Formal Verification in Hardware Design: A Survey

CHRISTOPH KERN and MARK R. GREENSTREET
Department of Computer Science, University of British Columbia

In recent years, formal methods have emerged as an alternative approach to ensuring the quality
and correctness of hardware designs, overcoming some of the limitations of traditional validation
techniques such as testing.

There are two main aspects to the application of formal methods in a design process: The formal
framework used to specify desired properties of a design, and the verification techniques and tools
used to reason about the relationship between a specification and a corresponding implementation.
We survey a variety of frameworks and techniques which have been proposed in the literature and
applied to actual designs. The specification frameworks we introduce include temporal logics,
predicate logic, abstraction and refinement, as well as containment between w-regular languages.
The verification techniques presented include model checking, automata-theoretic techniques, au-
tomated theorem proving, and approaches that integrate the above methods.

In order to provide insight into the scope and limitations of currently available techniques, we
present a selection of case studies where formal methods have been applied to industrial-scale
designs, such as microprocessors, floating-point hardware, protocols, memory subsystems, and
communications hardware.

Categories and Subject Descriptors: A.1 [Introduction and Survey]; B.7.2 [Integrated Cir-
cuits]: Design Aids— Verification

General Terms: Verification

Additional Key Words and Phrases: formal methods, formal verification, hardware verification,
model checking, language containment, theorem proving, case studies, survey

1. INTRODUCTION

The correct design of complex hardware poses serious challenges. Economic pres-
sures in rapidly evolving markets demand short design cycles while increasing com-
plexity of designs makes simulation coverage less and less complete. Bugs in a
design which are not uncovered in early design stages can be expensive, and bugs
which remain undetected until after the shipping products can be extremely ex-
pensive. In safety-critical applications, such as nuclear power control or aviation,
correct operation of a device is imperative.

This work was supported in part by NSERC research grant OGP-0138501, a UBC graduate
fellowship, and a BC Advanced Systems Institute faculty fellowship.

Authors’ address: 2366 Main Mall, Vancouver, B.C., Canada V6T 174;

email: {ckern,mrg}@cs.ubc.ca; phone: +1 (604) 822-{5707,3065}; fax: +1 (604) 822-5485.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissionsQacm.org.
© 1997 by the Association for Computing Machinery, Inc.

Submitted to ACM Transactions on Design Automation of Electronic Systems



2 . C. Kern and M. R. Greenstreet

Formal methods, i.e. the application of mathematical methodologies to the spec-
ification and validation of systems, have emerged as a possible aid in tackling these
challenges. This survey attempts to provide an understanding of what can be spec-
ified, how these properties can be verified, and presents examples of how formal
methods have been applied to realistic designs. Earlier surveys include [Gupta
1992; Seger 1992; McFarland 1993; Shankar 1993]. The Gupta survey, in partic-
ular, provides a more comprehensive coverage of the theoretical aspects of formal
hardware verification.

1.1 Formal Verification in Hardware Design

Hardware design typically starts with a high-level specification, usually given us-
ing block diagrams, tables, and informal text conveying the desired functionality.
A combination of top-down and bottom-up design techniques are applied until a
final design is obtained. Validation of the design involves checking that the fabri-
cated physical design indeed meets its specification. In a traditional design flow,
this is usually accomplished through simulation and testing. However, exhaustive
testing for non-trivial devices is generally infeasible; thus, testing provides only a
probabilistic assurance.

Formal verification, in contrast to testing, uses rigorous mathematical reasoning
to show that a design meets all or parts of its specification. A prerequisite for the
applicability of formal verification is the existence of formal descriptions for both the
specification and the implementation. Such a description is given in a notation with
a formal semantics which unambiguously associates a mathematical object with
the description, permitting these objects to be reasoned about in a mathematical
framework. Section 2 describes many such notations including predicate logic,
temporal logic and a variety of hardware description languages (HDLs).

The time required for formal verification must be considered when applying these
techniques to a real project. There are relatively automatic formal verification
methods that are comparable to traditional simulation in time required and ease of
use, but they tend to be limited to “small” designs. On the other end of the scale,
formal verification frameworks exist which are in principle powerful enough to verify
large, state-of-the-art designs [Brock et al. 1996]. Applying such a framework re-
quires large amounts of time of highly skilled experts. Although formal verification
methods have been used in the designs of several state-of-the-art microprocessors
and other complicated chips, we are aware of no complete top-to-bottom verification
for such a design. The cost of such verification still appears to be prohibitive.

Time is a decisive factor in the integration of formal methods in the design
process. To achieve maximum leverage, formal methods must be applied in a way
which ensures that they can keep up with the design flow [McMillan 1994]. If this
is the case, formal methods can benefit the design process significantly, as they
allow conceptual errors in the design to be uncovered much earlier through formal
verification of the high-level design against the requirements.

It is important to note that the use of formal methods can be advantageous even if
a complete top-to-bottom verification is not carried out: The exercise of formalizing
the requirements or a high-level specification can be useful in itself because it tends
to clarify many aspects, such as boundary conditions, which are easily overlooked
in informal specifications [Miller and Srivas 1995]. Verifying properties of a high-



Formal Verification in Hardware Design: A Survey . 3

level abstraction can catch many errors at an early stage of the design, avoiding
costly corrections later. High-level descriptions can often be made concise enough
to be tractable by automatic verification methods [McMillan 1994]. Finally, the
cost of verification might be considered worthwhile for certain, particularly difficult
to design subsystems, while other, “straightforward” modules can be treated with
traditional methods.

1.2 The Meaning of Verification

Formal methods by themselves are not a panacea. Even verifying that the netlist
model of a design satisfies a formal specification does not provide complete assur-
ance that the physical device when manufactured will always work as intended.
The reasons for this are fundamental [Cohn 1989b]: there is no formalization of
the intentions the person had in mind who formalized the specification; therefore
one cannot formally verify that the top-level requirements specification faithfully
captures this intention. Similarly, the formal interpretation of the lowest-level de-
scription is still an abstract model of the physical device, and it cannot be formally
verified that this model is accurate. Furthermore, verification generally requires
that some assumptions are made on the behaviour of the environment in which a
device is intended to operate. If the actual operating environment violates these
assumptions, the device may fail despite successful verification. However, the ap-
plication of formal methods offers the benefit of at least making these assumptions
explicit.

The literature contains many claims of the form “the XYZ device has been for-
mally verified”. To be meaningful, such claims must be accompanied by a descrip-
tion of what properties were verified as well as a description of the form of the
design description (e.g. RTL, abstract function blocks, behavioral models, gate, or
switch level) that was used [Cohn 1989b]. For example, Brock and Hunt [1990]
examined claims made about the application of formal methods to a commercial
microprocessor noting many aspects of the design that were not verified.

1.3 Organization of the Paper

Section 2 introduces frameworks which are suitable for the formalization of speci-
fications and implementation descriptions of hardware designs. Section 3 surveys
methodologies and tools for the formal verification of assertions expressed in the
introduced formalisms. Section 4 presents case studies of applications of formal
verification to hardware design. We emphasize real, industrial designs in order
to provide a realistic impression of what verification problems are tractable with
current methods. We close the paper with a short summary and conclusions.

2. SPECIFICATIONS AND VERIFICATION CONDITIONS

There are two main approaches to the specification and corresponding verification
of hardware (and also software) systems. The first approach is concerned with
specifying desired properties which one wants to verify that the design satisfies.
Formal verification is generally concerned with properties of of a temporal nature,
i.e. they do not concern static attributes of the system but rather characteristics of
the system’s behaviours or executions. Temporal logics are a unifying framework
for expressing such temporal properties. Verification amounts to showing that all



4 . C. Kern and M. R. Greenstreet

of the system’s possible behaviours satisfy the temporal properties comprising the
system’s specification.

The second approach is based on specification in terms of a high-level model of
the system. Here, the “good” behaviours of a system are not given by a set of
properties which they are required to obey, but rather by the set of all behaviours
of the high-level model. Thus, verification requires showing that each possible
behaviour of the system’s implementation is consistent with some behaviour of its
high-level specification.

The two approaches are often used in conjunction: First, a high-level model of
the design is shown to satisfy a set of desired temporal properties. Then, a series
of more and more detailed specifications are developed, each of which is an imple-
mentation of the specification at the next higher level. In an appropriate technical
framework, the temporal properties of the highest level model are preserved by
the refinement steps and thus carry through to the lowest, most detailed level. In
this context, the first type of verification is also referred to as design or property
verification while the second form is known as implementation verification. Note
that the distinction between the two forms is only a conceptual one. Both types
of verification are instances of the same problem: the specification defines some
constraint on the allowed behaviours of a system, and verification requires showing
that the implementation meets this constraint.

In this section, we will introduce the formalisms behind both approaches. Sec-
tion 2.1 is concerned with the specification of temporal properties, while section 2.2
describes specification in terms of high-level models.

2.1 Specifications in Temporal Logic

In general, a temporal logic is a logic (usually propositional or first order logic)
augmented with temporal modal operators which allow reasoning about how the
truth values of assertions change over time [Emerson 1990]. Temporal logic can
express conditions such as “property p holds at all times”, or “if p holds at some
instant in time, ¢ must eventually hold at some later time”. Propositions of this
sort can be employed to specify desired properties of systems, such as “this bus
controller will always grant at most one request for the bus at a time,” and “every
request will eventually be granted”.

The truth of a formula in temporal logic is understood relative to a system M
which is perceived to be in one of a (possibly infinite) set of states S at any point
in time, and which performs transitions between states as time progresses. It is
assumed that there are atomic propositions associated with each state in S; these
form the basic building blocks for temporal formulas. In verification practice, the
state space often consists of Boolean n-tuples; in this case a suitable form of the
atomic propositions is “component 4 of the state tuple has value true (false)”. The
temporal operators permit the expression of relationships between the truth values
of atomic propositions at different times; this corresponds to a statement about the
truth values of atomic propositions as the system proceeds through a sequence of
states. Pnueli [1977] first proposed using temporal logic to reason about system
behaviours.

There are many different forms of temporal logics; in particular there are a num-
ber of options with regard to the underlying model of time, such as branching



Formal Verification in Hardware Design: A Survey . 5

versus linear time, discrete versus continuous time or the use of temporal oper-
ators on points versus intervals in time. In this section, we will first introduce
Computation Tree Logic (CTL) as a representative example of temporal logics and
demonstrate how it can be used for specification purposes. Later, we will examine
other variants of propositional temporal logics more briefly. For a more complete
survey of temporal logics, see [Pnueli 1986; Emerson 1990].

The choice of an appropriate logic for a given specification task is an important
problem. There are three main considerations to take into account: Firstly, tempo-
ral logics differ in their expressiveness; there are properties which can be expressed
in some logics, but not in other, less expressive ones. Secondly, the complexity of
the verification task depends on the choice of logic. Generally, it is more difficult or
computationally expensive to show that a system satisfies a temporal formula in a
more expressive logical framework. Finally, temporal logic specifications are often
the top-level specification and thus need to be validated with respect to the informal
intention the specifier has in mind. This is often easier in a simpler (and therefore
most often less expressive) framework. Thus, it is usually advantageous to choose
the least expressive logic which is expressive enough to capture the properties one
has in mind.

2.1.1 Computation Tree Logic. Computation Tree Logic (CTL) [Clarke et al.
1986] is a propositional logic of branching time; i.e. it is based on propositional
logic and uses a discrete model of time where, at each instant, time may split
into more than one possible future. We will first introduce the syntax and formal
semantics of CTL, and then use a simple example to demonstrate how CTL can be
used to specify desired behaviours of systems.

2.1.1.1 CTL Formulae and their Truth Semantics. The truth semantics of a CTL
formula is defined with respect to a temporal structure M = (S, R, L), where S is
a set of states, R C S x S is a total binary relation (i.e. Vscs Jics (s,t) € R),
and L : S — 27 is a labeling of states with the atomic propositions in P which
are true in a given state. R is the next-state relation of the structure, i.e. if the
system is in state s at a given time instant, it will be in any of the states in the set
{t € S| (s,t) € R} at the following time instant. The totality requirement for R is
included because CTL formulae have no sensible interpretation for states without
successors. A path is defined as an infinite sequence of states sg, $1,... such that
Viso (i, 8i+1) € R).

Let P be a set of atomic propositions. Formulae of CTL are defined recursively
as:

(1) Every atomic proposition p € P is a CTL formula.
(2) If f1 and fo are CTL formulae, then so are ~f1, fi A fa, AX f1, EX fi,
A[f1U f5], and E[f1 U f5].

Intuitively, AX means “all successors”: the formula AX f; holds in a system state
so iff f1 holds in every successor state of sg. Likewise, EX means “there exists
a successor”. The formula A[fi U f2] means “always-until,” i.e. along all possible
paths f1 holds until f> is satisfied. The formula A[f; U f3] holds in state so iff for
every path starting from sg, s = sg, s1, ..., there is some i > 0 such that fo holds
in state s; and f; holds in all states from sg to s;—1. Note that A[f; U f2] holds in



6 . C. Kern and M. R. Greenstreet

any state where f2 holds. In the same fashion eventually, E[f; U f2] means “exists-
untils,” i.e. there exists a path such that f; holds until f5 is satisfied. Additional
temporal operators are defined in terms of the ones above:

(1) AF f = A[true U f] (f must hold eventually)

(2) EF f = E[true U f] (there is a reachable state in which f holds)
(3) EG f = "AF " f (there is some path on which f always holds).
(4) AG f = "EF " f (f must always hold on all possible paths).

Consider a CTL formula f, a model structure M = (S, R, L), and a state so € S.
We denote the statement “f holds in M at state so” with M,sq | f. We write
so |= f if the underlying model structure is understood, M, Sy = f to abbreviate
Vsesocs M,s = f, and M = f to abbreviate M, S |= f. The relation = defines
the formal truth semantics for CTL and is defined recursively as follows:

(1) M,so =piff p € L(so)-

(2) M,so ="F iff not (M, so = f)-

() M,s0 = fi A f2 iff (M, 80 = f1) and (M, 50 |= f2)
(4) M,s0 = AX f iff Vies (so,t) € R = (M,t |= f).
(5) M,so =EX [ iff Jies (s0,t) € RA (Mt = f).
(6) M,so = A[f1 U fo] iff for all paths s, s1, ...,

Jiso (M, 3 & f2) AVjoo...ic1 M, 85 = fi.
(7) M,so = E[f1U f2] iff for some path sg,s1, ...,
Jiso (M, 3; & f2) AVj=o...ic1 M, 85 E f1.

2.1.1.2 Specifications in CTL. We will now introduce a simple system which
will be used as an example throughout this paper. Consider the controller of a
(very abstract) traffic-light at a four-way intersection where the lights in opposing
directions always show the same colour. Let C = {r,y, g} be the set of traffic-
light colours. The state space of the controller can be modeled as § = C x C,
where the first (second) component denotes the colour of the lights in the north-
south (east-west) direction. Figure 1 shows the state-transition graph of the traffic-
light controller. The corresponding state-transition relation R is defined such that
(s,t) € R iffthere exists an arc from state s to state ¢ in the graph. The states on the
right are states which we expect a correct and properly initialized implementation
of a traffic-light not to reach. We have added self-loops to each of them to ensure
that R is indeed a total relation. A suitable set of atomic propositions is given by

L(s) = {[ns=c]|c€eCATdaec s =(c,d)} U
{lew=7¢c] | c€CATaec s = (d,c)}.

For example, the atomic proposition [ns = g] holds in states (g,7), (g,y) and (g, g)-
Let M = (S,R,L) be the temporal structure corresponding to our traffic-light
controller.

There are two important classes of properties which one usually wants to verify
for a given system [Owicki and Lamport 1982]:

Safety Properties. These are properties which intuitively assert that “bad things
never happen”.



Formal Verification in Hardware Design: A Survey . 7

Fig. 1. State Transition Graph for the Traffic Light Controller

Liveness Properties. Properties in this class state that “good things happen even-
tually”. They are also referred to as eventuality or progress properties.

For a more rigorous classification of liveness and safety properties, see [Pnueli 1986;
Emerson 1990].

An important safety property of our traffic-light is that it shows a red light to
at least one direction at all times. In CTL, this property can be expressed as
P = AG ([ns = r]V[ew = r]). Note that M [£ P since, for example, M, (g,y) [~ P.
However, one can easily convince oneself by exploring all possible state transitions
that e.g. M, (r,r) = P. An equivalent formulation is

ME (ns=r]Alew=r]) = AG ([ns =r] V [ew =7]).

This specification is in a commonly encountered generic form of safety properties,
M = Pinit = AG P;, where Pip;; and Ps are instantaneous formulae not containing
temporal operators. A safety property of this form has the intuitive interpretation
that every computation of M which starts in a state satisfying P;,;; also satisfies
P, at all times.

A desirable liveness property of the traffic-light is that a particular direction will
“always eventually” see green lights. This property can be expressed in CTL as

Q@ = AG (AF [ns = g]) A AG (AF [ew = g]).

However, M, (r,7) |E @ does not hold, because the transition relation R specifies
two successor states for (r,r). This means that R allows, for example, the path
that repeatedly cycles through the three states (r,r), (r,y), (r,g),- ... Such a path
is a counter-example for the first conjunct of (). We can phrase a weaker property

Q' = AG (EF [ns = g]) A AG (EF [ew = g]),

such that indeed M, (r,r) = Q'. Q' states that from all states on all paths, M
permits a sequence of transitions to a state in which a particular direction sees
green.

The stronger liveness property @ holds for M only under additional fairness as-
sumptions stating that M does not consistently “discriminate” against state tran-
sitions. However, it can be shown that liveness under fairness assumptions cannot



8 . C. Kern and M. R. Greenstreet

be expressed in CTL [Emerson and Halpern 1986; Emerson 1990]. In the following
section, we consider more general branching time logics which permit such asser-
tions.

2.1.2 More Expressive Branching Time Logics. Emerson and Halpern [1986] de-
fine the logic CTL* as a generalization of CTL where a path quantifier may be
followed by arbitrary temporal formulae. Formally, CTL* formulae are defined
recursively in terms of path formulae and state formulae as follows:

(1) Any atomic proposition is a state formula.

(2) If s1,s2 are state formulae and p is a path formula, then s; A s, 7s; and Ep
are state formulae.

(3) If s is a state formula and pq,ps are path formulae, then s,p; Ups, "p1,p1 A
p2, Xpy are path formulae.

(4) Any state formula is a CTL* formula.

In addition, the abbreviations Fp = trueUp, Gp = "F7p and Ap = "E™f are
introduced. Informally, the truth of a state formula is defined in the obvious way
for the Boolean operators, and such that Ep holds in a state r if there is a path
starting with r which satisfies p. The truth of a path formula is defined with respect
to a given path in a natural way, for example p; U py holds for a path ¢ if p; holds
on a finite and possibly empty prefix of ¢ which is followed by a state in which p,
holds. For a formal treatment of the semantics of CTL*, see [Emerson and Halpern
1986; Emerson 1990].

The path quantifiers E and A apply to a path formula and result in a state
formula. These quantifiers transform a statement about computations starting from
a state into an assertion about the state itself. In particular, Ep holds for state
so if there is a path, sg, s1,82,... such that p holds for this path. Furthermore,
if we constrain the syntax of CTL* such that path quantifiers must be followed
immediately by one of the modalities X, U,F or G, we obtain the logic CTL
embedded in CTL*. The essential difference between CTL* and CTL is that all
sub-formulae of a CTL formula must be state formulae; this precludes assertions
about individual computations.

Liveness properties under fairness assumptions can be expressed in CTL* for
example in the form

A((GFp1 A---GFp,) = Fq). (1)

Here, ¢q is a property which must eventually hold on every path which “always
eventually” satisfies each of the properties py,...p,. The key point is that the
sub-formulae GFp; and Fq all refer to the same path which can be thought of as
being “bound” by the path quantifier A. As mentioned above, CTL cannot express
assertions about paths; this gives an intuitive explanation why liveness properties
such as (1) cannot be stated in CTL.

In the traffic-light example, we could require the fairness assumption that the
controller “always eventually” takes each of the two transitions from (r,7). The
formulae [ns = r] A Jew = r] A X[ew = g] and [ns = 7] A [ew = r] A X[ns = ¢]
hold for a path starting in (r,r) if this path’s first transition is (r,r) — (r,g) or



Formal Verification in Hardware Design: A Survey . 9

(r,7) = (g,r), respectively. Thus, the fairness assumption can be stated as

T = GF(ns=r]AJew =7r] A X[ew = g]) A
GF([ns =r] Alew = r] A X[ns = g]).

The desired liveness property does indeed hold under this fairness assumption:
M, (r,7) £ A(T = (Flns = g] A Flew = g])).

It is not always necessary to resort to full CTL* to express certain notions of
fairness. Clarke et al. [1986] propose the logic CTLY which has the same syntax
as CTL. However, fairness constraints for a model can be stated in terms of sets of
states which have to be visited infinitely often on paths which are to be considered
fair. The semantics of CTL¥ is defined in exactly the same way as for CTL, except
that all path quantifiers range over fair paths only.

The logics YCTL and YCTL* are defined as subsets of CTL and CTL*, respec-
tively, which are free of existential path quantifiers [Clarke et al. 1994].

2.1.3 Linear Time Logic. In the branching time framework described in the pre-
vious sections, the non-determinism of a system is captured by allowing for more
than one future at any time instant. An alternative view is to regard time as be-
ing linear and to consider only the one future or execution which “actually takes
place” [Lamport 1980]. Thus, a linear time temporal formula is an assertion about
one particular sequence of states; to reason about non-deterministic systems it is
necessary to consider more than one execution.

Syntactically, formulae of linear-time logic (LTL) look like path-quantifier-free
CTL* formulae. The semantics of an LTL formula is defined with respect to a
linear-time structure M = (S,xz, L), where S is a set of states, + = zg,z1,... I8
an infinite sequence of states, and L : § — 2% is a labeling of states with atomic
propositions in P [Emerson 1990]. Essentially, the truth of an LTL formula with
respect to a sequence is defined in the same manner as truth of a CTLx* path-formula,
is defined with respect to a path.

Lamport [1980] uses linear-time structures of the form Mx = (S, X, L), where S
and L are defined as above, and X is a set of sequences of states corresponding to
the set of all possible computations of a system. In this framework, a LTL formula
p holds for a structure Mx, Mx = p, iff p holds for all z € X. We write Mx,z = p
to denote that p holds for some z € X. The universal quantification implicit in
the notation Mx = p can be made explicit by considering the CTL* formula Ap
with respect to a temporal structure whose transition relation generates exactly the
sequences in X.

The truth of an LTL formula can also be extended to temporal structures Mgz =
(S,R,L), where R is the transition relation (see section 2.1.1). Let Mprx =
(S, Xg,L), where Xg = {z|z is a path of Mg}, denote the corresponding linear
time structure. Then, Mg = ¢ iff Mx |= ¢, i.e.  |= ¢ for all paths z generated
by MR.

