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Abstract. Dramatic improvements in SAT solver tech-
nology over the last decade and the growing need for more
efficient and scalable verification solutions have fueled
research in verification methods based on SAT solvers.
This paper presents a survey of the latest developments
in SAT-based formal verification, including incomplete
methods such as bounded model checking and complete
methods for model checking. We focus on how the sur-
veyed techniques formulate the verification problem as
a SAT problem and how they exploit crucial aspects of
a SAT solver, such as application-specific heuristics and
conflict-driven learning. Finally, we summarize the note-
worthy achievements in this area so far and note the ma-
jor challenges in making this technology more pervasive
in industrial design verification flows.

Keywords: Verification – SAT – Model checking – QBF
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1 Introduction

Functional verification of digital hardware designs has be-
come one of the most expensive and time-consuming com-
ponents of the current product development cycle. Sym-
bolic model checking based on BDDs [22, 72] have come
a long way since their introduction more than a decade
ago. However, they are still incapable of handling the
largest problems encountered in current industrial prac-
tice. Reduction in feature size coupled with the recent
move toward IP-based design has led to dramatic in-
creases in the size and complexity of systems that are
being designed, thereby posing new challenges for func-
tional verification methods. Hence there is a growing
need to investigate and develop more robust and scal-
able verification methods based on novel and alternative
technologies.

Verification methods based on SAT solvers have re-
cently emerged as a promising solution. Dramatic im-
provements in SAT solver technology over the past
decade have led to the development of several powerful
SAT solvers [45, 71, 77, 105]. Verification methods based
on these solvers have been shown to push the envelope
of functional verification in terms of both capacity and
efficiency, as reported in several academic and industrial
case studies [4, 16, 19, 31]. This has fueled further inter-
est and intense research activity in the area of SAT-based
verification.
This paper surveys the recent developments in SAT-

based formal verification techniques and methodologies.
The work surveyed falls primarily in the category of prop-
erty verification or model checking methods since such
has been the focus of most recent works on SAT-based
verification. For other verification applications of SAT
methods, such as combinational equivalence checking, the
interested reader is referred to [47, 68].
Additionally, there is an interesting body of work

based on applying SAT to richer types of specifications
and logics that, due to lack of space, cannot be covered
in this short survey. Here is a list of recent relevant top-
ics, which may serve as a starting point for the interested
reader: quantifier-free fragments of first-order logic [9, 87,
100], Presburger arithmetic [97], monadic second-order
logic [6], object-oriented software specifications [60].

1.1 Organization

The survey is organized as follows. Section 2 briefly
reviews the SAT problem, basic SAT algorithms and
advanced features of modern SAT solvers, and model
checking. Section 3 discusses work on bounded model
checking (BMC) including ways of strengthening SAT-
based BMC with BDD-based analysis and several indus-
trial case studies comparing SAT-BMC with traditional
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BDD-based symbolic model checking. Section 4 reviews
techniques that implement complete methods for model
checking based on state-space search, inductive reason-
ing, and abstraction refinement.
Recently there have been some successful attempts at

using sequential ATPG tools for model checking. These
are surveyed in Sect. 5. Another recent development has
been the use of quantified Boolean formula (QBF) solvers,
a generalization of SAT, to solve model checking prob-
lems. The state of the art in QBF solving and its appli-
cations to verification are discussed in Sect. 6. We con-
clude the paper in Sect. 7 with a summary of the major
achievements in SAT-based verification to date and some
thoughts on the future prospects and challenges for SAT-
based verification.

2 Background

2.1 The Boolean satisfiability problem

The Boolean satisfiability (SAT) problem is a well-known
constraint satisfactionproblem,withmanyapplications in
the fields of VLSI computer-aided design and artificial in-
telligence. Given a propositional formula ϕ, the Boolean
satisfiability problem posed on ϕ is to determine whether
there exists a variable assignmentunder whichϕ evaluates
to true. Such an assignment, if it exists, is called a satisfy-
ing assignment forϕ andϕ is called satisfiable. Otherwise,
ϕ is said to be unsatisfiable. The SAT problem is known to
be NP-complete [42]. However, in practice, there has been
tremendous progress, summarized in a recent survey [107],
in SATsolver technology over the years.Earlierwork in the
context of theorem proving is covered in [63].
Most SAT solvers use a conjunctive normal form

(CNF) representation of the Boolean formula. In CNF,
the formula is represented as a conjunction of clauses,
each clause is a disjunction of literals, and a literal is
a variable or its negation. Note that in order for the for-
mula to be satisfied, each clause must also be satisfied,
i.e., evaluate to true. There exist polynomial algorithms
(e.g., [81, 98]) to transform an arbitrary propositional for-
mula into a satisfiability equivalent CNF formula that is
satisfiable if and only if the original formula is satisfiable.
Similarly, a Boolean circuit may be encoded as a satisfi-
ability equivalent CNF formula using the method of [65].
Alternatively, for SAT applications arising from the cir-
cuit domain, the SAT solver may be modified to work
directly on the Boolean circuit representation.

2.2 SAT solvers

Most modern SAT solvers are based on the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [32, 33],
which performs a branching search with backtracking.
The DPLL algorithm is sound and complete, i.e., it finds
a solution if and only if the formula is satisfiable. In
this section, we summarize the main features of modern

DPLL-based SAT solvers. This provides the context for
enhancements targeted at verification applications, dis-
cussed in the rest of the paper.
Probabilistic SAT solvers, including WALKSAT [85]

and GSAT [86], are based on stochastic local search in-
stead of DPLL. They are strong on random SAT in-
stances but in practice do not work well on structured
instances obtained from real verification problems.
The basic skeleton of DPLL-based SAT solvers is

shown in Fig. 1, adapted from the GRASP work [71]. The
initial step consists of some preprocessing, during which
it may be discovered that the formula is unsatisfiable.
The outer loop starts by choosing an unassigned vari-
able and a value to assign to it (decide-next-branch). If
no such variable exists, a solution has been found. Oth-
erwise, the variable assignments deducible from this deci-
sion are made (using deduce), through a procedure called
Boolean Constraint Propagation (BCP). It typically con-
sists of iterative application of the unit clause rule, which
is invoked whenever a clause becomes a unit clause, i.e.,
all but one of its literals are false and the remaining literal
is unassigned. According to the rule, the last unassigned
literal is implied to be true – this avoids the search path
where the last literal is also false, since such a path can-
not lead to a solution. A conflict occurs when a variable
is implied to be true as well as false. If no conflict is dis-
covered during BCP, then the outer loop is repeated by
choosing the next variable for making a decision. How-
ever, if a conflict does occur, backtracking is performed
within an inner loop in order to undo some decisions
and their implications. If all decisions need to be undone
(i.e., the backtracking level blevel is 0), the formula is de-
clared unsatisfiable since the entire search space has been
exhausted.
The original DPLL algorithm used chronological

backtracking, i.e., it would backtrack up to the most re-
cent decision, for which the other value of the variable had
not been tried. However, modern SAT solvers use con-
flict analysis techniques (shown as (analyze-conflict) in
the figure) to analyze the reasons for a conflict. Conflict

