
����������	�
�	�����

	�������

	�	��������������	

�
����������	�

��������
��������

������������
��
��������

������������������� ��!��"�#����

����������	$������%�&�

�

�

�

�

ABSTRACT
Developing a new leading edge IA-32 microprocessor is an
immensely complicated undertaking. In the case of the Pentium®
4 processor, the microarchitecture is significantly more complex
than any previous IA-32 microprocessor and the implementation
borrows almost nothing from any previous implementation. This
paper describes how we went about the task of finding bugs in the
Pentium® 4 processor design prior to initial silicon, and what we
found along the way.
General Terms
Management, Verification.

1. INTRODUCTION
Validation case studies are relatively rare in the literature of
computer architecture and design ([1] and [2] contain lists of
some recent papers) and case studies of commercial
microprocessors are even rarer. This is a pity, since there is as
much to be learned from the successes and failures of others in the
validation area as in other, more richly documented, fields of
computer engineering. In fact, given the cost of an undetected
bug escaping into production silicon - where cost is measured not
only in a narrow monetary sense but more broadly in the impact
on a society that is increasingly dependent on computers – it can
be argued that the validation field deserves much more attention
than it has received to date.

The microarchitecture of the Pentium® 4 processor is significantly
more complex than any previous IA-32 microprocessor, so the
challenge of validating the logical correctness of the design in a
timely fashion was indeed a daunting one. In order to meet this
challenge, we applied a number of innovative tools and
methodologies which enabled us to keep validation off the critical
path to tapeout while meeting our goal of ensuring that first
silicon was functional enough to boot operating systems and run
applications. This in turn enabled the post-silicon validation
teams to quickly “peel the onion”, resulting in an elapsed time of
only 10 months from initial tapeout to production shipment
qualification – an Intel record for a new IA-32 microarchitecture.�

2. OVERVIEW
The Pentium® 4 processor is Intel’s most advanced IA-32
microprocessor, incorporating a host of new microarchitectural
features including a 400-MHz system bus, hyper-pipelined
technology, advanced dynamic execution, rapid execution engine,
advanced transfer cache, execution trace cache, and Streaming
SIMD (Single Instruction, Multiple Data) Extensions 2 (SSE2).

For the most part, we applied similar tools and methodologies to
validating the Pentium® 4 processor that we had used previously
on the Pentium® Pro processor. However, we developed new
methodologies and tools in response to lessons learnt from
previous projects, and to address some of the new challenges that
the Pentium® 4 processor design presented from a validation
perspective. In particular, the use of Formal Verification, Cluster
Test Environments and focused Power Reduction Validation were
either new or greatly extended from previous projects; each of
these is discussed in more detail in a section of this paper��

2.1 Timeline
A brief timeline of the Pentium® 4 processor project, as it relates
to this paper, is as follows:

• Structural RTL (SRTL) work began in late 1996 at the
cluster level, with the first full-chip SRTL integration
occurring in the spring of 1997.

• Structural RTL was largely completed (except for bug fixes
and rework due to speed path fixes) by the end of Q2 1998.

• A-step tapeout occurred in December 1999.

• First packaged parts arrived in January 2000.

• Initial samples were shipped to customers in the first quarter
of 2000.

• Production ship qualification was granted in October 2000.

• Pentium® 4 processor was launched in November 2000 at
frequencies of 1.4 and 1.5 GHz.