The main difference between LTL and BTL is the lack of existential quantifi-
cation over paths in LTL. Emerson and Halpern [1986] have shown that CTL* is
strictly more expressive than LTL, i.e. there are properties such as EF p which
cannot be expressed in LTL. There is some argument on whether existential path



10 . C. Kern and M. R. Greenstreet

quantification is essential in specifications or should not be used at all. Emerson
and Halpern [1986] argue that existential quantification plays an important role in
reasoning about concurrent systems. Others, however, point out that specifications
should capture properties of all possible computation of a system, not only some,
in the sense that one usually wants to specify what a system must do, and not only
what it might do [Clarke et al. 1994].

Note that LTL and BTL are equivalent if the model structure is deterministic,
in which case it gives rise to exactly one computation.

2.1.4 p-Calculus. An alternative characterization of temporal modalities can be
given in terms of fixpoints of monotonic predicate transformers. Let M = (S, R, L)
be a temporal structure as above. Consider the set of predicates on states, and let
each predicate be represented by the subset of P C S such that the predicate is
true in and only in the states in P. Let AX P denote the set of states such that
all of those state’s successors states are in P, i.e.

AXP = {s€ S |Vyes (s,8') € R= s € P}. (2)
Consider the sequence of sets defined by

QO = S7
Qiv1 = PNAXQ;.

The set ();,i > 0 has the property that for every state s € @Q;, P holds, and for all
successors s' of s, P holds on a prefix of length ¢ — 1 of all paths starting in s’. In
other words, P holds on any path prefix of length i starting from a state s € Q;.
One can show that the greatest fixpoint ¥@Q.P N AX @) exists and that

(see [Emerson 1990]). We can interpret Qo as the set of states such that for
any state s € (Q, P holds on all states of all paths starting in s. This justifies
the definition AG P = vQ.P N AX @, which provides a characterization of the
temporal operator EG in terms of a fixpoint. Similar fixpoint characterizations
can be derived for the other temporal operators.

Propositional p-calculus [Kozen 1993; Bradfield 1992] is a temporal logic based
on fixpoint characterizations. Formulae of the p-calculus are composed of simple
predicates, the next-state operators on sets EX and AX , Boolean connectives, and
the least and greatest fixpoint operators p and v. The semantics of a formula with
respect to a structure M is given in terms of sets of states in a similar fashion as
above. Thus, the denotation of a formula f is a subset )y C S which is intuitively
the set of states in which f holds. The possibility of nesting the fixpoint operators
provides a considerable expressive power. In particular, pu-calculus subsumes CTL*
and LTL [Emerson 1990].

The fixpoint characterizations for the temporal operators are of practical impor-
tance, even if one does not require the full expressive power of the p-calculus. For
a structure M whose set of states S is finite, the sequence @Q;,i = 0,1,... in eq. (3)
must converge in a finite number of steps. Thus, the iterative fixpoint computation
provides the basis for an algorithm which computes the set of states satisfying a



Formal Verification in Hardware Design: A Survey . 11

temporal formula in e.g. CTL or any other temporal logic which can be expressed
in the p-calculus. This approach is explored in greater detail in section 3.1.2.

2.1.5 Invariants and Safety Properties. In the previous subsections, we have in-
troduced some variants of temporal logic with rather comprehensive expressiveness.
In many applications however, it is sufficient, and often more intuitive, to specify
a system in terms of rather simple assertions.

One of the simplest forms of temporal specification is in terms of invariants and
safety properties. An invariant I of a structure M is a property such that for
all states of M which satisfy I, their successor states also satisfy I. This can be
expressed in CTL as M |= (I = AX ). One can easily verify that e.g. I} = [ns =
r]V[ew = r] and I = [ns = g]A~[ew = r] are invariants of the traffic light controller.
In section 2.1.1.2, we have already encountered the traffic light’s safety property
Pinit = AG P;, with P = [ns=r]Alew=r] and P; = [ns =7r] V [ew = r].

There is an important connection between invariants and safety properties: Given

(1) M Piig = 1
(2) MT= AXI
(3) ME=1= P,

we can conclude M | P, = AG P; using a simple induction argument over
reachable states. This allows safety properties to be established inductively, where
the inductive step corresponds to showing that I is an invariant [Lamport and
Schneider 1984]. In the traffic-light example, once I; has been shown to be an
invariant, simple Boolean algebra suffices to show P;,;; = I1 and I; = Ps, which
together establishes the desired safety property.

?] present a framework where properties of modular designs are expressed in
terms of invariants of individual components as well as the entire system. Veri-
fication proceeds by proving invariants of individual modules and combining the
results to prove invariants of their composition.

2.1.6 Trajectory Formulas. Trajectory Formulas (TF) [Seger and Bryant 1995]
form a restricted temporal logic which offers only the next-time operator and does
not allow negation or disjunction. Trajectory formulas can be efficiently verified
using techniques which are described in section 3.1.4. Trajectory formulas are
constructed from assertions about node values and expressions of symbolic Boolean
variables. For example, if in is a node of the circuit being modeled, then the
formula in is 0 asserts that the node in always has the value 0 (i.e. false).

A trajectory assertion has the form [A = (], where A and C are trajectory
formulas. Informally, a trajectory assertion [A = C] holds for a model structure
M, written M = [A = C], iff each sequence of states of M which satisfies the
antecedent A also satisfies the consequent C'. Typically, A specifies constraints on
how the inputs of a circuit are driven, while C' asserts the expected results on the
output nodes. For example, the formula

[inis0 = N(outis1)]

asserts that from any state in which the node in is 0, the node out must be 1 in
the next state (N is the next state operator).



12 . C. Kern and M. R. Greenstreet

Rather than writing a separate assertion for every possible combination of inputs,
symbolic variables may be used to write much more succinct specifications. For
example, an inverter with a one time-unit delay can be specified using the symbolic
variable ¢ and the symbolic trajectory assertion:

[inisa = N(outis "a)]

A trajectory assertion is implicitly universally quantified over any symbolic variables
that appear in it. The complete set of constructions for trajectory formulas are:

. Simple predicates: if nd is a node in the circuit model, then nd is 0 and nd
is 1 are trajectory formulas.

. Conjunction: If Fy, F» are trajectory formulas, then so is (Fi A F3).
. Next time: If F' is a trajectory formula, then so is NF.

. Domain restriction: If F' is a trajectory formula and E is an expression over
symbohc variables, then F'when E is a trajectory formula.

Many useful abbreviations can be defined using these operators. For example, we
write ndis b as an abbreviation for

((ndis0) when 7b) A ((ndis 1) whenb)

and we write N* where k is a constant to indicate k applications of the next time
operator.

As a somewhat larger example, consider a correlator with inputs x and y and
output out. The output should be true if and only if the previous three inputs
on x matched the corresponding inputs on y. This behaviour is specified by the
assertions:

(xisa) A (yisa) A (N(xisb) A N(yisb)) A (N?(xisc) A N%(yisc))
= N3(outis1)
and (xisa) A (yis "a) = N(outis0) A N%(out is0) A N3(out is0) 4)

The first assertions states that if x and y are the same for three consecutive cycles,
then the output must be 1 on the next cycle. The second assertion states that if
x and y differ on some cycle, then the output must be 0 on the next three cycles.
No initial state is specified with a trajectory assertion, therefore, verifying such
an assertion shows that it holds everywhere along a trajectory. For example, the
specification for the correlator describes its operation for all times (although the
value of out is not fully specified for the first four time steps).

2.2 Specification with High-Level Models

The previous section presented a variety of approaches for specifying a system in
terms of desired properties. An alternative style of specification uses a high-level
model to stipulate the allowed behaviours of a system. In this framework, verifica-
tion entails reasoning about the relationship between the high-level model Mg, also
referred to as the specification, and a lower-level model My, the implementation.
An important aspect of this approach to specification is the notion of abstraction,
which permits unnecessary detail to be hidden from the high-level model. Further-
more, specifications may be given in an hierarchical fashion; starting from a very
abstract model at the highest level, one proceeds through a series of abstractions



Formal Verification in Hardware Design: A Survey . 13

to a detailed description of the implementation. The view of the design at some
level k assumes the role of the implementation with respect to the specification at
level k — 1 as well as the role of the specification for level k + 1.

To facilitate formal reasoning about the implementation and the specification, it
is required that a formal interpretation can be given for their descriptions. There
are three main approaches to the formal specification of systems and their im-
plementations. A device’s behaviour can be formalized in terms of functions and
predicates of standard first or second-order predicate logic. Alternatively, its be-
haviours can be described by a state transition system, whose definition in turn can
be expressed in languages such as CSP or UNITY. Finally, the description may be
in terms of languages recognized by automata on infinite objects.

In this section, we first review the role of abstraction; we then describe how
specifications are described both in logic and as transition systems. We then survey
a number of formalizations of what it means that “M; implements Mg”, and review
automata-theoretic approaches.

2.2.1 Abstraction Mechanisms. Melham [1988] identifies four different types of
abstraction which are relevant in hardware verification. We will illustrate each type
of abstraction with a simple, 3-bit, up-down counter.

Structural abstraction suppresses details about the implementation’s internal
structure in the specification. The specification should only reflect a system’s exter-
nally observable behaviour; it gives a “black-box” view of a device without placing
constraints on its internal design. For example, a 3-bit, up-down counter can be
described as a component with inputs for the clock and the direction control, and
an output for the value of the count. A structural refinement of this description
could describe the counter using flip-flops and gates.

Behavioural abstraction suppresses details about what the component does under
operating conditions that should never occur. For example, a behavioural descrip-
tion of the three-bit counter may omit a specification of what the counter does if
it is at its maximum count and is clocked with the direction input set to “up,” or
if it is at its minimum count and is clocked with the direction input set to “down’.
Behavioural abstraction may also be used to indicate “don’t care” conditions. For
example, if several devices are requesting access to a bus and they all have the same
priority, the bus controller may be allowed to grant the requests in an arbitrary or-
der. This gives the designer greater flexibility to optimize implementation. The
specification is more abstract in the sense that its behaviours are a superset of the
implementation behaviours.

Data abstraction relates signals in the implementation to signals in the specifica-
tion when they have different representations. For example, the specification of the
counter may specify that the output is an integer between zero and seven, and the
implementation may have an output that consists of three, Boolean valued signals.
Data abstraction requires a mapping which determines how the states or signals of
the implementation are to be interpreted in the specification’s semantic domain.

Temporal abstraction relates time steps of the implementation to time steps of the
specification. For example, the counter may be specified in terms of what happens
for each clock cycle while the implementation uses a two-phase clock. In this
case, every other implementation state maps to a specification state. Frequently,



14 . C. Kern and M. R. Greenstreet

specifications of a microprocessor use the execution of a single instruction as the
basic unit of time. An implementation however, would base its notion of time on
the execution of a microcode instruction, a clock cycle, or a clock phase. Temporal
abstraction requires that corresponding execution states at the two time scales
are identified with each other. This is complicated by the possibility that one
specification time unit does not necessarily correspond to always the same number
of implementation steps.

2.2.2 Specifications in Logic. Gordon [1985] has argued that it is not strictly
necessary to resort to specialized hardware description languages; rather, formal
logic is sufficient to specify hardware systems. In the following, we will assume that
the reader is familiar with first and second order predicate logic (see e.g. [Kleene
1967]). We use the usual notation for predicate logic, plus the following notation
for conditional expressions,

(a—>b|c)é{blfa’

¢ otherwise,

where a is of Boolean type and b and c¢ share the same type.

The external behaviour of a device can be modeled as a predicate over the device’s
external connections or its externally visible state. If the device’s timing behaviour
isirrelevant, a first order predicate suffices and the external connections are modeled
as values in an appropriate domain, such as Booleans or integers. For example, the
definition

NAND(il,iQ,O) 2 (O = _'(Z'l N 12))

specifies a delay-less NAND gate by constraining its external connection o (the
output) to be equal to the NAND of its (input) wires i1, is.

If time has to be taken into account, and a discrete model of time suffices, it is
convenient to represent signals as sequences of values, i.e. as functions from natural
numbers into the underlying domain. Then, for some integer, delta, a NAND gate
with a switching delay of § time units can be described with the following second-
order predicate:

NAND(i1,i2,0) = Vien o(t + 8) = ~(i1(t) Ada(t)).

This predicate is second-order because it is an assertion about functions from time
to Booleans (i.e. i1, 2, and 0) and not about simple Boolean variables. The com-
position of devices thus specified into more complex devices is formalized by iden-
tifying the internal connections and hiding them by existential quantification. For
example, we can describe an AND gate built from two NAND gates as shown in
figure 2 with the predicate

AND(iy,i2,0) = 3, NAND(iy,is,q) A NAND(q,q,0).

A synchronous device can be specified in terms of a predicate over the sequence
of its states and the sequence its environment’s states. Let Sp denote the device’s
state space, and Sg the state space of its environment. A sequence of states, or state
stream [Windley 1995a], can be represented by a function from natural numbers
into states.



Formal Verification in Hardware Design: A Survey . 15

T T ReEL e

NAND AND

Fig. 2. (a) NAND gate, (b) AND gate

As an example, we will consider the specification of a modulo-eight counter. The
counter’s state space is given by

Sp 2 {ieN|0<i<8}.

The counter’s environment Sg = {true, false} consists of a reset signal; a value
of true on this signal causes the counter to reset to zero. Otherwise, the counter
increments modulo 8 at each time instant.

Since the counter is a deterministic device, we can give its next-state function
N : (Sp,SE) — Sp as follows:

N(c,res) = res = 0| (c=7—0]|c+1).

We can now define a predicate which constrains a state stream s : N — Sp and
an environment stream e : N — Sg to behaviours which are consistent with the
counter’s next state function:

Counter(s,e) = Vien s(t + 1) = N(s(t), e(t)).

The use of second order logic in the above specification is not essential; the
relevant aspects of the specification can be captured in the definition of the next-
state function N which does not depend on higher order logic [Hunt 1989].

The use of a general-purpose logic as a specification language has the advantage
that one can immediately associate a formal interpretation to the specification
based on the formal semantics of the logic. This has to be contrasted with the use
of specialized hardware specification languages which are often not defined with
formalization in mind; for instance the definition of a formal semantics for VHDL
is an area of active research [Van Tassel 1993; Kloos and Breuer 1995].

However, specification in logic may require greater discipline on the part of the
specifier to produce a readable specification. This can be aided by specification
frameworks which for example constrain the specification of the next-state function
to have a certain structure (see section 4.1.1).

2.2.3 Specification using Transition Systems. It is clear that we can specify the
allowed behaviours of a device in terms of a state transition system whose transitions
correspond to the behaviours we have in mind. For example, the state transition
system for the traffic light controller in section 2.1.1.2 can be viewed as an abstract
specification for a “real” controller which could for instance be be implemented as
a synchronous design.

Formally, a state transition system is a tuple M = (S, Sp, R), where S is a set of
states, So C S the set of initial states, and R C S x S is the transition relation. We
have described the traffic-light specification in terms of a state transition graph,
which immediately gives rise to a transition system as defined above, if the initial



16 . C. Kern and M. R. Greenstreet

program TrafficLight

declare
ns,ew : {red,grn,yel}
initially
ns,ew = red,red
assign
ns := grn if (ns=red) A (ew = red)
] mns:=yel if (ns=grn)
] mns:=red if (ns=yel)
[ ew:= grn if (ns=red)A (ew =red)
[ ew:= yel if (ew=grn)
[ ew :=red if (ew=yel)

end TrafficLight
Fig. 3. UNITY program for the traffic light controller

states are identified. However, for more realistic applications graph representations
become difficult to handle and a textual representation is often more appropriate.
Nevertheless, graphical representations such as Statecharts, which facilitate a hier-
archical design description [Harel 1988], can contribute to a better understanding
of a system and its properties.

A variety of languages have been proposed in the literature which are suitable
for specifying transition systems. Here, we will present a specification of the traffic
light in UNITY as a representative example [Chandy and Misra 1988].

The basic building block of a UNITY program is the guarded multi-assignment.
For example, the assignment

z,y=y,xif x>y

is enabled if the variable x has a greater value than y, and if so, will swap the values
of the two variables. The assignment may be executed only if it is enabled, and if
so it is executed as a single atomic action, in other words, the all of the expressions
on the right side of the assignment are evaluated first, and then the variables on
the left side of the assignment are updated. Although other statements may be
concurrently enabled, executions must only reach states that can be reached by
performing one statement at a time. UNITY is different from sequential PASCAL-
like languages in that it neither provides sequential composition of assignments nor
control structures such as loops or branches.

Figure 3 shows a UNITY program for the traffic-light controller. The declare
section declares two variables, ns and ew, of an enumerated type with the three
different values red, grn and yel. The two variables represent the states of the lights
in the two directions. The state space induced by a program is the cross-product
of the domains of all its variables. The initially section specifies that the initial
values of both variables are red. Variables not explicitly mentioned in this section
have arbitrary initial values. Finally, the assign section of the program declares a
list of assignments which are combined with the asynchronous combinator [|]. The
execution semantics of a UNITY program consisting of []-composed assignments are
such that for a given state, any one of the assignment statements enabled in that
state is selected non-deterministically and executed, which results in a state change.
This process is repeated indefinitely. For example, in state (ns = red, ew = red),



Formal Verification in Hardware Design: A Survey . 17

a non-deterministic choice between the first or the fourth assignment statement
takes place. This corresponds to this state having two successor states in the graph
representation in figure 1.

A Unity program P denotes a state transition system M = (5,So, R) whose
state space S is given by the cross-product of the domains of the variables declared
in P, whose initial states Sy are as specified in the initially section, and whose
transition relation is given by the guarded multi-assignments of P. Note that a
UNITY program can also be seen as denoting a temporal structure by augmenting
the corresponding transition system with atomic propositions of the form [v = a,
where v is a variable of P and a is a value in v’s domain. This facilitates a textual
notation for systems whose specification is given in terms of temporal formulae as
well.

Other languages which provide a suitable notation for high-level design descrip-
tions as well as temporal structures include CSP [Hoare 1978], Mury [Dill et al.
1992; Dill 1996], SMV [McMillan 1992], SPL [Manna and Pnueli 1992; Manna et al.
1994] and Synchronized Transitions [Staunstrup 1994]. Traditional HDLs such as
Verilog or VHDL can be used as well; as mentioned above, assigning formal seman-
tics to them is however not without problems.

In formal verification, non-determinism is frequently used for behavioural ab-
straction, leaving aspects of a design unspecified at a certain level of abstraction.
For example, the traffic light controller depicted in figure 1 does not specify whether
the (r,g) or (g,r) state will follow the (r,r) state. The specification only requires
that when a light cycles, it must go from red to green to yellow and back to red. In
particular, this specification is satisfied both by an implementation which strictly
alternates between the two roads and by one which can show green to the same
road more than once based on input from a sensor loop.

2.2.4 Refinement. The notion that M| implements Mg is formalized in terms of
a refinement relation C. In this section we will explore a number of definitions of
this relation which have been used in the literature. It is generally accepted that
any definition of C should at least satisfy the property that M; C Mg implies
that each observable behaviour of M is also an observable behaviour of Mg [Gerth
1989]. Generally, the equivalence of observable behaviours is to be understood with
respect to an appropriate abstraction mapping which relates corresponding aspects
of MI and Ms.

Abadi and Lamport [1991] describe a very general notion of refinement based on
trace inclusion with respect to the externally visible system states. Let E denote the
set of externally visible states of both the implementation and the specification; it
is assumed that any data abstraction between the two levels has already been dealt
with by lifting external implementation states into their corresponding specification
states through an appropriate mapping. Let I; and Is denote the internal states
of My and Mg, and let St = E x It and Ss = E x Ig be the state spaces of the
two models.



18 . C. Kern and M. R. Greenstreet

Let X1 and Xg denote the sets of all sequences of states allowed by M7 and Mg.
Then, My is defined to be a refinement of Mg iff

VanI (0 = (eo,qo),(elam);(tﬁz,%);---
= Ellf’EXS o' = (60;7'0)7 (6177‘1)5 (62,7’2), .. ) (5)

Thus, M; C Mg iff for each behaviour of the implementation, there exists a spec-
ification behaviour with the same externally visible states. Temporal abstraction
is accommodated by allowing stuttering; it is assumed that for every o € Xg, all
sequences obtained by replacing states with finitely many repetitions thereof, or by
removing repetitions, are also in Xg. For example, consider the implementation
behaviour

01 = (607q0)7 .- ;(607%—1)7 (61,(1k), ..

whose first k states differ only in their internal part. Assume that the first &
transitions implement a single transition at the specification level, from state (e, ro)
to (e1,71). Then oy can be matched up with the “stuttered” specification behaviour

g9 = (60,7‘0),. .. ,(60,’!‘0),(61,’{'1),. ..

Maretti [1994] introduces a generalization of trace inclusion where the externally
visible state of the system is subject to an interface protocol. Consider for example
a device which outputs data on a bus, and indicates the availability of valid data
on the bus by setting a signal valid to true. An interface protocol can be defined
which specifies that the bus is only to be observed (i.e. is externally visible) if
valid = true. An implementation of the device which places arbitrary values on
the bus while valid = false can still be regarded a refinement of the specification
with respect to the interface protocol, even though the values on the bus are not
consistent with the specification if the interface protocol is disregarded.

In a framework where the specification and the implementation are described in
predicate logic, refinement is usually expressed in a form which is equivalent to the
following [Melham 1988; Windley 1995b]:

vs:N—>81 ve:N—»SE Imp(s, e) = SpeC(As(S)a A, (e)) (6)

This assertion states that for each pair s, e of implementation-level state and envi-
ronment, streams which are consistent with the implementation, the streams A,(s)
and A.(e) obtained by subjecting s and e to their respective abstraction functions
are consistent with the specification. This notion of refinement implies trace inclu-
sion, it is however more restrictive because it requires the abstraction mapping to
be a function and does not allow more general relations. corresponding specification
trace, but rather requires that this trace can be expressed as a function of the spec-
ification trace. In addition to modeling data abstraction, this approach can model
temporal abstraction by mapping a sequence of implementation states to the same
specification states. Thus, the finer representation of time in the implementation
appears as stuttering moves for the specification. With this sense of abstraction,
every safety property of the specification has a corresponding property for the im-
plementation. The same cannot be said of liveness properties as the abstraction
mapping does not ensure fairness. For a more detailed exposition on abstraction,
the reader is referred to [Abadi and Lamport 1991; Windley 1995a].



Formal Verification in Hardware Design: A Survey . 19

2.2.5 Automata on Infinite Objects and Language Containment. An w-automaton
(see e.g. [Thomas 1990]) is a tuple A = (X,Q, 7, A, F), where X is a finite alpha-
bet, @ a finite set of states, § € @ the initial state, A C @ x ¥ x @ a transition
relation, and F' a fairness constraint. Let ¢ = {apaas... | a; € £,i > 0} de-
note the set of infinite sequences (or w-words) over ¥. A run of A on an w-word
oo ... € X¥ is a sequence of states ¢ = qoq1¢g2 ... with g; € @ such that g = g
and (g, @i, qit1) € A, for i > 0. A run g is called successful if it satisfies the fairness
constraint. A4 is said to accept a word a € ¢ iff there exists a successful run of A
on a. Let £(A) = {a € £¥ | A accepts a} denote the language of A.