Fig. 1. DPLL-based SAT solver
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Fig. 2. Conflict analysis using an implication graph

analysis is used to perform conflict-driven learning and
conflict-driven backtracking, which were incorporated in-
dependently in GRASP [71] and rel-sat [11]. Conflict-
driven learning consists of adding conflict clauses to
the formula in order to avoid the same conflict in the
future. Conflict-driven backtracking allows nonchrono-
logical backtracking, i.e., up to the closest decision that
caused the conflict. These techniques greatly improve the
performance of the SAT solver on structured problems.
The essential component of conflict analysis is an im-

plication graph [71, 106], which captures the current state
of the SAT solver. A small example of an implication
graph is shown in Fig. 2, where the original SAT prob-
lem consists of clauses C1–C7 , as shown on the left. In an
implication graph, nodes represent assignments to vari-
ables. For example, node x1 represents x1 = 1 , and node
x5 ′ represents x5 = 0 .
Edges in an implication graph represent clauses,

which cause implications due to source nodes on sink
nodes. For example, when x1 = 1 and x2 = 0 , clause C1
causes an implication x6 = 1 . This is shown as two edges
– between x1 and x6 , and between x2 ′ and x6 – both
marked with clause C1 as shown. Nodes with no incom-
ing edges, such as x1 , denote decision assignments (shown
as white nodes in the figure). A conflict is indicated when
there are two nodes in the graph with opposite values as-
signed to the same variable. In this example, a conflict is
indicated by nodes x10 and x10 ′, which are called con-
flicting nodes. Conflict analysis takes place by following
back the edges from the conflicting nodes, up to any edge
cutset that separates the conflicting nodes from the deci-
sion nodes. An example cutset is shown by the dashed line
in the figure. A conflict clause is derived from the vari-
ables feeding into the chosen cutset to capture the reasons
for the conflict. It also corresponds to a resolution on
all the clauses associated with the edges traversed up to
the cutset. In this example, conflict clause C8 is derived
as shown, corresponding to the observation that a par-
tial assignment (x1 = 1 , x2 = 0 , x3 = 0 , x8 = 1 ) always
leads to a conflict. For conflict-driven learning, the de-
rived clause C8 is added to the clause database in order
to avoid the same conflict in the future.

Many other advances have been made in these basic
components that comprise the DPLL-based SAT solver –
decision engine (heuristics for choosing decision variables
and values), deduction engine (data structures and heuris-
tics for performing BCP and detecting conflicts), diagno-
sis engine (heuristics for conflict-driven learning). Some of
these are described in the remainder of this section.

2.2.1 CNF-based SAT solvers

An interesting property of CNF representations was first
exploited by Zhang in the SATO SAT solver [105] to im-
prove the performance of BCP. It proposed the use of
head and tail pointers to point to nonfalse literals in the
list representation of a clause and maintained the strong
invariant that all literals before the head pointer, and
all literals after the tail pointer, are false. Clearly, de-
tection of a unit clause during BCP becomes easy, i.e.,
when the head and tail pointers coincide on an unassigned
literal. The main advantage is that the clause status is up-
dated only when either of the head/tail literals is assigned
a false value during BCP. In particular, this eliminates
an update when any of the other literals in the clause is
assigned a value. When the head/tail literal is assigned
a false value during BCP, the associated pointer needs to
be moved to another nonfalse literal if it exists. This is
facilitated by the strong invariant. However, during back-
tracking, the head/tail pointers may need to be moved
back again in order to maintain the strong invariant.
A different tradeoff was proposed by Moskewicz et al.

in the Chaff SAT solver [77]. Its BCP scheme, known
as two-literal watching with lazy update, is also based on
tracking only two literals per clause during BCP. How-
ever, Chaff maintains a weak invariant whereby the two
watched literals are required to be nonfalse, but there is
no ordering requirement with respect to other false liter-
als. Again, detection of a unit clause during BCP is easily
performed by checking whether both watched pointers
coincide and whether clause updates on assignment to
other literals are eliminated. Note that, due to the weaker
invariant, more work than SATO may be required dur-
ing BCP to search for a nonfalse literal when one of the
two watched literals is assigned a false value. However,
the weaker invariant ensures that no additional work is re-
quired during backtracking. This tradeoff has been shown
to work better in practice.
Chaff also proposed a useful decision heuristic that

prioritizes the literals that appear in recent conflict
clauses. Recall that conflict clauses are added due to
conflict-driven learning, which is very beneficial for SAT
solvers on structured problems. This was taken a step
further by Goldberg and Novikov in the BerkMin SAT
solver [45], which prioritizes all literals involved in the
conflict analysis and not just those that appear in the con-
flict clause. The performance improvement due to these
decision heuristics is additional testament to the impor-
tance of conflict-driven learning in practice.
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More recently, additional information recorded during
conflict analysis has been used very effectively to provide
a proof when a formula is determined to be unsatisfi-
able by the SAT solver. This proof can be independently
checked to verify the SAT solver itself [46, 109]. These
techniques can also be easily adapted to identify a subset
of clauses from the original problem, called the unsatis-
fiable core [75, 109], such that these clauses are sufficient
for implying unsatisfiability. The use of such techniques
in verification applications are described in more detail in
Sect. 4.

2.2.2 Circuit-based SAT solvers

SAT has many applications in the logic circuit domain,
such as automatic test pattern generation (ATPG), verifi-
cation, timing analysis, etc. The Boolean reasoning prob-
lem is typically derived from the circuit structure. This
has also led to interest in circuit-based SAT solvers [38,
44, 64]. These work directly on the circuit structure and
use circuit-specific heuristics to guide the search. In gen-
eral, attempts to include circuit structure information
into CNF-based SAT solvers have been unsuccessful due
to significant overhead.
Among verification applications, recently Kühlmann

et al. [64] focused on SAT techniques for a simple, uni-
form gate-level representation of circuits and their inte-
gration with other useful techniques like BDD sweeping
and dynamic circuit transformation. Circuit-based BCP
is performed by a single table lookup per gate, in contrast
to CNF-based updates for potentially three equivalent
clauses. This improves the BCP performance. However,
there is no effective way to perform conflict-driven learn-
ing. The bottleneck is that conflict clauses correspond to
largeOR-tree circuits.

2.2.3 Hybrid SAT solvers

More recently there has been an effort by Ganai et
al. [41] to combine the relative benefits of CNF-based
and circuit-based SAT solvers. In particular, their hybrid
SAT solver incorporates efficient circuit-based BCP tech-
niques, along with conflict analysis techniques of CNF-
based solvers. The original circuit problem is represented
as a simple gate-level netlist, while the learned conflict
clauses are represented in CNF. The BCP engine consists
of table lookups for the gates and a Chaff-style two-literal
watching scheme for conflict clauses. Note that since the
clauses for a simple gate are short clauses (3-literals or
less), a single table lookup is cheaper than multiple clause
updates. On the other hand, since conflict clauses tend
to be much longer, a two-literal watching scheme (which
avoids multiple updates) is more useful than multiple
table lookups for its many literals. This enables consistent
speedups in the BCP performance. Their hybrid repre-
sentation of the Boolean problem allows exploitation of
both circuit-based and CNF-based decision heuristics.

Another effort by Lu et al. [69] used these ideas along
with additional conflict-driven learning in order to im-
prove the SAT solver performance. The idea is to use
cheaper methods (such as simulation) to find candidate
pairs of corelated signals in the given circuit. Then the
inequivalence of the corelated signals is added as a con-
straint to the SAT problem. Since this constraint is likely
to be conflicting, it provides additional opportunities
for the SAT solver to perform conflict-driven learning,
which can potentially improve its performance on larger
problems.

2.3 Model checking

With the introduction of bounded model checking [15] it
became clear that SAT could be used for model check-
ing [27]. One can even argue that currently one of the
main driving forces behind SAT research is its application
to model checking. The purpose of this section is to give
a short overview on the history and terminology of model
checking. More details can be found in the textbook [28]
or the survey [30].
The target of model checking is the verification of se-

quential properties of dynamic systems. A dynamic sys-
tem has a state component that changes over time. Typ-
ical systems are sequential circuits, which contain delay
elements, such as flip-flops and latches. Verification of se-
quential circuits is also the main application area of this
survey.
Model checking, in the first place, is only applicable

to finite systems. However, if suitable finite abstractions
can be found, then some classes of infinite systems can
be checked as well. Applications of infinite model check-
ing are real-time systems, modeled as timed automata [3],
or even system software [8]. Further, model checking has
also been applied successfully in the context of telecom-
munication protocols and cache coherence protocols. It
must be noted that SAT has mainly been used for model
checking sequential circuits. However, it is apparent that
the verification of more general systems can also benefit
from SAT technology.
Sequential properties are usually represented in tem-