2.2 Staffing
One major challenge that we faced right away was the need to
build the pre-silicon validation team. We had a nucleus of 10
people who had worked on the Pentium Pro® processor, and who
could do the initial planning for the Pentium® 4 project while at
the same time working with the architects and designers who were
refining the microarchitectural concepts. However, it was clear
that 10 people were nowhere near enough for a 42 million-
transistor design that ended up requiring more than 1 million lines
of SRTL code to describe it. So we mounted an extensive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

16.1

244

recruitment campaign (focused mostly on new college graduates)
that resulted in approximately 40 new hires in 1997 and another
20 in 1998. Not only did this take a large amount of effort from
the original core team (at one stage we were spending on
aggregate 25% of our total effort on recruiting!), but it also meant
that we faced a monumental task in training these new team
members. However, this investment repaid itself handsomely
over the next few years as the team matured into a highly effective
bug-finding machine that was responsible for finding almost 5000
of the 7855 total logic bugs that were filed prior to tapeout. In
doing so, they developed an in-depth knowledge of the Pentium®
4 microarchitecture that has proved to be invaluable in post-
silicon logic and speedpath debug and also in fault-grade test
writing.

2.3 Validation Environment
Pre-silicon logic validation was done using either a cluster-level
or full-chip SRTL model running in the csim simulation
environment from Intel Design Technology. We ran these
simulation models on either interactive workstations or compute
servers – initially, these were legacy IBM RS6Ks running AIX,
but over the course of the project we transitioned to using mostly
Pentium® III based systems running Linux. The full-chip model
ran at speeds ranging from 05-0.6 Hz on the oldest RS6K
machines to 3-5 Hz on the Pentium® III based systems (we have
recently started to deploy Pentium® 4 based systems into our
computing pool and are seeing full-chip SRTL model simulation
speeds of around 15 Hz on these machines). The speeds of the
cluster models varied, but all of them were significantly faster
than full-chip. Our computing pool grew to encompass several
thousand systems by the end of the project, most of them compute
servers. We used an internal tool called netbatch to submit large
numbers of batch simulations to these systems, which we were
able to keep utilized at over 90% of their maximum 24/7 capacity.
By tapeout we were averaging 5-6 billion cycles per week and had
accumulated over 200 billion (to be precise, 2.384 * 1011) SRTL
simulation cycles of all types. This may sound like a lot, but to
put it into perspective, it is roughly equivalent to 2 minutes on a
single 1 GHz CPU!

3. FORMAL VERIFICATION
��������	
�

�
�
��������������������	���������������	����	���at

Intel to apply Formal Verification (FV) on a large scale. We
decided early in the project that the FV field had matured to the
point where we could consider trying to use it as an integral part
of the design verification process rather than only applying it
retroactively, as had been done on previous products such as the
Pentium® Pro processor. However, it was clear from the start
that we couldn’t formally verify the entire design – that was (and
still is) way beyond the state of the art for today’s tools. So we
decided to focus on the areas of the design where we believed that
FV could make a significant contribution – in particular, the
floating-point execution units and the instruction decode logic.
As these areas had in the past been sources of bugs that escaped
detection and made it into released silicon, this allowed us to
apply FV to some real problems with real payback.

One of the major challenges for the FV team was to develop the
tools and methodology needed to handle a large number of proofs
in a highly dynamic environment. For the most part we took a
model-checking approach to FV, using the prover tool from

Intel’s Design Technology group to compare SRTL against
separate specifications written in FSL. By the time we taped out
we had over 10,000 of these proofs in our proof database, each of
which had to be maintained and regressed as the SRTL changed
over the life of the project. Along the way, we found over 100
logic bugs – not a large number in the overall scheme of things,
but about 20 of them were “high quality” bugs that we do not
believe would had been found by any other of our pre-silicon
validation activities. Two of these bugs were classic floating-
point data space problems:

- The FADD instruction had a bug where, for a specific
combination of source operands, the 72-bit FP adder was setting
the carryout bit to 1 when there was no actual carryout;

- The FMUL instruction had a bug where, when the rounding
mode was set to “round up”, the sticky bit was not set correctly
for certain combinations of source operand mantissa values,
specifically:

src1[67:0] := X*2(i+15) + 1*2i

src2[67:0] := Y*2(j+15) + 1*2j

where i+j = 54, and {X,Y} are any integers that fit in the 68-bit
range

Either of these bugs could easily have gone undetected1 not just in
the pre-silicon environment but in post-silicon testing also. Had
they done so, we would have faced the prospect of a recall similar
to the Pentium® processor’s FDIV problem in 1994.