A Biichi automaton [Thomas 1990] is an w-automaton with a fairness constraint
F C Q. A run q of a Biichi automaton is successful iff there is at least one state
p € F such that p appears infinitely often in ¢. It can be shown that the class of
languages accepted by Biichi automata is exactly the class of w-regular languages,
which have the form £ = (J_, U;.V}¥, where U;,V; are regular languages, and
V¢ = {woviva... | v; € V,i > 0}. There are several variations of w-automata,
including Muller, Rabin, Streett, L- and V-automata (see [Clarke et al. 1990] for a
comparison) as well as Edge-Street/-Rabin automata [Hojati et al. 1994], with the
essential differences lying in the acceptance condition F'. All of the aforementioned
automata are equivalent in expressiveness to Biichi automata in that they all accept
precisely the class of w-regular languages. However, the more expressive fairness
constraints of some types of automata allow for a more concise representation. For
example, Hojati et al. [1994] have shown that one can construct a class of Edge-
Street automata whose translation into L-automata incurs an exponential increase
in size.

We can view an automaton Ay, as a specification of a set of behaviours or traces of
a system M if we identify its input alphabet with the externally observable states
of M, and view its language L£(Ajys) as the set of possible externally observable
behaviours of M. Given the automata A, and Aps for an implementation
and a specification system M; and Mg, respectively, trace inclusion between M;j
and Mg amounts to language containment between the corresponding automata’s
languages, i.e. L(An,1) C L(Am,s).

It can be shown that the expressive power of w-automata is equivalent to the
so-called monadic second-order theory of one successor or S1S (see [Thomas 1990]).
Moreover, w-regular languages are strictly more expressive than LTL; for example,
one can show that the property “predicate ¢ holds in every other state” cannot
be expressed in LTL [Wolper 1983], whereas one can easily construct a Biichi-
automaton which recognizes the language £ = (¢X)“. Wolper [1983] and Vardi and
Wolper [1994] propose extensions to LTL where the temporal connectives are w-
automata; they show this class of temporal logics to be equivalent in expressiveness
to w-regular languages.

3. VERIFICATION TECHNIQUES AND TOOLS

Having introduced a number of frameworks for describing systems and asserting
their conformance with a specification, we will now focus our attention on methods
for verifying such assertions.



20 . C. Kern and M. R. Greenstreet

An important aspect is the degree of automation offered by a verification tech-
nique; the “ideal” verification tool would, given a system description and a spec-
ification, decide within an “acceptably short” amount of time whether or not the
specification is met. Unfortunately, creating such a tool is often unrealistic in prac-
tice, if not impossible in theory due to incompleteness results [Duffy 1991]. One can
in fact argue that it is unreasonable to always expect completely automatic verifi-
cation of designs which result from an intellectual process involving sophisticated
engineers.

Currently, available techniques range from completely automatic methods for
verifying temporal logic specifications (section 3.1) and language containment (sec-
tion 3.2) of finite state transition systems, to interactive theorem proving using
logical calculi (section 3.3). Finally, section 3.4 surveys some approaches which
integrate automatic and deductive approaches.

3.1 Model Checking

In section 2.1, we have introduced temporal logic as a framework for the specifica-
tion of temporal properties of a design. In this section, we will turn our attention
to the question of how to decide whether or not a given design satisfies a temporal
formula. There exist algorithms which decide this question for structures with a
finite state space completely automatically.

For a branching-time logic, a structure M = (S, R, L) is said to be a model for a
formula f if there exists a state s € S such that M, s |= f. For a finite structure M
(one whose state space S has a finite number of elements), the question whether
M is a model for a given formula is decidable. More generally, one can phrase the
model checking problem as follows [Emerson 1990]: For a finite structure M and
a formula f, label each state s € S with f iff M,s = f holds, or equivalently,
compute the set Sy C S such that M,s = f holds iff s € Sy. The model checking
problem for linear time logic can be phrased similarly in terms of paths. In many
applications, a simpler problem statement is sufficient: “Does M, s |= f hold for all
states s € S” for BTL, and “Does M,z = f hold for all paths z € X” for LTL.

Even though the model checking problem for finite structures is decidable in prin-
ciple, there does not necessarily exist a model checking algorithm with an accept-
able time complexity (in terms of the sizes of the state space and the formula) for
a given temporal logic. Generally, there is a tradeoff between the efficiency of deci-
sion procedures and the expressiveness of the underlying logic. For example, model
checking for both propositional linear time logic and for CTL* has been shown to be
PSPACE-complete [Sistla and Clarke 1985; Clarke et al. 1986], whereas algorithms
with time complexity that is polynomial in the cardinality of S (the model’s state
space) exist for CTL. Worse, S tends to be very large in non-trivial applications.
For a structure whose states are tuples of k£ Boolean variables, |S| = 2%, i.e. the
size of the state space is exponential in the number of state-holding elements.

In this section, we will first introduce the basic concepts behind model checking
using a decision procedure for CTL as an example. In verification practice, an
important factor is the choice of a “good” representation for sets of states. We will
present an algorithm based on the symbolic representation of state sets as Binary
Decision Diagrams, which are a suitable heuristic in many applications. Finally,
we introduce a decision procedure for trajectory assertions over partially ordered



Formal Verification in Hardware Design: A Survey . 21

AF(EXq) gx

AF(EXq) AF(EXq)

t ) ’
AF(EXq)

AF(EXq) AF(EXq) q
EXq
AF(EXq)

Fig. 4. State Transition Graph Labeled with Sub-formulas

state spaces. Section 3.2 presents algorithms for model checking based on language
containment.

3.1.1 Explicit State Model Checking. Clarke et al. [1986] present a model check-
ing algorithm for CTL. A CTL formula f is divided up into its sub-formulas
fi,---, fr, and the states of the state-transition graph associated with a struc-
ture M = (S, R, L) are labeled with the sub-formulas which hold for a particular
state. Let the size |f| of a formula be the number of it’s sub-formulas (i.e. the
number of nodes in its parse tree, ignoring parentheses). The algorithm proceeds
by successively labeling the states with sub-formulas of size i = 1,...,|f]. Sub-
formulas of size one must be atomic propositions; therefore L provides the initial
labeling for ¢ = 1.

For ¢ > 1 and a sub-formula g of size |g| = ¢, we know that the state graph has
already been labeled with the sub-formulas corresponding to the operands of the
outermost operator of g, which must be of size smaller than i. We can determine
if a state s needs to be labeled with g as follows. In the case g = "¢, s is labeled
with g if s is not labeled with g;; the case g = g1 A g» is treated analogously. For
g=AXg (9 =EXg;), sis labeled with g if all (some) successors of g are labeled
with g;. For g = E[g; U g¢5], first every state that is labeled with g, is labeled
with g. Second, any state that is labeled with g; and has a successor labeled with
g is labeled with g. The second step is repeated until no further nodes can be
labeled with g. This reachability computation can be performed in O(|S| + |R|)
time. A similar approach is used for g = A[g; U g2. This yields a time complexity
of O(|f|(|S| + |R])) for checking a CTL formula algorithm.

It is only necessary to consider states that can be reached from a valid initial
state. Let S;,;; be the set of valid initial states. Let S,..cn be the set of states
reachable states in S;,i;, and Ryeqcn be the state transition relation restricted to
Sreach X Sreach- Sreach and Ryeqep can be computed from Sipn;: and R in O(|Sreqcn| +
| Rreacn|) time, and a CTL formula can be checked in O(| f|(|Sreach|+ | Rreacn|)) time.
As Syeqen is often much smaller than § this makes explicit model checking practical
for much larger systems that could otherwise be considered. and Rye.cn can be
computed from §



22 . C. Kern and M. R. Greenstreet

To illustrate this with an example, consider figure 4, which shows the state la-
beling that results from applying this algorithm to the traffic light controller from
section 2.1.1.2 and the CTL formula

p = AF (EX [ew = g]) = Aftrue U EX [ew = g]].

This formula has the sub-formulas true, [ew = g] and EX [ew = g]). First, all states
are labeled trivially with true, and all states s with [ew = g] € L(s) are labeled
with [ew = g]. In the figure, we use the abbreviation ¢ = [ew = g] and omit the
true labels. In the next step, all states which have at least one successor labeled
with g are labeled with EX [ew = g]). This is the case for state (r,r) because of the
transition (r,7) — (r,g), and for the states (y,g) and (g, g) because of their self-
loops. In the third and final iteration, we label states with A[true U EX [ew=g]].
For a state s, we have to verify that on all paths starting in s, all states on a
(possibly empty) finite prefix are marked with true, and that this prefix is followed
by a state marked EX [ew = g]. Note that this is in particular not the case for
state (y,y) because of its self-loop which gives rise to the path (y,y), (y,¥),.---

3.1.2 Symbolic Model Checking. The model checking technique described in the
previous section requires that the entire state transition graph be constructed.
Thus, the space requirements are at least linear in the size of the model’s reachable
state-space. However, the latter is in often exponential in the number of state-
holding elements (latches) of a design. For instance, a device with only two 32-bit
registers would already have ca. 10%° states.

An alternative to explicit enumeration of the reachable state space is to use a
symbolic representation. Consider a design with n state holding elements (e.g. 1
bit registers). A state assigns a Boolean value to each of these registers and can
be represented by the Boolean vector V = (vy,...v,). A set G of states can be
represented by a Boolean function G(V') which is true iff V represents a state in G.
The design’s state-transition relation R C S x S can be represented symbolically in
a similar fashion [Burch et al. 1994]. Let V' = {v'|v € V'} be the set of next-state
variables. Then, represent R by a Boolean function R(V, V') in V and V', such that
R(V,V") is true iff (s,s') € R and V, V' have valuations corresponding to states s
and s', respectively.

When using a synchronous design style, state transitions correspond to the func-
tions of combinational circuitry that maps the current state (i.e. the outputs of the
latches/registers) to new values for each state variable. In other words, v; = f;(V).
This leads to the next state relation for state variable v;,

Ri(V,V') = (v; = fi(V)). (7)

Combining these yields the symbolic representation of the state transition relation
for the entire device:
n
RV, V') = \ R(V,V"). (8)
i=1
When using an asynchronous design style, each component has conditions under
which it is enabled to change the value of its outputs. Other than these conditions,
components operate independently. The next state relation for an asynchronous



Formal Verification in Hardware Design: A Survey . 23

design is typically obtained by taking the union of the relations for each component.
This gives an “interleaving” semantics for concurrently enabled components. It also
provides a convenient decomposition of the next state relation that can improve the
efficiency of model checking algorithms.

3.1.2.1 Model Checking Algorithm. In section 2.1.4 we have seen how the deno-
tational semantics of a temporal logic (the p-calculus) can be given in terms of
sets of states and fixpoints of operations thereon. The idea behind symbolic model
checking is to use the symbolic representation for sets of states from the previ-
ous section to “implement” these semantics [Burch et al. 1990]. Operations on sets
(e.g. intersection) correspond to Boolean operations on the characteristic functions,
while the fixpoint operators are implemented by iterations (which converge because
of model’s finiteness).

In the following, we describe symbolic model checking for CTL [Burch et al.
1994]. A model checker for p-calculus can be implemented analogously [Burch
et al. 1990]. Let S[f] C S denote the set of states for which a CTL formula f holds,
and let S[f](V) denote the Boolean characteristic function representing this set.
We assume that the set of atomic propositions is the set of variables V. Then, for
an atomic proposition v € V, the set of states for which v holds is characterized by
SW(V) =w.

For a non-atomic formula f, the characteristic function S[f](V) is computed
recursively from the characteristic functions for the sub-formulas of f. This is
straightforward for Boolean operations: For example, for f = fi; A f2, we have
SIf1 = S[f2] N S[fe] and thus S[F(V) = SIAI(V) A SLRI(V).

The next-state operators are expressed in terms of quantification over the tran-
sition relation!: for f = AX fi, we have S[f](V) = Fax (S[f1](V)) with

Fax (Q(V)) = Vvi -V R(V,V') = Q(V"). 9)

This is precisely equation (2) rephrased in terms of characteristic functions.
Similarly, we can use (3) to obtain the characteristic function for f = AG fi,
)

SIAIV) = pQ(V) . S[AI(V) A Fax (Q(V)).

The A U operator can be treated similarly while the other modalities are express-
ible in terms of the latter and the two above ones.

As indicated before, this approach is applicable to the construction of model
checkers for the full p-calculus [Burch et al. 1990], CTLY [Burch et al. 1994]. LTL
model checking is also possible, either directly [Burch et al. 1990], or via reduction
to CTLY model checking [Clarke et al. 1994].

An aspect of model checking which is extremely important in practice is the abil-
ity to generate counter-examples. Suppose we attempt to check that that M, Sy = f
for some CTL formula f, where Sy denotes the set of initial states, and the ver-
ification fails. A counter-example is a path of M starting in a state s € Sy that
violates f. For instance, in the case f = AG p, a counter-example can be found es-
sentially by starting with the set S["p], performing backwards reachability analysis
until the set Sy is reached, and picking states from the sets of states arising from

INote that we have chosen to present the cases for the AX and AG operators; in [Burch et al.
1994], EX and EG is used.



24 . C. Kern and M. R. Greenstreet

false true
Fig. 5. Binary Decision Diagram for Odd-Parity of four variables

the iterative reachability computation. Hojati et al. [1993] describe a method for
finding counter-examples for CTL formulae.

3.1.2.2 Representation of Boolean Functions. It is crucial for practical applica-
bility of symbolic model checking that the Boolean characteristic functions involved
are represented efficiently. Ordered Binary Decision Diagrams (OBDDs) [Bryant
1986; Bryant 1992] often work well in practice.

A Binary Decision Diagram is a directed, acyclic graph whose interior nodes
are labeled with the variables which the Boolean function represented depends on,
and which has two leaf nodes labeled true and false. Each interior node has two
outgoing arcs labeled true and false, respectively, which correspond to the two
possible valuations of the node’s variable. For a given valuation of the variables,
the value of the function represented is determined by the label of the leaf node
which is reached by a traversal of the graph from the root along arcs whose labels
correspond to the valuation.

An ordered binary decision diagram (OBDD) has the additional property that
on every path between a root node and leaf nodes labeled true or false, no variable
appears more than once, and on all such paths the variables appear in the same
order. Subject to a reduction step [Bryant 1992] and for a fixed variable ordering,
OBDDs are a canonical representation for Boolean functions in the sense that the
OBDDs for two functions f; and f» are isomorphic iff fi = fa.

Common sub-expressions are represented by multiple incoming edges to the same
vertex. This sharing can make a BDD much more compact than other represen-
tations (e.g. sum-of-products form). For example, figure 5 shows the BDD for the
function that computes the parity of four variables. “true” edges are drawn with
solid lines and “false” edges are marked with dashed lines. The parity parity of
n variables is represented by an OBDD with 2n + 1 nodes, whereas the sum-of-
products representation has 2”~! minterms.

Operations on OBDDs can be implemented efficiently: The OBDD of a function
f1 <op> fa, where <op> is a Boolean operation, can be computed from the OB-
DDs of f; and f5 in time linear in the product of the sizes of the two OBDDs. Other
operations such as quantification over a variable can be implemented efficiently as
well.

Although OBDD operations are logically sound for any variable ordering, the
choice of variable ordering can critically affect performance. For example, the size
of the OBDD for a the most significant bit of the sum of two integers represented
as bit-vectors is linear in the word size if the bits of the operands are interleaved



Formal Verification in Hardware Design: A Survey . 25

(essentially, the OBDD represents the carry chain of a ripple-carry adder). On the
other hand, if all of the bits of one operand word precede the bits of the other word,
then the size of the OBDD will be exponential in the number of bits in the words.
In this case, the OBDD must have a separate node for each integer value of the
first word to “memorize” the value of this word so it can be added to the other
argument. It practice, there are two main options for finding a suitable ordering:
Intuition about the function to be represented indicates a good ordering. If this
is not applicable, heuristics which dynamically adjust the variable order may still
lead to an acceptable ordering [Rudell 1993].

There are functions such as integer multiplication for which no “good” variable
ordering exists[Bryant 1991b]. In fact any representation of Boolean functions must
use exponential space for “most” functions. The success of OBDDs is that they
work well for many Boolean functions that occur when verifying real designs. Many
researchers have explored variants of OBDDs to find representations that are more
efficient for functions where OBDDs are impractical. These include EVBDDs [Lai
and Sastry 1992], snDDs [Jain et al. 1996], MDGs [Corella et al. 1994], and HDDs
[Clarke et al. 1995]. [Bryant 1995] provides a good overview of recent work in this
area.

3.1.2.3 Practical Issues in BDD-based Model Checking. The time complexity of
operations on BDDs is polynomial in the size of the BDDs involved. However, the
BDD sizes themselves can be exponential in the number of BDD variables for ill-
suited problems. However, there are several techniques which achieve a significant
reduction in BDD size for certain applications.

An approach which aims at reducing the size of the BDD for the state transition
relation R is to represent R by a list of implicitly conjoined BDDs for the R;(V, V")
defined in equation (7) [Burch et al. 1994]. Alternatively, the relation R can be
partitioned into simpler relations or functions [Lee et al. 1994a]. Even though the
aggregate size of the individual BDDs is generally larger than the monolithic BDD
for R, the individual BDDs tend to be small and are therefore more efficiently
manipulated.

The second potential area of improvement is the size of the BDD used to represent
intermediate results in the iterative computation of fixpoints. Hu et al. [1994] apply
the idea of using implicitly conjoined BDDs to the characteristic functions of the
intermediate sets of states arising from an iterative reachable state set computation.
The method employs heuristics to recombine some of the implicitly conjoined BDDs
to prevent the list from growing excessively, and applies a simplification procedure
to pairs of BDDs which is based on the observation that one BDD defines a “don’t
care” set for second BDD with which it is conjoined.

Another technique is based on the elimination of state variables which can be
expressed as functions of other state variables [Hu and Dill 1993]. During the
fixpoint calculation, the functional dependencies are substituted for the eliminated
variables. To ensure soundness, it is also necessary to verify at each iteration that
the functional dependencies actually hold.

3.1.3 Refinement and Model Checking. Recall from section 2.2.4 that verifying re-
finement between an implementation My and a specification Mg generally requires
showing that for every observable behaviour of M, there exists a corresponding



26 . C. Kern and M. R. Greenstreet

observable behaviour of Mg. In many applications, this condition is verified using
deductive methods (which will be described in section 3.3). However, under cer-
tain conditions, refinement can be expressed as a safety property, which permits
treatment with automatic model checking if the systems have finite state.
Essentially, this is the case if the specification behaviour corresponding to a
given implementation behaviour can be obtained through a state-by-state map-
ping. Assume the implementation and specification are given as transition systems
M = (S1,50,1,Rr) and Mg = (Ss, 50,5, Rg). Assume further that there exists an
abstraction function (or refinement mapping) A : Sy — Sg, such that the specifi-

cation trace ps corresponding to an implementation trace p;y = sps152 ... is given
by pr = A(s9)A(s1).A(s2) .... Then, M is a refinement of Mg, M; C Mg, iff
A(S1) € Sm (10)

A Vses; Vsies, (s,8') € Rr = ((A(s) = A(s") v (A(s), A(s")) € Rs) .
These conditions (10) are satisfied iff
R(s) = Vses; (5,8") € Ri = ((A(s) = A(s") V (A(s), A(s")) € Rs)

is a safety property of the implementation M;. Lee et al. [1994b] use safety proper-
ties of this form to verify refinement between programs written in ST [Staunstrup
1994], a Unity-like guarded command language. In this case, the transition relation
is given as the union of transition relations corresponding to the individual guarded
multi-assignments. The refinement predicate has the form of a product of clauses,
one for each implementation transition, and each of which a sum of clauses for
specification transitions. The BDD for R is built directly from the program texts
for M; and Mg and the expression for the abstraction mapping without explicit
construction of the transition relation.

Abadi and Lamport [1991] provide conditions on My and Mg which ensure that,
if My implements Mg in the sense of (5), there exists an abstraction function. Their
framework also extends to the case where M; and Mg are augmented with fairness
properties.

An interesting question is, given a M; C Mg and a temporal formula ¢ which
holds for Mg, Mg = ¢, does ¢ also hold for My, i.e. does refinement preserve the
truth of ¢? If ¢ is a simple safety property as introduced in section 2.1.5, this is
indeed the case and can be shown by a simple induction argument. Using a slightly
different definition of refinement, Clarke et al. [1994] show that properties stated in
VCTL* (CTL* restricted to universal path quantifiers only) are preserved as well.

3.1.4 Symbolic Trajectory Evaluation. In section 2.1.6, we introduced Trajectory
Formulas (TF), which form a temporal logic of restricted expressiveness. Seger and
Bryant [1995] describe an efficient model checking approach for TF called Symbolic
Trajectory Evaluation (STE). STE uses a lattice representation of circuit states;
we consider the case nodes have binary valued and are represented by the lattice
T 2 {X,0,1, T}. Here, 0, and 1 denote low and high voltages respectively, X
denotes an unknown or indeterminate value, and T represents an over-constrained
value 2. A circuit with n nodes is represented by a value on 7™.

2This model is used in current versions of the Voss verification tool [Seger 1993; Hazelhurst and
Seger 1995]. [Seger and Bryant 1995] refers to the previously used ternary model.



Formal Verification in Hardware Design: A Survey . 27

Values on 7 are partially ordered: X € 0,1 C T. This ordering is reflexive: for
any value a € T, a C a. Furthermore, a C b and b C a iff a = b. The partial order
for 7™ is the element-wise extension of the order for 7: a C 8 iff a; C §; for each
component a; of a and the corresponding component (3; of 8. For any two elements
of 7™ there is a unique least upper bound: lub(a,8) = v iff « C v, 8 C +, and for
any 0 with a Cé and 8 C §, v C §. We extend the partial order C element-wise to
sequences over 7" in the natural way.

An execution of the circuit model assigns a Boolean value (0 or 1) to each node
at each time step. This can be represented by a sequence elements of 7". Let g be
such a sequence. The fundamental observation behind STE is that for a given TF
f, there exists a unique defining sequence §; such that g satisfies f iff 6¢ C g.

We first construct d¢ formulas, f, without symbolic variables. If f is a trajectory
formula, we write d; to denote the defining sequence for f.

. Simple predicates: 0a; is v = U(4,v), X%
where U (i,v) is the lattice element whose i*" element is v and all other elements
have value X, and X,, denotes the lattice element with every component equal to
X.

. Conjunction: dsr, = lub(dy, d,)
A trajectory that satisfies f A ¢ must satisfy the constraints of both f and g. If f
specifies that a node must be 0 on a time step when g specifies a value of 1 for the
same node, then f A g will specify a value of T for that node on that time step.
This indicates that f and g are inconsistent and can be flagged as a probable error
in the specification.