poral logic [36]. Formulas of temporal logic try to express
system behavior over time. There are various variants of
temporal logic, such as Linear Temporal Logic (LTL) or
Computation Tree Logic (CTL), that usually require ded-
icated algorithms. In this paper we focus on simple safety
properties, also often called invariants, written in CTL as
AGp. This formula specifies that for all execution paths,
globally in all states along the path, the property p holds.
Alternatively, it states the property that ¬p, read as not
p, which could be some catastrophic system state, cannot
be reached. Note that for finite systems, many practically
relevant properties can be translated into simple safety
properties [84].
Originally [27] model checking used an explicit repre-

sentation of states. A typical implementation [55] of this
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type of explicit model checking stores individual states
in a large hash table, memorizing the states reached
during a depth-first traversal of the state space. Since
the number of states of even small systems can be
very large, e.g., a 128-bit shift register has 2128 states,
this method does not scale, in particular for sequen-
tial circuits. One solution to this so-called state ex-
plosion problem is symbolic model checking [72], which
operates on sets of states instead of individual states
and represents sets of states symbolically in a compact
form.
In the past, binary decision diagrams (BDDs) [21] and

variants have frequently been used as representation for
sets of states. They also allow efficient computation of
Boolean operations. In particular BDDs allow an efficient
implementation of the image operation Img, which lies
at the core of the breadth-first search in symbolic model
checking. It calculates the states reachable in one step via
the transition relationT from the current set of states SC
by implicitly conjoining the BDD representing SC with
the BDD representing T and projecting the result onto
the next state variables Y (after eliminating the current
state variablesX and primary input variablesW ).

Img(Y )≡ ∃X,W. SC(X)∧T (X,Y,W ) (1)

In the context of circuits, we additionally assume that
the transition relation is deterministic. As shown above,
it may, however, depend on primary inputs, encoded by
a vector W of Boolean variables, which also need to be
quantified during image computation. In the terminology
of program verification, Img calculates the strongest post
condition of a given predicate.
A basic algorithm for symbolic model checking sim-

ple safety properties can then be formulated as in Fig. 3.
It represents sets of states symbolically and searches in
breadth-first order from the initial states to the bad
states. Let B be the set of bad states, in which p does not
hold, and I the set of initial states.
This forward model checking algorithm starts at the

initial states and searches forward along the transition re-
lation. In the literature one can also find backward model
checking algorithms. They rely on a dual operation to

Fig. 3. Forward least fixpoint algorithm
for safety properties

the Img operation PreImg , or equivalently the CTL op-
erator EX. It calculates the set of previous states SP
that may reach the given set of current states SC in
one step:

PreImg(X)≡ ∃Y,W. SC(Y )∧T (X,Y,W )

A backward model checking algorithm can be obtained
from the forward algorithm by, in essence, exchanging
B with I and Img with PreImg. In practice, forward
traversal usually is much faster [17, 54, 57, 58]. The rea-
son may be that unreachable states do not have to be
visited and BDDs behave much better. However, not
all temporal properties, for instance EXp∧EXq or AG
EXp, can be handled with Img computation only. In
certain cases backward traversal is better, for instance,
if property p is an inductive invariant, as defined in
Sect. 4.2. In this case the backward fixpoint computa-
tion terminates after one PreImg computation. A general
strategy is to try backward and forward traversal in
parallel.
Both symbolic model checking algorithms presented

so far can be interpreted as calculating a least fix-
point [22]. Dual formulations exist for greatest fix points.
For backward traversal, the CTL operator AX (also
known as the weakest precondition operator wp) replaces
PreImg:

AX(X)≡ ∀Y,W. T (X,Y,W )→ SC(Y )

It calculates the set of previous states SP that lead to
a state in the current set of states SC , independently
of the values at the primary inputs. A backward model
checking algorithm for simple safety properties, based on
greatest fixpoint calculation and on theAX operator, can
be formulated as in Fig. 4. Here,G denotes the set of good
states, i.e., the states in which p holds.
SAT technology can be used for implementing all

parts of these algorithms. One option is to unroll the loop
in model-checkµforward only a finite number of times, omit-
ting the termination checks. This, in essence, is the main
idea behind bounded model checking, the topic of the
next section. We will come back to backward traversal
calculating greatest fixpoints in Sect. 4.1.2.

Fig. 4. Backward greatest fixpoint algorithm
for safety properties
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3 Bounded model checking

Bounded model checking based on SAT methods was in-
troduced by Biere et al. in [14, 15, 26] and is rapidly gain-
ing popularity as a complementary technique to BDD-
based symbolic model checking. Given a temporal logic
property P to be verified on a finite transition systemM ,
the essential idea is to search for counterexamples to P in
the space of all executions ofM whose length is bounded
by some integer k.
The problem is formulated by constructing the follow-

ing propositional formula:

ϕk = I ∧
k−1∧
i=0

Ti∧
(
¬Pk
)

(2)

where I is the characteristic function for the set of ini-
tial states ofM and Ti is the characteristic function of the
transition relation ofM for time step i. Thus, the formula
I ∧
∧k−1
i=0 Ti precisely represents the set of all executions

ofM of length k or less, starting with a legal initial state.
¬Pk is a formula representing the condition that P is vi-
olated by a bounded execution of M of length k or less.
Hence, ϕk is satisfiable if and only if there exists an execu-
tion ofM of length k or less that violates propertyP .ϕk is
typically translated to CNF and solved by a conventional
SAT solver.
The formula ¬Pk may be used to express both safety

and liveness properties. Liveness properties of the form
AFp are checked by having ¬Pk represent a loop within
a bounded execution of length at most k, such that p is vi-
olated on each state in the loop. However, the more com-
mon application of BMC is for the purpose of checking
safety properties of the form AGp (p is some proposi-
tional expression). In this case Eq. (2) reduces to:

ϕk = I ∧
k−1∧
i=0

Ti∧

(
k∨
i=0

¬Pi

)
(3)

where Pi is the expression p in time step i. Thus, this for-
mula can be satisfied if and only if for some i (i ≤ k)
there exists a reachable state in time step i in which p is
violated. Figure 5 shows a circuit representation of this
equation, where the block P denotes a combinational cir-
cuit block computing ¬Pi as a function of the state vari-
ables of time step i.
A typical application of BMC consists of iteratively

executing the above formulation for increasing values
of k until either a property violation is discovered or

Fig. 5. Bounded model checking

some user-specified limit on k or the computing resources
(memory, runtime) is exceeded.
Recent research has improved upon both the technol-

ogy andmethodology of the basic BMCmethod described
above in several ways. These improvements are discussed
below.

3.1 Structural pruning during CNF generation

Many techniques use some kind of structural processing
to generate a more compact CNF for the BMC problem,
in the hope that the resulting SAT problem will be easier
for the SAT solver to solve.
The bounded cone of influence (BCOI) reduction [16]

is an improvement on the classical cone of influence
(COI) reduction used in traditional model checking. The
intuition is that over a bounded time interval we need
not consider every state variable in the classical COI at
every time step. Specifically, in Fig. 5, the BCOI reduc-
tion would extract the transitive fanin cone of gate g and
construct the BMC-CNF only from this subcircuit. In our
experience the BCOI reduction is cheap and easy to apply
and can occasionally provide significant improvements
over the simple COI reduction.
Ganai et al. [39] use binary AND-INVERTER

graphs [64] to represent the transition relation of the sys-
tem as well as the unrolled transition relation used for
the BMC problem (Fig. 5). The graph is compressed as
it is built by using an efficient functional hashing scheme
across two levels of logic as well as term rewriting tech-
niques. The CNF for the BMC problem is generated from
this compressed representation. SAT results from earlier
BMC runs are used to set appropriate P nodes (Fig. 5)
to 0 and then rehash the circuit graph to obtain fur-
ther compression. Such techniques work extremely well in
practice, especially if the logic-level circuit used for the
verification has been generated through a quick on-the-fly
synthesis from an RTL description.