We put a lot of effort into making the regression of the FV proof
database as push-button as possible, not only to simply the task of
running regressions against a moving SRTL target but because we
viewed reuse as being one of the keys to proliferating the quality
of the original design. This approach has already paid off: a
regression of the proof database on the first proliferation of the
Pentium® 4 processor has yielded a complex floating point bug�

4. CLUSTER-LEVEL TESTING
One of the fundamental decisions that we took early in the
Pentium® 4 processor development program was to develop
Cluster Test Environments (CTEs) and maintain them for the life
of the project. There is a CTE for each of the 6 clusters into
which the Pentium® 4 processor design is logically subdivided
(actually, microcode can be considered to be a seventh logical
cluster, and it too has a test environment equivalent to the other
CTEs). These CTEs are groupings of logically related units (e.g.
all the execution units of the machine constitute one CTE)
surrounded by code that emulates the interfaces to adjacent units
outside of the cluster and provides an environment for creating
and running tests and checking results.

The CTEs took a good deal of effort to develop and maintain, and
were themselves a source of a significant number of bugs (not
counted in the 7855 total). However, they provided a number of
key advantages:

• First and foremost, they provided controllability that was
otherwise lacking at the full-chip level. An out of order,

1 The probability of hitting the FMUL condition with purely random

operands is approximately 1 in 5*1020, or 1 in 500 million trillion!

245

speculative execution engine like the Pentium® Pro or
Pentium® 4 processor is inherently difficult to control at the
instruction set architecture level. Assembly-language
instructions (macroinstructions) are broken down by the
machine into sequences of microinstructions that may be
executed in any order (subject to data dependencies) relative
to one another and to microinstructions from other preceding
or following macroinstructions. Trying to produce precise
microarchitectural behavior from macroinstruction sequences
is like pushing on a piece of string. This problem is
particularly acute for the back end of the machine – the
memory and bus clusters which lie beyond the out-of-order
section of the microarchitecture pipeline. CTEs allowed us
to provoke specific microarchitectural behavior on demand.

• Second, CTEs allowed us to make significant strides in early
validation of the Pentium 4 processor SRTL even before a
full-chip model was available. Integrating and debugging all
the logic and microcode needed to produce even a minimally
functional full-chip model was a major undertaking; it took
more than 6 months from the time we started until we had a
“mostly functional” IA-32 machine that we could start to
target for aggressive full-chip testing. Because we had the
CTEs, we were able to start testing as soon as there was
released code in a particular unit, long before we could have
even tried to exercise it at the full-chip level.

• Even after we had a full-chip model, the CTEs essentially
decoupled validation of individual unit features from the
health of the full-chip model. A killer bug in (say) the front
end of the machine did not prevent us from continuing to
validate in other areas. In fact, though, we rarely
encountered this kind of blockage; our development
methodology required that all changes be released at cluster
level first, and only when they had been validated there did
we propagate them to full-chip. Even then, we required that
all full-chip model builds pass a mini-regression test suite
before they could be released to the general population. This
caught most major cross-unit failures that could not be
detected at the CTE level.

5. POWER REDUCTION VALIDATION
����� ��������	������������ ��������	
�

�
�
�����������design,

power consumption was a concern. Even with the lower
operating voltages offered by P858, it was clear that at the
operating frequencies we were targeting we would have difficulty
fitting within the “thermal envelope” that was needed so that a
desktop system would not require exotic and expensive cooling
technology. This led us to include in the design two main
mechanisms for active power reduction: clock gating and thermal
management.