. Next time: 6Nf = Xn,(Sf
Intuitively, N f says nothing about the head of the defining sequence and makes
the assertions of f about the tail of the sequence.

. Domain restriction: 6 wheno = X5, and 6, when, = 97
In words, f when1 is equivalent to f, and f when 0 gives an unrestricted defining
sequence.

Two observations are in order. First, conjunction has a natural interpretation as
a least upper bound of lattice elements. Disjunction, on the other hand, does not
correspond to the greatest lower bound, which is why disjunction and negation are
not allowed in trajectory formulas. Second, even though defining sequences are
infinite, after a finite prefix, every element of the sequence is X,,. The length of
this prefix is one greater than the maximum nesting of next time operators in the
trajectory formula. Accordingly, defining trajectories can be represented by a finite
structure.

Symbolic formulas can be handled by representing each node, nd, with two sym-
bolic Boolean formulas ndy and nd; which indicate when nd must be 0 and when
nd must be 1 respectively. A valuation of the symbolic variables that satisfies
neither ndy nor nd; corresponds to a X value, and a valuation that satisfies both
corresponds to a T value. Simple predicates and next time operations have straight-
forward extensions to symbolic formulas. Conjunction is performed by defining lub
in terms of logical operations over the ndg and nd; formulas for each node. Sym-
bolic domain restriction, f when E is performed by computing the conjunction of



28 . C. Kern and M. R. Greenstreet

each ndy and nd; formula for the defining trajectory of f with E. In practice, these
manipulations are performed using BDDs as described in section 3.1.2.2.

Consider a trajectory assertion, A = C. If ¢ C 4, then any trajectory that sat-
isfies A also satisfies C, and the assertion holds regardless of the circuit’s behaviour.
To perform meaningful verification, the behaviour of the circuit must be considered.
In particular, we only want to consider trajectories that satisfy A and are consis-
tent with the circuit model. The circuit’s behaviour is modeled with a function,
Y : 7™ — 7™ This function must be monotonic: if  C 3 then Y(a) C Y (08).
Intuitively, Y («) may have X values if a has X values. If 8 can be obtained from
a be replacing some X values with 0 or 1, then this must not result in more X
values in Y () than were present in Y (c).

In practice, Y can be obtained implicitly through symbolic simulation on a circuit
model. The main distinction between a symbolic simulator and a conventional logic
simluator is that it allows variables to appear in the inputs. The values of the
circuit’s internal nodes and outputs then become functions of these variables (see
[Bryant 1991a]). With STE, the variables have domain 77 the values of nodes and
outputs can be represented by pairs of BDDs as indicated above.

For concreteness, we have presented STE assuming that states are represented
on the lattice 7", More formally, a model for STE is a pair, M = [(S",C),Y],
where S denotes a set of states, (S,C) is a complete lattice and ¥ : § — S
is a monotonic successor function. Intuitively, the partial order C represents an
information ordering on S, and Y places constraints on the successor state Y (s) of
a state s in the sense that Y (s) denotes the “least specified” state which M can
reach from r.

Given a defining sequence d 4, the corresponding defining trajectory is

A

i o [ 0% for i =0,
Ta = {mb((sg,Y(T;—l)) for i > 0. (1)

The it" element of 74 corresponds to the least specified state that the circuit can
reach at step 4 given that A holds in all states up through state .
We can now state the central theorem of STE:

THEOREM 1. For a model structure M and trajectory formulas A,C,
EM[A=C] & dcC7a.

This theorem implies that to verify a trajectory assertions, it is sufficient to compute
the sequences 74 and d¢ and compare them with respect to the partial order C. The
sequence d¢ can be computed efficiently [Seger and Bryant 1995]; 74 is computed
according to (11), requiring a single symbolic simulation. As noted above, every
element of §¢ is X,, after a finite prefix; therefore it is sufficient to compute and
compare only these prefixes of 74 and é¢.

There are two serious limitations in the STE framework: Negation is not tra-
jectory formulas, and the next-state function is essentially restricted to be deter-
ministic. Addressing the first restriction, ?] has extended STE to a richer logic
supporting negation and an “until” operator; however, efficient model checking is
not always possible for this logic. ?] have developed a framwork which allows the
application of STE to certain classes of speed-independend circuits.



Formal Verification in Hardware Design: A Survey . 29

x1 X2
X D D Q—
N CT . NI
out —{QD —1<(C
- q(=
y DQeDQ
Py Py

Fig. 6. Implementation of a Simple Correlator

3.1.4.1 An Example. Consider the correlator specified in equation 4. Figure 6
shows an implementation of this correlator. A state of this circuit can be rep-
resented by the tuple (x,y,out,x1,y1,x2,y2,). Note that d0, d1, d2, and d are
combinational functions of the other nodes. Let A denote the antecedent of the
first assertion from equation 4:

A = xisa) A(yisa) A (N(xisb) AN(yisb)) A (N%(xisc) A N2(yisc))

The consequent, C, is N3(outis 1). The defining sequence for C, §¢ is

0: (F, F),(F, F),(F, F),(F, F),(F, F),(F, F),(F, F))
1: ((F, F),(F, F),(F, F),(F, F),(F, F),(F, F),(F, F))
2: ((F, F),(F, F),(F, F),(F, F),(F, F),(F, F),(F, F))
3: (F, F),(F, F),(F, T),(F, F),(F, F),(F, F),(F, F))

Note that we only need to consider the first four elements of the defining sequence
as all others describe completely unconstrained states. Where the first element of
each pair is the equation for the condition under which the corresponding node is
0 and the second is the condition under which the node is 1. This asserts outis1
at step 3. The defining sequence for A, d4, is:

0: ((Ca,a),(Ca,a),(F, F),(F, F),(F, F),(F, F),(F, F))
1: ((Cb,b),("b,b),(F, F),(F, F),(F, F),(F, F),(F, F))
2: (("e,¢), (P, ¢ ), (F, F),(F, F),(F, F),(F, F),(F, F))
3: ((F, F),(F, F),(F, F),(F, F),(F, F),(F, F),(F, F))

which asserts that x and y both have value a on step 0, both have b on step 1, and
both have ¢ on step 2. Their values are unconstrained on step 3. Again, we only need
to consider the first four elements of the defining sequence as the consequent places
no constraints on subsequent states. To compute the defining trajectory for A, we
need the next state function Y, for which we assume the obvious interpretation of
figure 6. This yields the defining trajectory of A, 74, shown below:

0: ((Ca,a),(Ca,a),(F, F),(F, F),(F, F),(F, F),(F, F))
1: ((7b,0),(7b,0),(F, F),("a,a),("a,a),(F, F),(F, F))
2: ((Te,¢),(Tey e ), (Fy, F),(7b,0),(7b,b),(Ta,a),("a,a))
3: (F, F),(F, F),(F, T),("¢c,c),(Ce,e),(Tb,b),(Tb, b))

It is straightforward to show that d¢ C 74, verifying the first assertion of equation 4.
The second assertion can be verified in a similar manner.



30 . C. Kern and M. R. Greenstreet

3.1.5 Model Checking Tools. In this section, we give a brief overview of available
tools which implement the methods presented in the previous sections.

EMC (Extended Model Checker) was one of the first model checkers to be imple-
mented [Clarke et al. 1983; Clarke et al. 1986]. It constructs an explicit represen-
tation of the state graph from a program written in a subset of CSP, and supports
model checking of formulae in CTL and CTLF.

Mure [Dill et al. 1992; Dill 1996] is both a Unity-like description language and
an explicit state model checking system. Specifications in Mury are given as sim-
ple safety properties. The verifier constructs the reachable state space by storing
already visited states in a hash-table, and checks safety properties as it goes along.
Extensions to the Murp system exploit techniques to reduce the size of the repre-
sentation of the reachable state space [Ip and Dill 1993; Ip and Dill 1996a; Ip and
Dill 1996b]. Ever [Hu et al. 1992] is a BDD-based symbolic model checker which
can act as a back-end for Murep; however, it is suitable for use as a stand-alone tool
as well. The Ever language supports high-level constructs such as array and record
types, as well as imperative statements such as sequential composition.

SMV [McMillan 1992; Clarke et al. 1996] is probably the most widely used sym-
bolic model checker to date. System descriptions in the SMV language are given in
terms of a set of equations which determine the next-state relation; programs may
be structured into parameterized modules. SMV model checks specifications given
in CTL and CTLY. A recent version supports word-level model checking [Clarke
et al. 1996] by using Hybrid Decision Diagrams (HDDs) [Clarke et al. 1995] as the
underlying data structure, which permits model checking of properties involving
words, i.e. bit vectors interpreted as integers.

CVE [Bormann et al. 1995] is a symbolic model checking environment. It sup-
ports model checking of designs described in a subset of VHDL or EDIF against
specifications given in a temporal logic called CIL, which is equivalent to a subset of
CTL. RuleBase [Beer et al. 1996] is an industry-oriented model checking tool which
uses SMV as its core, and provides a graphical user interface, a simpler temporal
logic built on top of CTL, support for VHDL and Verilog, and powerful debugging
support. VIS [Brayton et al. 1996a; Brayton et al. 1996b] is a tool integrating
model checking with other verification techniques such as combinational and se-
quential equivalence checking (see section 3.2.2). VIS accepts design descriptions
in a synthesizable subset of Verilog, and supports CTLF model checking. Inter-
action with the SIS synthesis tool [Sentovich et al. 1992] is provided through a
common intermediate format.

Voss [Seger 1993] is a verification system based on symbolic trajectory evaluation.
Trajectories are evaluated using a symbolic simulator which can operate either on
a switch-level model [Bryant et al. 1987] of a transistor netlist, or a state machine
extracted from a gate-level netlist or a description in a subset of VHDL. Voss
provides a meta-language front-end in the form of £1, an ML-like but fully lazy
functional language.

3.2 Automata-Theoretic Approaches

This section describes two aspects of automata-theoretic approaches for formal
verification. The first is concerned with the verification of containment between
languages recognized by automata on infinite words. Here, automata are mainly



Formal Verification in Hardware Design: A Survey . 31

a tool to capture the properties of the languages in question. The second aspect
originates from the observation that deterministic finite state automata are a nat-
ural model for sequential circuits. In this context, the verification goal is usually
to show observational equivalence between two automata.

3.2.1 Automata on Infinite Objects and Language Containment. Recall that the
language containment problem involves verifying that the language recognized by
an w-automaton X is a subset of the language recognized by a second w-automaton
Y, re. L(X) C L(Y) (see section 2.2.5).

A decision procedure for the language containment problem can be derived by
recasting containment into the language emptiness problem. Given finite automata
X and Y with input alphabet ¥, a product automaton, U, with L({U) = L(X) N
(2¥ —=L(Y)) can be constructed [Thomas 1990]. By this construction, L{X) C L(D)
iff L(U) = 0. Using Biichi acceptance criteria, automaton U accepts some word iff
there exists a state s € F' which is reachable from § and which is reachable from
itself [Thomas 1990]. Because the set of states of U is finite, the language emptiness
problem can be decided by reachability analysis of U’s state graph.

Clarke et al. [1990] propose an elegant way to express the language emptiness
problem as a model checking problem, which they use to obtain decision proce-
dures for language containment between different types of w-automata. The un-
derlying idea is to construct a temporal structure M = (S, R, L) from a given
w-automaton X = (X,Q,7,A,F), with S = @, L = {{s}|s € @} and R =
{(s,8") | Jaes (s,a,8') € A}, i.e. M has the same state space as X, and has
transitions where X’ has a transition enabled by at least one input symbol. For
Biichi acceptance, language emptiness can be expressed in CTL* as shown below:

L(X)=0 < M,qkE"E[GF(\/ s)].

seF

Thus, the methodologies developed for model checking problems can be applied to
language emptiness as well.

Kurshan [1989] defines L-automata and L-processes. The main difference to other
w-automata is that their transitions are labeled with elements of a Boolean algebra
L, rather than simple elements of an input alphabet. A transition is enabled if the
current input symbol is contained in the set of symbols of its label. L-processes
are defined in a way which facilitates the modeling of coordination of processes
as a tensor-product. For the details of these definitions, the reader is referred to
[Kurshan 1989)].

Let X be an L-automaton, a specification, and let ) be an L-process, a proposed
implementation of X. Verification requires showing that the language of the imple-
mentation, £()) is contained in the language of the specification £(X). In cases
where direct verification is not feasible, it may be possible to find simpler automata
X' and )’ such that showing £()') C L(X') establishes £(Y) C L(X) as well.
Kurshan formalizes the relationships that must hold between X, X’ and ),)’ us-
ing homomorphisms between the languages and the underlying Boolean algebrae.
This provides a formal basis for the simplifying abstractions that are often used
with model checking or language containment algorithms and allows larger systems



32 . C. Kern and M. R. Greenstreet

to be verified without resorting to unverified assumptions. These techniques are
implemented in the COSPAN verification tool [Hardin et al. 1996].

3.2.2 State Machine Equivalence. A special case of the verification condition “de-
vice X' implements specification X” arises when both X and X’ are deterministic
and indeed exhibit identical behaviours when operated under the same environment
behaviour. For simplicity, we consider Mealy machines where internal states, in-
puts and outputs are represented by Boolean vectors. Formally, such a machine is
given by a tuple X = (%,9,S, 50,6, ), where ¥ = B! denotes the input alphabet,
Q = B™ the output alphabet, S = B"™ the set of states, so € S the initial state,
d: S x ¥ — S the state transition function, and A : S x ¥ — Q the output function.
In a realization of X as a sequential circuit, the state S corresponds to the circuit’s
latches; ¥ and 2 correspond to the circuit’s input and output wires; and é and A
are realized by combinational circuits.

Two machines X and X' with ¥ = X/ and Q = Q' are considered equivalent
iff for each input sequence (o1,02,...) € X*, both machines generate the same
output sequence (wi,ws,...) € Q*. A notion of equivalence which also relates
the generated sequences of states can be accommodated by extending the output
function such that it “forwards” the relevant information about the internal state
to the outputs.

The problem of showing that two sequential machines are equivalent can be
reduced to the problem of finding the reachable state set of a product machine.
To show that machine X and X' are equivalent, one can construct the product
machine M* = X x X' = (Ex ¥, B,5 x5, (s0,8(),0%,A*), where 6*((s,s'),0) =
(0(s,0),08'(s',0)) and A*((s,8"),0) = (A(s,0) = N (s,0)). Intuitively, X x X' is a
machine that runs X and X' in lock-step on the same inputs, and whose output
is 1 iff the outputs of X and X' agree. To show that X and X' are equivalent, it
is sufficient to compute the set of reachable states @) of M *. Then, one can verify
that M* produces output 1 for all states s € (), and for all possible input vectors
[Coudert et al. 1989].

The reachable state set of a sequential machine can be computed using a fixpoint
calculation similar to the one used in the model checking algorithm in section 3.1.2.
Coudert et al. [1989] present an algorithm for state machine equivalence where
they convert the computation of a set’s image under the next-state function to a
computation of the range of a function derived from the original next-state function.

Their algorithm introduces “constrain” and “restrict” operators that allow them
to describe the next-state function with its domain restricted to a particular set.
Pixley et al. [1994] uses similar techniques to find synchronizing sequences for se-
quential circuits.

Alternatively, the next-state function can be viewed as a relation between suc-
cessive states: a state, s; is reachable at step ¢ if there is a state, s; 1, reachable
at step i — 1 and input I;_;, such that applying the next state function to s;_;
and I;_; leads to state s;. Direct evaluation of this approach requires creating a
formula with a complete set of variables for s;_; and another set for s;. Touati
et al. [1990] observe that properties of the restrict operator allow this existential
quantification to be pushed into clauses for small sets of variables of s;, with an



Formal Verification in Hardware Design: A Survey . 33

improvement of efficiency arising from the smaller formulas (i.e. BDDs) for the
intermediate computations.

3.2.2.1 Combinational Equivalence. For two machines X and X' whose state
space and initial states are identical, it is a sufficient condition for their equivalence
that § = ¢’ and A = X'. In other words, given two sequential circuits using the same
state encoding, their equivalence may be established by showing combinational
equivalence for the realizations of their next-state and output functions.

Kuehlmann et al. [1995] describe an industrial sequential circuit verification sys-
tem called Verity which exploits this observation. Verity represents the next-
state and output functions as OBDDs and uses dynamic variable ordering (see
sec. 3.1.2.2). The functions are extracted from gate- and/or switch-level netlists
(i.e. mixed representations are allowed) using a path-based extraction scheme. Ver-
ification involves comparing the extracted functions for X and X', subject to a
constraint C : B! — B on the input vectors. C is used to characterize the set of
allowed input vectors as a proper subset of B!. Furthermore, a output constraint
O : B™ — B can be specified and checked, which characterizes the set of possible
generated output vectors as a subset of B™.

A hierarchical approach is also supported in which the design is specified as a
hierarchy of cell (or macro) instances. Leaf nodes in the hierarchy are verified
directly. Non-leaf nodes can be handled by abstracting away (some of) their sub-
cells. Inputs to the sub-cells are treated as outputs in the comparison of the super-
cell, and it is checked that input constraints asserted for the sub-cells indeed hold as
output constraints for the super-cell. Conversely, outputs of the sub-cells are treated
as input variables for the comparison of the super-cell, and the output constraints
asserted for the sub-cells are used as input constraints for the super-cell.

3.2.3 Language Containment and Model Checking. There is a close connection
between w-automata and model checking. In section 3.2.1, we have already seen
that the language containment problem for two w-automata can be reduced to a
model checking problem. We will now point out that the converse holds as well.

The basis of this approach to model checking is to view a temporal formula as
an acceptor of infinite structures, and a temporal structure as a generator thereof
[Vardi and Wolper 1986a]. For simplicity, we describe the approach for linear time
logic first.

An LTL formula ¢ over a set of atomic propositions P can be understood as an
acceptor of infinite words over the alphabet ¥ = 27 in the sense that ¢ accepts
a word z € X% iff x is a model of ¢. Thus a formula ¢ gives rise to a language
L, containing precisely the words accepted by ¢. It can be shown that one can
construct an w-automaton A, from a formula ¢ in LTL, such that A, accepts
exactly the language defined by ¢, i.e. L(A,) = L, [Manna and Wolper 1984;
Kesten et al. 1993; Vardi and Wolper 1994].

On the other hand, a (finite) temporal structure M = (S, R, L) can be interpreted
as a generator of w-words over 27; the language generated is the set

L(M) ={L(s0)L(s1)L(s2)--..|s0,51,-.. is a path of M}.



34 . C. Kern and M. R. Greenstreet

M can be straightforwardly extended into a Biichi automaton 4,s which accepts
exactly £(M) by labeling the transitions (s,t) € R with the atomic propositions
L(s).

Using these observations, we can now rephrase the model checking problem as
a language containment problem [Vardi and Wolper 1986a]: M = ¢ iff L(Am) C
L(A,), or in other words, every sequence generated by M is accepted by ¢ in the
above sense.

In the automata-theoretic framework, model checking can be extended to infinite
state spaces by constructing the product automaton for the language containment
test incrementally [Manna et al. 1994]. This results in a semi-decision procedure,
i.e. the model checker may either terminate with a positive answer or a counter-
example, or not terminate at all.

The corresponding automata-theoretic approaches for branching time logics re-
quire the use of automata on infinite trees, rather than words, to reflect the branch-
ing structure of time (see [Vardi and Wolper 1986b; Emerson 1990; Bernholtz et al.
1994]).

3.3 Deductive Methods

As we have seen in section 2.2.2, specifications and verification conditions can be
expressed in general purpose logic. Verifying that an implementation meets its
specification in such a framework is equivalent to proving a theorem in the under-
lying logic. In principle, this proof could be carried out on paper. However, proofs
of such theorems are often long and rather tedious in practice, making it likely
that they contain errors. Using a mechanized theorem proving system can ensure
soundness and reduce tedium by automating parts of the proof.

3.3.1 Automated Theorem Proving. A theorem proving program mechanizes a
proof system. A calculus or proof system C for a logic £ consists of a set of azioms
A and a set of inference rules R. The axioms are formulae of £ and are generally
“elementary” in the sense that they capture the basic properties of the logic’s
operators. The general form of an inference rule is

A1y ..., 0
B
The formulae a1, ... ,a are called the premises of the rule while 3 is called the
conclusion. For example, the formulae p = (pV ¢q) and (p A q) = ¢ are axioms, and
p,p=4q
q

is an inference rule of the “classical” propositional calculus [Kleene 1967]. Both the
axioms and the inference rule are actually axiom and rule schemas, i.e. they give
rise to an infinite number of axioms and rules obtained by replacing p and ¢ with
arbitrary formulae.

A deduction in C of a formula ¢,, from a set of assumptions T is a finite sequence
of formulae ¢4, ... , ¢, such that for alli = 1,... ,n, either ¢; € AUT, or ¢; can be
obtained by applying an inference rule in R to some subset of {¢1,... ,9;—1}. We
say that a formula ¢ is a theorem of T', written I' - ¢, if there exists a deduction of
o from T". A calculus is said to be sound if for all sets of formulae T', all theorems



Formal Verification in Hardware Design: A Survey . 35

of I are logical consequences of I', and complete if all logical consequences of I are
also theorems (i.e. can be proven in C). For a more complete treatment, see e.g.
[Duffy 1991].

The discussion so far pertains to rigorous manual proofs as much as to automated
systems. However, there are three aspects which are particular to mechanized proof
systems:

(1) It can mechanically check a proof, i.e. verify that a given sequence of formulae
©1,-.. ,pn is indeed a deduction. This is usually not a very difficult task; all
that is required is, for each ;, to syntactically match the inference rules against
the appropriate premises in the sequence and verify that ¢; is indeed obtained
by application of the rule.

(2) Tt can assist in the construction of a proof. Given a set of assumptions I'
and a goal (3, heuristic search techniques may be able to find a deduction
such that 8 = ¢,. In general this will not succeed completely automatically
for “difficult” theorems, but will rather require a certain amount of human
guidance to construct a deduction.

(3) It permits the use of decision procedures. A decision procedure is an algorithm
which decides the validity of a class of formulae. For example, BDDs [Bryant
1992] provide a practical decision procedure for propositional logic. Other deci-
sion procedures exists for Presburger arithmetic (essentially integer arithmetic
with multiplication by constants only) [Shostak 1979] and even real algebra
[Tarski 1951; Harrison 1993]. There are also algorithms for combinations of
theories such as real arithmetic, equality with uninterpreted functions and ar-
rays under store and select [Nelson and Oppen 1979; Shostak 1984].

One can view a decision procedure as giving rise to a class of axioms similar to
an axiom schema, except that the class is generally much larger. For example,
the axiom schema p = (pVq) just generates axioms of this particular form, while
a propositional decision procedure gives rise to all propositional tautologies.

Decision procedures are important in practice since they can handle many “un-
interesting” cases automatically and thus help to alleviate the tedium of proofs.