3.2 Decision variable ordering of the SAT solver

Variable ordering has long been recognized as a key de-
terminant of the performance of SAT solvers. The earliest
works on SAT-BMC were based on SAT solvers such as
GRASP and SATO, which used variable ordering heusris-
tics such as the DLIS heuristic [70]. Strichman [95] pro-
posed a static variable ordering scheme specifically tar-
geted for BMC problems that improved upon the de-
fault DLIS ordering. The static order was generated from
a BFS-like traversal of the unrolled circuit graph used for
BMC.
However, recent results [88] show that the conflict-

driven variable ordering heuristics used in modern SAT
solvers (e.g., the VSIDS heuristic in zchaff [77]) out-
perform any fully static BMC-specific variable ordering
scheme, such as the one proposed in [95]. A slight tuning
of these heuristics for the BMC problem [88] can fur-
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ther enhance the performance. On the other hand, BMC
tools using circuit-based SAT solvers (e.g., [41, 59, 64]) es-
sentially use some variant of the J-frontier justification
heuristic popularly used in sequential ATPG tools.
While the above heuristics work fairly well for a SAT

solver in a BMC setting, they do not specifically exploit
any key aspects of the BMC problem to customize and
target the SAT search for BMC. Since the SAT solver’s
runtime dominates the overall performance of the BMC
tool, this topic could be an interesting avenue for future
research.

3.3 Addition of constraints to the SAT problem

The technique of learning conflict clauses during search
has dramatically enhanced the efficacy of modern SAT
solvers. Motivated by this, several other specialized static
and dynamic learning techniques have been developed for
the BMC problem. The learned constraints can be added
as CNF clauses to the SAT problem being solved, with the
hope of speeding up the solution process.
The technique of constraints sharing [96] proposed

by Strichman is based on the observation that since
BMC is an iterative process whereby a problem is repeat-
edly solved for increasing values of the bound k, conflict
clauses learned by the SAT solver in one run can poten-
tially be used for subsequent runs instead of having to
relearn them. Specifically, any conflict clause derived ex-
clusively from the subformula Φk = I ∧

∧k−1
i=0 Ti can be

reused (i.e., added a priori to the CNF) in future BMC
runs with higher values of k. This technique is a specific
instance of incremental satifiability techniques, with ap-
plications in BMC [92] and other general classes of SAT
problems [61, 102]. Generally, this technique has been
found to offer speedups of up to 2× or more with negligi-
ble overhead.
A related technique called constraints replication [95]

first identifies conflict clauses c, derived from the subfor-
mula

∧k−1
i=0 Ti alone, and creates new clauses by replacing

literals of c by their time-frame-shifted versions, which
are then added a priori to CNFs of subsequent BMC runs.
This technique is not very effective in practice, mainly
due to the large overhead caused by addition of too many
replicated clauses.
Recent work by Gupta et al. [49] proposed learning

conflict clauses from BDDs and adding them dynami-
cally to the problem during the SAT search. The learned
clauses correspond to paths to the ′0′ terminal in a BDD
representation, denoting unsatisfiable assignments on the
path variables. These BDDs are created on the fly for
heuristically selected small regions (i.e., subcircuits) in
the unrolled design for BMC. The authors proposed sev-
eral heuristics to keep the overhead low, while increasing
the usefulness of the added clauses, and demonstrated
significant speedups in BMC performance.
Another technique that draws upon BDD technology

is the work of Cabodi et al. [23]. The basic idea is to use

Fig. 6. Improving BMC using reachability overapproximation

BDD-based approximate reachability analysis to quickly
compute a succinct and coarse overapproximation, R+

of the reachable state space of a design. The BDD rep-
resenting the characteristic function of R+ is then as-
serted as constraints on the transition boundary between
each successive pair of time frames i, i+1, as shown in
Fig. 6. The BDDs are converted to CNF constraints that
are conjoined with the BMC formulation of Eq. (2). This
technique does indeed have an overhead and is therefore
useful primarily for larger, more difficult BMC problems.
In such cases speedups of up to an order of magnitude
have been observed.

3.4 Methodology improvements to BMC

Although BMC is by intent an incomplete, bug-finding
method rather than a complete verification method,
a given property can be certified to be true if no coun-
terexamples are found through BMC, up to the sequential
depth of the circuit [15]. The sequential depth of a cir-
cuit is the length of the longest of the shortest paths
from the initial state(s) to other reachable states of the
system.
There have been a few attempts at computing or es-

timating the sequential depth of a circuit to use as a tar-
get depth for BMC. Yen et al. [104] proposed a heuristic
method based on a sampling of the state space through
random simulation. However, since the method can re-
port an underapproximation or an overapproximation of
the true sequential depth, it does not provide a viable
solution.Mneimneh and Sakallah [76] formulate the prob-
lem as a logical inference problem on quantified Boolean
formulas (QBFs) (see also Sect. 6) and present a SAT-
based procedure for solving the generated QBF. Unfor-
tunately, this technique, although precise, does not of-
fer a scalable solution. Baumgartner et al. [10] present
a structural approach based on traversing the circuit
netlist to identify components with known sequential
depth and using these to compute the overall sequen-
tial depth. Despite the above attempts, the problem of
efficiently computing or tightly overapproximating the se-
quential depth of industrial-size, arbitrary sequential cir-
cuits largely remains an open problem.
It is well known that different propositional encodings

of the same problem can result in dramatically different
runtimes on a given SAT solver. The approach of Binary
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Time-frame Expansion proposed by Fallah [37] provides
a different propositional encoding of the check for viola-
tion of the property in various time frames of an unrolled
circuit. The proposed encoding has been demonstrated
to improve the SAT solver runtimes over the traditional
formulation of Eq. (2) provided the BMC instance is suf-
ficiently deep (typically k ≥ 100).

3.5 Industrial application of BMC

Several successful attempts at applying SAT-based BMC
technology to industrial problems have been reported
over the past few years. The original proponents of BMC
reported a case study [16] where they applied BMC based
on the SAT solvers SATO [105] and GRASP [71] to verify
safety properties on five control units from the PowerPC
microprocessor. BMC was found to significantly outper-
form the BDD-based CMU SMV model checker for sev-
eral of the benchmarks. Bjesse et al. [19] reported a sig-
nificant increase in bug-finding speed and efficiency by
their application of SAT-BMC (based on GRASP and
CAPTAIN PROVE [90] SAT solvers) to check safety
properties in the memory subsystem of the Alpha micro-
processor.
A recent comprehensive analysis with respect to the

performance and capacity of BMC is presented in [31].
The authors compare Intel’s BDD-based model checker,
Forecast (adapted for BMC), with a SAT-based BMC
tool, Thunder, on several benchmarks taken from Intel’s
Pentium 4 processor. Their evaluation yields an inter-
esting tie between the performance of untuned Thunder
and tuned Forecast. They conclude that the real pro-
ductivity gains from SAT-based BMC are obtained by
obviating the need for user ingenuity and tuning effort
that would be needed to obtain a comparable perform-
ance from a BDD-based BMC. They also report success in
using SAT-based BMC on large benchmarks that are well
beyond the capacity of BDD-based tools.
A more recent study [4] compares the performance

of BDD-based, SAT-based, and explicit-state BMC on
a wide variety of industrial property checking bench-
marks including both safety and liveness properties on
hardware and software designs. Interestingly, the re-
searchers conclude that SAT-BMC is most effective at
finding bugs at shallow depths (< 50), while BDD-based
methods should be the method of choice for finding deep
counterexamples. They also find that explicit-state BMC
based on random simulation can give performance com-
parable to SAT-BMC in finding shallow, easier bugs for
safety properties.
The general understanding and consensus in the com-

munity is that SAT-BMC tools require minimal tuning
effort and work particularly well on large designs where
bugs need to be searched at shallow to medium depths. In
other instances it may be possible to extract comparable
or better performance from BDD-based model checkers
or other algorithms.