Clock gating as a concept is not new: previous designs have
attempted to power down discrete structures like caches when
there were no accesses pending. What was different about the
Pentium® 4 processor design was the extent to which clock gating
was taken. Every unit on the chip had a power reduction plan,
and almost every functional unit block contained clock-gating
logic – in all, there were around 350 unique clock-gating
conditions identified. Every one of them needed to be validated
from several different perspectives:

• We needed to verify that each condition was implemented as
per plan and that it functioned as originally intended. We
needed to verify this not once, but continually throughout the
development of the Pentium® 4 processor, as otherwise it
was possible for power savings to be eroded over time as an
unintended side effect of other bug or speedpath fixes. We
tackled this problem by constructing a master list of all the
planned clock gating features, and writing checkers in proto
for each condition to tell us if the condition had occurred and
to make sure that the power down had occurred when it
should have. We ran these checkers on cluster regressions
and low-power tests to develop baseline coverage, and then
wrote additional tests as necessary to hit uncovered
conditions.

• While establishing this coverage, we had to make sure that
the clock gating conditions did not themselves introduce new
logic bugs into the design. It is easy to imagine all sorts of
nightmare scenarios: unit A is late returning data to unit B
because part of A was clock gated, or unit C samples a signal
from unit D that is undriven because of clock gating, or other
variations on this theme. In fact, we found many such bugs,
mostly as a result of (unit level) design validation or full-chip
microarchitecture validation, using the standard set of
checkers that we employed to catch such implementation-
level errors. We had the ability to override clock gating
either selectively or globally, and developed a random power
down API that could be used by any of the validation teams
to piggyback clock gating on top of their regular testing.
Once we had developed confidence that the mechanism was
fundamentally sound, we built all our SRTL models to have
clock gating enabled by default.

• Once we had implemented all the planned clock gating
conditions, and verified that they were functioning correctly,
we relied primarily on measures of clock activity to make
sure that we didn’t lose our hard-won power savings. We
used a special set of tests that attempted to power down as
much of each cluster as possible, and collected data to see
what percentage of the time each clock in the machine was
toggling. We did this at the cluster level and at full-chip.
We investigated any appreciable increase in clock activity
from model to model, and made sure that it was explainable
and not due to designer error.

• Last, but by no means least, we tried to make sure that the
design was cycle-for-cycle equivalent with clock gating
enabled and disabled. We had established this as a project
requirement, to lessen the likelihood of undetected logic
bugs or performance degradation caused by clock gating. To
do this, we developed a methodology for temporal
divergence testing which essentially ran the same set of tests
twice, with clock gating enabled and disabled, and compared
the results on a cycle-by-cycle basis.

We organized a dedicated Power Validation team to focus
exclusively on this task. At peak, there were 5 people working on
this team, and even in steady-state when we were mostly just
regressing the design it still required 2 people to keep this activity
going. However, the results exceeded our fondest expectations:
clock gating was fully functional on initial silicon, and we were
able to measure approximately 20W of power saving in a system

246

running typical workloads. The Power Validation team filed over
200 bugs themselves as a result of pre-silicon validation (we filed
“power bugs” whenever the design did not implement a power-
saving feature correctly, whether or not it resulted in a functional
failure).

6. METHODOLOGY ISSUES
���� Full-chip Integration and Testing�
With a design as complex as the Pentium® 4 processor,
integrating the pieces of SRTL code together to get a functioning
full-chip model (let alone one capable of executing IA-32 code) is
not a trivial task. We developed an elaborate staging plan that
detailed what features were to be available in each stage, and
phased the integration over a roughly 12-month period. The
architecture validation (AV) team developed tests that would
exercise the new features as they became available in each phase,
but did not depend upon any as-yet unimplemented IA-32
features. These tests were throwaway work - their main purpose
was to drive the integration effort by verifying basic functionality.