A myriad of theorem proving systems have been implemented, and many have
been used for hardware verification, including HOL [Gordon 1988], ISABELLE
[?], LP [Garland and Guttag 1989], Nqthm and ACL2 [Boyer and Moore 1979;
Kaufmann and Moore 1996], Nuprl [?], OTTER [McCune 1994], PVS [Owre et al.
1992], RRL [?], and TLP [Engberg et al. 1992]. These systems are distinguished
by, among other aspects, the proof style used, the mathematical logic used, the
way automatic decision procedures are integrated into the system, and the user
interface. Proofs styles are often characterized as forward or backward. A forward
proof starts with the axioms and assumption; then, inferences are applied until the
desired theorem has been proven. A backward proof starts with the theorem as a
goal and applies the inverses of inference rules to reduce the theorem to simpler
intermediate goals. Sufficiently simple goals are discharged by matching axioms or
assumptions or by applying built-in decision procedures.

General purpose theorem provers are usually based on some form of first- or
higher-order logic. In a first-order logic, variables (e.g. Boolean and integers) are
distinguished from functions (e.g. a mapping from integers to Booleans). In a



36 . C. Kern and M. R. Greenstreet

first order logic, quantification is allowed over variables but not over functions.
Higher-order logic also allows quantification over functions. The choice of a logic
influences the logical idioms used to write specifications and describe designs as
well as influencing the proof-techniques and decision procedures that can be used
to verify a design. As illustrated by the examples in section 4, both first- and
higher-order logic have been successfully employed for hardware verification.

3.3.2 Theorem Proving Systems. In this section, we give brief descriptions of
some commonly used automated theorem provers.

Higher Order Logic (HOL). The HOL system [Gordon 1988] is a general-purpose
theorem prover whose underlying logic, called HOL as well, is a variation of Church’s
theory of simple types [Church 1940]. HOL is a descendant of the earlier LCF
system [Gordon et al. 1979]. In contrast to first order predicate logic, higher order
logic allows quantification not only over variables but also higher-order predicates
and functions, which can result in a more concise and readable formalization of
certain concepts.

HOL supports both forward and goal-directed backward proofs in a natural-
deduction-style calculus. HOL does not use decision procedures; ultimately, all
theorems are proven in terms of the eight basic inferences of the calculus. ML is
used as a meta-language with which the user interacts with the HOL system. The
user guides the system by applying tactics to proof obligations; a tactic corresponds
to a high level proof step and automatically generates the sequence of elementary
inferences necessary to justify the step. Tactics can be composed into even larger
steps using tacticals such as “apply tactics A, B, and C repeatedly until no further
simplification is obtained” An important aspect of the system is user defined tactics
cannot compromise the soundness of a proof because sequents are implemented as
an abstract data type in ML. Therefore, valid theorems can be created only through
application of the basic inferences.

PVS. The logic of PVS (Prototype Verification System) [Owre et al. 1992; Owre
et al. 1996] is a strongly typed higher order logic with a rich type system which
includes dependent types and predicate subtypes. Type checking in this logic is
undecidable and requires the assistance of the theorem prover and possibly human
intervention to discharge automatically generated type correctness conditions. Def-
initions and theorems can be grouped into parameterized theories whose parameters
may have constraints attached. Specifications are written in a Lisp dialect which
offers constructs such as tuples, records, arrays and tables.

Proofs in PVS are backward proofs using a sequent representation for proof obli-
gations. The inference rules operate at a higher level than the primitive inferences
of higher order logic and include Skolemization and instantiation, application of
theorems, equality rewriting as well as complex propositional rewriting such as
case-split and IF-lifting. Higher level proof strategies analogous to HOL tactics can
be constructed from the basic inference rules using a specialized strategy language.

To discharge certain classes of obligations, PVS employs an integrated decision
procedure for equality reasoning, linear arithmetic, arrays etc. as well as a BDD-
based procedure for propositional logic. The decision procedures are integrated
with the type checker to make use of additional constraints available from type
information. PVS also includes a model checker for finite-state p-calculus which



Formal Verification in Hardware Design: A Survey . 37

can be accessed through a formalization of the pu-calculus within the PVS logic
[Rajan et al. 1995].

Boyer-Moore. The Boyer-Moore logic is a first order, quantifier-free logic of total,
recursive functions with equality and mathematical induction [Boyer and Moore
1979]. The syntax of the logic is that of applicative Common Lisp. Ngthm is a
mechanization of this logic [Boyer and Moore 1988]; a re-engineered and slightly
extended version has been released recently under the name ACL2 [Kaufmann and
Moore 1994; Kaufmann and Moore 1996]. The description here is based on ACL2.

ACL2 contains axiomatizations of primitive data types such as numbers and lists.
New functions can be introduced through a definitional principle which requires
proof of termination for recursively defined functions and ensures that consistency
is maintained.

ACL2 combines backward and forward methods to prove theorems. In the back-
ward phase, a pending obligation is chosen, and the prover attempts to discharge
it by applying a sequence of more and more general proof techniques. First, a
simplifying stage applies conditional and congruence-based rewrites, a BDD-based
propositional decision procedure, a linear arithmetic decision procedure and other
simplification techniques to the obligation. If this step fails to reduce the obligation
to true, ACL2 tries other proof techniques, the most general of which attempts to
discover an induction scheme for the obligation.

The forward aspect of ACL2 is that most of the proof techniques are rule-driven.
Previously proved theorems can be turned into rules which are added to a rule
database and can be used by later proofs. For example, once one has proved the
associativity of a certain operator, this theorem can be converted into a rewrite
rule which will then be used by the simplifier rewrite occurrences of this operator
in an obligation.

The user guides the theorem prover by starting with simple lemmas that can be
proven directly and converted into new rules. These rules are then used to prove
successively more difficult lemmas until finally the main theorem is proven. ACL2
allows definitions, lemmas and theorems to be collected in books. A book may have
local lemmas which are invisible outside the book and whose only purpose is to
guide the prover to the proof for the main theorems exported by the book. This
feature (which was not available in Nqthm) facilitates the development of reusable
theories.

3.3.3 Proof Strategies for Hardware Verification. As we have seen in the previous
section, proof discovery in most theorem provers is guided by the user through the
application of proof strategies or tactics. Standard tactics operate at a level of
detail such as quantifier instantiation or rewrite with respect to a set of equalities.
However, hardware proofs tend to follow similar general patterns, which suggests
the development of proof strategies that automatically discharge more complex
obligations.

[Aagaard et al. 1993] report on a hardware proof strategy for both HOL and
Nuprl which automatically solves simple goals of the form (6). The tactic automat-
ically expands definitions used in the implementation, then applies heuristics for
instantiating quantifiers and for case analysis. Finally, it attempts to to discharge
obligations through rewriting.



38 . C. Kern and M. R. Greenstreet

Cyrluk et al. [1994] describe a similar proof strategy which was implemented in
PVS. This strategy applies to correctness conditions similar to (6), where both the
specification and implementation are given in terms of a state transition function. A
naive strategy would fully expand the definitions of the specification, the implemen-
tation and the abstraction mapping, subject the result to case analysis and verify
all the cases using the decision procedures. However, the resulting intermediate
expression becomes much too large for non-trivial examples. A better strategy first
applies a limited form of rewriting, performs a case-split on the number of cycles the
implementation has to run and then successively applies first a simple and if this
fails an aggressive rewrite strategy, further case-split and decision procedures to the
resulting cases. This strategy is capable of completely automatically verifying the
Tamarack microprocessor [Joyce 1988], a relatively simple microcoded design often
used as a benchmark example. A similar approach is described in [Kumar et al.
1993].

3.4 Combining Model Checking and Deductive Reasoning

In the previous sections, we have surveyed formal verification techniques ranging
from highly automated, model-checking-type approaches to theorem-proving-based
methods which require a considerable amount of human interaction. A verifier faces
the trade-off between choosing an automated technique, which is in general subject
to limitations in it applicability (such as being confined to finite systems), and more
general, but also more work-intensive approaches.

However, this trade-off can be avoided in certain cases where it is possible to
apply automated techniques to subsystems or simpler obligations and then use de-
ductive approaches to combine the results thus obtained into an overall correctness
result. In this section, we will survey a number of tools which exploit this approach.
Related work has been reported in [Kurshan and Lamport 1993; Joyce and Seger
1993; Rajan et al. 1995; Schneider and Kropf 1996].

Note that it is a non-trivial exercise to add a model-checking decision procedure
to an existing general-purpose theorem prover, because this generally requires for-
malizing the semanitcs of the temporal logic within the logic of the theorem-prover
(cf. [Joyce and Seger 1993; Rajan et al. 1995]).

3.4.1 Compositional Theory for Trajectory Assertions. Hazelhurst and Seger [1994,
1995] describe a proof system for trajectory assertions consisting of seven inference
rules which in general have the form

IfEmA;i=Cifori=1,...,nand Q1,...,Qm, then g A= C,

i.e. Eam A = C can be derived from a set of trajectory assertions which are known
to hold, given that the additional properties @1, -.. ,Qn are satisfied. Based on
assertions verified using STE, more complex properties can be derived using these
inference rules. It has been shown by Zhu and Seger [1994] that the addition of
one more inference rule renders the system of rules complete in the sense that it
is powerful enough to derive all logical consequences of a given set of trajectory
assertions.

Based on the above proof system, an LCF-style proof tool called VossProver has
been developed on top of the Voss verification tool. Trajectory theorems | A =
C which have already been proven are represented as objects of an abstract data



Formal Verification in Hardware Design: A Survey . 39

type in Voss’ meta-language f1. For each inference rule, there is a function (proof
rule) which takes the theorems corresponding to the rule’s premises as arguments,
checks whether the rule is applicable, and if so returns a new theorem corresponding
to the rule’s conclusions. In addition, there is a basic rule which returns a theorem
for a given trajectory assertion after verifying this assertion using STE.

On top of the above inference rules, a set of heuristics has been implemented
which automatically determine for example an appropriate time shift which aligns
two given theorems such that they can be combined using the transitivity rule.
These heuristic rules are sound by construction because they are implemented in
terms of the basic inference rules; however they may fail to find a proof for a given
theorem.

3.4.2 STeP. STeP [Manna et al. 1994; Bjorner et al. 1996] is an integrated sys-
tem for reasoning about reactive systems. The underlying computational model are
transition systems with fairness constraints; programs are specified in a program-
ming language called SPL, which provides, in addition to sequential constructs such
as loops, constructs for concurrency and nondeterminism. Specifications are given
in first-order LTL (i.e. quantification over state variables is allowed).

STeP integrates model-checking and theorem-proving methods for proving that
a temporal logic formula ¢ is valid for a program P. The model checker is based on
the construction of the product automaton for P and "¢ and checking the emptiness
of its language (see section 3.2.3). The model checker may be applied to systems
with infinite state spaces, in which case termination is not guaranteed.

The theorem proving support in STeP has several aspects. There are proof rules
which allow the validity of a temporal formula to be decomposed into so-called
verification conditions involving only first-order formulae not containing temporal
operators. A verification condition has the form {¢}7{¢} and asserts that taking
a transition 7 from a state satisfying ¢ must lead to a state ¢. The verification
conditions for a program can be visualized using verification diagrams, graphs whose
nodes and edges are labeled with formulae and transitions, respectively.

An automatic prover for first order logic, which is integrated with decision pro-
cedures for Presburger arithmetic, is available to prove the resulting obligations. If
the automatic prover is unable to discharge the obligations, an interactive sequent-
style prover may be used to simplify proof obligations.

STeP also provides methods for automatically discovering invariants, which are
needed e.g. for proofs of safety properties. The system attempts to generate invari-
ants both in a bottom-up fashion based on static analysis of the program, as well
as top-down by strengthening given properties.

4. CASE STUDIES

In the previous sections, we have introduced a variety of specification styles and
verification methodologies. We now present a selection of case studies where these
methods have been applied to actual designs. We have attempted to choose appli-
cations to “real-life”, mostly industrial designs in order to provide a sense of the
state-of-the-art in verification and of how designs can be specified and verified in
practice.



40 . C. Kern and M. R. Greenstreet

The application areas include microprocessors, floating-point hardware, proto-
cols, memory arrays, and communications hardware.

4.1 Microprocessors

This section presents a selection of recent applications of formal methods to mi-
croprocessors. Much of the work has used an approach where the specification is
given in terms of a state transition function on the programmer-visible state of
the processor. This function captures the effect of executing exactly one instruc-
tion. Then, theorem-proving techniques are used to show that an implementation,
described at a functional unit, RTL, or even gate-level, is a refinement of the spec-
ification. Earlier work in this category includes the Tamarack [Joyce 1988] and
Viper [Cohn 1988; Cohn 1989a] verification efforts. Section 4.1.5 describes an ap-
proach where the specification consists of an RTL description, and state-machine
equivalence checking is used to verify an implementation that is partly synthesized
and partly hand-crafted.

4.1.1 The Generic Interpreter Theory and AVM-1. Windley [1995a] has devel-
oped a framework for the verification of refinement between deterministic finite
state machines whose transitions can be grouped into classes, such as microproces-
sors where the classes correspond to instructions. His Generic Interpreter Theory
(GIT) provides a structured model for the specification of such state machines at
different levels of abstraction. The GIT model is based on the common structure of
earlier microprocessor verifications, such as Tamarack [Joyce 1988], VIPER [Cohn
1988] and FM8501 [Hunt 1994].

The AVM-1 is a general-purpose 32-bit microprocessor which was devised for
use as an example to demonstrate verification in the the GIT framework [Wind-
ley 1995a]. AVM-1 was designed to provide a reasonable set of features found in
commercial processors and yet be verifiable at the same time. It features a RISC
architecture, a large register file, supervisory mode, and supports external and
software interrupts.

The generic interpreter framework permits hierarchical specifications where a
design is described at a series of more and more detailed levels of abstraction: for
instance, the AVM-1 was specified behaviourally at the top-most level representing
the programmer’s view of the processor, the microcode level, the multi-phase clock
level, and with a structural representation at the lowest level [Windley 1995a]. The
verification of such a hierarchy proceeds by showing that each of the levels (except
for the top-most) implements the next higher level.

In the GIT framework, a deterministic machine is modeled as an interpreter. An
interpreter Z[s, €] is defined as a predicate over a state stream s : N — Sg and an
environment stream e : N — Sg as in section 2.2.2:

I[s,e] = Vien s(t+1) = N(s(t),e(t)), (12)

where N denotes the system’s state transition function. One of the most impor-
tant aspects of the GIT is the representation of this transition function. For a
behavioural description of a microprocessor, it is natural to decompose N into a
set J of transition functions, each of which corresponds to a single machine in-
struction. In the GIT, NV is expressed in terms of a function which selects the next



Formal Verification in Hardware Design: A Survey . 41

instruction to be executed in a given state, and the instruction-specific transition
functions themselves.

In the GIT, the general condition for refinement (i.e. equation (6) on page 18) is
specialized using separate functions for temporal and data abstractions:

= As,Ag, T Vsimp,€imp Limp [Simpa eimp] (13)
= Lspec|As © Simp © T, A © €ipp o T.

Here, As and Ag map implementation states into specification states, and T" maps
specification time into implementation time. Note that in fact Z;m,, need not be
an interpreter of the form (12). In particular, if the implementation is described
at a structural level, the predicate Z;,, can be expressed as the composition of
predicates for the registers, gates and functional units which make up the circuit,
with internal wires hidden by existential quantification (see section 2.2.2).

The special structure of the state transition function and the abstraction func-
tions allows the correctness statement to be reduced to two minor lemmata and an
instruction correctness lemma which essentially states that each instruction com-
pletes in a specific number of implementation time units and has the effect stip-
ulated by its instruction-specific transition function. This facilitates case analysis
over the set of instructions. The definitions of the transition function and the
abstraction functions as well as the above lemmata are collected into an abstract
theory [Windley 1992]. Instantiating the abstract theory automatically generates
proof obligations for the lemmata; once these obligations are proved, instantia-
tions of the theory’s theorems, in particular the main correctness result (13), are
established automatically.

Windley [1995a] argues that one of the most important benefits of this model
is that it provides a template for a specification by making explicit which defini-
tions (implementation, specification instruction set and abstraction functions) have
to be made; and that the proof is structured to a large extent by automatically
deriving which lemmata (i.e. the theory obligations) have to be proven. In earlier
proof efforts, these definitions and lemmata were arrived at in an ad hoc manner.
Specifying the processor hierarchically also contributes significantly to the man-
agement of proof complexity. In addition, it allows theorems about behavioural
aspects of a processor, such as the integrity of the supervisory mode, to be proven
at an appropriate level of abstraction [Windley 1991].

4.1.2 Pipelined Microprocessors. One of the major difficulties in the verification
of pipelined or super-scalar processors is that instruction boundaries at the speci-
fication and the implementation level do not coincide in general. Instead, several
uncompleted instructions may be executed in parallel in each cycle. Thus, the
abstraction function must combine temporal and data aspects [Windley 1995b].
This poses two challenges: It is more difficult to find the appropriate abstraction
function, and the proof structure becomes more irregular [Windley and Coe 1994].

Burch and Dill [1994] describe an approach to obtaining an abstraction function
which is applicable if the implementation of the processor can be stalled. Stalling
the processor refers to operating it in a mode where no new instructions are inserted
into the pipeline, but the instructions which are already in the pipeline continue
executing as usual. This can be achieved e.g. by inserting no-op instructions. The



42 . C. Kern and M. R. Greenstreet

pipeline is flushed by stalling it sufficiently many cycles to allow all instructions to
complete. The abstraction function is then composed of a function which symboli-
cally flushes the pipeline, and a pure data-abstraction function.

The correctness condition they use states that the application of the specification
and the implementation state transition function on an arbitrary state commutes
with the above abstraction function, that is, in the notation from the previous
section,

VocSim, Im Abs(Nimp(s)) = N (Abs(s)). (14)

Here, Abs is an abstraction function which first flushes the pipeline and then applies
the data abstraction mapping from implementation states into specification states.
The formulation in (14) includes a recent extension to the model [Burch 1996] which
accounts for super-scalar execution, where more than one instruction can be issued
per implementation cycle. This is reflected in the variable m, which corresponds
to the number of instructions issued into the pipeline in a given implementation
cycle. The correctness statement used in [Burch and Dill 1994] is obtained by fixing
m=1.

Burch [1996] gives a decomposition theorem which breaks the correctness condi-
tion for the processor (14) into three simpler properties. Informally, the first prop-
erty states that the implementation executes instructions correctly from a flushed
state; the second confirms that stalling does not affect the specification state; and
the third checks that instructions are fetched correctly.

Burch and Dill [1994] and [Burch 1996] have applied this methodology to pipelined
and super-scalar implementations, respectively, of a subset of the DLX architecture.
The DLX [Hennessy and Patterson 1990] is a generic RISC architecture represent-
ing common features of (earlier) commercial RISC architectures such as the MIPS
R3000, SPARC1, IBM 801, and Intel i860.

The verification was carried out using a tool based on symbolic simulation and
a validity checker. Representations of the state transition functions are compiled
from descriptions of the implementation and specification in a simple HDL. The tool
is targeted at the verification of pipeline control; uninterpreted function symbols
are used to represent e.g. ALU operations. The proof obligations are expanded
and then discharged using a specially tailored decision procedure for quantifier-
free, first-order logic with equality and uninterpreted function symbols [Jones et al.
1995; Barrett et al. 1996]. The tool does not allow for deductive reasoning to
discharge obligations; However, the user can suggest case splits to the validity
checker, which was indeed necessary to complete the verification of the super-scalar
DLX implementation.

Other work on pipelined microprocessors includes [Srivas and Bickford 1990;
Tahar and Kumar 1993; Saxe et al. 1993; Windley 1995b].

4.1.3 FM9001. The FM9001 is a general-purpose 32-bit microprocessor which
was designed with verification in mind by Bishop Brock and Warren Hunt at Com-
putational Logic, Inc. [Brock et al. 1994]. The FM9001 instruction set is based on
the instruction set of the earlier FM8502 design [Hunt 1989] and features the usual
integer arithmetic and Boolean operations, conditional stores and five addressing
modes. Instructions are of fixed sized and use a two address format.



Formal Verification in Hardware Design: A Survey . 43

The high-level specification for the FM9001 was formalized in the Boyer-Moore
logic. The central part of the specification is a function FM9001-step which, given
the current programmer-visible state of the processor (i.e. registers, flags and mem-
ory), returns the updated state resulting from the execution of one instruction. This
function is written in terms of auxiliary functions specifying how the current instruc-
tion is fetched from memory, decoded, and executed. The top level-specification is
a function which runs FM9001-step for n steps.

Unlike earlier verification efforts, Brock et al. [1994] formalize the implementation
level description not directly as functions in the logic. Instead, they define a simple
netlist HDL whose syntax and semantics were formalized in the Boyer-Moore logic
[Hunt and Brock 1992]. The formalization of the HDL consists of a predicate which
recognizes well-formed netlists, i.e. checks that requirements with respect to fanout
violations, clock distribution, absence of loops etc. are satisfied, and a symbolic
simulator which defines the operational semantics of the HDL. The simulator, called
DUAL-EVAL, is based on a four valued logic which includes the two additional logical
values floating and unde fined. The DUAL-EVAL netlist description of the processor
has been translated automatically (but informally) into a commercial netlist format
for fabrication.

The implementation and specification are related by a proof carried out in the
Ngthm prover. The main result states that for an arbitrary user-visible state s and
a positive integer n, there exists an integer ¢ such that executing the specification
FM9001-step n steps starting in state s has the same effect on the user-visible state
as simulating the behaviour of the FM9001 netlist under DUAL-EVAL semantics for
¢ clock cycles, subject to an appropriate abstraction mapping between state at the
specification and the netlist level. In addition, it the proof shows that the FM9001
implementation can be reset from an arbitrary, undefined state. This proof is
carried out at the netlist level and draws on monotonicity properties proved about
the DUAL-EVAL simulator.

The processor has been fabricated from its netlist description and has been sub-
jected to extensive testing; no functional design errors have been reported [Albin
et al. 1995].

4.1.4 AAMP5. The AAMPS5 microprocessor is a commercial microprocessor dis-
tributed by Collins Commercial Avionics and is part of a family of avionics proces-
sors intended for use in critical applications such as avionics displays. The archi-
tecture has been designed as a target architecture for high-level block-structured
languages and provides hardware support for run-time system primitives such as
procedure-state saving and parameter passing as well as scheduling primitives such
as task-state saving, context switching and interrupt handling. The instruction set
of the AAMP architecture is large and CISC-like with 209 variable-length instruc-
tions.

The implementation-level architecture of the AAMPS5 consists of four indepen-
dent units: a bus interface, an instruction cache, a look-ahead fetch unit, and a
microcoded, three-stage-pipelined data-processing unit. The implementation con-
sists of ca. 500,000 transistors.

A partial verification of an RTL description of the AAMP5 against a high-level
specification has been carried out in PVS in a cooperation between Collins, NASA



44 . C. Kern and M. R. Greenstreet

Langley and SRI International [Miller and Srivas 1995; ?]. The formal specification
of the AAMPS5 is given as usual in terms of next-state functions which describe the
effect of each instruction on a state-tuple representing the programmer-visible state
of the processor and the memory. 108 out of the 209 instructions were specified; the
specification consists of ca. 2,500 lines of PVS. A significant part of the specification
effort was invested in validating the specification with domain experts to ensure that
the formal specification indeed captures the intended behaviour as described in the
programmer’s manual.