4 SAT-based unbounded model checking

In this section we describe verification efforts that have
used SAT solvers for unbounded symbolic reachability
analysis, i.e., methods that can prove the correctness of
a property on a design as well as find counterexamples for
failing properties. The method may or may not be com-
plete. The surveyed methods fall into three categories.
The first set of techniques have their roots in BDD-based
symbolic state space search where the use of BDDs has
been partially or completely replaced with SAT solvers.
The second category comprises methods based on induc-
tive reasoning. Inductive techniques are sound but usu-
ally incomplete in that they may not be able to prove
every correct property. The third category of methods
is abstraction-refinement frameworks, where SAT-based
BMC is used primarily for abstraction or refinement and
is supplemented by other techniques for obtaining proofs
on smaller abstract models. These frameworks also pro-
vide completeness and offer better scalability due to ef-
fective use of abstraction. In principle, completeness can
also be achieved by making the transition from SAT to
QBF, as is explained in Sect. 6.

4.1 SAT-based state space search

Due to the success of SAT solvers in BMC, there has
been growing interest in their use for unbounded model
checking. Here, the crucial nontrivial operation is quan-
tifier elimination, which converts a QBF to a proposi-
tional Boolean formula. This is shown below for the image
operation, which forms the computational core of sym-
bolic methods for forwardmodel checking, as explained in
Sect. 2.3:

SN (Y ) = ∃X,W,Z. SC(X)∧T (X,Y,W,Z) (4)

In this equation, the variable sets X, Y ,W , Z denote the
present state, next state, input, and internal (needed for
a CNF representation) variables, respectively; and SN ,
SC , and T denote the next states, the current states, and
the transition relation, respectively.

4.1.1 Combination of SAT with decision diagrams

Abdulla et al. [1] formulate the checks for property sat-
isfaction and fixpoints as SAT problems, to be solved by
standard SAT solvers. The SAT problems comprise com-
binations of formulas S∗ representing sets of states. These
are obtained by using rewriting rules for eliminating the
existential quantifier in the image/preimage operations
(shown in Eq. (4)). The most effective rule is an inlining
rule, which substitutes an expression for a variable to be
quantified, while the most expensive is rewriting the ex-
istential quantification as a disjunction, which can result
in a size blowup. Abdulla et al. use reduced Boolean cir-
cuits (RBCs) to represent the Boolean formulas, which
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can be exponentially more succinct than BDDs but are
semicanonical. A similar effort was made by Williams et
al. [103] to use SAT solvers for CTLmodel checking. They
too used a substitution rule very effectively for elimina-
tion of the existential quantifier. They used Boolean ex-
pression diagrams (BEDs) [5], which are closely related
to RBCs, for representation of the Boolean formulas,. In
addition to using standard SAT solvers to check the satis-
fiability of BEDs, they also used the conversion of BEDs
to standard BDDs. Since this conversion can blow up in
practice, they used various heuristics to reduce the size
of BEDs.
A different approach was taken by Gupta et al. [52],

which integrates BDD-based techniques tightly into the
SAT decision procedure. They represent the transition
relation T in CNF, and the set of reachable states S∗
as BDDs. For image computation, quantifier elimination
is performed by using SAT techniques to enumerate all
solutions to the CNF formula and by projecting each so-
lution on the set of image variables (Y ). The search for
solutions is also constrained by the BDD for SP , using
a technique called BDD bounding, whereby any partial
solution in SAT that is inconsistent with the BDD is
regarded as a conflict. This technique is also used effec-
tively to avoid repeating image set solutions by bounding
against the current SN . The authors also generate BDD-
based subproblems on the fly, under a partially explored
path in SAT. Though their procedure can be used to per-
form cube enumeration in SAT alone, the use of BDD
subproblems is highly beneficial in handling large designs.
This image computation procedure was enhanced in [51]
by adding circuit structure information to the CNF for-
mula in order to dynamically detect and remove redun-
dant clauses. Partition-based SAT decision heuristics [53]
were used to further improve its performance.

4.1.2 Purely SAT-based techniques

An approach using purely SAT-based techniques was
proposed byMcMillan [73] for performing backward sym-
bolic model checking (Fig. 4, Sect. 2.3). It is based on
computing the CNF formula equivalent to AXp, where
p is an arbitrary Boolean formula, by enumerating all
satisfying assignments using a SAT solver. Variables are
universally quantified by simply dropping the associated
literals from the resulting CNF. Note that this forms
the dual of projection for existentially quantified vari-
ables in a disjunctive normal form using cubes, as used
by other researchers, e.g., [52, 80]. Each satisfying cube
is used to derive a blocking clause, which contributes to
the set of solutions, and is also added to the current
database of clauses in order to avoid repetition of the
solutions. The procedure for deriving a blocking clause
exploits circuit structure information to rearrange the
implication graph (described in Sect. 2.2) when a solu-
tion (i.e., a satisfying assignment) is found by the SAT
solver. This rearrangement can be viewed as a cube en-

largement technique, which allows a larger solution cube
to be captured in each enumeration by the SAT solver.
The overall approach works well for designs where the
sets of states can be represented compactly in CNF
and where cube enumeration with blocking clauses does
not blow up.
Another model checking approach based on use of

SAT techniques and Craig interpolants has been pro-
posed in [74]. Given an unsatisfiable Boolean problem
and a proof of unsatisfiability derived by a SAT solver,
a Craig interpolant can be efficiently computed to charac-
terize the interface between two partitions of the Boolean
problem. In particular, when no counterexample exists
for depth k in BMC, i.e., the SAT problem for depth k
is found to be unsatisfiable, a Craig interpolant is used
to obtain an overapproximation of the set of states reach-
able from the initial state in one step (or any fixed number
of steps). This provides an approximate image operator,
which can be used iteratively to compute an overapprox-
imation of the set of reachable states, i.e., till a fixpoint
is obtained. If at any point the overapproximate set is
found to violate the given property, then the depth k is
increased for BMC till either a true counterexample is
found or the overapproximation convergeswithout violat-
ing the property. The main advantage of the interpolant-
based method is that it does not require an enumeration
of satisfying assignments by the SAT solver. Indeed, the
proof of unsatisfiability is used to efficiently compute the
interpolant, which serves directly as the overapproximate
state set. In practice, too, this method has been shown to
work better than other BDD-based and SAT-based com-
plete methods. However, if the focus is only on finding
bugs, e.g., falsification, then in the current version it can-
not be faster than BMC alone.
More recently, a SAT-based quantification technique

using circuit cofactoring has been proposed by Ganai et
al. [40]. They too use a SAT solver to enumerate solutions,
but they use circuit cofactoring after each enumeration
to capture a larger set of new state cubes per enumer-
ation, in comparison with cubewise enumeration tech-
niques. Note that in general a cofactor can capture not
just a single cube, but several cubes. This is greatly ben-
eficial in reducing the total number of solutions enumer-
ated by SAT, sometimes by several orders of magnitude,
in comparison with approaches based on blocking clauses
(described above). They also use an efficient circuit graph
representation for the solution states [64], which is more
robust than CNF-based or BDD-based representations,
and use a hybrid SAT solver [41] to directly work on these
representations. Ganai et al.’s quantification technique
can be used to compute exact image/preimage state sets,
unlike the interpolant-based technique (described above),
which computes approximate state sets. The technique
has been used in SAT-based unbounded symbolic model
checking to handle many difficult industry examples that
could not be handled by either BDDs or blocking-clause-
based SAT approaches.
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4.2 SAT-based inductive reasoning

Inductive reasoning can be a cheap and efficient means
of verifying properties, rather than simply finding coun-
terexamples as in BMC. Inductive reasoning has previ-
ously been used, with some success, for various verifica-
tion problems, including property checking using tech-
nologies such as BDDs. The inductive proof for verifying
a property P =AGp can be derived using a SAT solver
by checking the formulas φbase (the base case) and φinduc
(the induction step) for unsatisfiability.