Along with these tests we developed a methodology which we
called feature pioneering: when a new feature was released to full-
chip for the first time, a validator took responsibility for running
his or her feature exercise tests, debugging the failures and
working with designers to rapidly drive fixes into graft
(experimental) models, bypassing the normal code turn-in
procedure, until an acceptable level of stability was achieved.
Only then was the feature made available for more widespread use
by other validators. We found that this methodology greatly
speeded up the integration process; as a side effect, it also helped
the AV team develop their full-chip debugging skills much more
rapidly than might otherwise have occurred.

Once a fully functional full-chip SRTL model was available (in
mid-1998) these feature pioneering tests were discarded, and
replaced by a new suite of over 12,000 IA-32 tests developed by
the AV team, whose purpose was to fully explore the architecture
space. Previous projects up to and including the Pentium® Pro
processor had relied on an “ancestral” test base inherited from the
past, but these tests had little or no documentation, unknown
coverage and doubtful quality (in fact, many of them turned out to
be bug tests from previous implementations that had little
architectural value). We did eventually run the “ancestral” suite
as a late cross-check, after the new suite had been run and the
resulting bugs fixed, but we found nothing of consequence as a
result, indicating that it can at long last be retired��

���� Coverage-Based Validation�
We attempted wherever possible to use coverage data to provide
feedback on the effectiveness of our tests, and tell us what we had
and had not tested; this in turn helped direct future testing towards
the uncovered areas. Since we relied very heavily on directed
random test generators for most of our microarchitectural testing,
coverage feedback was an absolute necessity if we were to avoid
“spinning our wheels” and testing the same areas over and over
again while leaving others completely untouched. In fact, we

used the tuple of {cycles run, coverage gained and bugs found} as
a first-order gauge of SRTL model health and tapeout readiness.2

Our primary coverage tool was proto from Intel Design
Technology, which we used to create coverage monitors and
measure coverage for a large number of microarchitecture
conditions. By tapeout we were tracking almost 2.5 million unit-
level conditions, and more than 250,000 inter-unit conditions, and
succeeded in hitting almost 90% of the former and 75% of the
latter. We also used proto to instrument several thousand
multiprocessor memory coherency conditions (combinations of
microarchitecture states for caches, load and store buffers, etc.),
and, as mentioned above, the clock gating conditions that had
been identified in the unit power reduction plans.

We also used the pathfinder tool from Intel’s Central Validation
Capabilities group to measure how well we were exercising all the
possible microcode paths in the machine. Much to our surprise,
running all of the AV test suite yielded microcode path coverage
of less than 10%; further analysis revealed than many of the
untouched paths involved memory-related faults (e.g. page fault)
or assists (e.g. A/D bit assist). When we thought about it, this
made sense - the test writers had set up their page tables and
descriptors so as to avoid these time-consuming functions (at 3
Hz, every little bit helps!). We modified our tests and tools to
cause them to exercise these uncovered paths, and did indeed find
several bugs in hitherto untested logic. This reinforced our belief
in the importance of using coverage feedback and not just
assuming that specified conditions are being hit.

��� RESULTS�
We compared the bugs found by pre-silicon validation of the
Pentium® 4 processor with those found in the equivalent stage of
the Pentium® Pro development. From one microprocessor
generation to the next, we recorded a 350% increase in the
number of bugs filed against SRTL prior to tapeout. Cluster-level
testing proved to be a big win, as 3411 of the 5809 bugs found by
dynamic testing were caught at the CTE level with the other 2398
being found on the full-chip SRTL model. Code inspection was,
as always, a highly effective technique that accounted for 1554
bugs, with the remaining 492 being found by Formal Verification,
SRTL-to-schematic equivalence verification, and several other
minor categories.

We observed a somewhat different bug breakdown by cluster: on
the Pentium® Pro processor microcode was the largest single
source of bugs, accounting for over 30% of the total, where as on
the Pentium® 4 processor it was less than 14%. We attribute this
difference primarily to the fact that on the Pentium® Pro
processor we had to develop from scratch all of the IA-32
microcode algorithms for an out-of-order, speculative execution
engine; the Pentium® 4 processor was able to leverage many of
the same algorithms, resulting in far fewer microcode bugs.

