found in the SP/2 Switch design pass I (January
1997-December 1997). During pass II (January 1998-June 1998), an addition ten EP and
one WP bugs were found. The development team in Poughkeepsie has subsequently initiated
a technology transfer process whereby a local team owns the responsibility and knowledge
required to deploy RuleBase in Poughkeepsie.
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4.3.  Low-level verification

AS7400 Storage Control Unit (3/96-2/97). The storage control unit (SCU) of the IBM
AS/400 system was formally verified jointly by the SCU design team in Rochester,
Minnesota, and verification engineers in Haifa, Israel, using a mix of mid- and low-level
verification. The SCU is comprised of five blocks, two of which were formally verified. The
Cache Control (CC) block was one of the two, and is responsible for controlling requests
to and from the L1 and L2 caches and main memory. The CC block and its environment
are shown in figure 5. The environments are non-deterministically coded in EDL.

A subtle logic bug found in the AS/400 SCU using formal verification involved a deadlock
in the CC. The L2 “free” signal indicates to the CC that the L2 can accept a command.
The lookahead function indicates to the CC that it is likely that an L1 command will be
driven the next cycle. When the CC sees that an L1 command is likely to be driven, it
does not process an L2 command, so that it can remain free to process the expected L1
command. In certain situations the lookahead function gets “precisely out of sync” with
the L2 free signal, so that the L2 asserts the free signal only during those cycles in which
the lookahead function prevents the L2 commands from being processed. The result is a
deadlock.

A simpler instance of this bug was found by both simulation and formal verification,
and fixed. When the simulation test passed, the issue was closed. Simulation continued for
three weeks without finding a problem in this portion of the CC logic. Only when a formal
verification regression was finally run was the significantly more complex instance of this
bug found and fixed.

Formal verification accounted for 68 of the bugs found in the two AS/400 blocks formally
verified, and for most of the complex deadlocks found by the verification effort. The formal
verification work on the SCU began quite a while before the simulation environment was
available, and the first bugs were found by RuleBase nearly six weeks before simulation
start.

A notable benefit of using formal verification on the SCU has been in the analysis of
logic that was not easily controllable by the simulation environment. For example, formal
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verification found an error in the buffer allocation algorithm: in a rare case, the algorithm
allocated the same buffer to two distinct resources. Creating a simulation scenario capable
of finding such a situation was extremely difficult, even after the bug was known.

The AS/400 SCU design team closely examined its experiences with formal verification
[8]. Some key observations were that formal verification is a powerful means for verify-
ing designs with many different timings, nearly unreachable states, and possibilities for
deadlocks. It should be used from the early stages of the design, while simulation is still
not available, later to verify areas that do not have adequate simulation support, and as a
regression tool. The detailed and exact specification required to build environments had a
positive affect on the definition of the interfaces, by making them simpler than they would
have been otherwise. They concluded that formal verification should be used not merely as
a verification method, but as a design tool from the carliest stages of the design.

AGP 2X Core (1/97-6/97). The AGP 2X core [14], designed by the IBM Micro-electronics
Division, is a dedicated high speed data path from the 3D graphics subsystem to the proces-
sor system memory. Itisa logical superset of the PCI standard [10], with some modifications
and enhancements targeted to reducing the entry code of 3D hardware accelerators. Formal
verification was performed by a formal verification engineer in Haifa, Israel, in design explo-
ration mode and in close collaboration with the team developing the core logic specification
and micro-architecture.

In the AGP 2X core development effort, RuleBase was used for a few weeks in design
exploration mode before the simulation environment was stable, and was the only means of
verification in the early design stages. The ability to observe and validate design behavior
in its early stages helped the design team pinpoint error-prone logic while it was still easy to
fix. This resulted in quick turnaround time between the verification engineer and the design
team.

Formal verification accounted for 18 of the bugs found in the AGP 2X core design. The
primary target was the arbitration logic. With a small set of rules, RuleBase discovered
quite a few bugs and logic holes in the arbiter, which helped the designers stabilize their
arbitration scheme quickly and efficiently.

The design team commented that they implemented the design with much simpler logic
than would have been used if formal verification had not been performed. With intensive and
quick feedback by formal verification for every definition change, the designers managed
to successfully build a simple and robust interface and control logic for the AGP 2X core.

5. Conclusion

We have described a multi-level application methodology for formal verification. Model
checking is applied at various levels of abstraction (system vs. RTL), by persons variously
trained and specialized (formal verification experts vs. hardware designers), with various
intents (exhaustive verification through design exploration). We take a pragmatic view of
the possibilities of formal verification. Thus, while this methodology does not provide an
absolute guarantee of success, we have found it to provide important added value to the
traditional simulation-based verification process.
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Note

1. The concepts of rerun response, rerun request, and reissue are described in detail in the PowerPC Architectural
Definition [11].
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