φbase = I ∧¬P0 (5)

φinduc = Pk ∧ T (k, k+1) ∧ (¬Pk+1)

If φinduc is unsatisfiable, the property P is called an
inductive invariant. Both formulas, if unsatisfiable, pro-
vide a sufficient (but not necessary) condition for verify-
ing P . However, the above form of induction, known as
simple induction, is not powerful enough to verify many
properties.
Two recent works [18, 89] have proposed the use of

more powerful forms of induction known as induction with
depth and unique states induction to verify safety prop-
erties. For induction with depth n the formulas of Eq. (5)
become:

φnbase = I ∧

(
n−1∧
i=0

T (i, i+1)

)
∧

n∨
i=0

¬Pi (6)

φninduc =


k+n∧
j=k

Pj


 ∧

(
k+n∧
i=k

T (i, i+1)

)
∧ ¬Pk+n+1

Essentially, induction with depth corresponds to
strengthening the induction hypothesis by imposing the
original induction hypothesis (Pk in φinduc, Eq. (5)) on
n consecutive time frames. This can be further strength-
ened by requiring that the states appearing on each time
frame be unique (unique states induction). This restric-
tion results in a complete method for simple safety prop-
erties. However, the induction length may be as long as
the recurrence diameter [15], which in most cases is much
longer than the sequential depth. Further, the number
of constraints needed to enforce the state uniqueness is
quadratic in the depth of unrolling, i.e., the induction
depth, resulting in very large CNFs. In recent work [35],
Eén et al. partly address this issue by proposing an it-
erative method for induction. The induction hypothesis
starts off without any uniqueness constraints, which are
gradually added in successive iterations till the induction
proof goes through. The efficiency of the method is fur-
ther improved by using an incremental SAT mechanism
that allows sharing of conflict clauses (recorded by the
SAT solver) between successive iterations of induction.
Another variant of this line of research is the work by

Gupta et al. [48], which is similar to the work by Cabodi
et al. [23], discussed in Sect. 3.3. As in [23], BDD-based

techniques are used to efficiently compute a succinct
overapproximation R+ of the reachable states of a de-
sign. This is used to strengthen the induction hypothesis
by imposing R+ as an additional reachability invariant.
In particular, it constrains the state values that are al-
lowed to appear at the starting state of the induction step
(or at the interfaces between each successive pair of time
frames). Note that in contrast to [23], the constraints
here are not redundant but are added to strengthen the
induction hypothesis, which might be too weak with the
property alone. This frequently allows induction proofs to
go through successfully. A related line of research is based
on generating an inductive invariant to be used as over-
approximation for the reachable states in the context of
sequential equivalence checking [18, 94, 99].
One of the original papers on SAT-BMC [16] had pro-

posed the use of simple induction as a cheap and simple
first pass to apply to all property-checking instances be-
fore resorting to more comprehensive verification/falsifi-
cation methods. The above powerful variants of induction
undoubtedly enlarge the range of properties verifiable
through inductive reasoning. At the same time they can
produce very large SAT formulas that are very resource
intensive to solve. Hence the real utility of these methods
would only be brought out by a good verification method-
ology that uses them with the right tradeoff between ver-
ification power and efficiency, and in the right balance
with BDD-based verification techniques. Recent work by
Li et al. [67] points in this direction as well. In this work
the authors use SAT-based unique states induction with
depth as the model checking method in an abstraction re-
finement framework (discussed in the next section). They
observe that the efficacy of SAT-based induction is con-
siderably enhanced when used within such a framework.
Further, even within this framework the SAT-based in-
duction exhibits complementary strengths compared to
a traditional BDD-basedmodel checker, underscoring the
need for a combined proof technique.

4.3 SAT-based abstraction-refinement frameworks

In order to handle large designs, there has been a great
deal of interest in the use of abstraction and refinement
techniques for verification. Most efforts are refinement-
based approaches, where starting from a small abstract
model of the concrete design counterexamples found on
these models are used to refine them iteratively until ei-
ther a conclusive result is obtained by conservative model
checking or the resources are exhausted [79]. One of the
first attempts to use SAT solvers for counterexample-
guided abstraction refinement (CEGAR) was described
by Clarke et al. [29]. In their approach, the SAT solver
is used to check whether a counterexample trace found
during model checking of the abstract model is spuri-
ous or not by effectively checking its satisfiability on the
concrete design. If it is spurious, ILP (integer linear pro-
gramming) and machine learning techniques are used to



166 M.R. Prasad et al.: A survey of recent advances in SAT-based formal verification

perform the refinement. In a subsequent effort [25], they
used SAT-based techniques for performing this refine-
ment as well. In particular, they proposed heuristics using
the SAT decision scores to pick refinement candidates
among hidden (abstracted away) latches. A more inter-
esting technique used ideas similar to a SAT solver’s proof
of unsatisfiability in order to identify latches that are suf-
ficient to exclude the spurious counterexample.
Another recent method for counterexample-guided

abstraction refinement has been proposed by Wang et
al. [101]. They use BDDs to represent multiple abstract
counterexamples, which are checked for satisfiability on
the concrete design using a SAT solver interfaced with
BDD constraints [48]. Rather than refining each coun-
terexample individually, they propose a game-theoretic
refinement procedure that attempts to exclude multi-
ple counterexamples simultaneously. In practice, their
method performs better than other methods based on
refining a single counterexample at a time.
One reason for the popularity of counterexample-

guided abstraction refinement approaches has been a lack
of techniques that could extract relevant information
from a relatively large concrete design. This is chang-
ing now with the use of proof analysis techniques for
SAT solvers. These techniques can be easily used to iden-
tify a set of clauses from the original problem, called
the unsatisfiable core [75, 109], such that the clauses
are sufficient for implying unsatisfiability. These un-
satisfiable cores form the basis of two recent indepen-
dent efforts on abstraction methods using SAT-based
BMC [50, 75]. In both methods, an abstract model is
obtained from the unsatisfiable core, identified from an
unsatisfiable BMC instance at depth k. This abstract
model has the useful property that it does not have
any counterexamples of depth less than or equal to k.
The basis for abstraction is the intuition that after k
is large enough, the corresponding abstract model may
exclude counterexamples of all lengths. The usefulness
of the abstraction stems from the empirical evidence
that for typical verification applications, the unsatisfiable
cores and the corresponding abstract models are much
smaller than the concrete designs. There are minor dif-
ferences in the abstraction methods used by these two
approaches – McMillan and Amla use a gate-level ab-
straction, while Gupta et al. use a latch-level abstraction.
However, the major differences are in their application
settings.
In McMillan and Amla’s approach, a proof of correct-

ness is attempted for the abstract model derived from
BMC on the concrete design itself. If a counterexam-
ple is found, the BMC depth k is increased till either
a true counterexample is found on the concrete design
or correctness of the derived abstract model is proved.
The authors demonstrated many successful applications
of their approach on various benchmark examples. How-
ever, this approach runs into scalability problems if either
the abstract model is too large for unbounded verification

or SAT-based BMC cannot be completed on the concrete
model at the increased depth k.
In contrast, the approach by Gupta et al. [50] proposes

an iterative abstraction framework, which is targeted at
iteratively reducing the size of the abstract models, start-
ing from the concrete model. In each iteration, BMC is
performed for increasing depths on the chosen model. If
there is no counterexample (up to some heuristically cho-
sen depth), a proof-based abstraction procedure is used to
abstract the model further for the next iteration. In this
framework, a proof of correctness on an abstract model in
any iteration guarantees correctness on the concrete de-
sign. On the other hand, a counterexample may require
a refinement (if it is spurious) based on either the spe-
cific counterexample or a deeper BMC analysis on a less
abstract model from a previous iteration. In practice, the
abstraction loop is iterated up to convergence in the size
of the abstract model. The successive reductions in ab-
stract model sizes, typically by two orders of magnitude
across all iterations, were crucial for successful verifica-
tion of large industry designs.
In practice, refinement-based approaches that start

from a small abstract model may require many iterations
before converging on a model where the proof succeeds.
More frequently, the size of the refined abstract model
grows monotonically larger, on which unbounded veri-
fication methods fail to complete. On the other hand,
abstraction-based approaches that start from the given
concrete model may need to handle much larger models.
However, note that they do not require complete verifica-
tion on these larger models for the purpose of abstraction.
We believe there is likely to be more activity in exploring
useful combinations of these approaches.