At the implementation level, the data-processing unit (DPU) is described at the
register-transfer-level, while the other three units are specified only in terms of
their external behaviour. The processing unit itself is specified as the composition
of register-transfer-level components (latches, ROMs, multiplexers, shifters, register
files, etc.), and modules such as the ALU described at a more abstract level. The
individual components are specified in terms of their outputs as functions of their
input signals, in contrast to the predicative style described in section 2.2.2. This
functional specification style was chosen because it is more easily treated with the
proof strategies used. There is no formal link to the gate-level implementation of the
processor; this link has been validated using traditional, informal design reviews.

The correctness condition used in this verification states that each instruction
satisfies the following assertion: If the DPU is in a state where it just begins ex-
ecuting the first microinstruction of an instruction, then execution will eventually
complete, the sequence of micro-instructions will have the same effect under the
abstraction mapping as the macro- (specification-level) instruction, and the DPU
will end up in a state where it just begins executing the first micro-instruction of
the next macro-instruction. In addition, it has to be shown that the processor can
be reset into a valid state. The proofs are complicated by two features of the ar-
chitecture. First, the pipelined implementation leads to a complex, non-orthogonal
abstraction mapping Second the decoupled instruction pre-fetch units can fetch
instructions an arbitrary (though finite) number of cycles before the instruction
actually enters the execution unit.

4.1.5 PowerPC Transistor Level Verification. Appenzeller and Kuehlmann [1995]
report on the application of formal methods in the PowerPC microprocessor design
process. In this project, the top-level formal specification consists of the RTL de-
scription of the design, written in VHDL. The transistor-level implementation was
formally verified to be functionally equivalent to this specification using the Verity
tool (see section 3.2.2.1, [Kuehlmann et al. 1995]).

The RTL specification was written with simulation performance in mind and
validated to conform with the informal PowerPC architecture specification through
extensive simulation. There is no formalization of a specification at a higher level.
The RTL specification is structured into hierarchical layers; the structural decompo-
sition was planned such that the individual modules were manageable in complexity
both for the designers and the verification tool. There are three main layers: The
top-most, chip layer specifies how the entire processor is composed of its functional
units; the second layer describes these units in terms of components, which are in
turn described at the lowest layer. The average size of such a component corre-



Formal Verification in Hardware Design: A Survey . 45

sponds to ca. 7000 lines of VHDL or 60,000 transistors. Each of the main layers
were subdivided into further sub-layers if necessary.

The transistor-level implementation was developed using the the structural de-
composition given by the RTL specification. The design used a combination of
synthesized and custom designed components. Static and pre-charged circuits are
both used in the design. The Verity tool was used to show functional equivalence
for all synthesized components and 81% of the custom designed components The
unverified components either included large storage arrays or they were compo-
nents that were designed before Verity was introduced, and the project schedule
did not accomodate the restructuring that would be needed for verification. The
authors noted that much of the verification was possible because Verify was part of
the design flow, and circuits were structured with verification in mind. Ninety-five
percent of the circuits were verified in less than 800 CPU seconds and 30MB of
memory each. With this level of performance, it was possible to integrate Verity
into an interactive design environment.

4.2 Floating-Point Units

In the wake of the highly publicized flaw in the Intel Pentium divider, many re-
searchers have looked to using formal methods to verify hardware for floating point
operations. The verification of floating-point algorithms has also received much
attention recently, but is beyond the scope of this paper. Recent efforts in this
area include work on SRT division (the algorithm used in the Pentium floating-
point unit, see [Cavanagh 1984]) [Miner and Leathrum, Jr. 1996; Ruess et al. 1996],
square root [Leeser and O’Leary 1995], and natural logarithm algorithms [Harrison
1995] and the core of the AMD5k86 floating-point division algorithm [Brock et al.
1996; Moore et al. 1996].

4.2.1 Intel Extended-Precision FPU. Chen et al. [1996] apply word-level model
checking [Clarke et al. 1996] to the verification of all operations of the floating-point
unit of a recent Intel microprocessor®. They also demonstrate their approach using
the Weitek WTL3170/3171 Sparc floating-point co-processor* as an example.

Word-level model checking is not capable of directly verifying that the circuit
implements a high-level specification of (e.g. IEEE conformant) floating-point op-
erations. Instead, the overall correctness condition is decomposed into a set of
properties about sub-units of the FPU. These properties may be further decom-
posed into several assertions, which are then expressed as temporal formulae in
word-level CTL. For iterative algorithms, such as division and square-root, these
individual properties state that the circuit maintains the appropriate loop invari-
ants. In the case of the Intel FPU, over 120 such properties were verified and are
claimed to cover all arithmetic operations of the unit. There is no machine-checked
proof that the collection of these properties implies that the FPU conforms to a
formalized specification.

In order to make the verification tractable, a technique called property-specific
model extraction was applied to the circuit description before model checking of
the individual verification conditions. This step exploits that a given operation

3The paper does not specify exactly which model
4The architecture of this unit has been documented in the literature [Birman et al. 1990].



46 . C. Kern and M. R. Greenstreet

(such as multiplication) usually exercises only part of the FPU; thus, the irrelevant
parts of the unit can be abstracted away when checking a property pertaining to
this operation. The authors do not provide a detailed description of this step,
nor do they describe whether the validity of this abstraction is shown formally or
informally.

4.2.2 The ADK IEEFE Multiplier. Aagaard and Seger [1995] report on the design
and verification of a IEEE compliant floating-point multiplier called ADK. The
design satisfies all requirements stated in the IEEE standard, except that some
non-standard rounding modes are not supported and denormalized operands are
treated by either considering them as equal to zero (in violation of the standard)
or by raising an exception which allows treatment in software.

The ADK is implemented as an array-multiplier with radix-8 modified Booth-
recoding, and has a four-stage pipelined architecture. In the first pipeline stage,
the operands are prepared, which involves computing the Booth recoding (see [Ca-
vanagh 1984]) of the first operand’s significand; in addition, the exponents are
added and special cases (such as NaNs) are detected. The second stage consists of
the multiplier array of carry-save-adders which performs the actual multiplication
of the significands. The third stage adds the resulting carry and sum vectors and
also performs normalization of the result. The fourth and final stage implements
the rounding and re-normalization of the result and also detects overflow condi-
tions and raises the appropriate exception signals. The design was implemented in
structural VHDL and synthesized into a unit-delay gate-level model with ca. 33,000
gates.

The top-level specification of the multiplier was given in the relational style in-
troduced in section 2.1.6 and formalizes the textual description of the IEEE multi-
plication standard. The relation between input operands and outputs is written in
terms of arithmetic operations on integers, i.e. the significand and exponent vectors
are interpreted as integer values at the specification level.

The verification proceeded by first showing that the gate-level implementations
of the design’s functional units (such as the Booth-recoder or the multiplication
array) satisfy corresponding TF specifications. This step was done automatically
using trajectory evaluation. Then the results for the individual units were composed
into specifications of larger circuit components and eventually shown to imply the
top-level specification. This step used the proof rules of the compositional theory
for TF provided by the VossProver system [Hazelhurst and Seger 1995] (see section
3.4.1).

Thus, it was shown that a gate-level model of the ADK implementation satisfies a
high-level specification of the IEEE multiplication standard. The authors estimate
the combined effort for design, implementation and verification of the multiplier at
around 70 work-days.

4.3 Asynchronous and Distributed Systems

4.3.1 The Summit Bus Converter. Harkness and Wolf [1994] apply symbolic
model checking to the Summit bus converter, an industrial component of a mul-
tiprocessor system. The bus converter provides a communication link between a
high-speed processor bus and a low-speed I/O bus. Both the processor bus and



Formal Verification in Hardware Design: A Survey . 47

the I/O bus components of the converter are designed as collections of interacting
finite state machines. The authors informally abstracted away aspects of the de-
sign which were considered unimportant to the verification conditions they had in
mind. For instance, error handling, data transfer, pipelined link transfer and other
performance-enhancing features were not modeled, also addresses were reduced to
one bit. Model checking was then applied to the resulting abstract model of the
design, which was formalized in SMV, to demonstrate the presence of deadlock on
the system’s link queues in earlier versions of the design, as well as the absence of
deadlock in a revised version. This was accomplished by showing that the system
satisfies the CTL formula

AG (LQ.Head.Occ = AF ("LQ.Head.Occ)),

stating that whenever the head buffer of the link queue is occupied with a request,
this will eventually be processed.

The potential for deadlock in the incorrect design had already been known, and
the abstract model was created with the verification of deadlock-freedom in mind.
When validating their model against other putative temporal properties of the
system, the authors also discovered a data corruption error in the design.

4.3.2 Cache Coherence Protocols. A distributed shared memory system (e.g.
[Lenoski et al. 1992]) consists of a collection of clusters, each of which has one
or more processor, local memory, caches, memory-mapped I/O devices, a directory,
and a DSM controller. The clusters are connected through a communication fabric.
Fach processor sees the same, shared, linear virtual address space. The DSM con-
troller ensures that each processor sees the same, shared, address space. The cache
coherence protocol is supposed to ensure that this memory is coherent: although
memory reads and writes may occur concurrently on different nodes, the values
obtained from reads appear as if the memory actions occured in a single, global,
sequential order. Subtle bugs can appear in an incorrect protocol when messages
exchanged between nodes in an order unforeseen by the designer. As there may be
an extremely large number of possible event orderings, coherence protocols can be
very hard to validate using informal methods such as simulation.

Model checking techniques have been used to verify several such protocols. Cache
coherence protocols are typically specified as a collection of communicating state
machines, making them natural candidates for model checking. However, a real
implementations have extremely large amounts of state including several status
bits for each cache block on each node. Model checking is generally applied to an
informally constructed abstraction of a small system. In this section, we present
two recent applications of this approach, the coherence protocols of a recent Silicon
Graphics multiprocessor architecture, and of the Sun S3.mp architecture. Numer-
ous other coherence protocols have been verified including those for the Gigamax
[McMillan and Schwalbe 1991], Futurebus+ [Clarke et al. 1993] and SCI [Stern and
Dill 1995].

Eiriksson and McMillan [1995] describe the verification of the cache coherence
protocol for a Silicon Graphics multiprocessor using the SMV model checker. The
state transition tables for the protocal are machine tranlated into SMV represen-
tations and composed with a model of the connection network. Then, high-level



48 . C. Kern and M. R. Greenstreet

correctness properties of the protocol, expressed in CTL, are verified. To make
the verification tractable, the high-level specification was kept as abstract as pos-
sible and dependent variables were eliminated (see section 3.1.2.3). The properties
verified included absence of deadlock, requests always receive the correct response,
absence of unsolicited responses, and safety properties expressing cache coherence.
In one case, a bug which lead to loss of coherence was exposed; the problem oc-
curred after a sequence of 19 events in a particular ordering and would most likely
not have been found in simulation [Eiriksson and McMillan 1995].

The verification effort was an integral part of the design process [Eiriksson 1996;
Eiriksson and McMillan 1995]. A single abstract specification of the cache coherence
protocol was used for formal verification, performance evaluation, documentation,
and design. For a number of sub-components, it has also been verified that a Verilog
RTL implementation of the component is a refinement or the corresponding high-
level FSM. This was accomplished using a translator which extracts an SMV model
from the Verilog code and using modelchecking to verify the refinement property.
Regression verification was used to automatically repeat the verification as the
design evolved. A complete regression run which checks all of the roughly 300 CTL
assertions for less than four clusters takes less than two days on a cluster of 200
workstations with up to 2GB memory each.

The Sun S3.mp shared memory multiprocessor [Nowatzyk et al. 1995] also uses
a directory-based cache-coherency scheme. The nodes in this system are standard
workstations with special interconnect controllers attached to their system buses.
Fach workstation may itself have more than one processor, consistency within a
single workstation is achieved through a snooping protocol on the system bus. In
the Sun protocol, each block has a home node, and the DSM controller on that
node maintains a list of other nodes that contain copies of the block. The protocol
allows one processor to have an exclusive copy of a block or many processors to
have read-only copies. The home node is responsible for serializing requests for its
memory blocks.

Pong et al. [1995] model the protocol in the Mury language and system [Dill
et al. 1992] (see section 3.1.5). Here, we will focus on the how the multiprocessor
system is modeled in order to make the verification tractable. Only one memory
block is modeled; it is assumed that other blocks don’t interfere. The model con-
tains this single block’s home node with its directory entry as well as k other nodes
with one cache block each. The nodes are modeled with one processor only based
on the assumption that the local snooping protocol works correctly. The network
is modeled by non-FIFO buffers for incoming and outgoing messages at each node.
The data values held in the cache are represented by five symbolic values reflect-
ing their relation with the other cached copies. For example the symbolic value
GlobalFresh_Hold denotes a value written to the cache by the local node but
which has not yet been propagated to all other nodes; similarly, Obsolete denotes
a value which is out of date. A required safety property for a protocol which main-
tains data consistency is that processors can never read an Obsolete value. The
symmetry of the model is exploited to group equivalent symmetric states [Ip and
Dill 1996a]. Using this model, several protocol errors were detected and corrected.
Data consistency was then verified for a model with two remote nodes in addition
to the home node.



Formal Verification in Hardware Design: A Survey . 49

To verify larger configurations, the authors applied a technique called symbolic
state model (SSM) [Pong and Dubois 1993]. The key idea here is that it is irrele-
vant precisely how many nodes have (for example) a shared copy of a block; rather,
it is sufficient to distinguish states in which either zero, one, or more nodes have
caches and network buffers in a particular state. In the SSM for the S3.mp cache
coherence, a system state consists of a detailed account of the nodes on the dis-
tributed linked list, as well as repetition counts in the above sense for the remaining
nodes. Using SSM, the correctness condition is established for a configuration with
arbitrarily many nodes, but where at most four nodes (including the home node)
can simultaneously share a copy of the block. More errors were found that only
surfaced in models with at least three remote nodes.

4.4 Memory Subsystems

Complex memory arrays such as multi-ported register-files and caches are particu-
larly difficult applications for model-checking techniques because of their very large
state spaces. Furthermore, their implementations typically have non-trivial timing
characteristics which may preclude the extraction of accurate gate-level model from
the transistor netlist.

Pandey et al. [1996] apply symbolic trajectory evaluation to two arrays from the
PowerPC architecture. The first array is a multi-ported register file with 36 32-bit
registers and two write and five read ports. The second unit is a data cache tag
(DTAG) with 128 4-way associative sets. Each way in a set has a 20-bit tag plus
valid and dirty bits; in addition each set has 6 LRU bits. When a 7-bit index to
select one of the sets as well as a tag are presented to the unit, it determines if the
tag matches one of four ways. If so, this is indicated and the LRU history of the
set is updated. Otherwise, the tag of the least recently used way is output. The
implementation of the DTAG has over 12,000 latches.

The specifications for the units were structured into high-level assertions about
abstract state transitions (i.e. memory read or write) and an implementation map-
ping which captures the detailed timing information (see [Beatty and Bryant 1994]).

The high-level assertions have the form A leadgto , where the antecedent A is an
assertion about the inputs and internal state before an abstraction transition, and
C' is a corresponding assertion bout the internal state afterwards. The implementa-
tion mapping relates each clause in A or C to a trajectory formula which specifies
the detailed timing of the node(s) corresponding to the high-level clause. Asser-
tions on the pre and post values of the registers are expressed in the form R[i] = u,
where 4 is a symbolic index [Beatty 1993], and the corresponding circuit nodes are
initialized with symbolic expressions rather than constants. This technique is vital
to the tractability of the verification in that it reduces the number of symbolic
variables to a number approximately logarithmic in the number of registers.

The implementations were given both as flat transistor netlists and at the RTL
level in an internal HDL. To identify the state-holding nodes in the transistor netlist,
an automated technique was used which exercises a write operation on the design
with symbolic input values, and then matches the resulting symbolic expressions on
the nodes against symbolic indexing functions for the state holding elements. The
switch-level models for the symbolic simulation underlying STE were derived from



50 . C. Kern and M. R. Greenstreet

4x4 switch fabric

AckOut | : Ackin
7 " Ack 74
! I
FrameStart |
R |
! Avrbitration 2 I
| 4 |
Dataln | |
4x8, | . DataOut
| B Switch Z‘g:—»
X

Fig. 7. 4x4 switch fabric and delta network

the netlists. In the case of the DTAG unit, some amount of manual modeling was
necessary, which involved annotating the circuit with transistor strengths. Care
was taken not to assign directions to transistors.

Both the switch-level and the RTL-level models were checked against the trajec-
tory assertions comprising the circuit specification. For both units, discrepancies
between the behaviour of both models appeared, although in the case of the regis-
ter file, this did not correspond to a bug in the circuit because the corresponding
behaviour would not be exercised in the intended operating environment. For the
DTAG unit two actual bugs were found, the first of which was due to a transistor
‘sneak path’ and which therefore was not visible at the RTL-level. Checking the
most complicated assertion for the DTAG unit required ca. 10 minutes of processing
time and 150MB of memory.

4.5 ATM Switch Fabrics

The Asynchronous Transfer Mode (ATM) is a technology for high-speed local-
and wide-area networks [Vetter 1995]. Its main characteristic is that data is trans-
ported in small, fixed-size packets called cells. The network consists of multi-ported
switches interconnected by point-to-point high-speed links. Fairisle [Leslie and
McAuley 1991] is an ATM architecture for local area networks (LANs) supporting
link-speeds of 100Mbps.

The switch fabric forms the core of the switch; it does the actual routing of
cells from one of the sixteen input lines to the desired output lines. The fabric is
implemented as a delta network of eight 4x4 switch fabrics as shown in figure 7. The
network is self-routing: Port controllers at the input lines attach two routing tags
to incoming cells. The 4x4 fabrics read the tags to determine which of their outputs
a cell is to be forwarded to, and then strip off the tag. If two cells have the same
destination, one of them must be dropped; successful delivery is communicated
back to the input via the acknowledgment lines. The decision which of two or more
competing cells will be forwarded is made by the arbitration unit, according to a
round-robin scheme which also takes priority information from in the routing tags
into consideration. The frame start signal indicates that new cells (headed by a
routing tag) will appear at the inputs; cells appear in synch on the input lines.
In the following, we will discuss two applications of formal methods to the switch
fabric.

Tahar et al. [1996] verified safety properties of the 4x4 fabric. They created two
models of the design: a gate-level model derived from an HDL description, and



Formal Verification in Hardware Design: A Survey . 51

an abstract model where data inputs and outputs are abstracted to an abstract
sort wordn, representing n-bit words, and data-path operations are represented by
uninterpreted function symbols. Using a tool based on Multiway Decision Graphs
(MDGs, a generalization of BDDs which supports abstract sorts and uninterpreted
functions [Anon et al. 1996]), they verified the sequential equivalence of the two
models (for fixed n = 8) by constructing a product machine which included ap-
propriate encoding/decoding units converting between the abstract sort and 8-bit
vectors.

The authors then verified a number of properties of the abstract model. Correct
operation is required only in an environment which meets certain constraints; for
example, the routing tags must appear on the input lines a certain number of clock
cycles after the frame start signal was asserted. The environment was modeled
by an environment machine which generates allowed sequences of input signals.
The properties verified were phrased as safety properties of the composition of
the environment machine and the abstract model. For example, it was verified
that proper default values appear at the data and acknowledgment outputs after a
reset. Properties regarding the correct forwarding of data require that, during an
appropriate time span relative to the beginning of a frame, the appropriate data
output equals the corresponding data input from four cycles earlier, subject to
arbitration decisions. In order to phrase this condition as a safety property, it was
necessary to route copies of the data signals generated by the environment through
a four-cycle delay buffer.

Curzon and Leslie [1996] report on the verification of the complete 16x16 fabric
in HOL. This verification effort is based on earlier work by the first author on the
4x4 fabric [Curzon 1994]. A hierarchical description of the implementation is given
at the gate-level in the specification style introduced in section 2.2.2. A behavioural
specification of the switching element is given in terms of a predicate relating the
input and output signals over time. The overall correctness statement then takes
the form

Assumptions = (Imp = Spec),

where Assumptions is a predicate capturing constraints on the environment be-
haviour.

The 4x4 elements of the 16x16 fabric are in fact not identical; there are small
differences in timing between the two stages, and a slight difference in the routing
behaviour between the top and bottom elements of the first stage. The proofs
for these elements were adapted from the original proof of the 4x4 element. The
proof for the main correctness theorem for the 16x16 fabric could not be completed
because the theorems proven for the first stage elements could not guarantee an
environment assumption concerning the timing of cell arrivals which was needed by
the second stage. This problem did not arise in [Tahar et al. 1996] because they
only considered a single 4x4 element.

Based on this proof effort, several modifications of the original 16x16 design were
proposed, resulting in simplifications of the interfaces between functional units and
the removal of environment assumptions. In particular, the environment assump-
tion which prevented the completion of the original proof could be removed by
adding a small amount of logic to the arbitration unit. All but one of the suggested



52 . C. Kern and M. R. Greenstreet

modifications were considered acceptable by the designer of the original 16x16 fab-
ric. The authors conclude that keeping provability in mind during the design phase
(as opposed to verification after design completion) can result in shorter proofs and
even improved, simpler designs.

Tahar and Curzon [1996] provide a more detailed comparison of the two verifi-
cation efforts described above.

5. CONCLUSION

Traditional, simulation-based validation can only check a very small fraction of the
behaviours of any non-trivial, digital design. Research in formal methods attempts
to verify that designs work for all allowed inputs and all reachable states by using
rigorous methods from formal mathematics. This requires a formal, mathematical
specification of the design requirements, an accurate model of the implementation,
and practical techniques to show that the implementation indeed satisfies the re-
quirements. When a claim is made that a design has been formally verified, it is
important to understand what requirements were specified and at what level of
detail the design was modeled. This paper has described formal methods for spec-
ification and verification, and summarized case studies where these methods have
been applied to realistic designs.

Broadly summarizing, specification techniques tend to describe either temporal
properties that a design should have or a high-level model of behaviour that the
design should implement. For example, a temporal formula could state that all
messages that enter a network must eventually be delivered, or that executing an
instruction leaves the right symbolic values in the register file. Using high-level
models, one could specify the network as a collection of abstract queues with a
process that transfers messages between queues according to their routing tags,
and the processor could be specified with a high-level model of its instruction set.

Design models can range from very abstract models where the design is divided
into a few block down to very detailed descriptions that model each transistor.
Verification at a high level of abstraction does not prove that the lower level details
of the implementation are correct. On the other hand, formal methods can be very
effective for finding errors at high levels of abstraction before a large design effort
is invested in implementing an flawed system architecture. The choice of models
must reflect both what the designer believes is most likely to reveal errors and what
is possible to verify with existing methods.