For both designs, the Memory Cluster was the largest source of
hardware bugs, accounting for around 25% of the total in both
cases. This is consistent with data from other projects, and

2 We had an extensive list of tapeout-readiness criteria, which we

developed and reviewed within the Pentium® 4 development team more
than a year before tapeout. Experience has taught us that development
of such criteria should not be delayed until tapeout is imminent.

247

indicates that we need to apply more focus to preventing bugs in
this area.

We did a statistical study [3] to try to determine how bugs were
introduced into the Pentium® 4 processor design. The major
categories, amounting to over 75% of the bugs analyzed, were:

• Goof (12.7%) - these were things like typos, cut and paste
errors, careless coding when in a hurry, or situations where
the designer was counting on testing to find the bugs.

• Miscommunication (11.4%) - these fall into several
categories: architects not communicating their expectations
clearly to designers, misunderstandings between microcode
and design as well as between different parts of design (e.g.
misassumptions about what another unit was doing).

• Microarchitecture (9.3%) - these were problems in the
microarchitecture definition.

• Logic/Microcode changes (9.3%) - these were cases where
the design was changed, usually to fix bugs or timing
problems, and the designer did not take into account all the
places that would be impacted by the change.

• Corner cases (8%) – as the name implies, these were specific
cases which the designer failed to implement correctly.

• Power down issues (5.7%) – these were mostly related to
clock gating.

• Documentation (4.4%) - something (algorithm, micro-
instruction, protocol) was not documented properly.

• Complexity (3.9%) – although some of the bugs categorized
under the “Miscommunication” or “Microarchitecture”
headings were undoubtedly the result of complexity in the
design, these were bugs whose cause was specifically
identified as being due to microarchitectural complexity.

• Random initialization (3.4%) – these were mostly bugs
caused by state not being properly cleared or initialized at
reset

• Late definition (2.8%) - certain features were not defined
until late in the project. This led to shoehorning them into

working functionality (similar to the logic/microcode
changes category). Also, because they were defined late,
they were sometimes rushed and were not always complete
or fully thought out.

• Incorrect RTL assertions (2.8%) - these refer to assertions
(instrumentation in the SRTL code) that were either wrong,
overzealous, or had been working correctly but were broken
by a design change (usually timing induced).

• Design mistake (2.6%) - the designer misunderstood what
he/she was supposed to implement. Normally this was a
result of not fully reading the specification or starting
implementation before the specification was complete�

Despite (or, perhaps, because of) the large number of bugs found
by pre-silicon validation, the Pentium® 4 processor was highly
functional on A-0 silicon, and received production qualification
only 10 months after initial tapeout.

8. ACKNOWLEDGMENTS
The Pentium® 4 microprocessor validation program was the work
of a large team of people over a 4-year period. It is impossible to
list here the names of everyone who contributed to this effort, but
I am especially indebted to Blair Milburn, Keiichi Suzuki, Rick
Zucker, Bob Brennan, Tom Schubert and John Bauer, both for
their leadership of the pre-silicon validation activities and for their
valuable feedback on early drafts of this paper.

��� REFERENCES�
[1] Fournier, L, Arbetman, Y and Levinger, M: “Functional

Verification Methodology for Microprocessors Using the
Genesys Test-Program Generator - Application to the x86
Microprocessors Family”, Proceedings of the Design
Automation and Test in Europe Conference and Exhibition
(DATE99), March 1999.

[2] Ho, R, Yang, H, Horowitz, M, and Dill, D: “Architecture
Validation for Processors”, ISCA 95: Internaltional
Conference on Computer Architecture, June 1995.

[3] Zucker, R, “Bug Root Cause Analysis for Willamette”, Intel
Design and Test Technology Conference, August 2000.

	

248