5 ATPG-based model checking

Concurrent with the development of SAT methods for
model checking there has been a growing interest in
applying tools for automatic test pattern generation
(ATPG) of sequential circuits to the model checking
problem. ATPG tools for sequential circuits (abbreviated
as sequential ATPG tools in what follows) are designed
to search for input sequences to the given circuit that
can test for the presence of a certain fault. A subtask in
this process involves performing a search on the space of
input sequences of the sequential machine for an input
sequence that will excite a certain signal in the circuit
to logic 1 or 0. In this respect the core problems solved
by sequential ATPG algorithms are very similar to those
expressed by SAT formulations of circuit problems. His-
torically, the key difference between ATPG algorithms
and CNF-based SAT solvers has been that the former
perform branch-and-bound search on a structural circuit
representation rather than a CNF database. This allows
ATPG tools to implement efficient decision heuristics
based on the circuit structure and to model and deal with
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real-world circuit primitives, such as tristate buses and
high-impedance logic values. Further, unlike SAT-based
BMC, sequential ATPG tools do not need to explicitly
replicate the circuit structure when performing sequential
reasoning.More importantly, the latter can be used to im-
plement complete property checking algorithms while the
former essentially perform a bounded check. On the other
hand, sequential ATPG tools have traditionally lacked
techniques such as conflict-based learning and efficient
Boolean constraint propagation (implication generation),
which are the main sources of power and efficiency of
modern SAT solvers.
Boppana et al. [20] were the first to recognize the

relative advantages of sequential ATPG solvers over con-
ventional CNF-SAT solvers and to employ a sequential
ATPG tool to check safety properties on circuits. The
basic idea of this formulation, as shown in Fig. 7, is to con-
struct a test network, based on the property, and place
a fault on the output of this test network such that this
fault is testable if and only if there exists a counterexam-
ple for the specified property. A key contribution of this
work was to recognize that most sequential designs have
synchronizing sequences that cause the FSM (finite state
machine) to reach a specific state (say, s0) regardless of
the starting state. Using this, the checking of safety prop-
erties of the form AG EFp can be reduced to verifying
EFs0p. The authors showed that since there is no explicit
storage of states in each time frame (like BDD-based
model checkers), a sequential ATPG-basedmodel checker
could outperform conventional BDD-based model check-
ers in several cases.
In another work [2], the authors propose a method

of bounded model checking using a sequential ATPG
tool. Unlike the formulation of [20] where the test net-
work is a combinational network based on the property
p, this work supports both safety and liveness prop-
erties and the test network is a monitor FSM based
on both the property and the bound n, the number of
time steps. A fault specified on the output of this mon-
itor is testable if and only if the given property has
a counterexample within n time steps of the initial state.
The authors report impressive speedups and memory
savings, compared to a Cadence-SMV BMC based on
zChaff.
In related work, Sheng et al. [91] have successfully

used a sequential ATPG tool based on simulation and
genetic algorithms for checking safety properties. They
observe that such a tool, while not suitable for verification
per se, can be very effective in finding bugs. Huan and
Cheng [56] have used a combination of structural, word-

Fig. 7. Sequential ATPG for model checking

level ATPG and modular arithmetic constraint solving
techniques to check safety properties.
While a recent experimental comparison between

SAT-based and ATPG-ased BMC approaches [78] found
no real performance gap between the two formula-
tions, our experience has shown that model checking
approaches based on ATPG tools and CNF-SAT solvers
really have orthogonal strengths. Thus, ATPG-based
model checkers can be superior to SAT-BMC on certain
benchmarks and vice versa. Current research is aimed
at producing a tool that combines the benefits of both
types of engines. The hybrid SAT solver [41] discussed
in Sect. 2.2 is one such attempt. Another significant step
in this direction has been reported by Iyer et al. in the
SATORI solver [59]. SATORI is a complete algorithm for
sequential Boolean reasoning. It is based on algorithms
and techniques available in modern sequential ATPG
tools that have been augmented with some flavor of the
techniques (e.g., efficient BCP and conflict-driven learn-
ing) available in modern SAT solvers.

6 QBF

Checking the satisfiability of the more expressive logic of
quantified Boolean formulas (QBF) is equivalent to sym-
bolic reachability and thus sequential property checking.
This fact, in principle, can be used to obtain a QBF-based
model checking algorithm. In the future, QBF may play
the same role for sequential property checking or model
checking as SAT does today for combinational property
checking. Therefore, we briefly explain the connection be-
tween QBF andmodel checking and show how SAT-based
techniques for unbounded model checking relate to QBF.
We conclude the section with an overview on the state
of the art of algorithms and implementations for solving
QBF, which naturally are very similar to those used for
SAT.

6.1 QBF for model checking

The logic of quantified Boolean formulas (QBF) is a gen-
eralization of propositional logic, the input language of
SAT solvers, that allows Boolean variables to be quanti-
fied. Typical examples are the following two formulas:

∀x[∃y[x↔ y]] and ∃y[∀x[x↔ y]]

the first formula being true and the second evaluating to
false . This already highlights the most important differ-
ence between QBF and SAT: the quantification order of
the variables in which the formula is evaluated matters.
Note that a propositional formula is an instance of a QBF
formula with only existentially quantified variables.
Checking satisfiability for QBF, which we also abbre-

viate as QBF, generalizes SAT and is a PSPACE com-
plete problem [93]. QBF is expected to have exponential
complexity and to be strictly harder than NP. It has been
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observed in [83] that the symbolic reachability problem is
PSPACE complete as well. Thus there exist polynomial
reductions from sequential property checking to QBF and
vice versa. For our purpose of using QBF solvers for se-
quential property checking, we give a translation of check-
ing safety properties to checking satisfiability of QBF.
The other direction, i.e., translating QBF to symbolic
reachability, can be obtained from [34] in combination
with [84].
Consider the forward safety checking algorithm of

Fig. 3 in Sect. 2.3. Here, the check to see if a bad state
(violating the safety property) is contained in the set of
states reached in the current iteration can be formulated
as a SAT problem, since all the quantifiers introduced are
of the same type. Only in the termination check does an
alternation of quantifiers occur.
If we use QBF to represent sets of states symboli-

cally, we get a complete procedure. Instead of performing
an image computation in each iteration of the algorithm,
as in classical BDD-based algorithms [22, 72] or in mod-
ern SAT-based fixpoint algorithms [73] (Sect. 4.1.2), the
image can be represented symbolically with QBF by in-
troducing quantifiers without eliminating them. Then the
termination check of the fixpoint algorithm becomes an
instance of checking satisfiability of QBF (see Sect. 4
of [80]). Regardless of the fact that the implementation
of QBF solvers is still in its infancy, this approach has
the drawback that the number of iterations of the fix-
point algorithm can only be bounded by the diameter of
the model and is therefore exponential in the size of the
model, in the worst case.
Starting from iterative squaring [22], an even linear

reduction can be obtained. The original idea of iterative
squaring is to compute the transitive closure T ∗ of the
transition relation T according to the following equation:

T 2i(s, t)≡ ∃s′[T i(s, s′)∧T i(s′, t)] (7)

Let the model consist of n state bits (flip-flops). Then
T ∗ ≡ Tm with m= 2n. Thus after n applications of the
above equation T ∗ is obtained. If the first argument of
T ∗ can be restricted to the set of initial states, the re-
sulting expression is the characteristic function of the set
of reachable states. In order to keep the exposition sim-
ple, we assume that the transition relation contains the
identity relation. This is equivalent to assuming that the
model may always stall.
Originally BDDs would have been used for represent-

ingT i, with the problem that an additional set of variables
is involvedwhen eliminating the quantifier in Eq. (7) com-
pared to standard image computation as in Eq. (1). Ad-
ditionally, the approximations to the transitive closure of
the transition relation cannot be kept in partitioned form,
which results in very large BDDs. Moreover, there is no
obvious way to restrict the computation to the reachable
state space. These problems may be the reasons that iter-
ative squaring was not used much in practice when using