Verification techniques generally can be divided into two catagories: reachabil-
ity analysis (e.g. explicit or symbolic state enumeration) and deductive methods.
Model checkers, language containment checkers, and state machine equivalence
checkers are examples of the first approach. These tools are often applied used to
verify requirements specified as temporal properties, but, as noted in section 3.1.3,
model checking can also be used to verify refinement of a high-level model. For
these to work, the model must be small enough for the verification to complete
with the CPU and memory resources available. This usually requires that a design
is verified at a relatively abstract level, or that relatively small sub-systems of the
design are verified separately. Although these methods offer a high degree of au-
tomation, successful verification often requires an expert’s insight into the design
itself as well as the implementation of the model-checker.



Formal Verification in Hardware Design: A Survey . 53

Many different theorem provers have been used for deductive verification. Most
examples using theorem provers verify that some model of a design is a refine-
ment of a higher level, although deductive proofs of temporal properties are also
possible (e.g. [?; Bjgrner et al. 1996]). These methods are guided by an expert’s
understanding of the design and are not limited to finite structures, which allows
deductive verification to address designs that cannot be verified by more automatic
techniques. However, using a theorem prover requires a high degree of expertise in
mathematical logic, a familiarity with the theorem prover, and an intimate under-
standing of the design itself.

It is interesting to observe that in several of the larger verification efforts carried
out to date, both model-checking and theorem-proving based, the developers of the
tool used (or the underlying theory) were involved at least in the initial stages of the
project (e.g. [Eiriksson and McMillan 1995; Miller and Srivas 1995; Pandey et al.
1996; Brock et al. 1996]). Although these efforts required the expertise of the tool
developer, the successful results on real designs indicates that formal verification is
likely to become more widely adopted in the near future.

References

AAGAARD, M. AND SEGER, C.-J. H. 1995. The formal verification of a pipelined double-
precision IEEE floating-point multiplier. In ACM/IEEE International Conference on
Computer-Aided Design (Nov. 1995), pp. 7-10.

AAGAARD, M. D., LEESER, M. E., AND WINDLEY, P. J. 1993. Toward a super duper hard-
ware tactic. In J. J. JOYCE AND C.-J. H. SEGER Eds., Higher Order Logic Theorem Proving
and Its Applications, HUG ’93, Number 780 in Lecture Notes in Computer Science (Van-
couver, Aug. 1993), pp. 400-412. Springer-Verlag.

ABADI, M. AND LAMPORT, L. 1991. The existence of refinement mappings. Theoretical Com-
puter Science 82, 2 (May), 253-284.

ALBIN, K. L., Brock, B. C., Hunt, W. A., AND SMmITH, L. M. 1995. Testing the FM9001
microprocessor. Technical Report 90 (Jan.), Computational Logic, Inc., Austin, TX.

ANoON, K. D., BOULERICE, N., CERNY, E., CORELLA, F., LANGEVIN, M., SONG, X., TAHAR,
S., Xu, Y., AND ZHOU, Z. 1996. MDG tools for the verification of RTL designs. In
R. ALUR AND T. A. HENZINGER Eds., 8th International Conference on Computer-Aided
Verification, CAV ’96, Number 1102 in Lecture Notes in Computer Science (July/Aug.
1996), pp. 433-436. Springer-Verlag.

APPENZELLER, D. P. AND KUEHLMANN, A. 1995. Formal verification of the PowerPCTM
microprocessor. In 1995 Intl. Conference on Computer Design: VLSI in Computers &
Processors (Oct. 1995), pp. 79-84. IEEE Computer Society Press.

BARReTT, C., DI1LL, D., AND LEvVITT, J. 1996. Validity checking for combinations of theories
with equality. In M. SRIVAS AND A. CAMILLERI Eds., st Intl. Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD ’96), Number 1166 in Lecture Notes in Computer
Science (Nov. 1996), pp. 187-201. Springer-Verlag.

BeEaTTY, D. L. 1993. A methodology for formal hardware verification, with application to
microprocessors. Technical Report CMU-CS-93-190 (Aug.), School of Computer Science,
Carnegie Mellon University. Ph.D. Thesis.

BeATTY, D. L. AND BRYANT, R. E. 1994. Formally verifying a microprocessor using a
simulation methodology. In Proc. 31st Design Automation Conference (June 1994), pp.
596-602. ACM.

BEER, I., BEN-DAviD, S., EiSNER, C., AND LANDVER, A. 1996. RuleBase: An industry-
oriented formal verification tool. In 33rd Design Automation Conference, DAC ’96 (June
1996), pp. 655-660.

BernuOLTZ, O., VARDI, M. Y., AND WOLPER, P. 1994. An automata-theoretic approach
to branching-time model checking. In D. L. DiLL Ed., 6th International Conference on



54

. C. Kern and M. R. Greenstreet

Computer-Aided Verification, CAV ’94, Number 818 in Lecture Notes in Computer Science
(June 1994), pp. 142-155. Springer-Verlag.

BirMAN, M., SAUMELS, A., CHU, G., CHUK, T., Hu, L., McLEOD, J., AND BARNES, J. 1990.
Developing the WTL3170/3171 Sparc floating-point coprocessors. IEEE Micro 10, 1 (Feb.),
55—64.

BIQRNER, N., BROWNE, A., CHANG, E., CoLON, M., KAPUR, A., MANNA, Z., SiPMA, H.,
AND URIBE, T. 1996. STeP: Deductive-algorithmic verification of reactive and real-time
systems. In 8th International Conference on Computer Aided Verification, LNCS (1996).
Springer-Verlag. To appear.

BORMANN, J., LOHSE, J., PAYER, M., AND VENZL, G. 1995. Model checking in industrial
hardware design. In 32nd Design Automation Conference, DAC ’95 (1995).

BOYER, R. S. AND MOORE, J. S. 1979. A Computational Logic. Academic Press, New York.

BOYER, R. S. AND MOORE, J. S. 1988. A Computational Logic Handbook. Academic Press,
New York.

BRADFIELD, J. C. 1992. Verifying Temporal Properties of Systems. Birkhauser, Boston.

BrAYTON, R. K., HACHTEL, G. D., SANGIOVANNI-VINCENTELLI, A., SOMENzI, F.| Az1z, A.,
CHENG, S.-T., EDWARDS, S. A., KHATRI, S. P., KUuKIMOTO, Y., PARDO, A., QADEER, S.,
RANJAN, R. K., SARWARY, S., SHIPLE, T. R., SWAMY, G., AND VIiLLA, T. 1996a. VIS: A
system for verification and synthesis. In 8th International Conference on Computer-Aided
Verification, CAV ’96, Number 1102 in Lecture Notes in Computer Science (July 1996),
pp. 428-432. Springer-Verlag.

BrAYTON, R. K., HACHTEL, G. D., SANGIOVANNI-VINCENTELLI, A., SOMENzI, F., Aziz, A.,
CHENG, S.-T., EDWARDS, S. A., KHATRI, S. P., KukiMOTO, Y., PARDO, A., QADEER, S.,
RANJAN, R. K., SARWARY, S., SHIPLE, T. R., SwWAMY, G., AND ViLLA, T. 1996b. VIS.
In 1st Intl. Conference on Formal Methods in Computer-Aided Design (FMCAD ’96),
Number 1166 in Lecture Notes in Computer Science (Nov. 1996), pp. 248-256. Springer-
Verlag.

BROCK, B. AND HUNT, W. A. 1990. Report on the formal specification and partial verifica-
tion of the VIPER microprocessor. Technical Report 46 (Jan.), Computational Logic, Inc.,
Austin, TX.

BROCK, B., HUNT, W. A., AND KAUFMANN, M. 1994. The FM9001 microprocessor proof.
Technical Report 86 (Dec.), Computational Logic, Inc., Austin, TX.

BrROCK, B., KAUFMANN, M., AND MOORE, J. S. 1996. ACL2 theorems about commercial
microprocessors. In M. SRIVAS AND A. CAMILLERI Eds., Ist Intl. Conference on Formal
Methods in Computer-Aided Design (FMCAD ’96), Number 1166 in Lecture Notes in
Computer Science (Nov. 1996), pp. 275-293. Springer-Verlag.

BryYANT, R., BEATTY, D., BRACE, K., CHO, K., AND SHEFFLER, T. 1987. COSMOS: a com-
piled simulator for MOS circuits. In Proc. 24th ACM/IEEE Design Automation Conference
(1987), pp. 9-16.

BryANT, R. E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35, 8 (Aug.), 677-691.

BryanT, R. E. 1991a. A methodology for hardware verification based on logic simulation.
Journal of the ACM 38, 2 (April), 299-328.

BryANT, R. E. 1991b. On the complexity of VLSI implementations and graph representa-
tions of Boolean functions with application to integer multiplication. IEEE Transactions
on Computers C-40, 2 (Feb.), 205-213.

BryanT, R. E. 1992. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys 24, 3 (Sept.), 293-318.

BryANT, R. E. 1995. Binary decision diagrams and beyond: Enabling technologies for
formal verification. In International Conference on Computer-Aided Design, ICCAD ’95
(Nov. 1995).

BurcH, J., CLARKE, E., LoNGg, D., McMiLLAN, K., AND DL, D. 1994. Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 13, 4 (April), 401-424.

BURrcH, J. R. 1996. Techniques for verifying superscalar microprocessors. In 33rd Design
Automation Conference, DAC ’96 (June 1996), pp. 552-557.



Formal Verification in Hardware Design: A Survey . 55

BURcCH, J. R., CLARKE, E. M., McMILLAN, K. L., DiLL, D. L., AND HWANG, J. 1990. Sym-
bolic model checking: 1020 states and beyond. In Proc. 5th Annual Symposium on Logic
in Computer Science (1990). IEEE Computer Society Press.

BURCH, J. R. AND DiLL, D. L. 1994. Automatic verification of pipelined microprocessor
control. In D. L. DL Ed., 6th International Conference on Computer-Aided Verifica-
tion, CAV’94, Number 818 in Lecture Notes in Computer Science (June 1994), pp. 68-80.
Springer-Verlag.

CAVANAGH, J. J. 1984. Digital computer arithmetic : design and implementation. McGraw-
Hill, New York.

CHANDY, K. M. AND MIiSRA, J. 1988. Parallel Program Design: A Foundation. Addison-
Wesley, Reading, Mass.

CHEN, Y.-A., CLARKE, E., HO, P.-H., HOSKOTE, Y., KAM, T., KHAIRA, M., O’LEARY, J., AND
ZHAO, X. 1996. Verification of all circuits in a floating-point unit using word-level model
checking. In M. SRIVAS AND A. CAMILLERI Eds., Ist Intl. Conference on Formal Methods
in Computer-Aided Design (FMCAD ’96), Number 1166 in Lecture Notes in Computer
Science (Nov. 1996), pp. 19-33. Springer-Verlag.

CHURCH, A. 1940. A formulation of the simple theory of types. J. Symbolic Logic 5, 56—115.
check this.

CLARKE, E., EMERSON, E., AND SI1STLA, A. 1983. Automatic verification of finite-state
concurrent systems using temporal logic specifications: A practical approach. In 10th Ann.
ACM Symposium on Principles of Programming Languages (1983), pp. 117-126.

CLARKE, E., EMERSON, E., AND SISTLA, A. 1986. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems 8, 2 (April), 224-263.

CLARKE, E., FujitA, M., AND ZHAO, X. 1995. Hybrid decision diagrams — overcoming
the limitations of MTBDDs and BMDs. In International Conference on Computer-Aided
Design, ICCAD °95 (Nov. 1995), pp. 159-163.

CLARKE, E., GRUMBERG, O., Hiraissi, H., JuA, S., LonGg, D., McMiLLAN, K., AND NESS,
L. 1993. Verification of the Futurebus+ cache coherence protocol. In L. CLAESEN Ed.,
Proceedings of the Eleventh International Symposium on Computer Hardware Description
Languages and their Applications (April 1993). North Holland.

CLARKE, E.; MCMILLAN, K., CAMPOS, S., AND HARTONAS-GARMHAUSEN, V. 1996. Symbolic
model checking. In 8th International Conference on Computer-Aided Verification, CAV
’96, Number 1102 in Lecture Notes in Computer Science (July 1996), pp. 419-422. Springer-
Verlag.

CLARKE, E. M., BROWNE, I. A.; AND KURSHAN, R. P. 1990. A unified approach for showing
language containment and equivalence between various types of w-automata. In A. ARNOLD
Ed., Proc. 15th Colloquium on Trees an Algebra and Programming, CAAP’90, Number 431
in Lecture Notes in Computer Science (May 1990), pp. 103-116. Springer-Verlag.

CLARKE, E. M., GRUMBERG, O., AND HAmMAGUCHI, K. 1994. Another look at LTL model
checking. In D. L. DiLL Ed., 6th International Conference on Computer-Aided Verification,
CAV ’94, Number 818 in Lecture Notes in Computer Science (June 1994), pp. 415-427.
Springer-Verlag.

CLARKE, E. M., GRUMBERG, O., AND LONG, D. E. 1994. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems 16, 5 (Sept.), 1512-1542.
CLARKE, E. M., KHAIRA, M., AND ZHAO, X. 1996. Word level model checking — avoiding
the Pentium FDIV error. In 837d Design Automation Conference, DAC 96 (June 1996),

pp. 645-648.

ConnN, A. 1988. A proof of correctness of the Viper microprocessor: The first level. In
G. BIRTWISTLE AND P. SUBRAHMANYAM Eds., VLSI Specification, Verification and Synthe-
sis, pp. 27-71. Kluwer Academic Publishers.

ConN, A. 1989a. Correctness properties of the Viper block model: The second level. In
G. BIRTWISTLE AND P. SUBRAHMANYAM Eds., Current Trends in Hardware Verification
and Automated Theorem Proving, pp- 1-91. Springer-Verlag.

CoHN, A. 1989b. The notion of proof in hardware verification. Journal of Automated Rea-
soning 5, 127-139.



56

. C. Kern and M. R. Greenstreet

CORELLA, F., ZHOU, Z., SONG, X., LANGEVIN, M., AND CERNY, E. 1994. Multiway Decision
Graphs for automated hardware verification. Research Report RC 19676 (July), IBM.
COUDERT, O., BERTHET, C., AND MADRE, J. C. 1989. Verification of synchronous sequential
machines based on symbolic execution. In J. SirAkIS Ed., Automatic Verification Methods
for Finite State Systems, Number 407 in Lecture Notes in Computer Science (June 1989),

pp. 365-373. Springer- Verlag.

CurzoN, P. 1994. The formal verification of the Fairisle ATM switching element: an
overview. Technical Report 328 (March), University of Cambridge Computer Laboratory.

CURZON, P. AND LESLIE, I. 1996. Improving hardware design whilst simplyfying their proof.
In 8rd Workshop on Designing Correct Circuits (DCC) (Bastad, Sweden, Sept. 1996).

CYRLUK, D., RAJAN, S., SHANKAR, N., AND Srivas, M. K. 1994. Effective theorem proving
for hardware verification. In R. KuMAR AND T. KROPF Eds., 2nd Intl. Conference on
Theorem Provers in Circuit Design, TPCD ’94, Number 901 in Lecture Notes in Computer
Science (Sept. 1994), pp. 203-222. Springer-Verlag.

DL, D. L. 1996. The mury verification system. In 8th International Conference on
Computer-Aided Verification, CAV ’96, Number 1102 in Lecture Notes in Computer Sci-
ence (July 1996), pp. 390-393. Springer-Verlag.

DiLL, D. L., DREXLER, A. J., Hu, A. J., AND YaNG, C. H. 1992. Protocol verification as
a hardware design aid. In IEEE International Conference on Computer Design: VLSI in
Computers and Processors, ICCD’92 (1992), pp. 522-525. IEEE Computer Society.

Durry, D. A. 1991. Principles of Automated Theorem Proving. John Wiley & Sons, Chich-
ester.

EIRrikssoN, A. T. 1996. Integrating formal verification methods with a conventional project
design flow. In 33rd Design Automation Conference, DAC ’96 (June 1996), pp. 666—671.

EIR{KSSON, A. T. AND McMiLLaN, K. L. 1995. Using formal verification/analysis methods
on the critical path in system design. In P. WOLPER Ed., 7th International Conference on
Computer-Aided Verification, CAV ’95, Number 939 in Lecture Notes in Computer Science
(July 1995), pp. 367-380. Springer-Verlag.

EMERSON, E. A. 1990. Temporal and modal logic. In J. VAN LEEUWEN Ed., Handbook of
Theoretical Computer Science, Volume B, pp. 995-1072. The MIT Press/Elsevier Science
Publishers.

EMERSON, E. A. AND HALPERN, J. Y. 1986. “Sometimes” and “not never” revisited: On
branching versus linear time temporal logic. Journal of the ACM 83, 1 (Jan.), 151-178.

ENGBERG, U., GRONNING, P., AND LAMPORT, L. 1992. Mechanical verification of concurrent
systems with tla. In 4th International Conference on Computer-Aided Verification, CAV
’92, Number 663 in Lecture Notes in Computer Science (1992), pp. 44-55. Springer-Verlag.

GARLAND, S. J. AND GUTTAG, J. V. 1989. An overview of LP, the Larch prover. In N. DER-
SHOWITZ Ed., Rewriting Techniques and Applications, RTA-89, Number 355 in Lecture
Notes in Computer Science (April 1989), pp. 137-151. Springer-Verlag.

GERTH, R. 1989. Foundations of compositional program refinement — safety properties —.
In J. W. DE BAKKER, W.-P. DE ROEVER, AND G. ROZENBERG Eds., Stepwise Refinement
of Distributed Systems, Number 430 in Lecture Notes in Computer Science (1989), pp.
777-808. Springer-Verlag.

GORDON, M. 1985. Why higher-order logic is a good formalism for specifying and verifying
hardware. In G. J. MILNE AND P. A. SUBRAHMANYAM KEds., Formal Aspects of VLSI Design
(1985), pp. 153-177. Elsevier Science Publishers.

GoOrDON, M. J. 1988. HOL: a proof generating system for higher-order logic. In
G. BIRTWISTLE AND P. SUBRAHMANYAM Eds., VLSI Specification, Verification and Syn-
thesis, pp- 74—128. Kluwer Academic Publishers.

GORDON, M. J. C., WADSWORTH, C. P., AND MILNER, A. J. 1979. Edinburgh LCF: a mech-
anised logic of computation. Number 78 in Lecture Notes in Computer Science. Springer-
Verlag.

GupTA, A. 1992. Formal hardware verfification methods: A survey. Formal Methods in
System Design 1, 2/3 (Oct.), 151-238.

HarDIN, R. H., HAR'EL, Z., AND KURSHAN, R. P. 1996. COSPAN. In 8th International
Conference on Computer-Aided Verification, CAV ’96, Number 1102 in Lecture Notes in
Computer Science (July 1996), pp. 423-427. Springer-Verlag.



Formal Verification in Hardware Design: A Survey . 57

HAREL, D. 1988. On visual formalisms. Communications of the ACM 31,5 (May), 514-530.

HARkKNESS, C. AND WoOLF, E. 1994. Verifying the Summit bus converter protocols with
symbolic model checking. Formal Methods in System Design 4, 83-97.

HARRISON, J. 1993. A HOL decision procedure for elementary real algebra. In J. J. JOYCE
AND C.-J. H. SEGER Eds., Higher Order Logic Theorem Proving and Its Applications,
HUG ’93, Number 780 in Lecture Notes in Computer Science (Vancouver, Aug. 1993), pp.
426-436. Springer-Verlag.

HARRISON, J. 1995. Floating point verification in HOL. In E. T. SCHUBERT, P. J. WINDLEY,
AND J. ALvES-Foss Eds., Higher Order Logic Theorem Proving and Its Applications, 8th
Intl. Workshop, Number 971 in Lecture Notes in Computer Science (Sept. 1995), pp. 186—
199. Springer-Verlag.

HAZELHURST, S. AND SEGER, C.-J. H. 1994. Composing symbolic trajectory evaluation
results. In D. L. DiLL Ed., 6th International Conference on Computer-Aided Verification,
CAV’94, Number 818 in Lecture Notes in Computer Science (June 1994), pp. 273-285.
Springer-Verlag.

HAZELHURST, S. AND SEGER, C.-J. H. 1995. A simple theorem prover based on symbolic tra-
jectory evaluation and BDDs. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 14, 4 (April), 413-422.

HENNESSY, J. L. AND PATTERSON, D. A. 1990. Computer Architecture : A Quantitative
Approach. Morgan Kaufman.

Hoarg, C. A. R. 1978. Communicating sequential processes. Communications of the
ACM 21, 8 (Aug.), 666-677.

Hosarti, R., BRAYTON, R. K., AND KURSHAN, R. P. 1993. BDD-based debugging of designs
using language containment and fair CTL. In C. CourcOuUBETIS Ed., 5th International
Conference on Computer-Aided Verification, CAV ’93, Number 697 in Lecture Notes in
Computer Science (June 1993), pp. 41-58. Springer-Verlag.

HojaTi, R., SINGHAL, V., AND BRAYTON, R. K. 1994. Edge-Streett/Edge-Rabin automata
environment for formal verification using language containment. Memorandum UCB/ERL
M94/12, Electronics Res. Lab., University of California, Berkeley.

Hu, A. J. AND DiL, D. L. 1993. Reducing BDD size by exploiting functional dependencies.
In Proc. 80th Design Automation Conference (1993), pp. 266—27.

Hu, A. J., DL, D. L., DREXLER, A. J., AND YANG, C. H. 1992. Higher-level specifica-
tion and verification with BDDs. In 4th Intl. Workshop on Computer-Aided Verification
(Montreal, Quebéc, July 1992).

Hu, A. J., YORK, G., AND DL, D. L. 1994. New techniques for efficient verification with
implicitly conjoined BDDs. In Proc. 31st Design Automation Conference (1994).

Hu~nT, W. A. 1989. Microprocessor design verification. Journal of Automated Reason-
ing 5, 4, 411-428.

Hunt, W. A. 1994. FM8501: A Verified Microprocessor. Number 795 in Lecture Notes in
Computer Science. Springer-Verlag, Berlin.

HunT, W. A. AND BrROCK, B. 1992. A formal HDL and its use in the FM9001 verification.
Technical Report 79 (July), Computational Logic, Inc., Austin, TX.

Ip, C. N. AND DiLL, D. L. 1993. Efficient verification of symmetric concurrent systems. In
1998 Intl. Conference on Computer Design: VLSI in Computers € Processors (1993), pp.
230-234. IEEE Computer Society Press.

Ip, C. N. AND DiLL, D. L. 1996a. Better verification through symmetry. Formal Methods
in System Design 9, 1/2 (Aug.), 41-75.

Ip, C. N. AND DiLL, D. L. 1996b. State reduction using reversible rules. In 33rd Design
Automation Conference, DAC ’96 (June 1996), pp. 564-567.

JAIN, J., ABRAHAM, J. A., BITNER, J., AND FUSSELL, D. S. 1996. Probabilistic verification
of boolean functions. Formal Methods in System Design 1, 1 (July), 63—-115.