BDDs. In the context of SAT, iterative squaring was suc-
cessfully applied in [103] by assuming determinism except
for the choice of the initial state.
In principle, in order to get a QBF-based algorithm,

we only need to apply the above equation n times and
add the initial state constraints to obtain a propositional
formula that represents all reachable states. However, the
parameter lists of the two occurrences of T i in the body
of the quantifier are different, and thus applying the equa-
tion usually involves doubling the size of the formula. Ad-
ditionally, there is almost no chance for sharing common
subformulas. With BDDs T i may potentially be repre-
sented by a small BDD. Also one can hope that the quan-
tifier eliminations are cheap. But directly using the above
equation to generate QBF is not better than unrolling the
transition relation as in BMC.
By using QBF as presented in [83] (see also [82]) the

effect of copying T i twice can be avoided. We introduce
a new universally quantified variable c that determines
which of the two parameter lists should be used:

T 2i(s, t)≡∃s′[∀c[∃l, r[(c→

use left parameter list︷ ︸︸ ︷
(l, r) = (s, s′)) ∧

(c→ (l, r) = (s′, t)︸ ︷︷ ︸
use right parameter list

) ∧ T i(l, r)]]]

Now applying this equation n times merely introduces 3n
existentially quantified state bit vectors and n universally
quantified variables and needs only one copy of the tran-
sition relation. The result is no longer propositional since
it involves 2n alternations of quantifiers, but it is linear
in the number of state bits n. It still remains to be seen
whether this formulation of symbolic reachability is ben-
eficial in practice, but clearly there is a potential for an
exponential speedup compared to current algorithms.

6.2 QBF solvers

The efficiency of the approach described above relies on
efficient implementations of QBF solvers. We briefly give
an overview on the state of the art in QBF solvers. For
more details the interested reader is referred to the re-
port on the evaluation of QBF solvers for the SAT’2003
conference [12]. First note that techniques for image com-
putation in model checking can be interpreted as QBF
decision procedures since they essentially provide a quan-
tifier elimination procedure. As already described, these
techniques are based on BDDs as in traditional symbolic
model checking [22], based on structural methods [94, 99],
directly based on SAT [73, 74], or based on the combina-
tion of SAT and other decision diagrams [1, 52, 103].
An enumeration-based explicit QBF decision proced-

ure, which mentions applications to model checking and
is similar to the SAT-based image computation of McMil-
lan [73] discussed in Sect. 4.1.2, can be found in [80]. Re-
lated to the explicit quantifier expansion in [1, 103], the
structural QBF algorithm in [7] expands quantifiers by
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copying and substitution:

∀x[f ] ≡ f [0/x] ∧ f [1/x]

Earlier attempts [24] for QBF are based on DPLL. In
essence, an algorithm similar to that of Fig. 1 can be used.
There are two major differences. First, decision variables
can only be picked in the same order as they occur in the
quantifier prefix. Second, for a universal variable x it is re-
quired that both subproblems, assigning x= 0 and x= 1,
return satisfiable .
Recently, several groups [43, 66, 108] independently

applied techniques from the SAT domain to QBF, such
as the conflict-driven learning and conflict-driven back-
tracking techniques discussed in Sect. 2.2. However, QBF
provides the opportunity to learn not only conflict clauses
but also models for speeding up the search for univer-
sally quantified variables. Finally, there is the notion of
q-resolution [62], which in principle gives a complete de-
cision procedure for QBF, but, for the same reason as
the resolution-based Davis and Putnam procedure [33],
requires too much memory in practice. However, more
recently it has been observed in [13] that the combina-
tion of q-resolution with expansion can lead to an efficient
QBF decision procedure, which in many cases outper-
forms DPLL-style solvers.
The structure of the QBF problem is much richer

than the simpler SAT problem. More optimizations are
possible and probably also necessary. Algorithms and
tools are not as mature as for SAT. Implementations of
QBF solvers are steadily improving. A large set of bench-
marks is available,1 and a standard input format exists
(QDIMACS).
As mentioned earlier, the restriction on the order of

decision variables is the major difference between QBF
and SAT. In practice, this also seems to severely restrict
the size of the problems that can be handled. However,
a QBF formulation of a problem may be exponentially
more succinct. Thus there is a potential for an exponen-
tial speedup using QBF solvers, which may have a large
impact in the context of sequential property checking.

7 SAT-based verification:
achievements and challenges

There has been significant progress in the area of SAT-
based verification over the last decade. However, much
remains to be done to make this technology more perva-
sive in industrial design verification flows. In what follows
we discuss the notable achievements andmajor challenges
in SAT-based verification.

7.1 Achievements

The single most important achievement of SAT-based
verification has been its emergence as an orthogonal

1 http://www.qbflib.org

technology to BDD-based model checking techniques
(bounded and unbounded). This means that there are
several instances where one technology significantly out-
performs the other and vice versa. Further, SAT-based
techniques have been found to be less sensitive to prob-
lem size and typically require much less user tuning of
parameters. Hence, such methods are capable of verify-
ing much larger systems than those typically handled by
BDDs and of enhancing productivity by obviating the
need for user ingenuity and tuning effort. Bounded model
checking (BMC) based on SAT methods has been found
to be particularly effective at generating counterexamples
for hard-to-find bugs at short to medium depths (up to
depth 50–60) of sequential behavior.

7.2 Challenges

While SAT-based verification methods have proven to be
orthogonal to their BDD counterparts, there is very little
fundamental understanding of their respective strengths.
In this respect, a major challenge is to develop a ver-
ification methodology that employs both SAT and BDD
methods in a manner best suited to utilize their respective
strengths.
The strength of SAT-based verification techniques

lies primarily in falsification. BDD-based symbolic model
checking continues to be the de facto standard for veri-
fying properties. Several attractive techniques for SAT-
based unbounded model checking (UMC) have been pro-
posed in recent years, including methods for SAT-based
state space traversal, inductive reasoning, and iterative
abstraction refinement surveyed in Sect. 4. As it currently
stands this body of research is rich in promising ideas
but somewhat immature. For example, among the sev-
eral variants of induction, the most scalable ones (e.g.,
simple induction) are too weak to prove most properties,
while the most comprehensive ones (e.g., unique states in-
duction with depth) may not be applicable to the largest
designs. Therefore, further research is needed to develop
SAT-based unbounded model checking into a viable alter-
native to BDD-based symbolic model checking.
SAT-based BMC is currently used as a falsification

technique. However, as was pointed out by the original
proponents of SAT-based BMC [26], the technique can be
used to formally verify properties by performing the BMC
check up to the sequential circuit depth (or some overap-
proximation thereof). Recently, there have been several
attempts at the problem of computing the sequential depth
of a given system. Tight overapproximations would also
be valuable. But the inherent intractability of the prob-
lem has frustrated attempts at finding a general, scal-
able solution. Nevertheless, such a solution, if discovered,
would greatly enhance both the efficacy and applicability
of SAT-based BMC techniques.
This issue lies at the very core of the SAT-BMC for-

mulation. Since the BMC formulation uses an explicit
unrolling of time frames, the generated SAT formulas can



170 M.R. Prasad et al.: A survey of recent advances in SAT-based formal verification

become too large – and hence unsolvable for large sequen-
tial depths. A desirable solution to this is the develop-
ment of a sequential reasoning engine that implements all
the features of modern SAT solvers but does not require
explicit unrolling of the circuit. A first attempt at im-
plicit time frame unrolling has been made in the SATORI
solver [59] that partly integrates ideas from modern SAT
solvers and sequential ATPG tools.
As the simplicity of the SATproblemhelped to improve

algorithms and implementations for combinational prop-
erty checking, including BMC, QBF may play the same
role for (complete) sequential property checking. Thus im-
provements to the capacity ofQBF solverswill have a large
impact on sequential property verification, in addition to
providing an important research topic on its own.
While it is clear that SAT-based verification tech-

niques will continue to make inroads into current verifica-
tion methodology and tools, in our opinion the satisfac-
tory solution of some of the issues discussed above will be
crucial in making this technology more widely applicable.
In any case, the next few years promise to be an inter-
esting time for researchers working in this area as well
as for tool developers seeking to integrate this technology
into the next generation of verification tools in industrial
practice.
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