JonEs, R. B., DL, D. L., AND BUrcH, J. R. 1995. Efficient validity checking for processor
verification. In International Conference on Computer-Aided Design, ICCAD ’95 (1995).

Josko, B. 1989. Verifying the correctness of AADL modules using model checking. In J. W.
DE BAKKER, W.-P. DE ROEVER, AND G. ROZENBERG KEds., Stepwise Refinement of Dis-
tributed Systems, Number 430 in Lecture Notes in Computer Science (1989), pp. 386-400.
Springer-Verlag.



58

. C. Kern and M. R. Greenstreet

Joyce, J. J. 1988. Formal verification and implementation of a microprocessor. In
G. BIRTWISTLE AND P. SUBRAHMANYAM Eds., VLSI Specification, Verification and Syn-
thesis, pp. 129-157. Kluwer Academic Publishers.

JOYCE, J. J. AND SEGER, C.-J. H. 1993. Linking BDD-based symbolic evaluation to inter-
active theorem-proving. In Proc. 30th ACM/IEEE Design Automation Conference (1993),
pp. 469-474.

KAUFMANN, M. AND MOORE, J. S. 1994. Design goals for ACL2. Technical Report 101
(Aug.), Computational Logic, Inc., Austin, TX.

KAUFMANN, M. AND MOORE, J. S. 1996. ACL2: an industrial strength version of Nqthm.
In Proc. 11th Annual Conference on Computer Assurance (COMPASS ’96) (June 1996),
pp. 23-34. IEEE Computer Society Press.

KESTEN, Y., MANNA, Z., MCGUIRE, H., AND PNUELI, A. 1993. A decision algorithm for full
propositional temporal logic. In C. COURCOUBETIS Ed., 5th International Conference on
Computer-Aided Verification, CAV ’93, Number 697 in Lecture Notes in Computer Science
(June 1993), pp. 97-109. Springer-Verlag.

KLEENE, S. C. 1967. Mathematical Logic. John Wiley & Sons, Chichester.

KrLoos, C. D. AND BREUER, P. 1995. Formal Semantics for VHDL. Kluwer Academic
Publishers, Boston.

Kozen, D. 1993. Results on the propositional p-calculus. Theoretical Computer Sci-
ence 27, 3 (Dec.), 333-354.

KUEHLMANN, A., SRINIVASAN, A., AND LAPOTIN, D. P. 1995. Verity — a formal verification
program for custom CMOS circuits. IBM Journal of Research and Development 39, 1/2
(Jan./March), 149-165.

KuMAR, R., SCHNEIDER, K., AND KrROPF, T. 1993. Structuring and automating hardware
proofs in a higher-order theorem-proving environment. Formal Methods in System Design 2,
165-230.

KUrsHAN, R. P. 1989. Analysis of discrete event coordination. In J. W. DE BAKKER, W.-
P. DE ROEVER, AND G. ROZENBERG Eds., Stepwise Refinement of Distributed Systems,
Number 430 in Lecture Notes in Computer Science (1989), pp. 414-453. Springer-Verlag.

KUrsHAN, R. P. AND LAMPORT, L. 1993. Verification of a multiplier: 64 bits and beyond.
In C. COURCOUBETIS Ed., 5th International Conference on Computer-Aided Verification,
CAV ’98, Number 697 in Lecture Notes in Computer Science (June 1993), pp. 166-179.
Springer-Verlag.

La1, Y.-T. AND SASTRY, S. 1992. Edge-valued binary decision diagrams for multi-level hi-
erarchical verification. In 29th Design Automation Conference, DAC ’92 (June 1992), pp.
608-613.

LaMPORT, L. 1980. “Sometime” is sometimes “not never” — on the temporal logic of pro-
grams. In 7th Ann. ACM Symposium on Principles of Programming Languages (1980), pp.
174-185.

LAMPORT, L. AND SCHNEIDER, F. B. 1984, The “Hoare logic” of CSP, and all that. ACM
Transactions on Programming Languages and Systems 6, 2 (April), 281-296.

Leg, T. W., GREENSTREET, M. R., AND SEGER, C.-J. 1994a. Automatic verification of
asynchronous circuits. IEEE Design and Test 12, 1 (Spring), 24-31.

LEg, T. W., GREENSTREET, M. R., AND SEGER, C.-J. 1994b. Automatic verification of
refinement. In Proceedings of the 1994 International Conference on Computer Design
(Boston, Oct. 1994).

LEESER, M. AND O’LEARY, J. 1995. Verification of a subtractive radix-2 square root al-
gorithm and implementation. In 1995 Intl. Conference on Computer Design: VLSI in
Computers & Processors (Oct. 1995), pp. 526-531. IEEE Computer Society Press.

LENOSKI, D.; LAUDON, J., GHARACHORLOO, K., WEBER, W.-D., GUPTA, A., HENNESSY, J.,
HoroOwITSZ, M., AND LAM, M. S. 1992. The Stanford Dash multiprocessor. IEEE Com-
puter 25, 3 (March), 63-79.

LESLIE, I. AND MCAULEY, D. 1991. Fairisle: An ATM network for the local area. In Proc.
SIGCOMM-91, Computer Communications Review, 21(4) (Sept. 1991), pp. 327-336. ACM
Press.

MANNA, Z., ANUCHITANUKUL, A., BIGRNER, N., BROWNE, A., CHANG, E., COLON, M., DE AL-
FARO, L., DEVARAJAN, H., S1PMA, H., AND URIBE, T. 1994. STeP: The Stanford tempo-



Formal Verification in Hardware Design: A Survey . 59

ral prover. Technical Report STAN-CS-TR-94-1518 (June), Computer Science Department,
Stanford University.

MANNA, Z. AND PNUELL, A. 1992. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, Berlin.

MANNA, Z. AND WOLPER, P. 1984. Synthesis of communicating processes from tempo-
ral logic specifications. ACM Transactions on Programming Languages and Systems 6, 1
(Jan.), 68-93.

MARETTI, N. 1994. Mechanized verification of refinement. In R. KuUMAR AND T. KROPF
Eds., 2nd Intl. Conference on Theorem Provers in Circuit Design, TPCD ’94, Number
901 in Lecture Notes in Computer Science (Sept. 1994), pp. 185-202. Springer-Verlag.

McCuNE, W. 1994. OTTER 3.0. Preprint MCS-P399-1193 (March), Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, Ill. URL:
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P399.ps.Z.

McFARLAND, M. C. 1993. Formal verification of sequential hardware: A tutorial. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 12, 5 (May),
663-654.

McMiLLan, K. 1994. Fitting formal methods in to the design cycle. In 31st Design Au-
tomation Conference, DAC 94 (1994).

McMiILLAN, K. L. 1992. Symbolic model checking — an approach to the state explosion
problem. Ph.D. Thesis, School of Computer Science, Carnegie Mellon University, 1992.
McMiLLAN, K. L. AND SCHWALBE, J. 1991. Formal verification of the Encore Gigamax
cache consistency protocol. In Proc. of the 1991 Intl. Symposium on Shared Memory Mul-

tiprocessors (April 1991).

MELHAM, T. F. 1988. Abstraction mechanisms for hardware verification. In G. BIRTWISTLE
AND P. SUBRAHMANYAM Eds., VLSI Specification, Verification and Synthesis, pp. 267-291.
Kluwer Academic Publishers.

MILLER, S. P. AND Srivas, M. 1995. Formal verification of the AAMPS5 microprocessor: A
case study in the industrial use of formal methods. In WIFT ’95: Workshop on Industrial-
Strength Formal Specification Techniques (Boca Raton, FL, April 1995), pp. 2-16.

MINER, P. S. AND LEATHRUM, JR., J. F. 1996. Verification of IEEE compliant subtractive
division algorithms. In M. SRIVAS AND A. CAMILLERI Eds., Ist Intl. Conference on Formal
Methods in Computer-Aided Design (FMCAD ’96), Number 1166 in Lecture Notes in
Computer Science (Nov. 1996), pp. 64-78. Springer-Verlag.

MOORE, J. S., LyncH, T., AND KAUFMANN, M. 1996. Mechanically checked proof of the
correctness of the kernel of the AMDS586TM floating-point division algorithm. URL:
http://devil.ece.utexas.edu:80/ lynch/divide/divide.html.

NELSON, G. aND OPPEN, D. C. 1979. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems 1, 2 (Oct.), 245-257.

NOWATZYK, A., AYBAY, G., BROWNE, M., KELLY, E., PARKIN, M., RADKE, W.; AND VISHIN,
S. 1995. The S3.mp scalable shared memory multiprocessor. In ICPP’95 (1995).

OWwICKI, S. AND LAMPORT, L. 1982. Proving liveness properties of concurrent programs.
ACM Transactions on Programming Languages and Systems 4, 3 (July), 455-495.

OWRE, S., RaJAN, S., RUSHBY, J., SHANKAR, N.; AND Srivas, M. 1996. PVS: Combining
specification, proof checking, and model checking. In R. ALUR AND T. A. HENZINGER Eds.,
8th International Conference on Computer-Aided Verification, CAV ’96, Number 1102 in
Lecture Notes in Computer Science (July/Aug. 1996). Springer-Verlag.

OWRE, S., RUSHBY, J. M., AND SHANKAR, N. 1992. PVS: A prototype verification system. In
D. KAPUR Ed., 11th International Conference on Automated Deduction (CADE), Number
607 in Lecture Notes in Artificial Intelligence (Saratoga, NY, 1992), pp. 748-752. Springer-
Verlag.

PanDEY, M., RAamM1, R., BEATTY, D. L., AND BRYANT, R. E. 1996. Formal verification
of PowerPCTM arrays using symbolic trajectory evaluation. In 33rd Design Automation
Conference, DAC 96 (June 1996), pp. 649-654.

PixLEY, C., JEONG, S.-W., AND HACHTEL, G. D. 1994. Exact calculation of synchroniz-
ing sequences based on binary decision diagrams. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 13, 8 (Aug.), 1024-1034.



60

. C. Kern and M. R. Greenstreet

PNUELL, A. 1977. The temporal logic of programs. In 18th Annual Symposium on Founda-
tions of Computer Science (Providence, Rhode Island, 1977), pp. 46-57. IEEE.

PNuELl, A. 1986. Applications of temporal logic to the specification and verification of
reactive systems: A survey of current trends. In J. W. DE BAKKER, W.-P. DE ROEVER,
AND G. ROZENBERG Eds., Current Trends in Concurrency, Number 224 in Lecture Notes
in Computer Science (1986), pp. 510-584. Springer-Verlag.

Pong, F. AND DuBois, M. 1993. The verification of cache coherence protocols. In Proc. of
the 5th Annual Symp. on Parallel Algorithm and Architecture (June 1993), pp. 11-20.
Pong, F., NowaTzYK, A., AvyBay, G., AND DuBois, M. 1995. Verifying distributed
directory-based cache coherence protocols: S3.mp, a case study. In Intl. Conference on

Parallel Processing, EURO-PAR’95 (Stockholm, Sweden, Aug. 1995).

RAJAN, S., SHANKAR, N., AND Srivas, M. 1995. An integration of model-checking with
automated proof checking. In P. WoLPER Ed., Computer-Aided Verification, CAV 95,
Lecture Notes in Computer Science (Liege, Belgium, July 1995), pp. 84-97. Springer-Verlag.

RuDELL, R. 1993. Dynamic variable ordering for Ordered Binary Decision Diagrams. In
International Conference on Computer-Aided Design, ICCAD ’93 (Santa Clara, CA, Nov.
1993), pp. 42-47.

RuEss, H., SHANKAR, N.; AND SrIVAS, M. 1996. Modular verification of SRT division. In
R. ALUR AND T. HENZINGER Eds., 8th International Conference on Computer-Aided Ver-
ification, CAV ’96, Number 1102 in Lecture Notes in Computer Science (New Brunswick,
NJ, 1996). Springer-Verlag.

SAXE, J. B., HORNING, J. J., GUTTAG, J. V., AND GARLAND, S. J. 1993. Using transfor-
mations and verification in circuit design. Formal Methods in System Design 3, 3 (Dec.),
181-2009.

SCHNEIDER, K. AND KROPF, T. 1996. A unified approach for combining different formalisms
for hardware verification. In M. SRIVAS AND A. CAMILLERI Eds., Ist Intl. Conference on
Formal Methods in Computer-Aided Design (FMCAD ’96), Number 1166 in Lecture Notes
in Computer Science (Nov. 1996), pp. 202-217. Springer-Verlag.

SEGER, C.-J. H. 1992. An introduction to formal hardware verification. Technical Report
TR-92-13, Department of Computer Science, University of British Columbia, Vancouver.
URL: http://www.cs.ubc.ca/tr/1992/TR-92-13.ps.

SEGER, C.-J. H. 1993. Voss — a formal hardware verification system, user’s guide. Techni-
cal Report TR-93-45, Department of Computer Science, University of British Columbia,
Vancouver. URL: http://www.cs.ubc.ca/tr/1993/TR-93-45.ps.

SEGER, C.-J. H. AND BRYANT, R. E. 1995. Formal verification by symbolic evaluation of
partially-ordered trajectories. Formal Methods in System Design 6, 147-189.

SENTOVICH, E., SINGH, K., LAvAGNO, L., MooN, C., MURGAI, R., SALDANHA, A., SavoJ, H.,
STEPHAN, P.; BRAYTON, R., AND SANGIOVANNI-VINCENTELLI, A. 1992. SIS: a system
for sequential circuit synthesis. Technical Report UCB/ERL M92/41 (May), Electronics
Research Lab, Univ. of California, Berkeley.

SHANKAR, A. U. 1993. An introduction to assertional reasoning for concurrent systems.
ACM Computing Surveys 25, 3 (Sept.), 225-262.

SHosTAK, R. E. 1979. A practical decision procedure for arithmetic with function symbols.
Journal of the ACM 26, 2 (April), 351-360.

SHOSTAK, R. E. 1984. Deciding combinations of theories. Journal of the ACM 31,1 (Jan.),
1-12.

SisTLA, A. P. AND CLARKE, E. M. 1985. The complexity of propositional linear temporal
logics. Journal of the ACM 32, 3 (July), 733-749.

SRIVAS, M. AND BICKFORD, M. 1990. Formal verification of a pipelined microprocessor.
IEEE Software 7, 5 (Sept.), 52-64.

STAUNSTRUP, J. 1994. A formal approach to hardware design. Kluwer Academic Publishers,
Boston.

STERN, U. AND DiLL, D. L. 1995. Automatic verification of the SCI cache coherence proto-
col. In P. E. CAMURATI AND H. EVEKING Eds., Correct Hardware Design and Verification
Methods, CHARME ’95, Number 987 in Lecture Notes in Computer Science (Oct. 1995),
pp. 21-34. Springer-Verlag.



Formal Verification in Hardware Design: A Survey . 61

TAHAR, S. AND CURZON, P. 1996. A comparison of MDG and HOL for hardware verification.
In J. vON WRIGHT, J. GRUNDY, AND J. HARRISON Eds., Theorem Proving in Higher Order
Logics: 9th International Conference, Number 1125 in Lecture Notes in Computer Science
(1996), pp. 415-430. Springer-Verlag.

TAHAR, S. AND KuMAR, R. 1993. Implementing a methodology for formally verifying RISC
processors in HOL. In J. J. JOYCE AND C.-J. H. SEGER Eds., Higher Order Logic Theorem
Proving and Its Applications, HUG ’93, Number 780 in Lecture Notes in Computer Science
(Vancouver, Aug. 1993), pp. 281-294. Springer-Verlag.

TAHAR, S., ZHOU, Z., SONG, X., CERNY, E., AND LANGEVIN, M. 1996. Formal verification
of an ATM switch fabric using Multiway Decision Graphs. In Great Lakes Symposium on
VLSI (Ames, Iowa, March 1996). IEEE Computer Society Press.

TarskI, A. 1951. Decision Method for Elementary Algebra and Geometry. University of
California Press, Berkeley, CA.

THOMAS, W. 1990. Automata on infinite objects. In J. VAN LEEUWEN Ed., Handbook of
Theoretical Computer Science, Volume B, pp. 133-191. The MIT Press/Elsevier Science
Publishers.

TouaTi, H. J., Savos, H., LiN, B., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A.
1990. Implicit state enumeration of finite state machines using BDDs. In International
Conference on Computer-Aided Design, ICCAD ’90 (Nov. 1990), pp. 130-133.

VAN TAsSSeEL, J. P. 1993. A formalism of the VHDL simluation cycle. In L. CLAESEN AND
M. GOrDON Eds., Higher Order Logic Theorem Proving and its Applications (Sept. 1993),
pp- 359-374. North-Holland.

VARDI, M. AND WOLPER, P. 1986a. An automata-theoretic approach to automatic program
verification. In Proc. 1st Annual Symposium on Logic in Computer Science (1986), pp.
332-344. IEEE Computer Society Press.

VARDI, M. AND WOLPER, P. 1986b. Automata-theoretic techniques for modal logics of pro-
grams. Journal of Computer and System Sciences 32, 183-221.

VARDI, M. Y. AND WOLPER, P. 1994. Reasoning about infinite computations. Information
and Control 115, 1 (Nov.), 1-37.

VETTER, R. J. 1995. ATM concepts, architectures, and protocols. Communications of the
ACM 38, 2 (Feb.), 30-38,109.

WINDLEY, P. J. 1991. Using correctness results to verify behavioral properties of micropro-
cessors. In Proceedings of the IEEE Computer Assurance Conference (June 1991).

WINDLEY, P. J. 1992. Abstract theories in HOL. In L. J. M. CLAESEN AND M. J. C. GORDON
Eds., Proc. IFIP TC10/WG10.2 Intl. Workshop on Higher Order Logic Theorem Proving
and Its Applications, HOL ’92 (1992). North Holland.

WINDLEY, P. J. 1995a. Formal modeling and verification of microprocessors. IEEE Trans-
actions on Computers 44, 1 (Jan.), 54-72.

WINDLEY, P. J. 1995b. Verifying pipelined microprocessors. Technical re-
port (Oct.), Laboratory for Applied Logic, Brigham Young University. URL:
ftp://lal.cs.byu.edu/pub/hol/lal-papers/correct.ps.

WINDLEY, P. J. AND COE, M. 1994. A correctness model for pipelined microprocessors.
In R. KumAR AND T. KrOPF Eds., 2nd Intl. Conference on Theorem Provers in Circuit
Design, TPCD ’94, Number 901 in Lecture Notes in Computer Science (Sept. 1994), pp.
33-51. Springer-Verlag.

WOLPER, P. 1983. Temporal logic can be more expressive. Information and Control 56, 1/2
(Jan./Feb.), 72-99.

7ZHU, Z. AND SEGER, C.-J. H. 1994. The completeness of a hardware inference system. In
D. L. DL Ed., 6th International Conference on Computer-Aided Verification, CAV ’94,
Number 818 in Lecture Notes in Computer Science (June 1994), pp. 286-298. Springer-
Verlag.



Formal Verification in Hardware Design: A Survey

Contents

1 Introduction

1.1 Formal Verification in Hardware Design . . . . . .. ... ... ...
1.2 The Meaning of Verification . . . . . .. .. ... ... ... .....
1.3 Organization of the Paper . . . . . . ... ... ... .. .......

Specifications and Verification Conditions
2.1 Specifications in Temporal Logic . . . . . . ... ... ... ... ..
2.1.1 Computation Tree Logic . . . . . . ... ... .. ... ....
2.1.1.1 CTL Formulae and their Truth Semantics . . . . . .
2.1.1.2 Specificationsin CTL . . . ... ... ... .....
2.1.2 More Expressive Branching Time Logics . . . . . .. ... ..
2.1.3 Linear Time Logic . . . .. .. ... ... ... ... . ....
214 p-Calculus. . . . .. ..
2.1.5 Invariants and Safety Properties . . ... ... ... ... ..
2.1.6 Trajectory Formulas . . . . . ... ... ... .........
2.2 Specification with High-Level Models . . . . .. ... ... ......
2.2.1 Abstraction Mechanisms . . . . . . ... ... ... ..
2.2.2 Specifications in Logic . . . . ... ... ... .. oo
2.2.3 Specification using Transition Systems . . . . . ... ... ..
2.24 Refinement . . ... ... ... oo o
2.2.5 Automata on Infinite Objects and Language Containment . .

3 Verification Techniques and Tools

3.1 Model Checking . . . . . .. .. ...
3.1.1 Explicit State Model Checking . . ... .. ... ... ....
3.1.2 Symbolic Model Checking . . . . .. ... ... ... .....

3.1.2.1 Model Checking Algorithm . . . .. ... ......
3.1.2.2 Representation of Boolean Functions . . . . . . . ..
3.1.2.3 Practical Issues in BDD-based Model Checking . . .
3.1.3 Refinement and Model Checking . . . . ... .. ... ....
3.1.4 Symbolic Trajectory Evaluation . . . . . . ... ... ... ..
3141 AnExample ... ... ... ...
3.1.5 Model Checking Tools . . . ... ... ... ... .. .....

3.2 Automata-Theoretic Approaches . . . . . ... ... ... ......
3.2.1 Automata on Infinite Objects and Language Containment . .
3.2.2 State Machine Equivalence . . . .. ... ... ........

3.2.2.1 Combinational Equivalence . . . . . . ... ... ..
3.2.3 Language Containment and Model Checking . ... ... ..

3.3 Deductive Methods . . . . . .. ... ... ... ... ...
3.3.1 Automated Theorem Proving . . . . .. .. ... ... ....
3.3.2 Theorem Proving Systems . . . . . ... ... .. ... ...,
3.3.3 Proof Strategies for Hardware Verification . . . . . . ... ..

3.4 Combining Model Checking and Deductive Reasoning . . . ... ..
3.4.1 Compositional Theory for Trajectory Assertions . . ... ..
342 STeP. . .. . . .



2 C. Kern and M. R. Greenstreet
4 Case Studies 39
4.1 MiCroproCessors . . . . . v v v v vt e e e e e e e e e e e e 39
4.1.1 The Generic Interpreter Theory and AVM-1. . . .. ... .. 40
4.1.2 Pipelined Microprocessors . . . . . . . . . .. ... ... 41
4.1.3 FMO9001 . . . . . . . . o 42
414 AAMPS . . . ..o 43
4.1.5 PowerPC Transistor Level Verification . . . . ... ... ... 44
4.2 Floating-Point Units . . . . . ... ... .. ... ... ........ 45
4.2.1 Intel Extended-Precision FPU . . . . .. ... ... ...... 45
4.2.2 The ADK IEEE Multiplier . .. .. .. ... .. ....... 45
4.3 Asynchronous and Distributed Systems . . .. ... ... ... ... 46
4.3.1 The Summit Bus Converter . . . .. .. .. ... .. ..... 46
4.3.2 Cache Coherence Protocols . . . .. ... ... ........ 47
4.4 Memory Subsystems . . . . . ... Lo o 49
4.5 ATM Switch Fabrics . . . . . . .. . .. .. ... . .. . .. . .... 50

5 Conclusion 52



